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A B S T R A C T   

Online monitoring of multiple lubricant properties is critical in maintaining and extending the health of high- 
speed rotating and reciprocating machinery used in many of the nation’s key industries including aerospace, 
manufacturing, and energy. There have been many efforts on the development of sensors focused on measuring 
specific chemical/physical properties of lubricant oil. One long-standing challenge for these property sensors is 
the overlapping output problem (cross-sensitivity), meaning they cannot provide accurate measurements. Here 
we demonstrated a capacitive oil property sensor array based on a new general regression neural network 
(GRNN) for measuring acid, base, and water content in lubricant oil. Results showed that the GRNN can pinpoint 
individual oil properties from the overlapped sensor array’s responses with high accuracy and speed.   

1. Introduction 

The productivity and lifespan of machinery in a wide variety of in
dustries are highly dependent on proper lubrication. As lubricant oil 
degrades through use, it gradually loses lubrication functionality, which 
results in damage to a machine [1]. More importantly a sudden change 
of lubricant properties may cause catastrophic machine failure [2]. 
While certain machines recommend interval-based oil changes (e.g., 
after a set number of miles in a car) to maintain desired machine per
formance, this estimative approach can be expensive, or cause damage 
to large machines such as wind turbines, reciprocating compressors, and 
CNC machines [3–5]. Online oil condition monitoring can detect mul
tiple oil properties, predict the remaining life of the lubricant, determine 
the optimal oil change intervals, and avoid pending machine failures, 
thus significantly reducing the maintenance cost. 

Viscosity is the leading parameter in indicating a lubricant’s func
tionality and longevity [6,7]. To date, many sensors were developed, 
including micro machined cantilever sensors [8], acoustic sensors [9], 
and ratiometric fluorescent sensors [10] for online detection of viscosity. 
While viscosity can be measured independently, the change in viscosity 
could be caused by other oil property change (such as contents of acid, 
base and water); monitoring these properties could help identify the 
causes of lubricant degradation or possible machine failure [11]. Acid 
content is one of these properties that can give insight towards the 
degradation of an oil. Acidic byproducts are formed from oil oxidation, 
one of the primary causes for oil degradation and unwanted increases in 
viscosity [12]. Thus monitoring of acid content can provide information 

on the oxidation process [13]. Acid number increases of around 0.3 mg 
KOH/g are considered alarming for industrial lubricants. [14]. Simi
larly, many lubricant oils contain a base additive to neutralize these acid 
byproducts and slow the oxidation process, and as this base reserve 
depletes, the rate of oxidation will increase [15]. By comparing the 
trends of the base content with that of the acid content, a more complete 
picture of oil’s remaining useful life can be generated, and concern 
should be raised when base levels deplete to lower than 2 mg KOH/g 
[16]. Water content is another important property to consider moni
toring, as its presence in a lubricant oil can increase oxidation rates and 
cause rust and corrosion of machine surfaces [17]. Water content of 
1000 ppm is considered to be an alarming amount [18]. 

While oil properties can be measured precisely in laboratories off
line, the offline approach is time consuming and expensive considering 
the 1–2 week shipping and analysis time. Online monitoring of these key 
properties enables optimal oil change intervals and avoid sudden ma
chine failure. Researchers have worked on sensors to monitor individual 
oil properties online. Agoston et al. [6] were able to evaluate the oil 
characteristics associated with oxidation using a micro acoustic sensor; 
however, the sensor was not able to detect bulk changes caused by ad
ditives found in lubricant oils. Several groups have utilized electro
chemical sensors to measure TAN/TBN of oil samples [19,20]. The 
problem is that these sensors relied on chemical reactions between the 
sensing materials and contents of oils, which greatly shorten the lifespan 
of the sensor, making them unsuitable for prolonged and continuous 
measurements. Li [21] developed a micro sensor array with individual 
sensors that determined acid and water content. Since this array 
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correlated the raw data of the sensor to various properties, it required 
detailed information such as oil formulation, viscosity, and dielectric 
constant in order to evaluate the lubricant’s status [21]. Smiechowski 
et al. [20,22] also developed electrochemical sensor array to detect 
multiple oil properties. Due to the long standing cross sensitivity prob
lem of electrochemical sensors, i.e, each sensor not only responds to the 
target property but other properties in the oil as well, the sensor array 
has difficulty in providing accurate TAN/TBN predictions. 

Artificial neural networks (ANNs) are computing systems that have 
been proven effective in processing sensors with overlapping responses. 
Back propagation artificial neural networks (BPNNs) have been used by 
various groups in determining CO and CH4 in mixtures [23], analyzing 
soil ions [24], classifying wines [25], monitoring water quality [26], and 
monitoring tool conditions [27]. Zhu et al. [28] applied an BPNN to a 
sensor array to predict acid, water, soot, and sulfur content in lubricant 
oil. While this system showed certain success in predicting oil properties 
from overlapped sensor responses, the training process for BPNNs is 
complex and tedious [29]; a large amount of training data set is required 
in order to establish the BPNN, and gathering sufficient training data set 
could be lengthy, costly, and complex [30]. 

A general regression neural network (GRNN) is an artificial neural 
network that utilizes a single pass algorithm, which can offer certain 
advantages when compared with back propagation neural networks 
(BPNNs). Radial basis Function and Elman neural network can provide 
decent predictions but typically require a large data set [31,32]. GRNNs 
have the ability to generate accurate predictions with smaller data sets 
[30], which is an essential feature when data is not readily available and 
tedious to generate. GRNNs also offer the ability to expand a data set 
without reestablishing the network since they operate with a single 
forward pass algorithm [33]. In comparison, to expand a data set for a 
BPNN, the entire network must be completely retrained [34]. GRNNs 
have seen utility in predicting wind speeds [35], steel properties after 
thermomechanical processing [36], and the performance and exhaust 
characteristics of combustion engines [37]. With these advantages, in 
this article, we will establish a GRNN on a sensor array to detect the 
levels of multiple properties that are critical to the functionality of in
dustrial lubricant oil. By implementing a GRNN to our sensor array, we 
are able to simplify training procedures while accurately and continu
ously monitor the contents of acid, base and water in lubricant oils. To 
our knowledge, this is the first work that had utilized the GRNN in online 
oil condition monitoring. 

2. Materials and method 

We designed an array of 3 capacitive sensors for measuring acid, 
base, and water contents. The capacitive sensors have similar designs 
but have different absorbent coatings. The specific coating ensures that 
each sensor is more sensitive to one property than other properties, so 
that each sensor will respond to different properties with different 
weights. Fig. 1A and B illustrate the side and top view of the capacitive 

sensors. Since there are still certain cross sensitivities, the responses are 
sent through a GRNN to decipher the overlapping responses from the 
sensor array. 

All 3 sensors capacitive sensors utilize interdigitated electrodes 
(IDEs) to form capacitors. Changes in the capacitance can be attributed 
to dielectric changes of the medium (e.g. lubricant oil) between the 
fingers. Unique coatings were applied to the IDEs to make sensors 
respond to properties differently from each other. Fig. 2 shows a 
magnified image of the IDE electrodes. 

Each sensor was fabricated using standard photolithography pro
cesses followed by a spin coating. The IDEs of the three capacitive 
sensors had the same geometry. The IDE electrodes were fabricated on a 
glass substrate with a 100 nm gold layer, and a 5 nm titanium adhesion 
layer (EMF Corporation, TA134). The IDE pattern had 40 pairs of fin
gers, each with a length of 5 mm. The width (W) of the fingers was 
designed to 25 µm, while the gap (G) between them was 50 µm (see 
Fig. 1B). The IDE capacitive sensors were all coated with absorbent 
materials with appropriate thickness to provide varying sensitivities to 
different properties. Sensor 1 is designed to have an increased response 
to water, the IDEs were coated with a layer of polyimide, a material that 
absorbs water [38,39] but rejects lubricant oil. The thickness of the 
polyimide coating was measured to be approximately 4 µm. Note that 
the strength of the electric field can be neglected beyond a vertical 
distance of 

λ = (W + G) (1)  

where λ represents the vertical distance from the IDE surface, W rep
resents the finger width, and G represents the finger gap (as shown in 
Fig. 1). Changes of the medium beyond that distance have no effect on 
the sensor response [40]. Thus sensor 1 primarily responds to the water 
content but also responds to other oil property change (e.g. acid, base 
contents). 

Sensor 2 was coated with a layer of polytetrafluoroethylene (PTFE), a 
hydrophobic material that resists the absorption of water. A PTFE 
(Teflon) tape was applied over the IDEs with a thickness of 70 µm, 

Fig. 1. A) Side view of capacitive sensors with interdigital electrodes, B) Top-down view describing the capacitive sensor’s structure.  

Fig. 2. Microscopic picture of Interdigital electrodes of the capacitive sensor.  
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within λ/2. Therefore this sensor will respond to all property changes in 
the oil, while remaining largely indifferent to changes of water content 
within the oil [41]. 

Sensor 3 was coated with Nafion, a material commonly used as a 
cation exchange membrane due to its ability to allow the passage of 
positively charged ions [42]. A Nafion (Alfa Aesar, Nafion D-521 
dispersion) film of ~250 nm was spin coated on The IDE surface. Sensor 
3 primarily responds to acid and base, different from Sensors 1 and 2. 

3. Theory 

We utilize a General Regression Neural Network (GRNN) to remove 
the cross sensitivities of the responses from the sensor array. The GRNN 
was developed in MatLab, and consists of an input layer, a radial basis 
layer, a linear layer, and an output layer as shown in Fig. 3. Each node 
(or neuron) in the input layer represents the relative voltage/capaci
tance change from one sensor, while each neuron in the output layer 
represents the corresponding acid/base/water content to be determined. 
The number of neurons in the radial basis layer is equal to the number of 
sample data points used to create the network. Each neuron in the 
hidden layer is related to all the neurons in the previous layer via a 
distance value that is passed through a radial basis function (see Fig. 3). 
When predicting the oil properties, we will first find the Euclidean dis
tance between the inputs for this data point and the inputs of the whole 
dataset. The Euclidean distance is defined as follows: 

Euclidean Distance =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

√

(2)  

where xi is the data point’s input from the ithsensor, yi is the input from 
ithsensor of a single entry in the GRNN dataset, and n is the number of 
inputs in the network. This distance is calculated for every entry in the 

dataset, and this array is multiplied by a scalar bias. This bias is defined 
as follows: 

Bias =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− ln 0.5

√

σ (3)  

where σ is the smoothing factor, a parameter that affects smoothness of 
the network’s prediction curve as well as its ability to generalize. We 
determined an optimal smoothing factor for our network through an 
iterative process; the process is discussed in section. Each value of the 
array resulting from multiplying the bias and the distance is passed 
through a radial basis function, defined as follows: 

RadialBasis(n) = e−n2 (4) 

where n represents the values of the array resulting from the previous 
step. 

Finally, a normalized dot product between this resulting array and 
the outputs of the GRNN’s data set giving the predicted values, as 
follows: 

rediction =
A⋅Z

∑d
i Zi

(5)  

where A is the array of outputs in the GRNN’s dataset, Z is the array 
generated from the previous step, and d is the number of data points in 
the GRNN’s dataset. 

Because the GRNN uses forward propagation, it has several advan
tages compared to a BPNN. To expand the dataset in a BPNN, the 
network needs to be completely retrained, and weights need to be 
reassigned between every node. For a GRNN, the dataset can simply be 
expanded with new samples without requiring a new training procedure 
[43]. This convenience allows for the network to be tailored to a user’s 
requirements easily. Prior research also demonstrated that the GRNN 
displayed better accuracy when sample sizes are not very large [43,44]. 

Fig. 3. Illustration of the GRNN architecture for oil condition monitoring.  

D. Jiao et al.                                                                                                                                                                                                                                     



Tribology International 164 (2021) 107221

4

Because it is impractical to generate huge datasets online, the GRNN is 
more suitable for online oil condition monitoring. 

Next, we prepared 48 oil samples, 36 were used for training to 
determine an optimal smoothing factor, and 12 were used as a final 
testing dataset. These samples contained varying concentrations of acid, 
base, and water. Water contents were altered by adding H2O at con
centrations of 500, 1000, and 1500 ppm. Sulfuric acid (H2SO4) and 
potassium hydroxide (KOH) were used to change the receptive acid and 
base levels at concentrations of 1000, 2000, 3000, and 4000 ppm. 
Conventional oil (MAG1, Conventional 10W30) was used as a base oil. 
These concentrations were chosen to simulate conditions that have been 
used by industrial lubrication systems [14,16,18,45]. Individual samples 
were prepared and thoroughly mixed right before testing to prevent any 
separation. Samples were loaded into a tank; the 3 capacitive sensors 
were installed on the side wall of the tank (see Fig. 4). Oil was circulated 
via a pump at a fixed flow rate of 100 mL/min. The excitation signal for 
the sensors array was a 2 MHz, 10 Vpp sine wave via a function generator 
(Agilent, 33,600 A Series). Sensor responses were recorded through the 
DAQ device (NI, PCI-6133) after 20 min, and sensors were cleaned and 
dried between testing with different samples. Changes in the concen
trations of various properties in the oil leads to changes in the capaci
tance of the IDE sensors. This capacitance change correlates with an 
impedance change of the sensor. To measure this change, voltages across 
the capacitive sensors were recorded with a DAQ (see Fig. 4). To reduce 
the amount of data, an under-sampling technique was used to capture 
voltage peaks, which significantly reduced the amount of the collected 
data. With this reduced amount of data, the device is more suitable for 
online oil condition monitoring. Details of under sampling method can 
be found in our prior publication [46]. With the under sampling, we 
were able to use a sampling rate of 110 kHz to capture the peaks of a 
2 MHz sine wave signal. 

After the raw data was collected, a fast Fourier transform (FFT) was 
applied to filter out unwanted noises. The average peak voltage was 
calculated, and was imported to the GRNN (see Fig. 3) to calculate the 
target properties. The GRNN was developed in MatLab using built-in 
neural network tools and custom code for analysis. The network con
tains an input layer, a radial basis layer, a pattern layer, and an output 
layer. The input and output layers have 3 nodes, corresponding to the 
number of sensors and number of properties. The radial basis layer 
contains 32 nodes, corresponding to the number of training samples, and 
the linear layer has 2 nodes. 

4. Results and discussion 

For the GRNN to make accurate predictions, it is critical that the 
sensor response to each property has a good trend. To test this, we 
measured the sensors’ responses to samples with changes in only one 
property. For each oil sample, the measurements of sensors’ responses 
were taken at t = 20 min after submersion of the sensors. Before the 

sensors were tested in the next oil sample, the sensors were cleaned and 
dried. Sensors’ responses to oil samples with varying contents of only 
one property (water, acid, or base) were plotted in Fig. 5. Each error bar 
represents standard deviation of three separate measurements of one 
sample. 

The collected data met this criteria, as the relative voltage change for 
acid steadily increased from −0.15% to −0.04% (Teflon coated sensor), 
decreased from −0.2% to −20.9% for base (Nafion coated sensor), and 
decreased from −0.2 to −0.27 for water (Polyimide coated sensor), as 
shown in Fig. 5. Next, the sensors were measured with the 36 training oil 
samples to train the network and an additional 12 testing samples to 
evaluate the accuracy of the network. These 48 samples contain 
different combinations of acid, base, and water contents discussed in the 
previous section. The sensor responses were collected when they were 
submerged in the oil sample for 20 min. (Typical time series sensor re
sponses are given in the Supplement materials). During network 
training, the training dataset of 36 was randomly divided into 5 groups. 
A k-fold cross validation method was used on these groups: 4 groups 
were used for training, while the remaining group was used for valida
tion in determining the optimal smoothing factor. This process was 
repeated 4 more times until each group was used as the validation 
group. After training, the network was tested on the separate testing 
dataset (12 samples) to determine the networks performance on data it 
was not trained with. 

During training, the network was run for a range of smoothing fac
tors from 0.0001 to.5 in steps of.00001 in order to determine the optimal 
value. All errors were normalized to have even weight since the moni
tored ppm range for the properties were different, and the smoothing 
factor with the lowest combined normalized error was selected for our 
network. Data was normalized by multiplying the water error (ppm) by 
a value of 4000/1500 to account for the difference in range from water 
to acid/base content. One focus of this study is to reduce the amount of 
training samples while keeping satisfactory accuracy, because using a 
large number of samples for training is impracticable for onsite oil 
property monitoring. We conducted the training using various sizes of 
training samples (20, 26, and 36). Results are shown in Fig. 6. As shown 
in Fig. 6, the difference between using the three training samples sizes is 
negligible. The optimal smoothing factor for the GRNN was found to 
be.0150, 0.0153 and 0.0158 respectively. We used 0.0150 for the sub
sequent predictions with the 20 sample dataset in Fig. 8. 

Since data can be iteratively added to the GRNN without a retraining 
process, we were able to monitor the trend of the network’s prediction 
error as samples were added to the dataset. By analyzing the average 
prediction error for each property, we could add samples to whichever 
property had the highest error to further reduce that error. The average 
prediction error was calculated by taking the average of the percent 
errors from each prediction from the test group, as shown in Eq. (6). 

Average Prediction Error =

∑
Etest

ntest
(6) 

Fig. 4. Experimental setup for the sensor array for oil condition monitoring.  
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where Etest is the percent error for a single prediction from the test 
dataset, and ntest is the number of datapoints in the test dataset. Fig. 7a 
shows the average prediction error collected from the 36 training sam
ples. It is obvious that the average prediction errors only decreased a 
little when the training samples was increased from 20 to 36. 

Finally, the network was tested using samples with various concen
tration of the acid, base and water. The samples cover a wide range of 
property contents, acid from 0 to 4000 ppm, base from 0 to 4000 ppm, 
and water from 0 to 1500 ppm. These ranges cover critical areas for 

lubricant functionality in industrial machinery [14,16,18]. Fig. 7b 
shows the average prediction error collected from 12 testing samples 
when the network was trained with different samples sizes. As we 
increased training dataset from 10 to 20, the average water content error 
was reduced from 38% to 13%, the average acid error from 14% to 6%, 
and the average base error from 5% to 3% (see Fig. 7B). We found a 
20-sample training dataset was sufficient. Additional samples only 
decreased the average prediction error by a small amount. When the 
dataset was increased from 20 to 36 samples, the error reduction for 
acid, base, and water content were only.72%,.05%, and 1.8% 
respectively. 

Fig. 8 shows the predicted contents by the GRNN were compared to 

Fig. 5. Raw Sensor Responses to oil samples with varying contents of only one property (water, acid, or base). (a): Relative voltage change of Teflon coated sensor to 
oil samples with varying acid content. (b): Relative voltage change of Nafion coated sensor to oil samples with varying base content. (c): Relative voltage change of 
Polyimide sensor to oil samples with varying water content. 

Fig. 6. Smoothing factor vs. normalized combined error of all 3 properties with 
different amount of training samples, 20, 26 and 36. 

Fig. 7. Average prediction error versus various sizes of training dataset. (a) 
gathered from 36 training samples, (b) gathered from 12 testing samples. 
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the actual contents for the 12 testing samples, which were not used in 
training. Each sample was measured 3 times with an interval of 2 h. As 
shown in Fig. 8, the two sets of values are in good agreement. The 
maximum percent error for acid, base, and water content was 6.9%, 
4.2%, and 15.7% respectively. The comparatively higher prediction 
error in water content can be attributed to the fact that changes in water 
content had the smallest corresponding sensor responses in magnitude. 
This effect is also evident for the base predictions, where the highest 
sensor response resulted in the smallest error. Based on these results, this 
sensor array in combination with the GRNN is capable of untangling 
non-linear and overlapped sensor responses and making accurate pre
dictions of multiple properties of a lubricant oil. 

The prediction error of this system can be reduced by two ap
proaches. First, the noise from the raw signal, especially for the sensor 
which had a lower sensitivity is one of the major sources for the pre
diction errors. For example, the prediction in water content has a larger 
average error (14%) than the other properties (6% and 3%). This is 
because the Teflon coated sensor has a low sensitivity to water content 
change; therefore, the relative amplitude of the noise is larger than that 
of the other properties. The prediction error can be reduced by using a 
coating material that generates higher sensitivity to the target property. 
We also found that reducing the thickness of the sensing material would 
increase the sensitivity, although the measurement range of the sensor is 
reduced. Further analysis on selecting the optimal sensing layer thick
ness could provide greater sensitivity while maintaining a range that 
covers the critical points. Second, adding more training samples, espe
cially at smaller concentration ranges, may potentially reduce the pre
diction error at the price of a longer training time. 

To provide comparison with other networks, we established two 
additional neural networks, a radial basis network and a back propa
gation neural network, to make predictions and determined their 

respective errors. Both of these networks were established using Mat
Lab’s neural network toolbox. The radial basis network has a similar first 
layer to the GRNN, but has a different linear layer [47]. This network 
gave maximum error predictions of 8.1%, 4.4%, and 18.8% for acid, 
base, and water contents respectively. The back propagation neural 
network (BPNN) contained 2 layers, with 42 nodes in the first layer and 
4 nodes in the second layer. The network was trained using the 
Levenberg-Marquardt backpropagation algorithm. The maximum pre
diction errors during validation for this network were 12.5%, 4.9%, and 
23.6% for acid, base, and water contents respectively. We also compared 
computational time in training. The computation for GRNN and radial 
basis networks were completed in 49 and 44 s respectively, while the 
BPNN took 433 s. This was expected, since the GRNN and radial basis 
networks only needed to sweep through smoothing factors, while the 
BPNN needed to reassign all weights among nodes over many iterations. 
When comparing the prediction errors, the GRNN showed superior 
performance across all three properties on our dataset. 

It is worth mentioning here that we employed the fruit-fly optimi
zation algorithm [48] and found it was able to find an optimal 
smoothing factor in 30 s. In comparison, the sweeping method (i.e. 
sweeping a large range of smoothing factors with a small step) took 
approximately 49 s. All calculations were performed in a Dell Latitude 
5420 laptop. Nevertheless, the prediction accuracy was not affected as 
the smoothing factors obtained from the fruit-fly algorithm and the 
sweep method had negligible differences (0.0150 vs 0.01504). While the 
improvement in training time is limited because of the small amount of 
samples, we believe this algorithm can improve the training speed 
significantly in applications with a large number of training samples. 

Since there could be unexpected contaminants in the lubricant oil 
that are not being measured by the system, it is important to make sure 
these contaminants would not have a large impact on the sensors. Wear 

Fig. 8. Testing data errors (a): Actual vs. predicted values for acid content (b): Actual vs. predicted values for base content (c): Water vs. predicted values for 
water content. 
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debris particle are the most common substances existing in the running 
lubricant. We tested the influence of the wear debris on the GRNN 
prediction by introducing iron and ceramic wear debris into the lubri
cant. A 30 ppm concentration of iron particles resulted in a.0038% 
voltage change, while a 40 ppm concentration of ceramic particles 
resulted in a.0069% voltage change. Such a change would result in 
approximately a 0.2% and 0.5% error from GRNN, which can be 
neglected. Note that the concentrations of wear debris were selected 
based on what would be expected in industrial applications [49]. 

The capacitive sensors’ responses change are caused by the change in 
relative permittivity of the oil [40]. The permittivity change is not 
directly dependent on machine operating parameters such as rotational 
speed or torque, but is effected by the oil operating temperature [50]. 
Currently, data collection was done at the expected oil operating tem
perature. We plan to add a temperature sensor as an input in future 
works, as temperature variation could lead to less accurate predictions. 

More sensors with other sensing materials can be added to or 
removed from the GRNN to detect additional/other properties. The 
GRNN can easily be modified to allow any number of sensor inputs and 
property outputs. As long as every property has a detectable trend from a 
sensor, the network can make accurate predictions after training. 
Additional sensors will not have a noticeable negative effect on current 
property predictions as long as they provide relevant data [51]. 
Furthermore, singular spectrum analysis can be coupled with the GRNN 
to further reduce unwanted noises and increase signal strength, 
demonstrated in wind-speed forecasting and industrial production 
forecasting applications [52,53]. This could further increase the sensi
tivity, and decrease prediction error. 

We have developed a capacitive sensor array in combination with a 
GRNN to accurately measure multiple lubricant oil properties from 
overlapped sensor responses. Each of the three sensors in the array has a 
different response to changes in key lubricant properties: acid, base, and 
water content. The GRNN has displayed the ability to make accurate 
measurements of these properties with a small amount of training 
samples. The network was able to predict acid, base, and water content 
within errors of 6.9%, 4.2%, and 15.7% respectively. The system also 
displayed ability to function properly even with unexpected contami
nants (e.g. wear debris) in the oil. Through use of the GRNN, we were 
able to simplify the training process without sacrificing the measure
ment accuracy. By monitoring the key oil properties, the remaining 
useful life of lubricant oil can be predicted to avoid catastrophic ma
chine failure as well as unnecessary premature oil changes. In addition, 
while we demonstrated measurement of three oil properties, more 
sensors, including but not limited to, sensors who respond to soot, sulfur, 
or glycol contents, can be added to the sensor array to monitor addi
tional oil properties and provide complete information on lubricant oil, 
and can be used for health monitoring of a variety of machines, 
including turbomachines, combustion engines and heavy equipment. 

Funding 

This material is based upon work supported by the National Science 
Foundation of USA under grant numbers PFI-TT 1940879 and I-Corps 
2027849. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not neces
sarily reflect the views of the National Science Foundation. 

CRediT authorship contribution statement 

Dian Jiao: Conceptualization, Software, Formal analysis, Investi
gation, Writing – original draft, Writing – review & editing. Aaron 
Urban: Conceptualization, Software, Formal analysis, Investigation, 
Writing – original draft, Writing – review & editing. Xiaoliang Zhu: 
Conceptualization. Jiang Zhe: Writing – review & editing, Supervision, 
Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.triboint.2021.107221. 

References 

[1] He, Q., Chen, G., Chen, X., Yao, C, Application of oil analysis to the condition 
monitoring of large engineering machinery. In Proceedings of the Proceedings of 
2009 8th International Conference on Reliability, Maintainability and Safety, 
ICRMS 2009; 2009; pp. 1100–1103. 

[2] Ku PM. Gear failure modes—importance of lubrication and mechanics. A S L E 
Trans 1976;19:239–49. https://doi.org/10.1080/05698197608982799. 

[3] Fernandes CMCG, Martins RC, Seabra JHO. Friction torque of thrust ball bearings 
lubricated with wind turbine gear oils. Tribology Int 2013;58:47–54. https://doi. 
org/10.1016/j.triboint.2012.09.005. 

[4] Ozsipahi M, Kose HA, Cadirci S, Kerpicci H, Gunes H. Experimental and numerical 
investigation of lubrication system for reciprocating compressor. Int J Refrig 2019; 
108:224–33. https://doi.org/10.1016/j.ijrefrig.2019.08.026. 

[5] Huang J, Tan J, Fang H, Gong F, Wang J. Tribological and wear performances of 
graphene-oil nanofluid under industrial high-speed rotation. Tribology Int 2019; 
135:112–20. https://doi.org/10.1016/j.triboint.2019.02.041. 
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