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Abstract

We study exploration in stochastic multi-armed
bandits when we have access to a divisible re-
source that can be allocated in varying amounts
to arm pulls. We focus in particular on the allo-
cation of distributed computing resources, where
we may obtain results faster by allocating more re-
sources per pull, but might have reduced through-
put due to nonlinear scaling. For example, in
simulation-based scientific studies, an expensive
simulation can be sped up by running it on multi-
ple cores. This speed-up however, is partly offset
by the communication among cores, which results
in lower throughput than if fewer cores were al-
located per trial to run more trials in parallel. In
this paper, we explore these trade-offs in two set-
tings. First, in a fixed confidence setting, we need
to find the best arm with a given target success
probability as quickly as possible. We propose an
algorithm which trades off between information
accumulation and throughput and show that the
time taken can be upper bounded by the solution
of a dynamic program whose inputs are the gaps
between the sub-optimal and optimal arms. We
also prove a matching hardness result. Second,
we present an algorithm for a fixed deadline set-
ting, where we are given a time deadline and need
to maximize the probability of finding the best
arm. We corroborate our theoretical insights with
simulation experiments that show that the algo-
rithms consistently match or outperform baseline
algorithms on a variety of problem instances.

1. Introduction

In multi-armed bandit exploration, an agent draws samples
from a set of n arms, where, upon pulling arm ¢, it receives
a stochastic reward drawn from a distribution with mean
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Figure 1. An example of the setting using n = 3 arms. An al-
gorithm has a divisible resource (y-axis) that can be split up to
generate samples by pulling the 3 arms. Each pull takes time (x-
axis) to complete. Allocating more resources to a pull produces
faster results, but at the cost of decreased throughput, e.g. using
twice the resources for a pull will provide results only 1.5x faster.
When a pull completes, the resources used are freed and can be
reallocated to new pulls.

;. The goal is to identify the best arm, i.e., argmax; j;, by
adaptively choosing which arms to pull. This problem is
known in the literature as best-arm identification (BAI).

As an example, consider simulation-based studies in physics,
which are used for estimating cosmological constants and
controlling nuclear fusion reactors (Davis et al., 2007; Xing
et al., 2019). Pulling an arm may correspond to running
a stochastic simulation with specific values for parameters
(cosmological constants or reactor parameters) which af-
fect the output of the simulation. Here, searching for the
optimal parameters is naturally modeled as a BAI problem.
BAI is also used in model selection (Li et al., 2017), A/B
testing (Howard & Ramdas, 2019), and other configuration
tuning tasks. Traditionally, BAI is studied in two settings:
fixed confidence and fixed budget. In the former, we must
identify the best arm with a given target success probability,
while keeping the number of arm pulls to a minimum. In the
latter, we are given a budget of pulls and should maximize
the probability of identifying the best arm.

The focus of work in the BAI literature has been the se-
quential setting in which the agent can pull only one arm
at a time (Bubeck et al., 2009; Audibert & Bubeck, 2010;
Even-Dar et al., 2002). There is also a line of work on the
batch parallel setting, where the agent can pull a fixed num-
ber of arms at a time (Jun et al., 2016). These formulations
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Figure 2. Left: A sequential strategy will allocate all resources to pulls one at a time. This enables the algorithm to obtain information
about individual pulls sooner for replanning; after pulling all arms twice, it is able to eliminate the green arm. However, this reduces
throughput due to sublinear scaling, which can be inefficient in the long run. Middle: A highly-parallel strategy with fixed batch size
will have higher throughput. However, since it does not have feedback, it may evaluate the poor arms too many times and take longer to
eliminate them. Right: Our algorithm, APR, for the fixed confidence setting, adaptively manages parallelism during execution based on
the scaling function and task progress. In this figure, the green arm is eliminated early, and then throughput is increased for the remaining
2 arms which may be harder to distinguish. While the setting permits allocating the resources “asynchronously” (see Fig. 1), we show that
an algorithm which operates synchronously, but chooses the amount of parallelism adaptively is minimax optimal for this problem.

have their limitations; in particular, modern infrastructures
for parallel and distributed computing enable us to execute
several arm pulls in parallel and control the duration of
arm pulls by assigning multiple resources to a single pull.
For example, physics simulations can exhibit strong elas-
ticity in their resource requirements, where the number of
CPUs allocated to the same simulation can range from a few
tens to a few thousand CPUs. Using more CPUs results in
speedier outputs, but this speedup can be sublinear due to
communication and synchronization among the CPUs.

We develop algorithms for BAI where we are given access
to a fixed amount of a divisible resource to execute the
arm pulls. In addition to choosing which arms to pull, an
algorithm must also determine how much of this resource
to allocate for each arm pull. We have illustrated the setting
in Fig. 1. While traditional formulations for BAI are stated
in terms of the number of arm pulls, in our setting it is
meaningful to formulate this in terms of time constraints.

By using more resources for a single arm pull, we obtain
its result sooner; however, there is diminishing value to al-
locating more resources to the same arm pull, since typical
distributed environments do not scale linearly (Venkatara-
man et al., 2016; Liaw et al., 2019). By allocating more
resources for individual pulls and obtaining their results
sooner, we can use that information to make refined de-
cisions about which arms to try in subsequent iterations.
However, due to sublinear scaling, by parallelizing arm
pulls (executing many arm pulls simultaneously with fewer
resources each), we can complete more pulls per unit time
and obtain more information about the arms. This tradeoff
between information accumulation (obtaining the results of
a particular pull sooner) and throughput (number of arm
pulls per unit of time) is fundamentally different from the
usual explore-exploit trade-off encountered in bandit prob-
lems. In the latter, exploration is akin to testing several arms
(and not arm pulls) and exploitation is akin to testing fewer
carefully selected arms, and in our setting, an algorithm

may choose to explore and/or exploit at different levels of
parallelism. We have illustrated this trade-off in Figure 2.

In this work, we assume a known scaling function A, where
A(1/«) is the time taken to complete a pull using a fraction
« of the resource. To model the above trade-off, we will
assume a diminishing returns property on .

Our contributions are as follows. First, in the fixed confi-
dence setting, we propose an algorithm, Adaptive Parallel
Racing (APR), and bound its time complexity by the so-
lution to a dynamic program (DP) whose inputs are the
inverse squared gaps between the optimal arm and the other
arms. We also prove a hardness result which shows that the
expected time taken by any algorithm is lower bounded by
this DP, demonstrating that this DP is fundamental to this
problem. Second, while our primary focus is in the fixed
confidence setting, we also study a fixed deadline version of
this problem, where we are given a time deadline, and wish
to maximize the probability of identifying the best arm. We
propose Staged Sequential Halving (SSH), a simple vari-
ant of the popular sequential-halving strategy for BAI and
bound its failure probability. Third, we corroborate these
theoretical insights with empirical simulations on some syn-
thetic problems. We observe that APR performs as well
as the best task-tuned baseline algorithms with fixed levels
of parallelism in the fixed confidence setting. In the fixed
deadline setting, SSH succeeds 20 — 90% more often than
baselines which do not account for nonlinear scaling.

Related Work

Since multi-armed bandits were introduced by Thompson
(1933), they have been widely studied as an abstraction that
formalizes the exploration-exploitation trade-offs that arise
in decision-making under uncertainty (Robbins, 1952; Auer,
2003). Best arm identification (BAI) is a special case of
bandits which is generally studied in the sequential setting
in which an agent adaptively evaluates one arm at a time in
order to identify the best arm (Bubeck et al., 2009; Gabil-



Resource Allocation in Multi-armed Bandit Exploration

lon et al., 2012; Karnin et al., 2013; Russo, 2016; Bubeck
et al., 2013; Kalyanakrishnan & Stone, 2010; Jamieson et al.,
2014). However, this sequential setting can fall short of cap-
turing the full range of trade-offs that arise when an agent
may be able to evaluate several arms concurrently.

In recent work, Jun et al. (2016) formulate a parallel version
of BAI in the fixed confidence setting using the confidence
intervals from Jamieson et al. (2014). In their work, the
level of parallelism remains fixed; i.e., the agent is allowed
to select a batch of arms to pull at each round. In the current
paper, we consider a setting that allows adaptive parallelism
using a fixed resource, where we explicitly consider exe-
cution time as a function of the batch size. Grover et al.
(2018) study a similar setting where there is delayed feed-
back in BAI. While their model allows handling parallel
arm pulls, it does not allow adaptive resource allocation.
In addition, a line of work has studied parallel bandits in
the regret minimization setting using either Bayesian opti-
mization (Desautels et al., 2014; Kandasamy et al., 2018) or
different notions of resource scaling (Lattimore et al., 2014;
Dagan & Koby, 2018; Verma et al., 2019). In this work, we
study the BAI setting, which is a pure exploration problem
and we do not assume a prior over the arms.

Our algorithm for the fixed confidence setting proceeds by
constructing confidence intervals for the arms’ mean values,
and then eliminates those arms which can be concluded to
be non-optimal based on these confidence intervals. The
construction of these confidence intervals is based on the law
of the iterated logarithm (Jamieson et al., 2014). We also
establish a hardness result in this setting which requires es-
tablishing lower bounds on the sample complexity, and then
translating this to a lower bound on the time. For the sam-
ple complexity bounds, we use ideas from Kaufmann et al.
(2016). In the fixed deadline setting, our algorithm is based
on Karnin et al. (2013), who proposed a sequential-halving
(SH) strategy for sequential BAI. SH splits the budget of
arms into stages and eliminates the worst half in each stage.
This allows the algorithm to make more pulls of the promis-
ing arms. We show that a naive extension of this strategy
can perform poorly if the scaling function is poor and pro-
pose an alternative algorithm that eliminates arms at a rate
determined by the scaling function.

2. Description of the Environment

We begin by describing the bandit environment which will
be used in both settings. There are n arms, denoted [n] =
{1,...,n}. When we pull arm ¢ € [n], we observe a reward
from a 1-sub-Gaussian distribution with expectation u; €
[0,1]. The goal is to identify the best arm, i.e., we wish
to find argmax, ;1;. We will assume that the best arm is
unique, and, for ease of exposition, that the arms are ordered
in decreasing order. Therefore, p; > po > -+ > p,. We

define the gaps A; as follows:

Ay = 1 — pa, Aj=py —piy Vi>2. (1)
Deyviating from prior work on BAI, we assume that we have
access to a divisible resource which is to be used to ex-
ecute the arm pulls. The time taken to execute a single
pull using a fraction « of this resource is given by A(1/«).
Here, A : Ry — R, is an application-specific scaling
function which is assumed to be known. In particular, this
implies that the time taken to execute m € N arm pulls
by evenly dividing the entire resource is A(m); this inter-
pretation will be useful in understanding our assumptions
going forward. It is reasonable to assume that scaling char-
acteristics are known as they can either be modeled analyti-
cally (Zahedi et al., 2018), or can be profiled from historical
experiments (Venkataraman et al., 2016; Liaw et al., 2019).
If X is unknown, we believe that there are significant limi-
tations on what can be achieved in this setting. Prior work
in the operations research literature studying scheduling in
distributed systems also assumes that scaling characteristics
are known (Berg et al., 2018; 2020).

While A depends on the application, we will make some
assumptions to model practical use cases. First, A is an
increasing function with A(0) = 0, which simply states that
executing more arm pulls requires more time and that zero
pulls takes no time. Second, Range(\) = R, which states
that we cannot execute an unbounded number of pulls in a
bounded amount of time; hence, A~! : R+ — R,. Third,
sublinear scaling—i.e., the diminishing returns of allocating
more resources to a single pull—can be captured via the
following assumption. For all my > mq > 0, d1,d2 > 0,

/\(ml +51) — /\(ml) > )\(mg +52) — /\(mg)
01 - 0o ’

2

That is, the change in the average time taken to do addi-
tional arm pulls is smaller when there are more pulls already
in the system. This assumption is equivalent to concavity.
The above assumptions hold true for many choices for A in
practice. For instance, it is true for Amdahl’s law and its
variants that are popularly used to analytically model speed-
ups in multi-core and distributed environments (Amdahl,
1967; Hill & Marty, 2008; Zahedi et al., 2018). They have
also been found to be empirically true in other application-
specific use cases (Venkataraman et al., 2016; Liaw et al.,
2019). We also wish to mention that such concavity assump-
tions are common in the operations research literature when
modeling diminishing returns (Berg et al., 2018; 2020).

Finally, as mentioned in Section 1, we will allow an al-
gorithm to allocate its resources asynchronously, where a
fraction of the resource may be allocated for one set of pulls
to be completed at a certain throughput, and the remaining
fraction for another set of pulls at a different throughput.
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Thus, if both these sets of pulls start at the same time, they
may finish at different times. As we will see shortly, at least
in the fixed confidence setting, a synchronous algorithm
may be sufficient as it matches a hardness result.

3. Fixed Confidence Setting

In the fixed confidence setting, the decision-maker is given
a target failure probability J, and must find the best arm
with probability of error at most § while minimizing the
time required to do so. A common approach for sequential
fixed-confidence BAI maintains confidence intervals for the
mean values of the arms based on past observations; when
the upper confidence bound of an arm falls below the lower
confidence bound of any other arm, the algorithm eliminates
that arm until eventually there is only one arm left (Jamieson
et al., 2014; Gabillon et al., 2012).

There are two major challenges in applying such confidence-
interval-based algorithms in our setting. They both arise due
to nonlinear scaling and are a consequence of the trade-off
between information accumulation and throughput. The
first of these challenges is due to the fact that the arm mean
values, or equivalently the gaps, are unknown. To illustrate
this, consider an example with n = 2 arms and let A =
w1 — pe. It is well known that differentiating between
these two 1-sub-Gaussian distributions requires No ~ A2
samples from each arm. For the purpose of this example', let
us assume Na = 32 and assume that the scaling function is
A(m) = m'/2. If we pull each arm one at a time, allocating
all resources to each pull, this will require 2 x No = 64 arm
pulls and hence take time 2 X Na x A(1) = 64. If instead
all 64 pulls are executed simultaneously with 1/64 of the
resources for each pull, this takes time \(64) = 8, which is
significantly less. However, knowing the right amount of
parallelism requires information about the A value which
is not available to the algorithm. If we parallelize more
than necessary, we will be executing more arm pulls than
necessary which can take more time. For instance, pulling
each arm 512 times will take time A(1024) = 32. Therefore,
the first challenge for an algorithm is to choose the right
amount of parallelism without knowledge of the gaps.

The second challenge arises from the fact that the order-
ing of the arms is unknown. As an example, consider a
problem with three arms with p; > po > pz and Ay =
Ay = pq — pg, and Az = pg — pg. Let Na, ( B~ AQ_Q),
N, (~ A3?), and Na, = max(Na,, Na,) = Na, de-
note the number of pulls required from the second, third,

'In this and the following example, we make simplifying as-
sumptions in our treatment of Na. For instance, we can usually
only upper or lower bound Na in terms of A2, Additionally,
in adaptive settings, it may be a random variable. These simpli-
fications are made to illustrate the challenges in our setup. Our
subsequent analysis will be rigorous.

and first arms, respectively. For simplicity, let us assume
that the algorithm is aware of the N, values, but does not
know the ordering; i.e., which arms are the first, second,
and third. Let A\(m) = m"/2. First, let Na, = Na, = 300
and let Na, = 5. As Na, is small, it is efficient to elimi-
nate the third arm first and then differentiate between the
top two arms. However, since the permutation of the arms
is unknown, the algorithm will first pull each arm Na,
times, eliminate the third arm, and then pull the remain-
ing two arms Na, — Na, times each. This takes time
A(BNa,) + A(2(Na, — Na,)) &~ 28.16. Alternatively,
consider a different example where Na, = 100; i.e., the
third arm is harder to distinguish. Here, first eliminating
the third arm and then proceeding to the remaining arms
takes time A(3Na;) + A(Na, — Na,) ~ 37.32. However,
simply pulling all three arms 3/Na, times, thus eliminating
both the second and the third arm simultaneously, takes time
A(3Na,) = 30 which is faster. This example illustrates that
due to nonlinear scaling, it might be better to pull even the
sub-optimal arms a larger number of times as the improved
throughput may result in less time. This phenomenon be-
comes even more challenging when the A;’s are unknown
and when there are multiple arms.

While the gaps and the ordering are also unknown in se-
quential and batch parallel BAI formulations, the above
considerations are a direct consequence of nonlinear scaling
when allocating resources, which is the focus of this work.

The second challenge motivates defining the following dy-
namic program for n arms which takes inputs {z;} , €
R"*~! with 29 > 23 > --- > z,,. First define 2, ; = 0 and
Tn+1(@) = 0. Then, recursively define 7; : R" 771 — R

forj =n,n—1,...,2 as follows:
T ({zdiy) = 3)
omin (MG = ze)) + T ({2} i) )

This program is best understood from the point of view
of a planner who knows the number of pulls necessary to
eliminate arms 2,...,n, i.e., {2} ,, but is unaware of
the ordering. The planner’s goal is to optimally schedule
the pulls so as to minimize the total time. Then, 7 is the
minimum time taken to eliminate the worst n — j + 1 arms.
For example, 7,, = A(nz,), since the worst arm can be
eliminated by pulling all n arms z,, times. Similarly, for 73,
to eliminate the n — 5 4+ 1 worst arms, the planner may first
eliminate the first n — j arms in time 7;41, and then pull
each of the remaining arms (z; — z;41) times; alternatively,
she may eliminate the first n — j — 1 arms in time 7o,
and then pull each of the remaining arms (z; — z,12) times
etc. There are n — j + 1 such options, and the planner will
choose the one that takes the least time, as indicated in (3).

Given (3), we define T as follows. Recalling the definitions
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Algorithm 1 Adaptive Parallel Racing (APR)
1: Input: confidence 1 — J§, (constant) parameter 3 > 1.

2: r 1, N;(0) « 0,Vi € [n]

3: A1 — J, Sl — [’I’L], t1 = )\(n), q1 = 1

4: while |A,.| =0do

5: Pull each arm in S,, ¢, times, taking A(]Sy|g;) time.

6: Ni(r)=N;(r—1)+q-1{i € S, } Vi € [n]

7: fi;r < empirical mean of arm ¢ at round r, Vi € [n]

8: Ar+1 — #See (5)
{i € S;|Li(r,d) > jerga\);}U i(r,0)}

9: S7-+1 —

{i € S;|U;i(r,0) > max Li(r,0)}\ Argq
j€S,

10 grg1 < [AH(B71)/]Sr41l ]
11:  r+r+1.
12: Return A,

of the gaps A; from (1), we have:
=T ({A7°)) @)

Shortly, we will prove upper and lower bounds which de-
pend on the gaps via 7 and differ only in factors that are
doubly logarithmic in the gaps and sub-polynomial in 7.

3.1. An Algorithm for the Fixed Confidence Setting
Algorithm 1, called Adaptive Parallel Racing (APR), main-
tains confidence intervals for the mean values, and adap-
tively tunes the amount of parallelism by starting with a
few pulls and then increasing the level of parallelism during
execution. It operates over a sequence of rounds, indexed
r, with the first round being allocated ¢; = A(n) time and
round r being allocated 37~ 't; time. Here, /3 is an input
parameter; the algorithm and the analysis work for any
constant value of 5 > 1. When 8 = 2, this is akin to the
doubling trick seen frequently in bandit settings, except here
we apply it in time-scale, instead of the number of pulls.

The algorithm maintains a subset S, C [n] of surviving
arms at round 7. At the beginning of each round, it pulls
each arm in S, a total of ¢, times, such that | .S, |g,. is equal
to the maximum number of arm pulls that can be executed
in f7~1t; time. At the end of each round, it constructs
confidence intervals {(L;, U; )}2€[n] for the mean values
{Hi}iemn as we will describe in (5). In lines 8 and 9, it
updates the set of surviving arms by eliminating those arms
whose upper confidence bounds are less than the highest
lower confidence bound. This strategy implies that as the
algorithm progresses, it spends more time per batch of pulls
by favoring throughput over information accumulation.

Our confidence intervals are based on the law of the iterated
logarithm and were first proposed by Jamieson et al. (2014).
To describe them, let IV;(r) denote the number of times we
have pulled arm ¢ in the first » rounds, and fz;(r) denote the

empirical mean of the samples collected. If we pulled each
arm ¢, times in round r, we have:

P

51_]1

qull{z €S}, mi(r

Here, {X; , ;}i_, are the samples collected from arm ¢ in

round 7. Next, let D(N,d) = /4log(log,(2N)/6)/N
represent the uncertainty in using fi;, as an estimate

for p;. Then, we can compute a confidence interval
(Li(r,0),U;(r,d)) for arm i as follows:

Li(r,0) = pis(r) — D(Ni(r), /5 (6n))

Ui(r,0) = pi(r) + D(Ni(r), v/6/(6n)). (5
3.2. Upper Bound

We now state our main result for the proposed algorithm.
Theorem 1 shows that Algorithm 1 finds the best arm with
probability greater than 1 — § and bounds its execution time.

Theorem 1. Assume )\ satisfies the assumptions in Section 2.
Let 3 € (1,n]. Letw = /§/(6n) and define N; :== 1 +
L64Ai_2 log((2/w) log2(192A;2/w))J Vi € [n]. Let T3 be
as defined in (3). With probability at least 1 — 6, Algorithm 1
outputs the best arm and the total execution time of the
algorithm T satisfies:

ﬁ3+4‘ /logs(n) B
T § 4TTZ ({Nz}?:Z)

B3+4, /logg(n)
Bg—1

2 192 1
log ( = 1log, ( o T,
<Og (w Og2<A%w)> 64>

While the first bound is tight, the second bound shows that
that the runtime is bounded by essentially 7™ log(1/0);
note log(1/w) = log(1/8). All other terms are small:
25633 /(3 —1) is a constant as 3 is a constant, the additional
dependence on the gaps {A;}; and J is doubly logarithmic,

and 8*V'°25(") i5 sub-polynomial, seen via the following
simple calculation. Let o > 0. Then,

<512

. ﬁ4\/ logg(n) < lim 4,/10gﬁ(n)—a10g5(n)>
e T -

Example 1. Let us compare the above result with an
algorithm which operates sequentially taking A\(1) time
for each pull. The sequential algorithm of (Jamieson
et al., 2014) terminates in time at most \(1)(Ny +
SO N) =M1 X, i(N; — Niy1) wp. at least 1 — 6.
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On the other hand, Algorithm 1 terminates in at most
Cm)T ({Ni}iz) < C(n) 320y Ai(N; — Nisr)), where
C(n) € o(poly(n)). The second (looser) bound is ob-
tained by considering one of the cases over which the
minimum is taken in the DP. Additionally, by nonlinear
scaling, we have A\(n) < nA(1) (Lemma 4); once again,
when the scaling is poor this inequality is loose. Even with
these two loose inequalities, we have a runtime bound of
C(n)A(1) Y0y i(N; — Nyt1) for Algorithm 1, which is not
worse than the sequential version up to lower order terms.

In general, however, \(1) may be very large in our prob-
lem set up. We illustrate the advantages of using an adap-
tive parallel strategy via an example, for which we con-
sider a scaling function of the form \(m) = m4, with
q € [0,1], which satisfies the assumptions in Section 2.
When q = 1, this corresponds to linear scaling, whereas
when q approaches zero, the scaling becomes poor. More-
over; let us assume that the (N; — N; 1) is large for all i,
so that we have To ({N;}7_,) = 31y (i(N; — Niz1))™.
By Theorem 1, ignoring constant and lower order fac-
tors, we have that Algorithm 1 terminates in at most
S (i(N; — N,;_H))q time, while the sequential algo-
rithm terminates in y_;_, i(N; — N;11) time. As q becomes
smaller, the difference between these bounds becomes larger.
Since the N; — Ny 1 values are large, as per our example
above, this difference is quite pronounced.

Proof Sketch: Designing algorithms in this setting is chal-
lenging, because adaptively finding the right level of paral-
lelism can be expensive. In particular, there are two modes
of failure. (i) Algorithms that take too long to “ramp-up”, i.e.
increase their parallelism, will spend too much time with
low throughput, which can slow progress if many arm pulls
are necessary to eliminate the next arms, (ii) Alternatively,
algorithms that have too much parallelism could potentially
overshoot, by over-pulling arms that could have been elim-
inated sooner. Algorithm 1 employs the doubling trick on
time to avoid both of these situations: if all arms have not
been eliminated, it multiplies the amount of time for the
next round by a factor 5. However, while the doubling
trick on the number of pulls admits a fairly straightforward
analysis in most bandit settings, the proof is significantly
more challenging when it is used for a temporal criterion.
The key technical challenge is to show that neither of the
above two failure modes occurs frequently. We first show
that the ramp-up time Algorithm 1 can be bounded within a
constant factor of 4;—_31 of T in the runtime upper bound.
The trickier scenario is to show that overshooting is not
significant, and a naive analysis may result in a factor of
n being produced. Our proof decomposes each stage, i.e.,
the rounds between arm eliminations, into two scenarios. In
the first, the stage eliminates over a fraction f of the arms,
and in the second the stage eliminates less than f. The first
scenario can be expensive, as many arms that could have

been eliminated earlier were over-pulled. However, we will
carefully select f to bound the number of times this event
can occur. The second scenario can happen many times, but
we will show that each occurrence does not add too much
to the runtime, again by carefully selecting f.

3.3. Lower Bound

We conclude this section by demonstrating that the quan-
tity 7* in (4) is fundamental to this problem via a hard-
ness result that matches the bound in Theorem 1. To state
this theorem, let us define some quantities. For a set of n
real-valued distributions 0 = {6(;)}i_,, let 41; denote the
7" mean of these distributions in descending order; that
is, p1 = max; Eg  [X] > pa > - > pp1 > pin =
min; By, [X]. Let © denote the following class of sub-
Gaussian distributions with a well-defined best arm:

0= {{9@)}?:1 TH1 > pg A
0(;y is 1-sub-Gaussian for all j}.

Next, let Aj » denote the class of algorithms which can
identify the best arm with probability at least 1 — ¢ for a
given scaling function A for any set of distributions in ©.
For an arbitrary algorithm A € Aj; ) executed on a problem
6 € O, let T(A,6) denote the time taken to stop. The
theorem below provides a nonasymptotic lower bound on
the expectation of T'(A, 6).

Theorem 2. Fix j1; > g > -+ > [in. Let A; be as defined
in (1), and T™ be as defined in (4). Assume \ satisfies the
assumptions in Section 2, and additionally for some o,
aym < A(m) forallm > 1. Then, there exists a set of
distributions 0 € © whose ordered mean values {p;}; are
such that for all § < 0.15,

1
inf E[T(A,0)] > 2¢xlog  —— ) T*.
adnf EIT(A,0)] = 2¢, 0g<2.45>

Here, c) is a constant that depends only on \.

The additional condition on A captures the practical no-
tion that each arm pull requires a minimum amount of
work « (fraction of resources x time) to execute: Vm >
0, LA(m) > a;. The above theorem states that any al-
gorithm which identifies the best arm with probability at
least 1 — §, has an expected runtime upper bounded by
Q(T*log(1/4)). Modulo lower order terms, the RHS of the
above lower bound matches the RHS in the expression for
the upper bound in Theorem 1. This demonstrates that T
is a fundamental quantity in this setup.

It should be emphasized, however, that the upper and lower
bounds are not entirely comparable. Theorem 1 is a high-
probability result, guaranteeing that the best arm will be
identified and the algorithm will terminate with probability
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at least 1 — §. In contrast, Theorem 2 lower bounds the
expected run time of any algorithm that can identify the
best arm with probability at least 1 — §. This discrepancy
is common in fixed confidence BAI settings, with upper
bounds tend to provide high-probability results for the num-
ber of arm pulls, while lower bounds are in expectation (e.g.,
Jamieson et al., 2014; Jun et al., 2016; Karnin et al., 2013;
Kaufmann et al., 2016). Despite this discrepancy, no sig-
nificant difference is yet to be observed, as is the case in
this work. To our knowledge, only Kalyanakrishnan et al.
(2012) upper bound the expected number of pulls.

Comparison to Prior Work: It is worth comparing the
above results with prior work in the fixed confidence setting.
First, for the upper bound, our algorithm uses similar confi-
dence intervals to Jamieson et al. (2014) and Jun et al. (2016)
who study the sequential and batch parallel settings respec-
tively. However, unlike Jun et al. (2016), in our setting, we
also need to choose the amount of resources to allocate for
each pull. This determines the amount of parallelism to
handle the tradeoff between information accumulation and
throughput and depends on the scaling function A. More
importantly, much of our analysis in Appendix B is invested
in managing this tradeoff which is not encountered in their
settings. Similarly, for the lower bound, while we rely on
some hardness results from Kaufmann et al. (2016), their
result only captures the sample complexity of the problem
and does not account for how resource allocation strategies
may affect the time taken to collect those samples. The
novelty of our work, relative to the above works, is further
highlighted by the fact both the lower and upper bounds
are given by a dynamic program which, as explained in the
beginning of this section, characterises the tradeoff beween
throughput and information accumulation.

4. Fixed Deadline Setting

While the primary focus of this paper is the fixed confidence
setting, we also provide a simple algorithm for the fixed
deadline version of this problem. Formally, we assume the
same environment as described in Section 2, but now we
have a time deadline 7" and wish to maximize the probability
of finding the best arm under this deadline.

Our algorithm builds on the sequential-halving (SH) algo-
rithm of Karnin et al. (2013). We begin with a brief review
of SH in the sequential setting where we are given a budget
on the number of arm pulls. SH divides this budget into
log,(n) equal stages. In the first stage, it pulls all arms an
equal number of times and eliminates the bottom half of the
arms, i.e., those arms whose empirical mean fall within in
the bottom n/2 when ranked. It continues in this fashion
for each subsequent stage, eliminating half of the surviving
arms, until there is one arm left at the end of log, (n) stages.

Now consider a naive extension of this algorithm that di-

Algorithm 2 Staged Sequential Halving (SSH)
1: Input: time budget 7, number of stages to combine &
m = A"1(T/ [logax (n)])
ry < [logax (n)], So ¢ [n]
forr € {0,...,7y — 1} do
Sample each arm i € S, ¢, = [m/|S,|] times.
Let S, be the set of [|S,[/2¥] arms in S, with the
highest empirical mean

7: Return The singleton element in S, .

#pulls per stage

AN AN

vides the time budget T into log,(n) stages and pulls the
surviving set of arms maximally before eliminating half of
them—for simplicity, we will refer to this time-scale version
as SH from now on. However, if the scaling function is sub-
linear, then splitting the time budget into larger stages can
better take advantage of parallelism to execute more arm
pulls and hence do better than an adaptive algorithm. For
example, assume there are n = 4 arms, let A\(m) = m'/*,
and let the deadline be T" = 4. If the budget was split
into log,(4) = 2 stages, where we eliminate two arms in
the first stage and one in the second. Then, in each stage,
A71(2) = 16 arm pulls can be executed with four pulls
per arm in the first stage and eight pulls per arm in the sec-
ond. If instead, we executed all arms in a single stage, then
A~1(4) = 256 arm pulls can be executed, with 64 pulls per
arm. In the first strategy, attempting to accumulate informa-
tion reduces throughput significantly. We should prefer the
second option, as every arm is pulled more than it would be
under the original SH strategy. In this section, we describe
an algorithm that uses A to balance between throughput
and information accumulation by allocating resources to
promising arms while maintaining high throughput.

Our algorithm, outlined in Algorithm 2, takes a hyperparam-
eter k. It splits T into [logsr (n)] stages, and pulls surviving
arms maximally in each stage. Observe that using k = 1 cor-
responds to running SH. It keeps the {2%] fraction of arms
with highest empirical mean. Intuitively, increasing &k will
allow more time per stage, so throughput can be increased
in each stage. However, increasing the time per stage will
increase the time to obtain results and reduce opportunities
to reallocate resources to promising arms. We propose using
k = k*, obtained via the following optimization problem:

k* = ar max z(k), 6
gke{l,...,[log2(n)"\} ( ) ©)

N ()

S.t. x(k) = ok |—10g2k (")—‘ (2’C — 1)

k* can be computed in practice since all parameters are
known; moreover, this can be done inexpensively by evalu-
ating (k) for all [log,(n)] values for k. We show later that
k* increases as the scaling deteriorates, which means we
should prioritize throughput over information accumulation.
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Figure 3. Fixed confidence synthetic results: We vary the first gap Az from 0.01 to 0.5 for ¢ € {0.9,0.5,0.25,0.1}. A higher A;2
(right side) implies the problem is harder to solve as more arm pulls will be needed to separate the confidence bounds of the best arm
from the rest. We present the mean and standard error across 10 runs for all experiments. We observe that Algorithm 1 (APR) is able to
trade off between throughput and information accumulation effectively in most cases without additional hyperparameters, consistently
performing near the best algorithms for each problem. The baseline algorithms perform well when their level of parallelism is well-suited
to the scaling and A; values of the problem, but are inconsistent across problems.

Ignoring rounding effects for simplicity, the numerator in (6)
indicates the maximum number of pulls that can be com-
pleted during the stage. In the denominator, the first term
is n, the number of arms. If a certain &’ allows the algo-
rithm to pull the arms at least Ziigl 2iz(1) times in the
first stage, then intuitively we should prefer k& = &’ over
k = 1, as all arms are pulled more times in the first stage
of the former than any arm in the first &’ stages of the latter.
Observe now that this occurs if (k") > x(1). Extrapolating
this argument, we have that we should choose the value k
which maximizes x (k). The following theorem bounds the
probability of error for Algorithm 2.

Theorem 3. Assume )\ satisfies the assumptions in Section 2.
Algorithm 2 run with some k € N identifies the best arm
in time at most T" with probability at least:

n§1§?> ’

1 — 3[logy(n)] exp (— (7)

where Hy = max;+1 iAi_2 and A; is as defined in (1).

In Appendix D.1, we show that the success probability of
SH is obtained by setting k& = 1 in the expression for z(k),
and, by choosing k£ = k*, this probability is always better
than SH. Unfortunately, is is not possible to simplify this
further without additional assumptions on A. Therefore, in
order to illustrate the gains in using Algorithm 2 over SH,
we consider a specific example.

Example 2. Let us consider A of the form A\(m) = m? for
q € (0,1]. The scaling becomes poor as q approaches zero
(recall footnote 1). In Appendix D.2, we show that SSH is
quantitatively better than SH; moreover, this difference is
magnified as the scaling becomes poor, i.e., q approaches
zero. We sketch the argument here. First we show,

1 TE \'4
B> —(—" ) .
k) = o (2log2<n>)

Therefore, the number of arm pulls per round increases as
q decreases and as k increases (after multiplying x(k) by
2k — 1 to de-normalize). Let Dssh,k be the error probability
of combining k stages in Algorithm 2. Applying Theorem 3,

Psshx = C[logy(n)] - exp (—D . (k;f)) ,

where C and D are constants that do not depend on k.
When the scaling is sufficiently poor, i.e., when 1/q is large,

kl/q k/l/q
i Ea

nentially decaying term will favor larger k as the scaling
becomes more poor. So, as scaling deteriorates, the error
probability is lower for larger k values, which prioritizes
throughput over information accumulation and resource
reallocation. However, if k is too large for a given q, then
the 4% term will dominate, which occurs when the algorithm
isn’t reallocating enough resources to promising arms.

we have ( )for any k > k'. So, the expo-

S. Simulations

We present an experimental evaluation in the fixed confi-
dence setting and fixed deadline settings. The experiments
evaluate whether the proposed algorithms in each setting can
effectively trade off between information accumulation and
throughput for a wide range of possible scaling functions
and problem instances. We present additional experiments
in the fixed deadline setting and some experimental details
in Appendix F.

5.1. Fixed Confidence Experiments
We compare APR to a set of baselines that do not adaptively
manage parallelism on an array of simulation experiments.

Baselines: We compare APR to Batch Racing (Jun et al.,
2016), which is an algorithm developed for fixed batch
parallel BAI. We apply Batch-Racing(m) with different
batch sizes m, but with a fixed amount used throughout one
execution of the algorithm.
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Figure 4. Fixed deadline synthetic results: We vary the time budget for ¢ € {0.1,0.25,0.5,0.9}, running for 10 runs each and
presenting the mean and standard error. We find that SSH (red) consistently outperforms SH (green) and UCB-E (blue). This difference is
large when the scaling is poor (g is small) as SH does not pull each arm a sufficient number of times before each stage ends, and the cost
of allocating all resources to individual pulls prevents UCB-E from making progress in comparable time. In contrast, SSH does well
because it prioritizes high throughput when the scaling is poor. When ¢ = 0.1, SH and UCB-E perform poorly whereas when ¢ > 0.5,
SSH has similar throughput as SH, resulting in similar performance.

Results: We evaluate Algorithm 1 with 5 = 2 on a synthetic
domain consisting of n = 16 Bernoulli arms, 6 = 0.1,
A(m) = m4, and with different values of Ay = 111 — pio.
For a given A, the arm means have linearly interpolated
values, p; = 0.9 — Ay — W fori > 2and uy =
0.9. This sets the best arm to 0.9 and sets the remaining
means by linearly varying A, from 0.01 to 0.5. We evaluate
all algorithms ten times on each setting. All algorithms
almost always identify the best arm in the experiments. APR
consistently does better than Batch Racing with a fixed
amount of parallelism, and does as well as the best task-
tuned batch size on the problem. See Figure 4.

5.2. Fixed Deadline Setting:

In this section, we present additional experiments evaluating
SSH against baselines on a set of simulation experiments
and on cosmological parameter estimation task.

Baselines: In the fixed deadline setting, we compare SSH
to SH (Karnin et al., 2013) and the UCB-E algorithm (Au-
dibert & Bubeck, 2010). UCB-E is maintains confidence
bounds, and pulls the arm with the highest upper confidence
bound. It unfortunately cannot be naturally extended to
the parallel BAI setting, so it does not take advantage of
parallelism.

Simulation Experiments We evaluate Algorithm 2 on a
synthetic domain consisting of n = 1024 Bernoulli arms
with means sampled uniformly from [0, 1]. We use a scaling
function of the form A\(m) = m? for different choices of ¢ €

{0.1,0.25,0.5,0.9}. All settings are evaluated ten times,
and we report the mean and standard error. We evaluate the
accuracy of algorithms for varying time budgets. In Figure 4,
we observe that Algorithm 2 (with £ = k*) consistently
matches or outperforms SH and UCB-E. This difference is
more pronounced as the scaling is poor (smaller q).

6. Summary

We consider a novel setting for BAI, where arm pulls can be
parallelized by dividing a fixed set of resources across them.
While allocating more resources to a pull produces results
sooner, this may result in lower throughput overall. So, al-
gorithms must trade off between information accumulation,
which allows us to invest resources in more promising can-
didates in future iterations, and throughput, which increases
the overall number of samples. One avenue for future work
is to study lower bounds for the fixed deadline setting.
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