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Online monitoring of multiple lubricant properties is critical in maintaining and extending the health of high-
speed rotating and reciprocating machinery used in many of the nation’s key industries including aerospace,
manufacturing, and energy. There have been many efforts on the development of sensors focused on measuring
specific chemical/physical properties of lubricant oil. One long-standing challenge for these property sensors is

the overlapping output problem (cross-sensitivity), meaning they cannot provide accurate measurements. Here
we demonstrated a capacitive oil property sensor array based on a new general regression neural network
(GRNN) for measuring acid, base, and water content in lubricant oil. Results showed that the GRNN can pinpoint
individual oil properties from the overlapped sensor array’s responses with high accuracy and speed.

1. Introduction

The productivity and lifespan of machinery in a wide variety of in-
dustries are highly dependent on proper lubrication. As lubricant oil
degrades through use, it gradually loses lubrication functionality, which
results in damage to a machine [1]. More importantly a sudden change
of lubricant properties may cause catastrophic machine failure [2].
While certain machines recommend interval-based oil changes (e.g.,
after a set number of miles in a car) to maintain desired machine per-
formance, this estimative approach can be expensive, or cause damage
to large machines such as wind turbines, reciprocating compressors, and
CNC machines [3-5]. Online oil condition monitoring can detect mul-
tiple oil properties, predict the remaining life of the lubricant, determine
the optimal oil change intervals, and avoid pending machine failures,
thus significantly reducing the maintenance cost.

Viscosity is the leading parameter in indicating a lubricant’s func-
tionality and longevity [6,7]. To date, many sensors were developed,
including micro machined cantilever sensors [8], acoustic sensors [9],
and ratiometric fluorescent sensors [10] for online detection of viscosity.
While viscosity can be measured independently, the change in viscosity
could be caused by other oil property change (such as contents of acid,
base and water); monitoring these properties could help identify the
causes of lubricant degradation or possible machine failure [11]. Acid
content is one of these properties that can give insight towards the
degradation of an oil. Acidic byproducts are formed from oil oxidation,
one of the primary causes for oil degradation and unwanted increases in
viscosity [12]. Thus monitoring of acid content can provide information
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on the oxidation process [13]. Acid number increases of around 0.3 mg
KOH/g are considered alarming for industrial lubricants. [14]. Simi-
larly, many lubricant oils contain a base additive to neutralize these acid
byproducts and slow the oxidation process, and as this base reserve
depletes, the rate of oxidation will increase [15]. By comparing the
trends of the base content with that of the acid content, a more complete
picture of oil’s remaining useful life can be generated, and concern
should be raised when base levels deplete to lower than 2 mg KOH/g
[16]. Water content is another important property to consider moni-
toring, as its presence in a lubricant oil can increase oxidation rates and
cause rust and corrosion of machine surfaces [17]. Water content of
1000 ppm is considered to be an alarming amount [18].

While oil properties can be measured precisely in laboratories off-
line, the offline approach is time consuming and expensive considering
the 1-2 week shipping and analysis time. Online monitoring of these key
properties enables optimal oil change intervals and avoid sudden ma-
chine failure. Researchers have worked on sensors to monitor individual
oil properties online. Agoston et al. [6] were able to evaluate the oil
characteristics associated with oxidation using a micro acoustic sensor;
however, the sensor was not able to detect bulk changes caused by ad-
ditives found in lubricant oils. Several groups have utilized electro-
chemical sensors to measure TAN/TBN of oil samples [19,20]. The
problem is that these sensors relied on chemical reactions between the
sensing materials and contents of oils, which greatly shorten the lifespan
of the sensor, making them unsuitable for prolonged and continuous
measurements. Li [21] developed a micro sensor array with individual
sensors that determined acid and water content. Since this array
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correlated the raw data of the sensor to various properties, it required
detailed information such as oil formulation, viscosity, and dielectric
constant in order to evaluate the lubricant’s status [21]. Smiechowski
et al. [20,22] also developed electrochemical sensor array to detect
multiple oil properties. Due to the long standing cross sensitivity prob-
lem of electrochemical sensors, i.e, each sensor not only responds to the
target property but other properties in the oil as well, the sensor array
has difficulty in providing accurate TAN/TBN predictions.

Artificial neural networks (ANNs) are computing systems that have
been proven effective in processing sensors with overlapping responses.
Back propagation artificial neural networks (BPNNs) have been used by
various groups in determining CO and CH,4 in mixtures [23], analyzing
soil ions [24], classifying wines [25], monitoring water quality [26], and
monitoring tool conditions [27]. Zhu et al. [28] applied an BPNN to a
sensor array to predict acid, water, soot, and sulfur content in lubricant
oil. While this system showed certain success in predicting oil properties
from overlapped sensor responses, the training process for BPNNs is
complex and tedious [29]; a large amount of training data set is required
in order to establish the BPNN, and gathering sufficient training data set
could be lengthy, costly, and complex [30].

A general regression neural network (GRNN) is an artificial neural
network that utilizes a single pass algorithm, which can offer certain
advantages when compared with back propagation neural networks
(BPNNs). Radial basis Function and Elman neural network can provide
decent predictions but typically require a large data set [31,32]. GRNNs
have the ability to generate accurate predictions with smaller data sets
[301], which is an essential feature when data is not readily available and
tedious to generate. GRNNs also offer the ability to expand a data set
without reestablishing the network since they operate with a single
forward pass algorithm [33]. In comparison, to expand a data set for a
BPNN, the entire network must be completely retrained [34]. GRNNs
have seen utility in predicting wind speeds [35], steel properties after
thermomechanical processing [36], and the performance and exhaust
characteristics of combustion engines [37]. With these advantages, in
this article, we will establish a GRNN on a sensor array to detect the
levels of multiple properties that are critical to the functionality of in-
dustrial lubricant oil. By implementing a GRNN to our sensor array, we
are able to simplify training procedures while accurately and continu-
ously monitor the contents of acid, base and water in lubricant oils. To
our knowledge, this is the first work that had utilized the GRNN in online
oil condition monitoring.

2. Materials and method

We designed an array of 3 capacitive sensors for measuring acid,
base, and water contents. The capacitive sensors have similar designs
but have different absorbent coatings. The specific coating ensures that
each sensor is more sensitive to one property than other properties, so
that each sensor will respond to different properties with different
weights. Fig. 1A and B illustrate the side and top view of the capacitive
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sensors. Since there are still certain cross sensitivities, the responses are
sent through a GRNN to decipher the overlapping responses from the
sensor array.

All 3 sensors capacitive sensors utilize interdigitated electrodes
(IDEs) to form capacitors. Changes in the capacitance can be attributed
to dielectric changes of the medium (e.g. lubricant oil) between the
fingers. Unique coatings were applied to the IDEs to make sensors
respond to properties differently from each other. Fig. 2 shows a
magnified image of the IDE electrodes.

Each sensor was fabricated using standard photolithography pro-
cesses followed by a spin coating. The IDEs of the three capacitive
sensors had the same geometry. The IDE electrodes were fabricated on a
glass substrate with a 100 nm gold layer, and a 5 nm titanium adhesion
layer (EMF Corporation, TA134). The IDE pattern had 40 pairs of fin-
gers, each with a length of 5 mm. The width (W) of the fingers was
designed to 25 um, while the gap (G) between them was 50 ym (see
Fig. 1B). The IDE capacitive sensors were all coated with absorbent
materials with appropriate thickness to provide varying sensitivities to
different properties. Sensor 1 is designed to have an increased response
to water, the IDEs were coated with a layer of polyimide, a material that
absorbs water [38,39] but rejects lubricant oil. The thickness of the
polyimide coating was measured to be approximately 4 uym. Note that
the strength of the electric field can be neglected beyond a vertical
distance of

A= (W+G) €y

where A represents the vertical distance from the IDE surface, W rep-
resents the finger width, and G represents the finger gap (as shown in
Fig. 1). Changes of the medium beyond that distance have no effect on
the sensor response [40]. Thus sensor 1 primarily responds to the water
content but also responds to other oil property change (e.g. acid, base
contents).

Sensor 2 was coated with a layer of polytetrafluoroethylene (PTFE), a
hydrophobic material that resists the absorption of water. A PTFE
(Teflon) tape was applied over the IDEs with a thickness of 70 pm,

Fig. 2. Microscopic picture of Interdigital electrodes of the capacitive sensor.

Sensing
Material

Fig. 1. A) Side view of capacitive sensors with interdigital electrodes, B) Top-down view describing the capacitive sensor’s structure.
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within A/2. Therefore this sensor will respond to all property changes in
the oil, while remaining largely indifferent to changes of water content
within the oil [41].

Sensor 3 was coated with Nafion, a material commonly used as a
cation exchange membrane due to its ability to allow the passage of
positively charged ions [42]. A Nafion (Alfa Aesar, Nafion D-521
dispersion) film of ~250 nm was spin coated on The IDE surface. Sensor
3 primarily responds to acid and base, different from Sensors 1 and 2.

3. Theory

We utilize a General Regression Neural Network (GRNN) to remove
the cross sensitivities of the responses from the sensor array. The GRNN
was developed in MatLab, and consists of an input layer, a radial basis
layer, a linear layer, and an output layer as shown in Fig. 3. Each node
(or neuron) in the input layer represents the relative voltage/capaci-
tance change from one sensor, while each neuron in the output layer
represents the corresponding acid/base/water content to be determined.
The number of neurons in the radial basis layer is equal to the number of
sample data points used to create the network. Each neuron in the
hidden layer is related to all the neurons in the previous layer via a
distance value that is passed through a radial basis function (see Fig. 3).
When predicting the oil properties, we will first find the Euclidean dis-
tance between the inputs for this data point and the inputs of the whole
dataset. The Euclidean distance is defined as follows:

n

Euclidean Distance = Z(x,- —¥) (2)

i=1

where x; is the data point’s input from the i"sensor, y; is the input from

i"sensor of a single entry in the GRNN dataset, and n is the number of

inputs in the network. This distance is calculated for every entry in the
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dataset, and this array is multiplied by a scalar bias. This bias is defined
as follows:

Bias = Y~ 103 ®3)
o

where ¢ is the smoothing factor, a parameter that affects smoothness of
the network’s prediction curve as well as its ability to generalize. We
determined an optimal smoothing factor for our network through an
iterative process; the process is discussed in section. Each value of the
array resulting from multiplying the bias and the distance is passed
through a radial basis function, defined as follows:

RadialBasis(n) = ™ “4)
where n represents the values of the array resulting from the previous
step.
Finally, a normalized dot product between this resulting array and
the outputs of the GRNN’s data set giving the predicted values, as
follows:

rediction = A~dZ 5)
i Zi

where A is the array of outputs in the GRNN’s dataset, Z is the array

generated from the previous step, and d is the number of data points in

the GRNN’s dataset.

Because the GRNN uses forward propagation, it has several advan-
tages compared to a BPNN. To expand the dataset in a BPNN, the
network needs to be completely retrained, and weights need to be
reassigned between every node. For a GRNN, the dataset can simply be
expanded with new samples without requiring a new training procedure
[43]. This convenience allows for the network to be tailored to a user’s
requirements easily. Prior research also demonstrated that the GRNN
displayed better accuracy when sample sizes are not very large [43,44].

Sensor Responses General Regression Neural Network Output
| 1 |
{ v o4 v f 3
AV Input Layer Radial Basis Layer Linear Layer  Output Layer
Sensor 1 Predicted
— Acid Content
Response (ppm)
Sensor 2 Predicted
’a ——Base Content
Response ; (opm)
s 3 Predicted
bl ——— Water Content
Response (opm)

Radial Basis
Function

fn)=e™

Fig. 3. Illustration of the GRNN architecture for oil condition monitoring.
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Because it is impractical to generate huge datasets online, the GRNN is
more suitable for online oil condition monitoring.

Next, we prepared 48 oil samples, 36 were used for training to
determine an optimal smoothing factor, and 12 were used as a final
testing dataset. These samples contained varying concentrations of acid,
base, and water. Water contents were altered by adding H»O at con-
centrations of 500, 1000, and 1500 ppm. Sulfuric acid (HySO4) and
potassium hydroxide (KOH) were used to change the receptive acid and
base levels at concentrations of 1000, 2000, 3000, and 4000 ppm.
Conventional oil (MAG1, Conventional 10W30) was used as a base oil.
These concentrations were chosen to simulate conditions that have been
used by industrial lubrication systems [14,16,18,45]. Individual samples
were prepared and thoroughly mixed right before testing to prevent any
separation. Samples were loaded into a tank; the 3 capacitive sensors
were installed on the side wall of the tank (see Fig. 4). Oil was circulated
via a pump at a fixed flow rate of 100 mL/min. The excitation signal for
the sensors array was a 2 MHz, 10 Vj, sine wave via a function generator
(Agilent, 33,600 A Series). Sensor responses were recorded through the
DAQ device (NI, PCI-6133) after 20 min, and sensors were cleaned and
dried between testing with different samples. Changes in the concen-
trations of various properties in the oil leads to changes in the capaci-
tance of the IDE sensors. This capacitance change correlates with an
impedance change of the sensor. To measure this change, voltages across
the capacitive sensors were recorded with a DAQ (see Fig. 4). To reduce
the amount of data, an under-sampling technique was used to capture
voltage peaks, which significantly reduced the amount of the collected
data. With this reduced amount of data, the device is more suitable for
online oil condition monitoring. Details of under sampling method can
be found in our prior publication [46]. With the under sampling, we
were able to use a sampling rate of 110 kHz to capture the peaks of a
2 MHz sine wave signal.

After the raw data was collected, a fast Fourier transform (FFT) was
applied to filter out unwanted noises. The average peak voltage was
calculated, and was imported to the GRNN (see Fig. 3) to calculate the
target properties. The GRNN was developed in MatLab using built-in
neural network tools and custom code for analysis. The network con-
tains an input layer, a radial basis layer, a pattern layer, and an output
layer. The input and output layers have 3 nodes, corresponding to the
number of sensors and number of properties. The radial basis layer
contains 32 nodes, corresponding to the number of training samples, and
the linear layer has 2 nodes.

4. Results and discussion

For the GRNN to make accurate predictions, it is critical that the
sensor response to each property has a good trend. To test this, we
measured the sensors’ responses to samples with changes in only one
property. For each oil sample, the measurements of sensors’ responses
were taken at t = 20 min after submersion of the sensors. Before the
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sensors were tested in the next oil sample, the sensors were cleaned and
dried. Sensors’ responses to oil samples with varying contents of only
one property (water, acid, or base) were plotted in Fig. 5. Each error bar
represents standard deviation of three separate measurements of one
sample.

The collected data met this criteria, as the relative voltage change for
acid steadily increased from —0.15% to —0.04% (Teflon coated sensor),
decreased from —0.2% to —20.9% for base (Nafion coated sensor), and
decreased from —0.2 to —0.27 for water (Polyimide coated sensor), as
shown in Fig. 5. Next, the sensors were measured with the 36 training oil
samples to train the network and an additional 12 testing samples to
evaluate the accuracy of the network. These 48 samples contain
different combinations of acid, base, and water contents discussed in the
previous section. The sensor responses were collected when they were
submerged in the oil sample for 20 min. (Typical time series sensor re-
sponses are given in the Supplement materials). During network
training, the training dataset of 36 was randomly divided into 5 groups.
A k-fold cross validation method was used on these groups: 4 groups
were used for training, while the remaining group was used for valida-
tion in determining the optimal smoothing factor. This process was
repeated 4 more times until each group was used as the validation
group. After training, the network was tested on the separate testing
dataset (12 samples) to determine the networks performance on data it
was not trained with.

During training, the network was run for a range of smoothing fac-
tors from 0.0001 to.5 in steps of.00001 in order to determine the optimal
value. All errors were normalized to have even weight since the moni-
tored ppm range for the properties were different, and the smoothing
factor with the lowest combined normalized error was selected for our
network. Data was normalized by multiplying the water error (ppm) by
a value of 4000/1500 to account for the difference in range from water
to acid/base content. One focus of this study is to reduce the amount of
training samples while keeping satisfactory accuracy, because using a
large number of samples for training is impracticable for onsite oil
property monitoring. We conducted the training using various sizes of
training samples (20, 26, and 36). Results are shown in Fig. 6. As shown
in Fig. 6, the difference between using the three training samples sizes is
negligible. The optimal smoothing factor for the GRNN was found to
be.0150, 0.0153 and 0.0158 respectively. We used 0.0150 for the sub-
sequent predictions with the 20 sample dataset in Fig. 8.

Since data can be iteratively added to the GRNN without a retraining
process, we were able to monitor the trend of the network’s prediction
error as samples were added to the dataset. By analyzing the average
prediction error for each property, we could add samples to whichever
property had the highest error to further reduce that error. The average
prediction error was calculated by taking the average of the percent
errors from each prediction from the test group, as shown in Eq. (6).

E,.
Average Prediction Error = @ ©
Niest
Measurement Circuit
—
T Function

Generator

Oil Inlet
DAQ

Sensor Array

Oil Outlet

Fig. 4. Experimental setup for the sensor array for oil condition monitoring.
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Fig. 5. Raw Sensor Responses to oil samples with varying contents of only one property (water, acid, or base). (a): Relative voltage change of Teflon coated sensor to
oil samples with varying acid content. (b): Relative voltage change of Nafion coated sensor to oil samples with varying base content. (c): Relative voltage change of

Polyimide sensor to oil samples with varying water content.
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Fig. 6. Smoothing factor vs. normalized combined error of all 3 properties with
different amount of training samples, 20, 26 and 36.

where E. is the percent error for a single prediction from the test
dataset, and ny is the number of datapoints in the test dataset. Fig. 7a
shows the average prediction error collected from the 36 training sam-
ples. It is obvious that the average prediction errors only decreased a
little when the training samples was increased from 20 to 36.

Finally, the network was tested using samples with various concen-
tration of the acid, base and water. The samples cover a wide range of
property contents, acid from 0 to 4000 ppm, base from 0 to 4000 ppm,
and water from 0 to 1500 ppm. These ranges cover critical areas for
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Fig. 7. Average prediction error versus various sizes of training dataset. (a)
gathered from 36 training samples, (b) gathered from 12 testing samples.

lubricant functionality in industrial machinery [14,16,18]. Fig. 7b
shows the average prediction error collected from 12 testing samples
when the network was trained with different samples sizes. As we
increased training dataset from 10 to 20, the average water content error
was reduced from 38% to 13%, the average acid error from 14% to 6%,
and the average base error from 5% to 3% (see Fig. 7B). We found a
20-sample training dataset was sufficient. Additional samples only
decreased the average prediction error by a small amount. When the
dataset was increased from 20 to 36 samples, the error reduction for
acid, base, and water content were only.72%,.05%, and 1.8%
respectively.

Fig. 8 shows the predicted contents by the GRNN were compared to
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the actual contents for the 12 testing samples, which were not used in
training. Each sample was measured 3 times with an interval of 2 h. As
shown in Fig. 8, the two sets of values are in good agreement. The
maximum percent error for acid, base, and water content was 6.9%,
4.2%, and 15.7% respectively. The comparatively higher prediction
error in water content can be attributed to the fact that changes in water
content had the smallest corresponding sensor responses in magnitude.
This effect is also evident for the base predictions, where the highest
sensor response resulted in the smallest error. Based on these results, this
sensor array in combination with the GRNN is capable of untangling
non-linear and overlapped sensor responses and making accurate pre-
dictions of multiple properties of a lubricant oil.

The prediction error of this system can be reduced by two ap-
proaches. First, the noise from the raw signal, especially for the sensor
which had a lower sensitivity is one of the major sources for the pre-
diction errors. For example, the prediction in water content has a larger
average error (14%) than the other properties (6% and 3%). This is
because the Teflon coated sensor has a low sensitivity to water content
change; therefore, the relative amplitude of the noise is larger than that
of the other properties. The prediction error can be reduced by using a
coating material that generates higher sensitivity to the target property.
We also found that reducing the thickness of the sensing material would
increase the sensitivity, although the measurement range of the sensor is
reduced. Further analysis on selecting the optimal sensing layer thick-
ness could provide greater sensitivity while maintaining a range that
covers the critical points. Second, adding more training samples, espe-
cially at smaller concentration ranges, may potentially reduce the pre-
diction error at the price of a longer training time.

To provide comparison with other networks, we established two
additional neural networks, a radial basis network and a back propa-
gation neural network, to make predictions and determined their

respective errors. Both of these networks were established using Mat-
Lab’s neural network toolbox. The radial basis network has a similar first
layer to the GRNN, but has a different linear layer [47]. This network
gave maximum error predictions of 8.1%, 4.4%, and 18.8% for acid,
base, and water contents respectively. The back propagation neural
network (BPNN) contained 2 layers, with 42 nodes in the first layer and
4 nodes in the second layer. The network was trained using the
Levenberg-Marquardt backpropagation algorithm. The maximum pre-
diction errors during validation for this network were 12.5%, 4.9%, and
23.6% for acid, base, and water contents respectively. We also compared
computational time in training. The computation for GRNN and radial
basis networks were completed in 49 and 44 s respectively, while the
BPNN took 433 s. This was expected, since the GRNN and radial basis
networks only needed to sweep through smoothing factors, while the
BPNN needed to reassign all weights among nodes over many iterations.
When comparing the prediction errors, the GRNN showed superior
performance across all three properties on our dataset.

It is worth mentioning here that we employed the fruit-fly optimi-
zation algorithm [48] and found it was able to find an optimal
smoothing factor in 30s. In comparison, the sweeping method (i.e.
sweeping a large range of smoothing factors with a small step) took
approximately 49 s. All calculations were performed in a Dell Latitude
5420 laptop. Nevertheless, the prediction accuracy was not affected as
the smoothing factors obtained from the fruit-fly algorithm and the
sweep method had negligible differences (0.0150 vs 0.01504). While the
improvement in training time is limited because of the small amount of
samples, we believe this algorithm can improve the training speed
significantly in applications with a large number of training samples.

Since there could be unexpected contaminants in the lubricant oil
that are not being measured by the system, it is important to make sure
these contaminants would not have a large impact on the sensors. Wear
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debris particle are the most common substances existing in the running
lubricant. We tested the influence of the wear debris on the GRNN
prediction by introducing iron and ceramic wear debris into the lubri-
cant. A 30 ppm concentration of iron particles resulted in a.0038%
voltage change, while a 40 ppm concentration of ceramic particles
resulted in a.0069% voltage change. Such a change would result in
approximately a 0.2% and 0.5% error from GRNN, which can be
neglected. Note that the concentrations of wear debris were selected
based on what would be expected in industrial applications [49].

The capacitive sensors’ responses change are caused by the change in
relative permittivity of the oil [40]. The permittivity change is not
directly dependent on machine operating parameters such as rotational
speed or torque, but is effected by the oil operating temperature [50].
Currently, data collection was done at the expected oil operating tem-
perature. We plan to add a temperature sensor as an input in future
works, as temperature variation could lead to less accurate predictions.

More sensors with other sensing materials can be added to or
removed from the GRNN to detect additional/other properties. The
GRNN can easily be modified to allow any number of sensor inputs and
property outputs. As long as every property has a detectable trend from a
sensor, the network can make accurate predictions after training.
Additional sensors will not have a noticeable negative effect on current
property predictions as long as they provide relevant data [51].
Furthermore, singular spectrum analysis can be coupled with the GRNN
to further reduce unwanted noises and increase signal strength,
demonstrated in wind-speed forecasting and industrial production
forecasting applications [52,53]. This could further increase the sensi-
tivity, and decrease prediction error.

We have developed a capacitive sensor array in combination with a
GRNN to accurately measure multiple lubricant oil properties from
overlapped sensor responses. Each of the three sensors in the array has a
different response to changes in key lubricant properties: acid, base, and
water content. The GRNN has displayed the ability to make accurate
measurements of these properties with a small amount of training
samples. The network was able to predict acid, base, and water content
within errors of 6.9%, 4.2%, and 15.7% respectively. The system also
displayed ability to function properly even with unexpected contami-
nants (e.g. wear debris) in the oil. Through use of the GRNN, we were
able to simplify the training process without sacrificing the measure-
ment accuracy. By monitoring the key oil properties, the remaining
useful life of lubricant oil can be predicted to avoid catastrophic ma-
chine failure as well as unnecessary premature oil changes. In addition,
while we demonstrated measurement of three oil properties, more
sensors, including but not limited to, sensors who respond to soot, sulfur,
or glycol contents, can be added to the sensor array to monitor addi-
tional oil properties and provide complete information on lubricant oil,
and can be used for health monitoring of a variety of machines,
including turbomachines, combustion engines and heavy equipment.

Funding

This material is based upon work supported by the National Science
Foundation of USA under grant numbers PFI-TT 1940879 and I-Corps
2027849. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation.

CRediT authorship contribution statement

Dian Jiao: Conceptualization, Software, Formal analysis, Investi-
gation, Writing — original draft, Writing — review & editing. Aaron
Urban: Conceptualization, Software, Formal analysis, Investigation,
Writing — original draft, Writing — review & editing. Xiaoliang Zhu:
Conceptualization. Jiang Zhe: Writing — review & editing, Supervision,
Funding acquisition.

Tribology International 164 (2021) 107221

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.triboint.2021.107221.

References

[1] He, Q., Chen, G., Chen, X., Yao, C, Application of oil analysis to the condition
monitoring of large engineering machinery. In Proceedings of the Proceedings of
2009 8th International Conference on Reliability, Maintainability and Safety,
ICRMS 2009; 2009; pp. 1100-1103.

[2] Ku PM. Gear failure modes—importance of lubrication and mechanics. AS L E
Trans 1976;19:239-49. https://doi.org/10.1080/05698197608982799.

[3] Fernandes CMCG, Martins RC, Seabra JHO. Friction torque of thrust ball bearings
lubricated with wind turbine gear oils. Tribology Int 2013;58:47-54. https://doi.
org/10.1016/j.triboint.2012.09.005.

[4] Ozsipahi M, Kose HA, Cadirci S, Kerpicci H, Gunes H. Experimental and numerical
investigation of lubrication system for reciprocating compressor. Int J Refrig 2019;
108:224-33. https://doi.org/10.1016/j.ijrefrig.2019.08.026.

[5] Huang J, Tan J, Fang H, Gong F, Wang J. Tribological and wear performances of

graphene-oil nanofluid under industrial high-speed rotation. Tribology Int 2019;

135:112-20. https://doi.org/10.1016/j.triboint.2019.02.041.

Agoston A, Otsch C, Jakoby B. Viscosity sensors for engine oil condition monitoring

- application and interpretation of results. Sens Actuators A Phys 2005;121:327-32.

https://doi.org/10.1016/j.sna.2005.02.024.

[7] Brouwer MD, Gupta LA, Sadeghi F, Peroulis D, Adams D. Femoral revision surgery
with impaction bone grafting: 31 hips followed prospectively for ten to 15 years.
J Bone Jt Surg Br Vol 2012;94. https://doi.org/10.1016/j.sna.2011.10.024.

[8] Agoston A, Keplinger F, Jakoby B. Evaluation of a vibrating micromachined
cantilever sensor for measuring the viscosity of complex organic liquids. Sens
Actuators A Phys 2005;123-124:82-6.

[9] Zhu X, Du L, Zhe J. An integrated lubricant oil conditioning sensor using signal
multiplexing. J Micromech Microeng 2014;25:015006. https://doi.org/10.1088/
0960-1317/25/1/015006.

[10] Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. A ratiometric fluorescent
viscosity sensor. J Am Chem Soc 2006;128:398-9. https://doi.org/10.1021/
ja056370a.

[11] Ahmad MA, Yahya WJ, Ithnin AM, Hasannuddin AK, Bakar M, Fatah A, et al.
Performance, emissions and lubricant oil analysis of diesel engine running on
emulsion fuel. Energy Convers Manag 2016;117:548-57. https://doi.org/10.1016/
j-enconman.2016.03.057.

[12] Markova LV, Makarenko VM, Semenyuk MS, Zozulya AP. On-line monitoring of the
viscosity of lubricating oils. J Frict Wear 2010;31:433-42. https://doi.org/
10.3103/5106836661006005X.

[13] Coiclough T. Role of additives and transition metals in lubricating oil oxidation.
Ind Eng Chem Res 1987;26:1888-95. https://doi.org/10.1021/ie00069a028.

[14] Richard Booser, E., Kauffman, R, Rapid Determination of Remaining Useful
Lubricant Life. In CRC Handbook of Lubrication and Tribology, Volume III; 1993.

[15] Rudnick, L.R., Synthetics, mineral oils, and bio-based lubricants: Chemistry and
technology; 2005; ISBN 9781420027181.

[16] Shubkin, R.L., Synthetic lubricants and high-performance functional fluids. 1993;
doi:10.1016/0301-679x(94)90064-7.

[17] Cantley RE. The effect of water in lubricating oil on bearing fatigue life. ASLE Trans
1977;20:244-8. https://doi.org/10.1080/05698197708982838.

[18] Foster NS, Amonette JE, Autrey T, Ho JT. Detection of trace levels of water in oil by
photoacoustic spectroscopy. Sens Actuators B Chem 2001;77:620-4. https://doi.
0rg/10.1016/50925-4005(01)00767-5.

[19] Moon S, I, Paek KK, Lee YH, Kim JK, Kim SW, et al. Adjunctive rufinamide in
Lennox-Gastaut syndrome: a long-term, open-label extension study. Acta Neurol
Scand 2010;122. https://doi.org/10.1149/1.2209433.

[20] Smiechowski MF, Lvovich VF. Iridium oxide sensors for acidity and basicity
detection in industrial lubricants. Sens Actuators B Chem 2003;96:261-7. https://
doi.org/10.1016/50925-4005(03)00542-2.

[21] Jingkun L., Development of a microfabricated sensor array for oil evaulation
Jingkun Li Dr Diss 2005; 1, 158.

[22] Smiechowski MF, Lvovich VF. Electrochemical detection and characterization of
proteins. Biosens Bioelectron 2006;22. https://doi.org/10.1016,/50022-0728(02)
01106-3.

[23] Capone S, Siciliano P, Barsan N, Weimar U, Vasanelli L. Analysis of CO and CH4
gas mixtures by using a micromachined sensor array. Sens Actuators B Chem 2001;
78:40-8. https://doi.org/10.1016/50925-4005(01)00789-4.

[24] Wilson D, Gutiérrez JM, Alegret S, DelValle M. Simultaneous determination of Zn
(ID), Cu(II), Cd{I) and Pb(II) in soil samples employing an array of potentiometric
sensors and an artificial neural network model. Electroanalysis 2012;24:2249-56.
https://doi.org/10.1002/elan.201200440.

[6

=


https://doi.org/10.1016/j.triboint.2021.107221
https://doi.org/10.1080/05698197608982799
https://doi.org/10.1016/j.triboint.2012.09.005
https://doi.org/10.1016/j.triboint.2012.09.005
https://doi.org/10.1016/j.ijrefrig.2019.08.026
https://doi.org/10.1016/j.triboint.2019.02.041
https://doi.org/10.1016/j.sna.2005.02.024
https://doi.org/10.1016/j.sna.2011.10.024
http://refhub.elsevier.com/S0301-679X(21)00369-8/sbref7
http://refhub.elsevier.com/S0301-679X(21)00369-8/sbref7
http://refhub.elsevier.com/S0301-679X(21)00369-8/sbref7
https://doi.org/10.1088/0960-1317/25/1/015006
https://doi.org/10.1088/0960-1317/25/1/015006
https://doi.org/10.1021/ja056370a
https://doi.org/10.1021/ja056370a
https://doi.org/10.1016/j.enconman.2016.03.057
https://doi.org/10.1016/j.enconman.2016.03.057
https://doi.org/10.3103/S106836661006005X
https://doi.org/10.3103/S106836661006005X
https://doi.org/10.1021/ie00069a028
https://doi.org/10.1080/05698197708982838
https://doi.org/10.1016/S0925-4005(01)00767-5
https://doi.org/10.1016/S0925-4005(01)00767-5
https://doi.org/10.1149/1.2209433
https://doi.org/10.1016/S0925-4005(03)00542-2
https://doi.org/10.1016/S0925-4005(03)00542-2
https://doi.org/10.1016/S0022-0728(02)01106-3
https://doi.org/10.1016/S0022-0728(02)01106-3
https://doi.org/10.1016/S0925-4005(01)00789-4
https://doi.org/10.1002/elan.201200440

D. Jiao et al.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Simoes Da Costa AM, Delgadillo I, Rudnitskaya A. Detection of copper, lead,
cadmium and iron in wine using electronic tongue sensor system. Talanta 2014;
129:63-71. https://doi.org/10.1016/j.talanta.2014.04.030.

O’Connor E, Smeaton AF, O’Connor NE, Regan F. A neural network approach to
smarter sensor networks for water quality monitoring. Sensors 2012;12:4605-32.
https://doi.org/10.3390/5s120404605.

Dornfeld DA, DeVries MF. Neural network sensor fusion for tool condition
monitoring. CIRP Ann Manuf Technol 1990;39:101-5. https://doi.org/10.1016/
S0007-8506(07)61012-9.

Zhu X, Du L, Liu B, Zhe J. A microsensor array for quantification of lubricant
contaminants using a back propagation artificial neural network. J Micromech
Microeng 2016;26:065005. https://doi.org/10.1088/0960-1317/26/6/065005.
Wang J, Wu W, Zurada JM. Computational properties and convergence analysis of
BPNN for cyclic and almost cyclic learning with penalty. Neural Netw J Int Neural
Netw Soc 2012;33. https://doi.org/10.1016/j.neunet.2012.04.013.

Dai Y, Guo J, Yang L, You W. A new approach of intelligent physical health
evaluation based on GRNN and BPNN by using a wearable smart bracelet system.
Proc Computer Sci. 2019:519-27.

Zhang W, Qu Z, Zhang K, Mao W, Ma Y, Fan X. A combined model based on
CEEMDAN and modified flower pollination algorithm for wind speed forecasting.
Energy Convers Manag 2017;136:439-51. https://doi.org/10.1016/j.
enconman.2017.01.022.

Dantas TM, Cyrino Oliveira FL. Improving time series forecasting: an approach
combining bootstrap aggregation, clusters and exponential smoothing. Int J
Forecast 2018;34:748-91. https://doi.org/10.1016/j.ijforecast.2018.05.006.
Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast package
for R. J Stat Softw 2008;11506:198-209. https://doi.org/10.18637/jss.v027.103.
Dai H, MacBeth C. Application of back-propagation neural networks to
identification of seismic arrival types. Phys Earth Planet Inter 1997;101:177-88.
https://doi.org/10.1016/50031-9201(97)00004-6.

Gao, S., Tian, J., Wang, F., Bai, Y., Yang, Q, The Study of GRNN for Wind Speed
Forecasting Based on Markov Chain. In Proceedings of the 2015 International
Conference on Modeling, Simulation and Applied Mathematics; Atlantic Press,
2015.

Qiao L, Wang Z, Zhu J. Application of improved GRNN model to predict
interlamellar spacing and mechanical properties of hypereutectoid steel. Mater Sci
Eng A 2020;792:139845. https://doi.org/10.1016/j.msea.2020.139845.

Bendu H, Deepak BBVL, Murugan S. Application of GRNN for the prediction of
performance and exhaust emissions in HCCI engine using ethanol. Energy Convers
Manag 2016;122:165-73. https://doi.org/10.1016/j.enconman.2016.05.061.
Kang U, Wise KD. A novel method to detect functional microrna regulatory
modules by bicliques merging. IEEE/ACM Trans Comput Biol Bioinforma 2016;13.
https://doi.org/10.1109/16.830983.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Tribology International 164 (2021) 107221

Laconte, J., Wilmart, V., Flandre, D., Raskin, J.P, High-Sensitivity Capacitive
Humidity Sensor Using 3-Layer Patterned Polyimide Sensing Film. In Proceedings
of the Proceedings of IEEE Sensors; 2003; p. 372.

Hu X, Yang W. Planar capacitive sensors - designs and applications. Sens Rev 2010;
30:24-39. https://doi.org/10.1108/02602281011010772.

Zhu H, Wang H, Wang F, Guo Y, Zhang H, Chen J. Preparation and properties of
PTFE hollow fiber membranes for desalination through vacuum membrane
distillation. J Memb Sci 2013;466:145-53. https://doi.org/10.1016/j.
memsci.2013.06.037.

Avci AH, Messana DA, Santoro S, Tufa RA, Curcio E, Di Profio G, et al. Energy
harvesting from brines by reverse electrodialysis using nafion membranes.
Membranes 2020:168. https://doi.org/10.3390/membranes10080168.

Specht DF. A general regression neural network. IEEE Trans Neural Netw 1991;2:
568-76. https://doi.org/10.1109/72.97934.

Martinez-Blanco M, del R, Ornelas-Vargas G, Solis-Sanchez LO, Castaneda-
Miranada R, Vega-Carrillo HR, et al. A comparison of back propagation and
generalized regression neural networks performance in neutron spectrometry. Appl
Radiat Isot 2016;117:20-6. https://doi.org/10.1016/j.apradiso.2016.04.011.
Booser, R., Twidale, A., Williams, D. Circulating Oil Systems. In CRC Handbook of
Lubrication; 1988.

Du L, Zhe J. Parallel sensing of metallic wear debris in lubricants using
undersampling data processing. Tribol Int 2012;53:28-34. https://doi.org/
10.1016/j.triboint.2012.04.005.

Demuth, H., Beale, M. Neural Network Toolbox For Use with MATLAB. http://cda.
psych.uiuc.edu/matlab_pdf/nnet.pdf (Accessed 24 May 2021).

Xie X, Fu G, Xue Y, Zhao Z, Chen P, Lu B, et al. Risk prediction and factors risk
analysis based on IFOA-GRNN and apriori algorithms: application of artificial
intelligence in accident prevention. Process Saf Environ Prot 2019;122:169-84.
https://doi.org/10.1016/j.psep.2018.11.019.

Du L, Zhu X, Han Y, Zhao L, Zhe J. Improving sensitivity of an inductive pulse
sensor for detection of metallic wear debris in lubricants using parallel LC
resonance method. Meas Sci Technol 2013;24:075106. https://doi.org/10.1088/
0957-0233/24/7/075106.

Kaatze U. Complex permittivity of water as a function of frequency and
temperature. J Chem Eng Data 1989;34:371-4. https://doi.org/10.1021/
je00058a001.

May, R., Dandy, G., Maier, H, Artificial Neural Networks: Methodological Advances
and Biomedical Applications.

Hassani H, Heravi S, Zhigljavsky A. Forecasting European industrial production
with singular spectrum analysis. Int J Forecast 2009;25:103-18. https://doi.org/
10.1016/j.ijforecast.2008.09.007.

Wang J, Heng J, Xiao L, Wang C. Research and application of a combined model
based on multi-objective optimization for multi-step ahead wind speed forecasting.
Energy 2017;125:591-613. https://doi.org/10.1016/j.energy.2017.02.150.


https://doi.org/10.1016/j.talanta.2014.04.030
https://doi.org/10.3390/s120404605
https://doi.org/10.1016/S0007-8506(07)61012-9
https://doi.org/10.1016/S0007-8506(07)61012-9
https://doi.org/10.1088/0960-1317/26/6/065005
https://doi.org/10.1016/j.neunet.2012.04.013
http://refhub.elsevier.com/S0301-679X(21)00369-8/sbref25
http://refhub.elsevier.com/S0301-679X(21)00369-8/sbref25
http://refhub.elsevier.com/S0301-679X(21)00369-8/sbref25
https://doi.org/10.1016/j.enconman.2017.01.022
https://doi.org/10.1016/j.enconman.2017.01.022
https://doi.org/10.1016/j.ijforecast.2018.05.006
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1016/S0031-9201(97)00004-6
https://doi.org/10.1016/j.msea.2020.139845
https://doi.org/10.1016/j.enconman.2016.05.061
https://doi.org/10.1109/16.830983
https://doi.org/10.1108/02602281011010772
https://doi.org/10.1016/j.memsci.2013.06.037
https://doi.org/10.1016/j.memsci.2013.06.037
https://doi.org/10.3390/membranes10080168
https://doi.org/10.1109/72.97934
https://doi.org/10.1016/j.apradiso.2016.04.011
https://doi.org/10.1016/j.triboint.2012.04.005
https://doi.org/10.1016/j.triboint.2012.04.005
http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf
http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf
https://doi.org/10.1016/j.psep.2018.11.019
https://doi.org/10.1088/0957-0233/24/7/075106
https://doi.org/10.1088/0957-0233/24/7/075106
https://doi.org/10.1021/je00058a001
https://doi.org/10.1021/je00058a001
https://doi.org/10.1016/j.ijforecast.2008.09.007
https://doi.org/10.1016/j.ijforecast.2008.09.007
https://doi.org/10.1016/j.energy.2017.02.150

	Oil property sensing array based on a general regression neural network
	1 Introduction
	2 Materials and method
	3 Theory
	4 Results and discussion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Supporting information
	References


