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ABSTRACT

Subtropical and tropical forests account for over

50% of soil CO2 production, 47% of N2O fluxes of

natural ecosystems, and act as both significant

sources and sinks of atmospheric CH4. However,

ecosystem-scale estimates of these fluxes typically

do not account for uncertainty that arises from

environmental heterogeneity over small spatial

scales. To assess the effects of small-scale environ-

mental heterogeneity on GHG fluxes in a tropical

forest ecosystem, we measured fluxes of CO2, CH4,

and N2O across a topographic gradient and at the

base of different tree species. We then used Baye-

sian linear models together with maps of trees and

topography to quantify spatial heterogeneity in

ecosystem-scale estimates of GHG emissions. The

relationship between GHG fluxes and species and

topography varied for each gas type. CO2 varied

strongly by species but was only weakly related to

topographic variation. In contrast, CH4 and N2O,

which are more strongly regulated by soil oxygen,

had strong relationships with topography but did

not vary across species. Assuming spatial homo-

geneity and average rainfall conditions, we esti-

mated ecosystem soil CO2 emissions to be 28.91 kg

CO2-C/ha/day, net CH4 consumption of - 5.15 g

CH4-C/ha/day, and net N2O emissions of 1.78 g

N2O-N/ha/day. Including variation caused by tree

species decreased ecosystem-level estimates of CO2

emissions by 8.03%, whereas including topo-

graphic variation decreased net CH4 consumption

by 12.98% and increased net N2O emissions by

1.05%. This translates to a net decrease of 8.32% in

estimated CO2-equivalent emissions. Our findings

show that ignoring small-scale environmental

heterogeneity has implications for bottom-up esti-

mates of GHG fluxes in tropical forests. Given the

increasing availability of fine-scale topographic

models, incorporating this source of variation in

estimates of ecosystem soil GHG emissions could

improve our understanding of the role tropical

forests play in global GHG cycles.
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HIGHLIGHTS

� Model soil GHG fluxes accounting for topogra-

phy and species distributions.

� Information about tree species affects estimates

of ecosystem-scale soil CO2 fluxes; information

about topography that of CH4 and N2O.

� Incorporation of these factors enables landscape-

level estimation of soil GHG fluxes.

INTRODUCTION

Tropical forests contribute disproportionately to

global fluxes of carbon dioxide (CO2), methane

(CH4), and nitrous oxide (N2O) (Bouwman and

others 1995; Curry 2007; Bond-Lamberty and

Thomson 2010). At large scales, predictions of GHG

fluxes rely on abiotic factors like climate and

ecosystem type. However, environmental condi-

tions within soils (for example, soil oxygen and

moisture) can create variation at small spatial scales

that is difficult to incorporate into large scale esti-

mates of ecosystem soil GHG emissions (Bouwman

and others 1995; Curry 2007; Groffman and others

2009; Bond-Lamberty and Thomson 2010). Be-

cause of the dynamic nature of the factors regu-

lating these GHG fluxes, small discrepancies in our

estimates can have significant effects on our pre-

dictions for the contribution of tropical forests to

atmospheric greenhouse gases. Thus, studying

small-scale variation in GHG fluxes and how this

variation affects estimates of ecosystem soil GHG

emissions is essential for improving our ability to

accurately model global nutrient cycling and fore-

cast climate (Bouwman and others 1995; Breuer

and others 2000; Curry 2007).

Soil oxygen, moisture, and nutrients are three of

the most important direct controls of soil GHG

fluxes. Anoxic processes like methanogenesis and

denitrification are often higher in wetter, low-

oxygen soils (Silver and others 1999; Wood and

Silver 2012), whereas autotrophic and hetero-

trophic soil respiration often peaks at intermediate

soil moisture (Wood and others 2013; Schimel

2018). However, high soil moisture can also slow

diffusion and decrease the rate of soil GHG fluxes at

the soil surface (McSwiney and others 2001; Schi-

mel 2018), sometimes leading to the highest fluxes

at intermediate levels of soil moisture (Hall and

others 2013; Wood and others 2013). Similarly,

spatial variation in soil nutrient availablity can

create hotspots of biogeochemical activity and

contribute to complex patterns of GHG fluxes.

Areas with abundant labile nitrogen often have

higher rates of N2O fluxes (Palta and others 2014),

and soil nutrient availability can increase decom-

position and soil CO2 fluxes in tropical forests

(Cleveland and Townsend 2006). Despite the well-

characterized effects of soil oxygen, moisture, and

nutrients on GHG fluxes (Silver and others 1999;

Groffman and others 2009; Wood and others 2013;

Palta and others 2014; Schimel 2018), it is often

difficult to assess how small-scale environmental

heterogeneity in these drivers influences estima-

tion of ecosystem-scale GHG emissions.

One way to incorporate the direct controls of

environmental heterogeneity on GHG fluxes into

estimates of soil ecosystem GHG emissions is to use

proxies for small-scale variation in soil oxygen,

moisture, and nutrients. Topography is known to

influence small-scale spatial patterns of soil oxygen

and moisture (Silver and others 1999; Daws and

others 2002; Wood and Silver 2012; Chadwick and

Asner 2016) and is also relatively easy to quantify

at large spatial scales with the advent of remote

sensing technologies (for example, LiDAR). In wet

forests (for example, rainforests), valleys have

higher soil moisture than ridges and steep slopes

and, as a result, often have lower soil oxygen,

leading to soil redox conditions that favor higher

production of CH4 and consumption of N2O (Silver

and others 1999; Wood and Silver 2012; O’Connell

and others 2018). Similarly, differences in tree

distributions and characteristics can be useful for

capturing small-scale spatial patterns of soil nutri-

ent availability (Zinke 1962; Reed and others 2008;

Keller and others 2013; Uriarte and others 2015;

Waring and others 2015). Patchiness in tree loca-

tions, differences in abundance, and high inter-

specific variation in litter chemistry, all of which

are common in tropical forests (Condit 2000;

Hättenschwiler and others 2008), are often associ-

ated with spatial heterogeneity in soil nitrogen

cycling (Osborne and others 2017) and other soil

macronutrients (Keller and others 2013; Uriarte

and others 2015; Waring and others 2015). Thus,

using topography as a proxy for spatial variation in

soil oxygen and moisture and tree species as

proxies for patchiness in soil nutrients may allow us

to incorporate small-scale environmental hetero-

geneity into ecosystem-scale GHG estimates.

Although the effects of topography and tree

species on the soil environment are common, they

are not ubiquitous, and sometimes they interact in

complex ways (Powers and others 2004; Wood and

Silver 2012; Hall and others 2013). The relationship

between tree species and soil nutrients may be

weak in tropical forests due to high species diversity
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and overlapping canopies (Powers and others 2004;

Waring and others 2015) or obscured by the effects

of intrinsic soil characteristics such as soil moisture

(Engelbrecht and others 2007) and soil nutrients

(John and others 2007) on tree species’ distribu-

tions. Additionally, tree species traits such as ca-

nopy structure can affect stemflow and throughfall

and influence patterns of soil moisture and oxygen

that may be independent of topography (Holwerda

and others 2006; Heartsill-Scalley and others

2007). Topography can also influence patterns of

soil nutrient availability by altering leaf litter

accumulation and the movement of soil nutrients

(Dwyer and Merriam 1981; Johnston 1992; Tateno

and Takeda 2003; Osborne and others 2017). Based

on the confounding effects of tree species and

topography on the soil environment, the relative

importance of these proximate drivers may vary for

each GHG. By quantifying the extent to which tree

species or topographic position can explain varia-

tion in GHG fluxes related to soil environmental

heterogeneity, we can use these easier to measure

proximate drivers of soil environmental variation

(that is, topography and tree species) to incorporate

small-scale spatial variation in GHG fluxes into

estimates of soil ecosystem GHG emissions.

Here we use data from the 16-ha permanent

mapped Luquillo Forest Dynamics Plot (LFDP) in

Puerto Rico (18�20¢N, 65�49¢W) to quantify differ-

ences in GHG fluxes among topographic positions

and five dominant tree species, two potential dri-

vers of small-scale variation in GHG fluxes. We

then use this information to assess how ecosystem-

scale estimates of GHG emissions change with the

inclusion of species-specific and topographic vari-

ation. Tree species’ distributions and topography

within the LFDP are well characterized (Thompson

and others 2002), enabling us to determine the

relationship between GHG fluxes and these proxi-

mate drivers of environmental heterogeneity.

Additionally, the relatively low tree species diver-

sity in the LFDP compared to mainland tropical

forests (Condit 2000) make this site ideal for

examining the effects of scaling up small-scale

measurements of GHG fluxes to estimate ecosys-

tem-scale emissions.

METHODS

To assess how environmental heterogeneity affects

ecosystem estimates of GHG emissions, we mea-

sured CO2, CH4, and N2O fluxes from soils at the

base of individual trees from five focal tree species

along a topographic gradient. We tested for differ-

ences in GHG fluxes by tree species and topography

by fitting linear Bayesian models to data for each of

three GHG gas fluxes: CO2, CH4, and N2O. To

quantify how variation by species and topography

influenced estimates of ecosystem-scale GHG

emissions, we used the model coefficients along

with data on topography and species distributions

across the plot to estimate ecosystem-scale fluxes of

CO2, CH4, and N2O for the entire 16-hectare LFDP.

Study Site

Soil GHG fluxes were measured in the Luquillo

Forest Dynamics Plot (LFDP) in the Luquillo

Experimental Forest in northeastern Puerto Rico.

The LFDP is a 16-hectare permanent, mapped for-

est plot established in 1990. The forest is classified

as a subtropical wet forest in the Holdridge life zone

system and the site average annual rainfall of

3,500 mm per year; mean annual temperature is

26 �C with little variability (Ewel and Whitmore

1973). Mean elevation of the LFDP is 350 m a.s.l.

Since 1990, all stems in the LFDP with a diameter

greater than 1 cm at 1.30 m height (DBH) have

been mapped, identified to species, and measured

following a modified Center for Tropical Forest

Science protocol (Condit 1998; Thompson and

others 2002). Approximately every five years, trees

are re-measured and their status is assessed. New

stems are added as they appear. As of 2016, our five

focal species (Casearia arborea, Dacryodes excelsa, Inga

laurina, Manilkara bidentata, and Prestoea acuminata)

represented the five most abundant species in the

LFDP and accounted for 46% of all stems at least

1 cm DBH, 68% of stems with a DBH at least

10 cm, and 53% of basal area in the LFDP (Supp.

Table 1).

Topography of the LFDP was quantified from a

high-resolution digital elevation model (DEM) de-

rived from a LiDAR flyover of the forest in 2011

(Wolf and others 2016). We calculated a continu-

ous measure of slope and concavity (that is, ridges

vs. valleys) within the LFDP by fitting a six-term

polynomial over a moving window with a radius of

r to the DEM (Hurst and others 2012). The optimal

r values for concavity and slope were determined

for each GHG flux by maximizing the likelihood of

the data given a model with only concavity and

slope as covariates (Supp. Table 2). Positive values

of concavity correspond with valleys and negative

values represent ridges.

Gas Flux Sampling

Fluxes of CO2, CH4, and N2O were measured from

the soil at the base of 24 individuals of each of the

five focal species (120 trees total). Individual trees

Greenhouse Gas Fluxes Vary with Species and Topography in Puerto Rico



were randomly chosen using the 2016 LFDP census

data after stratifying for species and topographic

position (that is, concavity). To ensure individuals

for each species represented the full range of con-

cavity in the LFDP, we divided each species pool

into 4 bins based on their concavity ([- 0.06 to

- 0.02], [- 0.02 to 0], [0 to 0.02], and [0.02 to

0.05]) and randomly selected six trees of each

species from each bin, yielding a total of 24 trees

per species for a total of 120 trees. For individuals

selected in locations where GHG flux measure-

ments were not possible, (that is, rocky outcrops), a

nearby individual of the same species was selected.

Fluxes were measured twice for each tree between

May 29 and July 12, 2017. We measured all trees

first and then re-measured the trees in the same

order. The average time elapsed between mea-

surements was 26 days, with a minimum of 20 and

a maximum of 35 days.

To collect the gases, a 40-cm-diameter, 6.4-cm-

height cylindrical chamber was placed on the sur-

face of the soil, parallel to the slope, at 0.5 m from

the base of each individual tree. A seal was created

between the chamber edges and the soil surface by

fitting robust plastic sheeting tightly around the

base of the chamber and weighting the sheeting

with heavy chains (Min and others 2021). At

intervals of 0, 5, 15, and 25 min, 15-mL gas sam-

ples were withdrawn from the chambers through a

septum in the top of the chamber and transferred to

pre-evacuated 10-mL Restek vials fitted with robust

Geo-Microbial Technologies septa. Air temperature

(Ambient Weather WS-2063-W–P Temperature

Monitor) and soil moisture (HydroSense II: 12 cm

depth) were measured at the end of gas sampling.

After sampling, septa were sealed with silicon sea-

lant to maintain positive pressurization and all gas

samples were transported back to Columbia

University in New York for analysis.

The concentrations of CO2, CH4, and N2O were

analyzed using gas chromatography (a series of

two, 2 m Haysep-D columns; SRI 8610C, SRI

Instruments, Torrance, CA, USA) with a Nickel-63

electron capture detector for N2O and a flame

ionization detector equipped with a methanizer for

CO2 and CH4. The gas chromatograph was cali-

brated with custom-ordered analytical grade stan-

dards from Tech Air (White Plains, NY). Vials

without positive pressure at the time of analysis

were categorized as ‘‘leaky’’ and discarded. GHG

fluxes were calculated from the quadratic change of

the gas concentrations over time after considering

the chamber volume and air temperature at the

time of collection (Parkin and others 2012).

Chamber flux measurements that had quadratic fits

with R2 below 0.6 for CO2 flux were removed.

Negative fluxes represent net uptake into the soil,

whereas positive values represent net soil emis-

sions. All GHG flux measurements were discarded

for trees with negative CO2 flux estimates, which

suggests an issue with the sampling chamber

placement and seal. The final total number of

usable soil GHG flux samples is provided in Supp.

Table 3.

Statistical Analysis

Rainfall was highly variable during the sampling

period (Supp Figure 1) and is a well-known driver

of GHG emissions via its effects on soil moisture

(Butterbach-Bahl and others 2004). Although we

had measured soil moisture at the same time of

GHG sample collection, our ability to capture spa-

tial variation in soil moisture at the site using the

HydroSense II probe is limited to extremely dry

conditions (lower 5% daily precipitation quantile

for observed historical precipitation (Uriarte and

others 2018) so we chose to use 48-h antecedent

rainfall as a covariate in all models rather than soil

moisture. Rainfall was standardized by subtracting

the mean and dividing by the standard deviation

for all observation. This formulation allows us to

interpret parameters for species and topography as

the effect of these covariates at average rainfall

conditions.

To derive estimates for each of the CO2, CH4, and

N2O fluxes, we fit four models to the data (Table 1).

The first model (M1) only had rainfall as a covari-

ate and therefore provided an estimate of the

average GHG flux across all our samples under

average rainfall conditions; this represents a null

model, as it implies no differences in GHG fluxes by

species or topography. The second model (M2) al-

lowed for differences in fluxes by species, and the

third (M3) allowed for differences in fluxes by

topography. The fourth model (M4) allowed flux

estimates to vary by both species and topography. A

normal likelihood distribution was used for CO2,

CH4, and N2O fluxes. Slope and concavity were

standardized to facilitate model fit by subtracting

the mean and dividing by the standard deviation.

These four models allowed us to examine how well

slope and concavity and proximity to focal tree

species capture variation in measured GHG fluxes

after accounting for rainfall variability.

Posterior distributions of parameters were esti-

mated using Markov chain Monte Carlo (MCMC)

methods using the rjags R package (Plummer 2011;

R Core Team 2018). Three chains were computed

for each parameter with uninformed, random ini-

A. W. Quebbeman and others



tial values. The first 5,000 iterations were dis-

carded, and each chain ran for 10,000 iterations.

Convergence was assessed by visually inspecting

trace plots of chains. Finally, model fit was assessed

using DIC scores; models with the lowest Deviance

Information Criterion (DIC) scores were considered

best fits (Spiegelhalter and others 2014). Significant

effects of topography and species were determined

using the 95% credible intervals for coefficient

estimates. Goodness of fit (R2) was calculated for

best fit models.

Estimating Ecosystem Soil GHG
Emissions

To incorporate small-scale spatial variation in GHG

fluxes in our estimates of ecosystem soil GHG

emissions, we assigned a GHG flux to each indi-

vidual tree in the LFDP at the time of the 2016

census using coefficient estimates for each of the

four models. These individual tree estimates used

the species IDs and topography at each tree’s

location. For individuals not identified as one of the

five focal species, we used the average extracted

from M1. To incorporate uncertainty in coefficient

estimates into our ecosystem-scale soil GHG esti-

mates, we calculated ecosystem soil GHG emissions

as a derived parameter (that is, by sampling the

distribution of model parameters) within each

model. This approach allowed us to estimate cred-

ible intervals for each ecosystem GHG estimate.

To compare the combined effect of model esti-

mates on CO2, CH4, and N2O fluxes, we used global

warming potentials (using the standard 20 and

100 year equivalencies) to calculate a CO2-equiv-

alent ecosystem emission for each model (Solomon

and others 2007). To calculate a CO2-equivalent

ecosystem emission, CH4 fluxes were scaled by 72

(20 year) and 25 (100 year), N2O fluxes were

scaled by 289 (20 year) and 298 (100 year), and

CO2 fluxes were scaled by 1 (Solomon and others

2007). Total CO2-equivalent estimates for each

model were calculated as the sum of scaled CO2,

CH4, and N2O estimates.

To account for variation in individual tree esti-

mates in our ecosystem soil GHG emissions, we

scaled each individual tree’s gas flux by a fraction of

area of the LFDP using Dirichlet tessellation (spat-

stat: Baddeley and others 2015). The tessellation

was calculated by dividing the area of the LFDP into

polygons for each individual tree; the size of each

polygon was influenced by the distance to nearest

neighbors and scaled by tree size, such that, on

average, each large tree accounts for a larger frac-

tion of LFDP area than each small tree. Ecosystem

GHG emission estimates were then calculated by

summing GHG fluxes across the estimates for all

individual trees. Ecosystem-scale GHG flux esti-

mates were calculated in two ways: including all

trees above 1 cm DBH.

To assess the effect of species-specific and topo-

graphic variation on ecosystem CO2, CH4, and N2O

emission estimates, we compared the ecosystem-

scale GHG fluxes from M2, M3, and M4 to our null

model (M1). Differences between model ecosystem

emission estimates were significant if 95% credible

intervals did not overlap.

RESULTS

Overview

We found a significant difference in soil CO2 pro-

duction by species and a positive relationship with

concavity for both net CH4 fluxes and N2O fluxes.

High antecedent rainfall increased CO2 fluxes but

did not affect soil CH4 or N2O fluxes. Using model

results to estimate ecosystem soil GHG emissions

under average rainfall conditions at the scale of the

LFDP, we found that including species generally

decreased estimates of ecosystem CO2 production

by 8.02% while including topography decreased

CH4 consumption by 12.98% and increased esti-

mates of N2O production by 1.05%.

Table 1. Model Type and Structure Used to Test the Relationship Between GHG Fluxes, Topography, and
Trees.

M1: average flux (null model) Flux � b0 + brain*rainfall + �
M2: species-specific flux Flux � b0 + bi*speciesi + brain*rainfall + �
M3: topography-specific flux Flux � b0 + bcon*concavity + bslope*slope + brain*rainfall + �
M4: species and topography-specific flux Flux � b0 + bi*speciesi + bcon*concavity + bslope*slope + brain*rainfall + �

Species is included as a categorical factor, while topographical variables (concavity and slope) are continuous. In all models, the residuals (�) are assumed to follow a normal
distribution.

Greenhouse Gas Fluxes Vary with Species and Topography in Puerto Rico



GHG Fluxes Across Species
and Topography

The relationship between GHG fluxes and species

and topography varied for each gas type. CO2 var-

ied strongly by species but was only weakly related

to topographic variation. In contrast, CH4 and N2O,

which are more strongly regulated by soil oxygen,

had strong relationships with topography but did

not vary across species. Overall, compared to the

null model (M1), models including species were

better fits for estimates of CO2 and models includ-

ing topography were better for estimates of CH4

and N2O (Table 2).

The null model (M1) estimated CO2 fluxes as

2.89 g CO2-C/m
2/day (Figure 1, Supp. Table 4).

When we allowed fluxes to vary by species (M2),

we found that two species (I. laurina and P. acumi-

nata) had lower CO2 production compared to the

other three species; CO2 fluxes for these species

were 2.42 and 2.13 g CO2-C/m
2/day, respectively

(Figure 1). The coefficient estimates for species

were similar between M2 and M4. The relationship

between topography and CO2 fluxes (M3) is not

significant. The DIC values for these models also

support the inclusion of species but not topography

for estimating CO2 (Table 2).

For soil CH4 fluxes, the null model (M1) esti-

mated net consumption of CH4 of - 0.51 mg CH4-

C/m2/day (Supp. Table 4). Including species dif-

ferences (M2) in estimates of CH4 indicated signif-

icant net consumption (flux values < 0) by soils

under one tree species (D. excelsa) of - 1.12 mg

CH4-C/m
2/day. The remaining four species had

95% credible intervals overlapping zero, which

suggests neither net consumption nor production

of CH4 by soils under these species. The relation-

ship between topography and CH4 fluxes (M3) was

stronger than for species; we found net CH4 pro-

duction is higher in valleys compared to ridges

(0.48 mg CH4-C/m
2/day per standard deviation in

concavity (Figure 2a, Supp. Table 4). The two

models including topography had similar DIC val-

ues; however, M3 was the best fit (Table 2).

The null model (M1) estimated net production of

N2O at 0.18 mg N2O-N/m2/day (Supp. Table 4).

Like CH4, there was no variation by species (M2)

for estimates of N2O fluxes; however, one species

did show significant net N2O production (D. excelsa;

0.22 mg N2O-N/m2/day). N2O production was

lower in valleys compared to ridges and on steeper

slopes (that is, estimated at - 0.17 mg N2O-N/

m2/day per standard deviation in concavity: M3)

Table 2. Penalized DDIC Scores for Models for
Each Gas Type and R2 of Best Models.

Model CO2 CH4 N2O

M1 (Null) 17.3 3.9 7.9

M2 (Species) 0 7.5 14.7

M3 (Topography) 13.3 0 0

M4 (Both) 2.9 2.1 6.8

R2 of best model 23.07 11.4 11.3

A DDIC of zero indicates the best model fit. Generally, DDIC scores < 4 are not
significantly different (Spiegelhalter and others 2014). Model descriptions same as
Table 1.

Figure 1. GHG fluxes by species. Boxplots show

individual chamber flux data for the simple average

(gray) and by species (blue). The large hollow point

shows the model coefficient for the null estimate (M1)

and species-specific estimates (M2). The bars centered on

each hollow point show the 95% credible intervals for

the null model and species-specific estimates.
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(Figure 2b, Supp. Table 4). Both models that in-

cluded topography (M3 and M4) were better fits

compared to M1 or M2, supporting the inclusion of

topography in estimates of N2O fluxes (Table 2).

Estimates of Ecosystem Soil GHG
Emissions

Using the distribution of tree species and topogra-

phy in the LFDP, we estimated spatial variation in

ecosystem soil GHG emissions (Figure 3). We did

not find significant differences between our simple

average estimate of ecosystem soil GHG emissions

and our model estimates; however, we discuss the

direction of change caused by including small-scale

variation in our ecosystem-scale estimates. Gener-

ally, scaling this small-scale variation using models

that include species and topography (M2-M4) de-

creased estimates of ecosystem CO2 and CH4 fluxes

and increased estimates of ecosystem N2O fluxes

compared to the null model (M1) (Supp. Table 5).

Our estimate of ecosystem CO2 production that

used all trees above 1 cm DBH decreased estimates

by 8.08% and 7.83% (M2 and M4) compared to

the null model (Figure 4), although these decreases

were not statistically significant. Including species

differences in our estimates decreased our estimate

of soil CO2 production from 28.9 kg CO2-C/ha/day

to 26.58 kg CO2-C/ha/day (Supp. Table 5). In

contrast, topography (M3) had little effect on CO2

estimates compared to M1.

Differences in ecosystem estimates of CH4 fluxes

were non-significant across models, but there was a

pattern of decrease in magnitude for models

including species and topography. For all trees DBH

above 1 cm, including species in estimates of soil

CH4 fluxes (M2) did not alter estimates of net CH4

consumption (Figure 4). Including topography in-

creased (less negative) CH4 production estimates

by 13% (M3) while the combined model for species

and topography (M4) increased estimates of net

CH4 consumption by 11.37% from - 5.09 to

- 5.67 g CH4-C/ha/day (Supp. Table 5).

Estimates of soil N2O production using all trees

(DBH > 1 cm) decreased with the inclusion of

species (M2) and topography (M3) compared to the

null model; including species (M2) decreased esti-

mates by 17.89% from 1.79 g to 1.47 g N2O-N/

ha/day (M2), whereas models including topogra-

phy decreased estimates by 1.05% (M3) and 2.58%

(M4) (Figure 4). Although these increases were not

statistically significant, these results suggest small-

scale variation in N2O fluxes may increase esti-

mates of ecosystem N2O emissions.

Using global warming potentials to calculate the

ecosystem-scale CO2-equivalent ecosystem emis-

sions, we found similar estimates between the 20-

and 100-year equivalencies across model types.

Including species decreased estimates of CO2-

equivalent ecosystem emissions by 8.32% (29.05 to

26.63 kg CO2-C/ha/day; M2) for both the 20- and

100-year equivalencies compared to the null model

(M1; Figure 5), but these differences were not sig-

nificant. Including topography (M3) had a negli-

gible (� 1% increase) effect on CO2-equivalent

ecosystem emissions compared to the null model

(M1).

DISCUSSION

Variation in soil GHG fluxes at small spatial scales

contributes to uncertainty in estimates of ecosys-

tem soil GHG emissions. While the direct controls

Figure 2. Linear relationships between concavity and

CH4 and N2O. Data (black points) for CH4 (panel a) and

N2O (panel b) fluxes by concavity. Solid black lines show

the plotted model fits as functions of concavity (M3) with

95% credible intervals (dashed lines).
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of GHG fluxes such as soil oxygen, moisture, and

nutrients are well understood (Silver and others

1999; Groffman and others 2009; Wood and others

2013; Palta and others 2014; Schimel 2018), they

are typically difficult to measure comprehensively

at the larger spatial scales necessary to incorporate

these factors into estimates of ecosystem-scale GHG

fluxes. However, proxies that capture variation in

these direct controls of soil GHG fluxes at larger

spatial scales provide a way to assess the effects of

small-scale environmental heterogeneity on

ecosystem-scale estimates of GHG fluxes.

Topography and tree species are two compara-

tively easy to measure variables that are known to

influence soil oxygen and moisture (Silver and

others 1999; Wood and Silver 2012), as well as soil

nutrients (Reed and others 2008; Keller and others

2013; Uriarte and others 2015; Waring and others

2015). In this study, we first assessed if GHG fluxes

varied across topography and tree species, as we

hypothesized based on their expected effects on the

soil environment. We then examined how esti-

mates of ecosystem-scale GHG fluxes changed with

the inclusion of variation in GHG fluxes related to

topography and tree species. We found that the

effects of species (for CO2) and topography (for CH4

and N2O) were better predictors of gas fluxes than

the null model. Given the importance of these

Figure 3. Maps of species and GHG fluxes in the Luquillo Forest Dynamics Plot. Tessellation area by species a, and

individual tree estimates derived from model 4 for CO2 b, CH4 c, and N2O d. Each color in Panel A is a separate species:

Casearia arborea (dark blue), Dacryodes excelsa (red), Inga laurina (light blue),Manilkara bidentata (orange), Prestoea acuminata

(lavender), and other (gray). Note that the positive (net production) ranges are different than the negative ranges (net

consumption) for both CH4 (C) and N2O (D).
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proximate drivers of spatial variation, the ecosys-

tem-scale estimates should diverge from the null

model to the extent that the stratified sampling

scheme over- or under-sampled tree species and

topography relative to the underlying distribution

of these variables across the LFDP.

Overall, we found that estimates of CO2 fluxes

varied more strongly by species than topography.

The palm P. acuminata had lower CO2 efflux and a

tendency toward lower net N2O efflux compared to

other species. Palms are generally found in locally

wet soils (Muscarella and others 2016, 2020), and

high soil moisture can decrease rates of gas diffu-

sion in soils (McSwiney and others 2001; Schimel

2018) and facilitate net N2O consumption (Sch-

lesinger 2013). Incorporating the relationship be-

tween palms and soil environmental heterogeneity

could have large effects on estimated ecosystem soil

GHG emissions, especially in the Neotropics where

palms account for 6% of basal area and are five

times more abundant compared to Paleotropical

forests (Muscarella and others 2020).

In our study, spatial variation in CH4 and N2O

fluxes was more strongly correlated with topogra-

phy compared to CO2 fluxes. Several studies have

found that topography is often a useful measure of

spatial variation in CO2 (Epron and others 2006;

Martin and Bolstad 2009), CH4 (Kaiser and others

2018), and N2O fluxes (McSwiney and others

2001). Other studies have observed weak or no

relationships between topography and GHG fluxes

(Wolf and others 2012; Courtois and others 2018);

however, these studies did find that GHG fluxes

were correlated with soil moisture and substrate

availability independent of topography (Wolf and

others 2012; Courtois and others 2018). Although

we did not explicitly link topography to soil envi-

ronmental conditions in our study, there is evi-

dence that even at sites with low topographic

variation (Martin and Bolstad 2009) or where the

relationship between soil moisture and soil oxygen

is weak (Kaiser and others 2018), topography can

be useful as a proximate measure of small-scale

spatial variation in GHG fluxes. In our study, the

findings that valleys tended more toward CH4

emissions make sense with a moisture-based

Figure 4. Ecosystem-scale GHG emissions (A, C, and E)

and the percent change from M2-4 estimates compared

to M1 (B, D, F) for CO2 (A, B), CH4 (C, D), and N2O (E,

F). X-axis separated by model results (M1: null model;

M2: species-specific model; M3: topography model; M4:

species and topography model). Error bars show 95%

credible intervals.

Figure 5. Total CO2-equivalent of ecosystem soil GHG

emissions. Values represent the 20-year (solid lines) and

100-year (dashed lines) CO2-equivalent estimates

(combined CO2, CH4, and N2O fluxes) for each model:

M1: null model; M2: species-specific model; M3:

topography model; M4: species and topography model.

Error bars show 95% credible intervals.
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mechanism, as methanogenesis is an anoxic pro-

cess (Silver and others 1999; Wood and Silver

2012). Similarly, the tendency for lower N2O pro-

duction and some N2O consumption in valleys also

fits with a moisture-based mechanism. Although

denitrification is an anoxic process, it tends to go to

completion (N2 production rather than N2O pro-

duction) at high soil moisture (Davidson and oth-

ers, 2000). Furthermore, N2O consumption is more

common in wet soils (Schlesinger 2013), likely

because denitrification is favored in wet soils and

atmospheric N2O is available as an electron accep-

tor even after nitrate and nitrite have been re-

duced.

Although our study found a negligible effect of

including species and topography to estimate soil

ecosystem GHG emissions, other studies have

found that ignoring small-scale spatial variation in

GHG fluxes can underestimate ecosystem emissions

by an order of magnitude (Vidon and others 2015;

Kaiser and others 2018). Generally, these under-

estimations occur because measurement averaging

approaches tend to mute the rare and extremely

high GHG flux observations (Vidon and others

2015; Kaiser and others 2018). One of the biggest

effects we observed was an 8.3% (albeit non-sig-

nificant) decrease in estimates of ecosystem CO2

fluxes after including species effects. We attribute

this result to the dominance of the palm species P.

acuminata in the LFDP, which accounted for only

20% of sampled trees, but 25% of all trees and 49%

of large trees (DBH > 10 cm) in the plot and had

lower GHG fluxes. The negligible effect of including

species and topographic variation, despite their ef-

fects on small-scale flux measurements, suggests

that our sampling design may have accurately

captured both species and topographic variation

across the plot and sufficiently captured spatial

variation in GHG fluxes.

Our estimate of ecosystem-scale CO2 (26.59 to

28.92 kg CO2-C/ha/day), CH4 (- 4.52 to – 5.65 g

CH4-C/ha/day), and N2O (1.46 to 1.79 g N2O-N/

ha/day) fluxes fall at the lower range of estimates

of ecosystem fluxes of CO2 (12 to 186 kg CO2-C/

ha/day), CH4 (- 8.5 to - 1.1 g CH4-C/ha/day),

and N2O (- 3.07 to 7.39 g N2O-N/ha/day) in

nearby forests (Wood and Silver 2012; Hall and

others 2013; Wood and others 2013). Wood and

Silver (2012) also incorporated stratified sampling

across a topographic gradient (that is, ridge, slope,

valley) which may explain the similarity between

our estimates. Our results, along with other studies

(Vidon and others 2015; Kaiser and others 2018),

suggest that ensuring GHG flux sampling schemes

capture the frequency distribution of environ-

mental conditions driving variation in GHG fluxes

could help constrain estimates of GHG fluxes in

tropical forests. Additionally, incorporating spatial

variation in GHG fluxes related to tree species and

topography into our estimates of ecosystem soil

GHG emissions decreased estimates of the total

CO2-equivalent emissions in this forest by 8.5%;

this amounts to a decrease of 1.8–2.2 kg CO2-C/

ha/day for estimated CO2-equivalent emissions for

this forest.

Incorporating the effects of spatial variation

across species and topography on estimates of

ecosystem soil GHG emissions may be difficult to do

at large scales, especially in forests with high spe-

cies diversity and complex terrain. However, ad-

vances in detecting species or plant traits across

landscapes using remotely sensed images (Cook

and others 2013; Tang and others 2021) may help

distinguish species and incorporate species-specific

variation in GHG fluxes into our estimates of

ecosystem soil GHG emissions. This tool may also

be useful for predicting variation in the soil envi-

ronment as plant traits can often reflect soil prop-

erties (John et al 2007; Osborne and others 2017).

Additionally, methods that allow us to map

topography at large scales (for example, lidar)

would allow us to constrain estimates of GHG

emissions based on the relationship between

topography and the abiotic controls on GHG fluxes

in soils. Although these methods can be resource-

prohibitive in many places, mapped forest inven-

tory plots, such as the CTFS-ForestGEO and LTER

networks, offer a more widespread alternative,

allowing researchers to explicitly include species

abundances and topography into scaled-up esti-

mates of GHG emissions. Our results suggest that

sources of spatial variation in soil GHG fluxes

should be considered when designing sampling

schemes, even in places where topographic varia-

tion and species abundances are unknown. This is

especially true for forests, which are more common

on slopes and other topographically complex ter-

rain because of global deforestation in topographi-

cally flat areas (Sandel and Svenning 2013).

Maximum estimates of net CH4 production can

be larger than net consumption in this forest (Silver

and others 1999; O’Connell and others 2018)—our

largest net CH4 efflux measurement (9.22 mg CH4-

C/m2/day) was 2.2 times the largest value for net

CH4 consumption (- 4.14 mg CH4-C/m
2/day).

While sampling across environmental variation

(that is, species and topography) allowed us to ac-

count for the distribution of the spatial variation in

CH4 fluxes, this method likely under-estimated the

effect of ‘‘hot moments’’ CH4 effluxes common in

A. W. Quebbeman and others



this forest (Silver and others 1999; O’Connell and

others 2018).

Changes in temperature, precipitation, and dis-

turbance regimes anticipated under climate change

scenarios are predicted to have significant effects on

the soil environment, potentially altering the con-

tribution of tropical forests to global GHG emissions

(Erickson and Ayala 2004; Vargas 2012; O’Connell

and others 2018). Hurricanes are known to in-

crease short-term CO2 and N2O fluxes in tropical

forests by changing soil nutrient inputs and outputs

(Erickson and Ayala 2004; Vargas 2012), and this

response is likely dependent on tree species traits

and responses to hurricanes. In contrast, an in-

crease in drought frequency is predicted to decrease

soil respiration in general (Wood and Silver 2012;

Bouskill and others 2016), although the decrease

may be less pronounced or switch to an increase in

water-saturated forest soils, including those in

valleys (Cleveland and others 2010; Wood and

Silver 2012; O’Connell and others 2018). This is

consistent with our finding of a positive effect of

antecedent rainfall on CO2 fluxes. Although we did

not find an effect of rainfall on CH4 fluxes, drought

can also have strong effects on soil oxygen and

carbon substrate availability, causing soils to shift

from CH4 sources to sinks or sinks to sources as soils

recover (O’Connell and others 2018). Additionally,

shifts in plant community composition and water

regimes under climate change drive soil GHG

emissions in tropical forest ecosystems and pre-

dicting forest response to climate change requires

understanding the spatial variation in GHG fluxes

across these factors.

By explicitly studying spatial variation in GHG

fluxes, studies like ours can help to better constrain

the effect of climate change on tropical forests;

however, understanding the effects of climate

change requires consideration of both the spatial

and temporal variation in the soil environment and

GHG fluxes. N2O fluxes can change rapidly fol-

lowing precipitation events and changes in soil

oxygen availability (Liptzin and others 2011; Hall

and others 2013). In contrast, CO2 fluxes often

exhibit low diel variation and instead vary over the

timescale of several days to weeks, related to both

2-day antecedent precipitation patterns (Wood and

others 2013) and soil carbon substrate availability

(Hall and others 2013).

Although seasonal changes can cause dramatic

shifts in soil GHG fluxes (Verchot and others 2000;

Kiese and others 2003), the temporal patterns of

GHG fluxes in aseasonal forests can often exhibit

greater spatial variation than temporal variation

(Liptzin and others 2011). Additionally, the extent

of temporal variation can change across spatial

covariates—for example, measurements in a near-

by site had higher temporal variation in CH4 fluxes

in valleys compared to ridges (O’Connell and oth-

ers 2018). Although this study focuses on linking

proximate drivers of spatial variation in the soil

environment to variation in GHG fluxes, these

spatially explicit environmental covariates may be

useful for understanding sources of temporal vari-

ation related to soil oxygen and substrate avail-

ability.

Our study highlights the importance of ensuring

that sampling design captures small-scale environ-

mental variation driving GHG fluxes to ensure the

accuracy of the contribution of tropical forests to

global GHG estimates. In addition to improving

estimates of soil GHG fluxes, including the rela-

tionships between topography and species with

GHG fluxes allowed us to model the spatially

heterogeneous pattern of GHG fluxes across the

landscape. By understanding the effects of these

environmental factors on GHG fluxes, we can im-

prove our predictions for how ecosystem soil GHG

emissions may change with shifting community

composition and environmental conditions. Our

study suggests that bottom-up estimates of soil

greenhouse gas fluxes can be refined by including

fine-scale data on topography and tree species,

enabling landscape-level estimation of GHG fluxes.

Not accounting for this variation could bias our

predictions for the contribution of forests to global

GHG emissions and climate change. However, the

bias appears to be small, at least in our study site.
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