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Abstract. Users of highly-configurable software systems often want to
optimize a particular objective such as improving a functional outcome or
increasing system performance. One approach is to use an evolutionary
algorithm. However, many applications today are data-driven, meaning
they depend on inputs or data which can be complex and varied. Hence,
a search needs to be run (and re-run) for all inputs, making optimization
a heavy-weight and potentially impractical process. In this paper, we
explore this issue on a data-driven highly-configurable scientific appli-
cation. We build an exhaustive database containing 3,000 configurations
and 10,000 inputs, leading to almost 100 million records as our oracle, and
then run a genetic algorithm individually on each of the 10,000 inputs.
We ask if (1) a genetic algorithm can find configurations to improve
functional objectives; (2) whether patterns of best configurations over
all input data emerge; and (3) if we can we use sampling to approximate
the results. We find that the original (default) configuration is best only
34% of the time, while clear patterns emerge of other best configura-
tions. Out of 3,000 possible configurations, only 112 distinct configura-
tions achieve the optimal result at least once across all 10,000 inputs,
suggesting the potential for lighter weight optimization approaches. We
show that sampling of the input data finds similar patterns at a lower
cost.
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1 Introduction

Many scientific applications are heavily data-driven, meaning their function (or
behavior) is dependent on the specific data used to run the application and
the data is often complex and varied. At the same time, these systems are
often highly-configurable; the end user can modify a myriad of configuration
options that control how the system behaves. The options may induce simple
changes such as controlling how output formatting is handled, or they can change
underlying algorithms and the algorithm’s parameters, returning entirely differ-
ent results [2]. Some options may also change system performance, causing the
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application to run faster, or to utilize fewer resources such as bandwidth and
energy. There has been a lot of focus on highly-configurable software with the
goal of optimizing or finding options to improve quality [7,8,20].

To assist with configuration selection, some state of the art techniques use
prediction [20], building models of behavior of the configuration space. An alter-
native approach is to use optimization, or search-based techniques [5,17,21].
Instead of modeling the configuration space to ask how a particular config-
uration will behave, search-based methodologies work to find an optimal (or
near-optimal) configuration for a particular input data set.

However, as we demonstrate in this paper, and something that has been
eluded to by Nair et al. [16], optimization in data-driven systems carries addi-
tional challenges. In these systems, different configuration options may be opti-
mal for different data in the input data set, making optimization a heavy-weight
process — it needs to be run each time new data is utilized and this may be
impractical in practice. In our case study, optimization on a single input takes
minutes. Although an individual run over a single configuration takes millisec-
onds, this is magnified if optimization needs to be run for each input in the
dataset. Instead, we want to re-optimize as little as possible. Furthermore, as
configuration spaces grow, the time for optimization will continue to be ampli-
fied. Research on transfer learning for system performance in highly-configurable
software has suggested that some models provide information which can be re-
used as workloads change [7,8,10]. However, workloads define the load on a sys-
tem; they are not system inputs, and they impact performance, not functionality.
As far as we know, there has been little focus on the problem of optimization
for a data-driven application, when the optimization goal is to improve system
functionality.

In this paper we explore the problem of functional optimization for data-
driven applications. We ask how different inputs from a data set change the
functional results of configuration optimization in a scientific application. In
order to establish ground truth to ask our questions, we design an experimen-
tal testbed that contains exhaustive data of 3,000 configurations (all possible
configurations from our model) and 10,000 different input sets. While this is a
small configuration space, it provides us with a rich set of data — an exhaustive
set of data of almost 100 million records.! We use this database to first eval-
uate the quality of our genetic algorithm. We then ask if there is a pattern of
best configurations. We see a reduction from 3,000 to 112 configurations (or only
3.7%) appearing as the best configurations, therefore we ask if we can sample
the input data and achieve similar results. Our study finds that samples as small
as 10 inputs can produce similar results, suggesting a light-weight optimization
approach is possible.

! Each run of the application can return multiple answers leading to many more records
than 3,000 x 10,000.
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The contributions of this work are:

1. A study on using a genetic algorithm to optimize configurations to improve
the functional behavior of a popular data-driven scientific software applica-
tion;

2. An exhaustive database containing almost 100 million records for a set of
10,000 different inputs;

3. Results on sampling input data, suggesting that the observed patterns hold
over even small random samples.

In the next section we present some motivation. In Sect.3 we present an
overview of our experimental database framework. We follow that with a case
study in Sects. 4 and 5. We then present some related work (Sect.6) and end in
Sect. 7 with conclusions and future work.

2 DMotivating Example

We present a small motivating example based on our case study application in
this section. BLAST stands for the Basic Local Alignment Search Tool [1], and
is a widely used data-driven application. Bioinformatics users utilize BLAST to
ask questions about sequences of deoxyribonucleic acid (DNA) fragments that
they observe in nature or in the lab. When using BLAST, the user selects a
database of known sequences and then inputs their unknown sequence. The
application returns hits which are a set of matches found in the database. Note,
that most of these sequences are not exact matches, but are partial matches of
the sequence. There are some key quality objectives that many users rely on.
The e-value (expected value) is a number that describes how many times you
would expect a match by chance in a database of that size. The lower the value
is, the more significant the match. In many cases users filter for only e-values
of zero (optimal). Another key metric called percent identity is a number that
describes how similar the query sequence is to the target sequence (how many
characters in each sequence are identical). The higher the percent identity is,
the more significant the match. Users sometimes filter by a value of 100 or 99%
(100% is optimal).

One common use case of a BLAST search is to obtain as many quality hits as
possible so that the user can explore those and find out what is known about their
input sequence. Underneath the covers BLAST uses a dynamic programming
algorithm for matching, and this algorithm has been highly tuned over the years.
The current version of BLAST [1] has over 50 configuration options that a user
can modify. We only explore a part of this in our case study.

Suppose we want to optimize a BLAST query with the goal of obtaining
the best e-value and percentage identity, while at the same time increasing the
number of hits. An obvious first choice is to just run the default configuration.
If we choose for instance, the second input sequence from this study, the default
BLAST configuration returns 1 hit and has the max percentage identity and
smallest e-value; it is the best we can do. If we optimize with a genetic algorithm,
we will be unable to improve further; the default configuration is the best.
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However, if we instead optimize using input sequence number 84, we see
different behavior. The default configuration returns 3 hits with a median e-
value of 0 and percentage identity of 100. But if we change 4 of the configuration
options (away from the default) we can improve the number of hits to 8 while
maintaining the minimal median e-value and maximum median percent identity
possible. We have increased our quality hits by 5, therefore a user might want to
consider using the new parameters. In our case study, only one-third of 10,000
input sequences returns the default configuration as the optimal result (using
our objective value), meaning the other two-thirds have an opportunity to be
improved.

After running these two experiments, we have a conundrum. If we use the
results from the genetic algorithm of input sequence number 2, we won’t opti-
mize correctly for input sequence number 84, and vice versa. We may also want
to consider other user preferences such as the distance from the default config-
uration. As we can see, tuning this configuration space is complex and may be
data dependent.

As we started building a genetic algorithm for optimization of this program,
we were left with many open questions. For instance: (1) How can we confirm
a genetic algorithm is working, given the range of behavior for different input
data? (2) Can we find patterns of genetic algorithm behavior across sequences?
(3) Do we need to run our genetic algorithm for all different inputs? As we
iterated to tune the fitness and landscape that can guide a genetic algorithm for
this program, the data dependency made this time consuming and ad-hoc. We
learned that data-driven applications are difficult to tune and reason about when
building a search algorithm, and asked if instead, we can find a better approach.
We hypothesized the need for an exhaustive data set that can be easily queried.
We present and use such a framework in the following section.

3 A Framework for Data-Driven Exploration

We present our design of a Framework for a Data-driven Exploration in a search
environment (FRDDE) that will help us understand the quality of our genetic
algorithm, and the variability of optimizations within our dataset. Figure 1 shows
an overview of FRDDE. We note that we only implemented this for a single data
set in our case study, but the approach is general and we plan to build additional
data sets for other data-driven systems as future work.

FRDDE begins (#1) with a model of the configurations and a set of inputs.
The Cartesian product of these are generated as pairs (configurations, inputs)
and then run against the application (#2). It is not necessary to define an
exact fitness function yet, but to capture key measurements that can be used to
build different fitness functions for this application. The relational data model is
shown in Fig. 2. We have a table of the configuration models where the primary
key (Pk) is the configuration number and the other fields are the individual
configuration options and their possible choices. Table2 (outputs) contains the
results of running the configurations and inputs. In this table we have a three-way
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Fig. 1. Overview of the FRDDE framework. It starts with a set of configurations and
input data (#1) and populates the database (#2). A genetic algorithm can then be
run #3 and the database can be used to answer questions #4.

l(1) Config Modell r (2) Outputs ] (3) Fitness

Pk: configNo Pk: inputNo Generates Pk: inputNo
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Fig. 2. FRDDE schema showing only the primary keys (Pk) and foreign keys (Fk).
Table 1 contains the configuration model. It has one row for each of the configurations
in the model. Table 2 is raw data from the application. Each returned hit has a record.
It has a composite primary key, consisting of the configuration, input sequence and
the number of the returned output (generated). The last table (Table 3) is a generated
fitness table containing a fitness value along with the individual components of the
fitness for each configuration and each input.

primary key which we see as inputNo, configNo, and outputNo. This three-way
key allows for applications which can return more than one output per run (many
data-driven applications such as the one we use, do not return a single result).
This table has a foreign key (Fk) which can be joined with Table 1. The other
fields contain detailed information relevant to the use case and fitness which
can be used during exploration. The last table is an aggregate table built from
Table 2. It has one record per inputNo and configNo and uses the configNo as
a foreign key. We can use this to build different fitness values and to explore
different parts of the search space.

The next phase (#3) of FRDDE is to run a genetic algorithm (or other
evolutionary algorithm) using the sample application and configuration model.
This can be run on all inputs or a sample of inputs. In the last phase (#4), we
can interactively ask questions and compare results from the database against
the runs of the genetic algorithm.
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Once FRDDE is complete, the goal is to use what we have learned to expand
the configuration space and or data set, where an exhaustive analysis is no longer
possible, with information learned from the exploration. We present an example
exploration with FRDDE in the next section. We leave the expansion of our
configuration space for future work.

4 Case Study

We present a case study leveraging FRDDE.? While the long-term goal is to
understand how useful FRDDE is in a data-driven search based environment,
we perform this case study as an exemplar of its use. The questions we ask are:

RQ1: How effective and efficient is a genetic algorithm across all input data?
RQ2: What patterns, if any, emerge across all input data?
RQ3: How well does sampling capture patterns seen in the exhaustive data?

Table 1. Configuration Model for BLAST from [2]. The names of options are followed
by the number of choices and their values. Default values are shown in bold.

Option name | Abbr. |No. of choices | Configuration values

dust dust 3 yes, no, ‘20 64 1’
lcase_masking | lcase 2 true, false
soft_masking soft 2 true, false
ungapped ungap 2 true false
xdrop_gap xdgap 5 0, 0.1, 0.5, 30, 100
xdrop_gap_final | xdgfin 5 0, 0.1, 0.5, 10, 100
xdrop_ungap xdugap 5 0, 0.1, 0.5, 20, 100

4.1 Object of Study

As our software subject we use the popular bioinformatics tool, BLAST. We
use the nucleotide sequencer (BLASTn), version 2.6.0. This is the same sub-
ject studied by Cashman et al. [2] and was sensitive to changing configurations.
We use their configuration model (shown in Table1). The BLAST model has 7
configuration options. Three are binary, one has 3 choices, and the other three
have 5 choices. This leads to an exhaustive configuration space of 3,000 config-
urations. This is not the complete configuration space for BLAST, but one that
is tractable to study exhaustively. Their input data set contains 10,000 input
sequences from the yeast genome. We use these as our input data set.

2 Supplementary data website: https://github.com/LavaOps/ssbse-2020-FrDdE.
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4.2 Genetic Algorithm Implementation

Our chromosome has seven genes (one for each configuration option). The alleles
are configuration choices.

Fitness. The fitness for this case study is based on the scientific use case pre-
sented earlier. However, we can theoretically use alternative fitness functions
within FRDDE. When using BLAST, a biologist may want to increase the num-
ber of quality hits they match from the database. Often, users restrict two quality
values, e-value and the percentage identity. Instead of filtering these values, we
use them for optimization, since a value that is close to the optimal may be of
interest. We also include another component in our fitness, the distance from the
default configuration. It has been documented that users prefer not to change
too many settings [4], hence our goal is to stay close to the original configuration.

Since we are attempting to maximize the number of hits (and expect more
than one), the e-value and percentage identity are aggregate values. We chose the
median for this (we have also experimented with the mean and observe similar
results). Putting these together our fitness is shown next. We are maximizing.
The various weights for the components were determined heuristically.

10, if median e-value = 0
We-val = 1 . (1)
—————  otherwise
median e-value
10, if distance = 0
“distance = 77 otherwise @
distance’

fitness = hits x 10 4 wg_y,] + median(percent identity)/2 + wgistance  (3)

Equation 1 shows the weighted e-value, (or wg_,,j) which takes a value of
10 when the median e-value is 0. Otherwise it is the inverse. Equation 2 is the
calculation of the weighted distance (wgigtance)- Under the default configuration
this value is set to 10, otherwise we normalize by the number of configuration
options (7). Last, Eq. 3 weights these together. Hits are weighted by 10 to make
them as important as wg_y, and distance. The percent identity is reduced by
one half. Although not part of this study, we made use of the database to help
tune the weights.

Genetic Algorithm Parameters. We heuristically tuned our algorithm. We
ended with a population size of 16. When we seed the initial random population
we generate all but one chromosome randomly. The last chromosome is made up
of default values for the program to ensure its existence in each population. We
use one point crossover selecting a random point (within the middle two thirds
of the chromosome for each pair). We pair even and odd numbered chromosomes
in rank order (e.g. the best with the third best and second best with the fourth
best) to maintain some diversity.

We use a rank selection with elitism. This has an important effect for our
use case. If the default configuration is the best fitness, this will propagate to be
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the best overall at the end. We tuned the mutation rate and settled on a value
of 0.5 for this program. We randomly select 50% of the genes in the population
and change the value randomly (with replacement). We do not mutate genes of
the two fittest (elite) chromosomes. We experimented with different numbers of
generations. We usually see convergence relatively quickly (within 20-30 genera-
tions), therefore we chose 50 which will balance the need to solver harder cases,
with being tractable with respect to runtime.

4.3 Experimental Setup

All experiments are run on a parallel computing RedHat Enterprise Linux 7
Server with Intel(R) Xeon(R) Gold 6244 CPU 2.60 GHz nodes. We collected the
exhaustive data by running BLASTn on 10,000 input sequences against the yeast
database. The experiments were run such that each input sequence was tested
under all 3,000 possible configuration options. These led to a total of 30 million
BLASTn calls. 100 of these jobs were executed in parallel to make this scalable.
Each job was allocated 1 node with 5 GB memory. The following outputs were
collected post every BLASTn call: the sequence number, its corresponding con-
figuration number, the blast sequence id, total hits generated, the percentage
identity and e-value observed, and the start and end positions of the subject
sequence against which the match was observed.

Next, we used a MariaDB fork of MYSQL, version 5.5.56 in a singularity
container version 2.6.0. We constructed a database having three primary tables,
which are concrete instantiations of the FRDDE tables. Additional temporary
and derived tables were used for intermediate computations and to fetch results
from the database.

In total we have 96,875,728 records in FRDDE. This is because we have a
record for each hit. We also recorded the combination of configuration num-
bers and the sequences against which no hits were reported by BLASTn. All
such sequence numbers along with their configurations were stored in a separate
table. Next, we constructed the fitness table which is derived from the output
table. We store the count of hits returned per configuration for a specific input
sequence. We compute the median percentage identity and e-value over all hits
recorded for a sequence under a given configuration number, the distance from
the default configuration, and the computed fitness value. We annotated each
possible distinct configuration set across its 3,000 possibilities with an integer
number for ease of reference and access across tables. These annotations along
with the combination of 7 individual configuration options such as dust = “20
64 17, specific to a configuration number, was also stored in the configuration
table.

4.4 Threats to Validity

With respect to generalization we used only a single software subject, a single
type of input file, and a single fitness for this study. However, we use 10,000 inputs
and this is a common scientific application that is widely used and has been
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studied in other papers on configurable software. We used the same configuration
space and input files as another paper to avoid bias due to our selection. With
respect to threats to internal validity, we wrote programs to perform many of
the parts of this experiment and acknowledge there could be errors. We did
extensive checking of the results and compared the database against the genetic
algorithm. We also make the data and artifacts from these experiments publicly
available on our supplementary website so the community can validate and reuse
our results.

5 Results

In this section we present results for each of our research questions in order.

5.1 RQ1: Effectiveness

To evaluate the effectiveness of the genetic algorithm we compare the config-
urations reported in the final population of the genetic algorithm to the best
configurations found in the database. Of the 10,000 input sequences, 19 of them
never find any hits in any configuration. We remove these from our analysis,
leaving 9,981 input sequences. We then analyze for 9,981 input sequences if the
fitness of the best configuration returned by the genetic algorithm is the same
as the best fitness from the database. Results over two runs of the genetic algo-
rithm can be seen in Table2. The first result column provides the number of
cases where we match the best fitness (9,721 and 9,713). This is also shown as a
percentage (97.4% and 97.3%). For 3,382 of the inputs (34%), the default is the
best fitness. We discuss this implication in RQ2. For the remaining sequences
where a best configuration was not found by the genetic algorithm, we ask if
the returned configuration has a higher fitness than the default. In all cases (260
and 268) the answer is yes. While we were not able to find the optimal, we
still improved over the default. Hence, we conclude that our genetic algorithm
is working well on this data set; finding an optimal solution for more than 97%
of the inputs.

To confirm the genetic algorithm is useful even in this small configuration
space, we randomly selected 500 inputs and randomly generated five sets of
1,000 chromosomes for each input. Our rationale is that each run of our genetic
algorithm would evaluate a maximum of 800 chromosomes after 50 generations
with our population size of 16 (we usually converge by generation 20-30). One
of the chromosomes is seeded as the default configuration. 67.5% of the time,
we find the best configuration option across all runs for all 500 inputs. There
is also little variation (standard deviation of 8.7 for the number of times the
maximum is found). However, for 185 inputs (or 37%), the default already is
the best fitness. If we remove those inputs from our data, random finds the best
fitness 48.38% of the time. However, in almost all cases, when the best fitness
is not found, we can improve on the default (99.3%). We conclude that while
random does relatively well and almost always finds the best or a better fitness
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than random, the genetic algorithm performs better overall. As the configuration
size grows, we expect the gap in performance to increase.

To evaluate the efficiency we observe the runtime (in minutes) of the genetic
algorithm. On average it takes approximately 1min for the genetic algorithm
to run on a single input sequence, with a maximum of 2.8 min. If we sum the
runtimes across all of the genetic algorithms (these were run in parallel) it took
8.11 days for the first run and 7.84 days for the second run. Note, these are
sequential times. The actual clock time was faster due to parallelization.

Summary RQ1: We conclude that the genetic algorithm is effective. While it
is relatively efficient for a single input, it takes days to run the entire data set.

Table 2. Comparison of matches of maximum fitness of the genetic algorithm on 10,000
sequences compared against database (known maximum). 19 returned no hits in any
configuration and are removed. Remaining # > default are runs which did not match
the best fitness, but still improve on default. Times is shown for the genetic algorithm
in minutes.

No. of best | Percent | Remaining # Avg. Std Min Max

(of 9981) > default runtime | deviation | runtime | runtime
Run 1 9721 97.40 260 1.17 0.76 0.26 2.78
Run 2 9713 97.31 268 1.13 0.66 0.23 2.71

5.2 RQ2: Patterns

We utilize the database information to ask if there are patterns in the data.
Of the possible 3,000 configurations, only 112 unique configurations achieve the
best fitness for at least one of the 9,981 input sequences. This indicates that
only 3.7% of the configurations are considered optimal for this fitness and set
of inputs. We sorted these configurations by the times they occur. Since a max-
imal fitness for a particular input sequence may have more than one possible
configuration, we normalize the counts so that each input sequence is accounted
for once. For example, if the sequence has two configurations with the optimal
fitness, we weight each of them by 1/2. Table3 shows the top configurations,
sorted in descending order by count of occurrences. These make up 92.4% of the
best configurations. The first configuration (#1724) is the default. This occurs
3,382 or 34% of the time. 66% of the time, another configuration is optimal.
We highlight the changes from the default in each of the other commonly seen
configurations.

We can identify certain configuration option values that are important, such
as ungap. Combining ungap (TRUE) with xdugap (0.1 or 0.5) account for the
two next best configurations overall. Interestingly, neither of these options are
set to these values in the default. We also see options like lcase which do not
appear to have a strong effect. To analyze this further we look at the distribution
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Table 3. Most frequent configurations (top 9 out of 112) appearing as the best config-
uration. The left most column is the configuration number, followed by the normalized
times the configuration is seen. The rest of the columns indicate the configuration
options selected. Bold indicates a change from the default configuration (#1724)

Default | Config no. | Count | dust Icase soft ungap |xdgap | xdgfin | xdugap
YES 1724 3382 |2064 1| FALSE| TRUE | FALSE | 30 100 20
- 1597 998 2064 1| FALSE| TRUE | TRUE | 30 100 0.1
- 1598 998 2064 1| FALSE| TRUE | TRUE | 30 100 0.5
- 1847 828 | 2064 1|FALSE | FALSE | TRUE 30 100 0.1
— 1848 828 | 2064 1| FALSE | FALSE | TRUE 30 100 0.5
— 1974 820 |2064 1| FALSE | FALSE | FALSE | 30 100 20
- 1599 784 2064 1 FALSE| TRUE | TRUE | 30 100 20
- 2724 300 No |FALSE| TRUE |FALSE | 30 100 20
— 1849 227 |20 64 1| FALSE | FALSE | TRUE 30 100 20

of each configuration option’s values in Fig. 3. We can see that in most cases the
default values will work well for any given input (the black bars). This matches
what we see in the best configurations as the default is the best overall. We
see that options such as ungap, soft, and xdugap seem to have influence, which
others (like lcase) have no influence.

10000
9000
2000

7000

6000
5000
4000
3000
2000
[ | - A

0

Number of sequences

dust Icase_masking soft_masking X ung.apped X xdrop_gap xdrop_gap_final xdrop_ungap
Configuration Options

Fig. 3. Number of times each value for the seven configuration options appear (nor-
malized) in the configuration with the highest fitness. Black solid bars indicate the
default value for that configuration option. Other colors are alternative choices. Spaces
indicate that the value does not appear.

Summary RQ2: We observe a set of patterns for the input data, demonstrating
that it may be possible to sample the inputs. No single configuration works best
across all input sequences, however we have reduced our configuration space from
3,000 to 112 (by 96.3%).

5.3 RQ3: Sampling

We now examine the effectiveness of sampling, i.e. can identify the same pattern
of best configurations as we did in RQ2? We use random sample sizes of 10, 100



148 U. Sinha et al.

Table 4. Counts of the occurrences of the top configurations in the database. For
each of the best configurations from Table 3 we show the number of times found in the
five runs (R1-R5) for different sample sizes (10,100,1000). The percentage of the best
configurations found by the GA sample relative to the ground truth best configurations
found are displayed in the last row.

DB Sample Size 10 Sample Size 100 Sample Size 1,000

ConfigID |Occur. [ R1 R2 R3 R4 R5 R1 R2 R3 R4 R5| R1 R2 R3 R4 RS5
1724 3382 31al 5 | al al|[34]24]35]30][46] 336 328 | 348 [352] 340
1597 998 2ol 1 o] 21[s8l1w]13] 710 94 |101] 88 [117] 111
1598 998 11 1o 2 l12/15 786l 117] 92 | 10086/ 92
1847 828 o1 111 [elu|7]7]s8] 77| 8 | 85 [89] 65
1848 828 olol 111 [1nlol7]lols] 718 |83/|[75 9
1974 820 1ol 11l ol 7s]ol7|l 78] 75|68 |76] 72
1599 784 1100l o514l 9f12]5] 78| 58] 69 |43] 74
2724 300 ololololollal2]3]alol 28352 [20] 26
1849 227 ololol2loll2lol1ls1]10] 2] 1522 17

% of Best |80 |70|100| 90 100| 89 | 92|90 89 88| 88.9/88.3/88.5 88 88.9

and 1,000. While the genetic algorithm’s search space is not reduced, we can
potentially avoid running it against all 10,000 inputs, which may provide a sig-
nificant time savings. We repeat each sample 5 times. Table 4 reports how many
times a sample run was able to identify any of the best (or top) 9 configurations
seen in Table 3. Ideally, the majority of configurations reported by the sampled
GAs would be from that set. In a sample size of 10 we see between 70-100% of
reported configurations appearing from the top 9 configurations. As we move to
a sample size of 100, 88-92% are from the top 9. We see slightly less (88.8%)
in a sample size of 1,000. This may be due to more opportunities for noise; a
sequence leading to a less common configuration is more likely to be selected.

Table 5. Average and standard deviation across five runs of each sample size. We report
the percentage of occurrences of the default configuration. Uniqueness is measured as
the percentage of unique configurations. We report the total runtime in hours.

# Default | Uniqueness | Runtime (hrs)
AVG |STD | AVG | STD | AVG | STD
Sample size 10 40.00 | 7.07 | 60.00 | 7.07 | 0.06 | 0.00
Sample size 100 |33.80 8.07 | 16.60 | 1.67 | 3.39|0.10
Sample size 1,000 | 34.08 | 0.95 | 4.38|0.27 | 15.94|2.91

Table5 shows another view of this data. The first two columns show the
average and standard deviation of the percent of times the default configuration
is selected. Remember, the default appeared in 34% of the exhaustive data in the
database. The next two columns, represents a metric we call Uniqueness. This
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shows convergence of a configuration pattern (lower is better). It is the percent
of unique configurations observed as the best fitness. For instance, if we have a
sample of 10 inputs, the maximum number of best configurations returned is 10
(all are unique). If we see 6 unique configurations, then uniqueness is 60%. As
we move from samples of 10 to 1,000 uniqueness drops from 60% to 4.38%. The
uniqueness from the database (RQ2) is 112/3,000 or 3.73%. The last two columns
show the total sequential runtime to complete the sample, when we re-ran the
genetic algorithm on each input in the sample. A sample of 10 takes on average
about 3min, 100 about 3.4h, and a sample of 1,000 takes just under 16 h. To
compute the complete data set on 10,000 inputs as in RQ1 takes approximately
8 days. Sampling can reduce the runtime to find the best configuration patterns
by over 90% while still identifying over 80% of the best configurations reducing
uniqueness.

Summary RQ3: Sampling input data provides similar patterns to the exhaus-
tive data set while compressing the percentage of unique results and runtime
significantly.

6 Related Work

In the closest work to ours, Nair et al. define the notion of data-driven search-
based software engineering (DSE) [16]. They call for combining data mining and
search-based software engineering and present a set of challenges and research
in this domain. While they discuss techniques such as parameter tuning and
transfer learning, they do not explicitly examine implications for using search
under specific data inputs while tuning configurations as we do in this work.

The largest body of work using search algorithms for configurable software
falls into two main categories. The first is in testing of software configurations
where search is used to find samples [3,6,9] that are representative of configura-
tions which are likely to find faults. The general idea of configurability in software
which can lead to different faults is also well studied (e.g. [14,15,19,22]). There
has also been extensive research on optimizing configurations that satisfy sets of
constraints [5,17,18,21]. While all of this research uses search-based algorithms,
none that we know of focus on the problem of changing input data.

Another line of research is for system performance which involves building
prediction or influence models for configurable systems [20]. The goal is to build a
model that describes the configuration space. This work differs in that it focuses
primarily on quality attributes (not functional as in our work) and describes the
configuration space for prediction, rather than optimization. Some research in
this domain examines the notion of transfer learning [7,8], which attempts to
use knowledge from one workflow for a different workflow. This has a similar
flavor to our work, but the focus is on performance and we do not use learning
techniques. Nair et al. proposed the idea of bellwether configurations; those
which are indicative of good or bad performance across all workflows [10,11,17].
Interestingly, we see similar results where there are specific configurations that
seem to matter across all input data, although our objective goals differ. With
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respect to functionality, Garvin et al. [4] documented the locality of failures
within a configuration space, however they do not explore faults in a data-driven
environment. Cashman et al. [2] presented problems related to configurability in
bioinformatics tools. The work suggests the need for optimization, but does not
go as far as to provide an optimization technique. We use their software subject
(BLAST) and model in this work.

Finally, Landgon et al. have proposed the use of program data for evaluation
as a fitness function in genetic improvement [12,13]. The difference with that
work is that the data is the fitness function, where as we use a traditional fitness
function, but are looking at results across different input data.

7 Conclusions and Future Work

In this paper we presented FRDDE, an approach for optimizing functional objec-
tives in a highly-configurable data-driven application. We built a database of
almost 100 million records using an exhaustive configuration space which is a
part of the BLAST bioinformatics tool, and studied its behavior on 10,000 dif-
ferent input sequences. We find that our genetic algorithm is effective, and see
patterns emerge across input sequences. While we don’t find a single configu-
ration that is best, the configuration space is reduced from 3,000 to 112 and
only 9 configurations account for over 92% of the results. We demonstrate that
sampling inputs can find similar patterns to the full data set which leads us to
believe we can develop a light-weight technique for data-driven search based con-
figuration optimization. Our ultimate goal is to use FRDDE to tune optimization
techniques and to explore data sets before moving to larger configuration spaces
where exhaustive enumeration is not possible.

In future work we plan to expand FRDDE further by (1) increasing the
experimental configuration space to see if results learned still hold, (2) applying
FrRDDE to additional input data sets and (3) using FRDDE for different data-
driven applications. We also plan to incorporate learning into FRDDE to see if
we can learn more about the patterns of optimal configurations.
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