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Abstract
Model parallelism has become a necessity for
training modern large-scale deep language mod-
els. In this work, we identify a new and or-
thogonal dimension from existing model paral-
lel approaches: it is possible to perform pipeline
parallelism within a single training sequence for
Transformer-based language models thanks to its
autoregressive property. This enables a more fine-
grained pipeline compared with previous work.
With this key idea, we design TeraPipe, a high-
performance token-level pipeline parallel algo-
rithm for synchronous model-parallel training
of Transformer-based language models. We de-
velop a novel dynamic programming-based al-
gorithm to calculate the optimal pipelining exe-
cution scheme given a specific model and clus-
ter configuration. We show that TeraPipe can
speed up the training by 5.0x for the largest GPT-
3 model with 175 billion parameters on an AWS
cluster with 48 p3.16xlarge instances compared
with state-of-the-art model-parallel methods. The
code for reproduction can be found at https:
//github.com/zhuohan123/terapipe

1. Introduction
Transformer-based language models (LMs) have revolu-
tionized the area of natural language processing (NLP) by
achieving state-of-the-art results for many NLP tasks, in-
cluding text classification, question answering, and text gen-
eration (Brown et al., 2020; Radford et al.). The accuracy of
a Transformer-based LM grows substantially with its model
size, attributing to the fact that they can be unsupervisedly
trained on almost unlimited text data. Today, a large LM,
such as GPT-3 (Brown et al., 2020), can have more than
175B parameters, which amounts to 350 GB, assuming 16-
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bit floating-point numbers. This significantly exceeds the
memory capacity of existing hardware accelerators, such
as GPUs and TPUs, which makes model-parallel training
a necessity, i.e., partitioning the model on multiple devices
during the training process.

Because of the demands for efficient LM training, many
researchers and industry practitioners have proposed differ-
ent ways for model parallel training. One approach is to
partition the weight matrices and dispatch smaller matrix
operations to parallel devices (Figure 1b; Shoeybi et al.,
2019; Shazeer et al., 2018). Another approach is to split
a batch of training data into many microbatches and then
evenly pipeline the layer computations across different mi-
crobatches and devices (Figure 1c; Huang et al., 2019).
Unfortunately, these approaches either introduce excessive
communication overheads between compute devices, or lead
to reduced efficiency due to pipeline “bubbles” (i.e. device
idle time, see Section 2 and 3.2 for details).

Our key observation in this paper is that Transformer-based
language models have a key property: the computation of a
given input token only depends on previous tokens, but not
on future tokens. This lack of dependency on future tokens
provides new opportunities for pipeline parallel training.1

In particular, it allows us to create a fine-grained pipeline
within a single training sequence for Transformer-based
LMs, by parallelizing the computation of the current token
on the current layer with the computation of the previous
token on the next layer of the model. For example, in Fig-
ure 1d, we can pipeline the execution across all 5 devices
within a single input sequence. Similar to other synchronous
model parallel training methods, e.g., Gpipe (Huang et al.,
2019), Megatron-LM (Shoeybi et al., 2019), we do not
change the underlying optimization algorithm, so the result-
ing model has exactly the same accuracy.

However, leveraging the token dimension for efficient model
parallel training raises several challenges. First, if the par-
titioning along the token dimension is too fine-grained, it
leads to under-utilization on devices that require large blocks

1In this paper, we focus on unidirectional autoregressive lan-
guage models (e.g., GPT (Radford et al.; Brown et al., 2020))
but not bidirectional models like masked language models (e.g.,
BERT (Devlin et al., 2018)).
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(a) Transformer-based LM
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(b) Operation partitioning
(Megatron-LM)
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(c) Microbatch-based pipeline
parallelism (GPipe)
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(d) Token-based pipeline
parallelism (TeraPipe)

Figure 1. Different approaches of model parallel training of Transformer-based LMs. (a) shows a standard multi-layer Transformer LM.
In each layer, each position only takes only its previous positions as input. (b) shows operation partitioning (Shoeybi et al., 2019). An
allreduce operation is required to synchronize the results of each layer. (c) shows microbatch-based pipeline parallelism (Huang et al.,
2019), which allows different microbatches (red and green bars) to be executed on different layers of the DNN in parallel. (d) show
TeraPipe (our work), which pipelines along the token dimension.

of data for efficient processing (e.g., GPU). Second, since
each token position in the sequence depends on all previous
tokens, different positions in a transformer layer exhibit
uneven computation loads. This means that uniformly parti-
tioning along the token dimension might cause uneven load
across devices, and degenerate the training efficiency.

To this end, we design and implement TeraPipe, a high-
performance synchronous model parallel training approach
for large-scale Transformer-based language models, which
exploits the token dimension to pipeline the computation
across devices. TeraPipe uses a small number of simple
workloads to derive a performance model and then uses
a novel dynamic programming algorithm to compute the
optimal partitioning of the token dimension for the pipeline.
TeraPipe is orthogonal to previous model-parallel training
methods, so it can be used together with these methods to
further improve the training performance. Our evaluation
shows that for the largest GPT-3 model with 175 billion
parameters, TeraPipe achieves a 5.0x speedup improvement
over the state-of-the-art synchronous model-parallel training
methods on an AWS cluster consisting of 48 p3.16xlarge
instances.

Our paper makes the following contributions:

• We propose a new dimension, token dimension, for
pipeline-parallel training of Transformer-based LMs.

• We develop a dynamic programming algorithm to com-
pute a partition along the token dimension to maximize
pipeline parallelism.

• We implement TeraPipe and show that we can increase
the synchronous training throughput of the largest GPT-
3 model (with 175 billion parameters) by 5.0x over the
previous state-of-the-art model-parallel methods.

2. Related Work
Data parallelism scales ML training by partitioning train-
ing data onto distributed devices (Zinkevich et al., 2010;
Krizhevsky, 2014; Goyal et al., 2017; Rajbhandari et al.,
2019). Each device holds a model replica, works on an
independent data partition, and synchronizes the updates
via allreduce (Krizhevsky, 2014) or a parameter server (Li
et al., 2014). Data parallelism alone is not enough to train
large-scale DNNs due to two main reasons: (1) every de-
vice has to have enough memory to store the model and the
gradients generated during the training process; (2) com-
munication can be a performance bottleneck to synchronize
model parameters.

Model parallelism allows for training models larger than
the memory capacity of a single device, by partitioning
the model (e.g., layers) into disjoint parts and executing
each on a dedicated device. Existing model parallel train-
ing approaches can be roughly categorized as: operation
partitioning and pipeline parallelism.

Operation partitioning. One way to split the model is to
partition and parallelize computational operations across
multiple devices. For example, the computation of matrix
multiplications (matmul) XAB can be spitted across mul-
tiple devices by partitioning A and B along its rows and
columns, respectively.

XAB = X ·
[
A1 A2

]
·
[
B1

B2

]
= XA1B1 +XA2B2.

This means we can have one device calculate XA1B1 and
another device calculate XA2B2 in parallel. After that,
cross-device communication is needed to compute the sum
of these two parts.

Many existing works (Jia et al., 2018; 2019; Wang et al.,
2019; Shazeer et al., 2018) study how to optimize the
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partitioning schemes for different operations to maximize
throughput and minimize communication overheads, among
which, Megatron-LM (Figure 1b; Shoeybi et al., 2019) de-
signs partitioning schemes specifically for large-scale Trans-
formers. However, due to the excessive communication
required to collect partial results after each layer, it is not
efficient when the bandwidth between devices is limited
(Shoeybi et al., 2019). Flexflow (Jia et al., 2018) proposes a
framework to find the optimal operation partitioning, but it
cannot model the new dimension proposed in our work.

Pipeline parallelism partitions a DNN into layers and put
different layers onto different devices (Figure 1c; Petrowski
et al., 1993). Each device computes the input on a given
layer and sends the result to the next device. Pipeline par-
allelism significantly reduces communication between de-
vices, because only devices holding neighboring layers need
to communicate and they only need to communicate the
activations on a particular layer.

Previous pipeline parallel training methods are based on
microbatch pipelining, e.g., GPipe (Huang et al., 2019).
This means the computation for a given microbatch in a
minibatch on a layer can run in parallel with the next micro-
batch in the same minibatch on the previous layer. However,
microbatch-based pipeline parallelism still cannot achieve
high efficiency due to its pipeline bubbles. This is because
the start of the forward propagation on a minibatch requires
the backward propagation of the previous minibatch to
complete (Figure 2a). This problem becomes more severe
when model sizes increase (see Section 3.2). Harlap et al.
(2018) propose using an asynchronous training algorithm to
mitigate the effect of pipeline bubbles in microbach-based
pipeline parallel training, but asynchronous training intro-
duces uncertainty in model accuracy and is thus not widely
adopted for training DNNs.

Wavefront parallelism is a variant of pipeline parallelism,
broadly applied in shared-memory multiprocessors (Sin-
haroy & Szymanski, 1994; Manjikian & Abdelrahman,
1996). In deep learning, it has been used to accelerate the
computation of multi-layer RNNs on a single GPU (Apple-
yard et al., 2016), where different input positions of differ-
ent layers can execute in parallel in a wavefront fashion to
maximize the utilization of the GPU. However, wavefront
parallelism cannot accelerate the execution of Transformers
because there is no dependency between different input po-
sitions within a single Transformer layer to begin with. In
addition, wavefront parallelism uses fine-grained per-word
pipelining due to the temporal data dependency in RNNs,
while too fine-grained pipelining in TeraPipe would lead to
inferior pipeline efficiency (see Section 3.2 and 3.3).
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(c) TeraPipe

Figure 2. Execution timeline for different pipelining methods.
Grey blocks indicate GPUs idle time (a.k.a. pipeline bubbles).
(a) Microbatch-based pipeline parallelism (e.g. GPipe). Each color
corresponds to a microbatch. (b) Microbatch-based pipeline paral-
lelism with longer sequence (hence smaller minibatch size due to
fixed GPU memory). Pipeline bubbles significantly increase. (c)
TeraPipe. Pipeline bubbles are substantially reduced because of
the improved pipelining granularity.

3. Method
In this section, we briefly introduce language modeling
and Transformers. Based on their structures, we identify
new opportunities for performing pipelining along the input
sequence (which we will notate as the token dimension in the
rest of the paper). With that, we derive the optimal slicing
scheme over the token dimension to maximize pipeline
efficiency using a dynamic programming algorithm. Finally,
we show how to combine our new method with existing
parallel training techniques.

3.1. Language Modeling and Transformers

The task of language modeling is usually framed as unsu-
pervised distribution estimation of a text corpus X , where
each example x ∼ X is a variable length sequence of tokens
(x1, x2, . . . , xL). Since language has a natural sequential
ordering, it is common to factorize the joint probability over
the tokens as the product of conditional probabilities (a.k.a.
autoregressive decomposition; Bengio et al., 2003):

P (x) =

L∏
t=1

P (xt|x1, . . . , xt−1). (1)

Transformer (Vaswani et al., 2017) is the state-of-the-art
architecture for modeling these conditional probabilities. As
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visualized in Figure 1a, a Transformer-based LM F takes
the sequence (〈sos〉 , x1, . . . , xL−1) as input, where 〈sos〉
represents the start of a sentence, and outputs a probability
distributions pt at each position t that models the conditional
probability P (xt|x1, . . . , xt−1) as in Eq. 1. In practice, F
is stacked with many Transformer layers F = fN ◦ fN−1 ◦
· · · ◦ f1 (Vaswani et al., 2017; Radford et al.): f1 takes
the embedding of the original sequence as input, while
fi (i > 1) takes the output of fi−1 as input. The main
components of a Transformer layer f contain a self-attention
layer and a position-wise feed-forward network layer:

SelfAtt(ht;h1, . . . , ht−1) =
t∑

s=1

αts · (WV hs),

where αts = softmax
(
(WQht)

>(WKhs)√
H

)
; (2)

FFN(ht) =W2σ(W1ht + b1) + b2. (3)

h1, . . . , hL ∈ RH are hidden states correspond to each posi-
tion of the input sequence,W and b are learnable parameters,
and σ is the nonlinear activation function. An important
note here: for each ht, Eq. 2 takes only the hidden states
before position t as inputs and Eq. 3 only takes ht as input.

The operation and data dependency in Transformers make it
more amenable to parallelization on GPUs/TPUs compared
to RNNs (Vaswani et al., 2017). Therefore, Transformers
have been scaled to enormous datasets and achieved state-of-
the-art performance on a wide range of NLP tasks (Vaswani
et al., 2017; Devlin et al., 2018; Radford et al.; Yang et al.,
2019; Brown et al., 2020; Liu et al., 2019). Recently, people
show that the accuracy of LMs can consistently improve
with increasing model sizes (Radford et al.; Yang et al.,
2019). While the growing model size greatly exceeds the
memory capacity of a single GPU (Brown et al., 2020),
model parallelism becomes a necessity for training large-
scale LMs (Shoeybi et al., 2019).

3.2. Pipeline Parallelism Within a Sequence

In this subsection, we expose the limitations of existing
pipelining parallelism approaches, and develop the proposed
new pipelining method for Transformer-based LMs.

Typically, to perform pipeline parallelism, a Transformer
model F is partitioned into multiple cells c1, . . . , cK . Each
cell ck consists of a set of consecutive Transformer layers
fj ◦ · · · ◦ fi+1 ◦ fi so that F = cK ◦ · · · ◦ c2 ◦ c1. Each
ck is placed and executed on the k-th device (e.g. GPU).
The output of cell ck is sent to cell ck+1 during forward
propagation, and the backward states computed on cell ck+1

is sent to cell ck during backward propagation. Since each
layer f exhibits the same structure, the entire LM can be
uniformly partitioned: each cell possesses the same number
of layers hence the same amount of computation workload,

to reach optimal pipeline efficiency (see Figure 2).

However, previous pipelining methods (Huang et al.,
2019; Harlap et al., 2018) do not perform well on large
Transformer-based LMs due to the growing model size.
Consider a minibatch of size B. The input to a Transformer
layer f is a 3-dimensional tensor (h(1), h(2), . . . , h(B)) of
size (B,L,H), where L is the sequence length and H is
the hidden state size. To improve accuracy, large LMs are
often configured to have a large L to capture longer-term
dependency in language sequences (Tay et al., 2020; Zaheer
et al., 2020). To fit the model into a GPU, the minibatch
size B has to decrease accordingly. The pipeline bubbles
become larger (Figure 2b) because fewer input sequences
can be processed in parallel.

In this work, we make a key observation: for Transformer-
based LMs, with appropriate scheduling, the token dimen-
sion L can be pipelined for parallel training; and this pipelin-
ing dimension is complementary to other model parallelism
approaches. Precisely, for an input hidden state sequence
(h1, h2, . . . , hL), the computation of a self-attention layer
SelfAtt(ht) only depends on the hidden states of previous
positions (h1, . . . , ht−1), and the computation of a feed-
forward layer FFN(ht) only depends on ht itself. These
offer a new opportunity for pipelining: the computation of
layer fi at step t can commence once the hidden states of
previous steps (< t) at fi−1 are ready, which, also, can
be parallelized with the computation of latter steps at fi−1,
illustrated in Figure 1d. This property enables us to per-
form pipeline parallelism within a single input sequence.
Specifically, we can split an input sequence x1, . . . , xL
into s1, . . . , sM , where each subsequence si consists of
tokens (xl, xl+1, . . . , xr). The computation of c1, . . . , cK
over s1, . . . , sM can be pipelined, for example: when ck
computes over si, ck+1 can process si−1 and ck−1 can pro-
cess si+1 in parallel.

Considering that nowadays LMs operate on sequences with
thousands of tokens (Radford et al.; Brown et al., 2020) (e.g.
2048 for GPT-3), the token dimension opens substantial
space to improve the pipelining efficiency. However, apply-
ing it in practice is still challenging, especially on GPUs,
for the following reasons.

First, finer-grained pipelining (i.e. picking a small |si|) is
prone to underutilizing the computational power of GPUs,
and thus lowering the training throughput. As shown on
the top part of Figure 3, for a single layer of the GPT3-1B
model (see Table 1 for specs), the forward propagation time
for an input sequence with a single token is the same as an
input sequence with 256 tokens. In this case, the GPU is not
being fully utilized for input sequence lengths less than 256.
This means a large subsequence length is needed to achieve
high throughput for a single layer (see the bottom part of
Figure 3). On the other hand, although GPUs have better
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Figure 3. Forward propagation time and throughput for a single
layer of GPT3-1B model with a single input sequence with dif-
ferent number of input tokens on a single NVIDIA V100 GPU,
averaged by 30 independent runs. Top: Time per forward propa-
gation. Bottom: Throughput measured by number of tokens per
millisecond.

training throughput per layer for longer sequences due to
the SIMD architecture and better locality, longer input slices
lead to fewer pipeline stages within a sequence, which will
increase the pipeline bubble, and thus reduce the pipeline
efficiency and hurt the overall training speed.

Second, splitting inputs into multiple same-size chunks for
pipelining, as normally done in existing work (Huang et al.,
2019; Harlap et al., 2018), is not the ideal way for pipelin-
ing on the token dimension. For the self-attention layer,
the computation of SelfAtt(h1) only requires the hidden
state h1 from its previous layer, while the computation of
SelfAtt(hL) takes all h1, . . . , hL as inputs, as shown in Fig-
ure 1a. Therefore, the computation load on a later token
position in a sequence is heavier than that of previous to-
kens. Since the total latency of a pipeline is determined
by its slowest stage (Figure 4), an optimal slicing scheme
should have a long slice in the beginning and a shorter slice
in the end. We next develop methods to select the optimal
slicing scheme over the token dimension.

3.3. Selecting Optimal Slicing Scheme

We propose a dynamic programming (DP) algorithm to par-
tition the input sequence to achieve the optimal pipeline
efficiency. Specifically, given a partitioned Transformer-
based LM F = cK ◦ · · · ◦ c1 and a training input sequence
of length L, the goal of the algorithm is to find the slicing
scheme l1, . . . , lM to minimize the total forward and back-
ward propagation latency, where li = |si| is the length each
sub-sequence slice si (l1 + · · ·+ lM = L).

Let’s first consider the latency of forward propagation. As
shown in Section 3.2, all cells ck have exact same amount
of computation. The forward propagation time ti for the
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Figure 4. Execution timeline for inputs for uniform sequence split
with non-uniform running time (top) and non-uniform sequence
split with uniform running time (bottom). The total latency of a
pipeline is determined by its slowest stage, and thus splits with
non-uniform running time result in larger pipeline bubbles and
inferior pipeline efficiency.

slice si on the cell ck is determined by the length of the
ith slice (li), the lengths of all the previous subsequences
(l1, . . . , li−1), and the cluster specifications (e.g., GPU,
bandwidth and latency of the underlying computer net-
works). We use tfwd to denote the sum of the computation
latency plus data transmission latency for a given li and the
previous subsequences l1, . . . , li−1. We have:

ti = tfwd

li, i−1∑
j=1

lj

 . (4)

Note the second term
∑i−1

j=1 lj is the total length of previ-
ous subsequences s1, . . . , si−1 to compute SelfAtt(st). As
visualized in Figure 4, The optimal overall pipeline forward
propagation latency is:

T ∗ = min
l1,...,lM

{
M∑
i=1

ti + (K − 1) · max
1≤j≤M

{tj}

}
. (5)

The overall latency consists of two terms: The first term
here is the total forward propagation time on a device (i.e.
on a cell ck); The second term is the overhead brought by
the pipeline execution, which is determined by the slowest
component in the whole pipeline multiplied by the number
of pipeline stages K minus 1. For example, on the top of
Figure 4, the total execution time will be T = (t1 + . . . +
t4) + 3t4.

Our goal is to find the optimal slicing scheme l1, . . . , lM
that achieves the optimal latency T ∗. We choose to first
enumerate the second term tmax = max1≤j≤M{tj} and
minimize the first term for each different tmax . In other
words, we reformulate T ∗ as:

T ∗ = min
tmax

{S∗(L; tmax ) + (K − 1) · tmax} , (6)

S∗(L; tmax ) = min
l1+···+lM=L

{
M∑
i=1

ti | ti ≤ tmax

}
. (7)
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Algorithm 1 Selecting optimal slicing scheme given tmax .

Input: Forward propagation time function tfwd and max-
imum per-slice time tmax .
Output: Minimal total forward propagation time
S∗(L; tmax ) and the corresponding slicing scheme
l1, . . . , lM .
// Dynamic programming for the total forward propaga-
tion time.
S∗(0; tmax )← 0
for i from 1 to L do
S∗(i; tmax ) ← min1≤k≤i{S∗(i − k; tmax ) +
tfwd(k, i− k) | tfwd(k, i− k) ≤ tmax}.
qi ← argmin1≤k≤i{ri−k+tfwd(k, i−k) | tfwd(k, i−
k) ≤ tmax}.

end for
// Derive the optimal slicing scheme.
i← L, l← {}
while i > 0 do
l.prepend(qi)
i← i− qi

end while

Note that S∗(·; tmax ) has the following optimal substruc-
ture:

S∗(i; tmax ) = min
1≤k≤i

{S∗(i− k; tmax ) + tfwd(k, i− k)

| tfwd(k, i− k) ≤ tmax}. (8)

Therefore, we can get the slicing scheme l1, . . . , lM
that achieves the total total forward propagation time
S∗(L; tmax ) with Algorithm 1. By enumerating all different
tmax , we can get the optimal slicing scheme that reaches
the optimal overall pipeline latency T ∗.

Complexity. With our DP algorithm, we can compute the
best partition in O(L2) time for a fixed tmax . Note that in
total there are at most O(L2) different choices (tfwd(i, j)
for i, j = 1, . . . , L) of tmax . We therefore can derive the
optimal slicing scheme in O(L4) time.

Optimization. To further accelerate the above DP algo-
rithm, we enumerate different tmax from small to large;
when K · tmax is greater than the current best T , we stop
the enumeration since larger tmax cannot provide a better
slicing scheme. In addition, during enumeration of tmax ,
we only evaluate with tmax larger than the last tmax by at
least ε. In this case, the gap between the solution found by
the DP algorithm and the global optima is at most K · ε. We
choose ε = 0.1ms in our evaluation and observe that the
solution given by Algorithm 1 and the real optimal solution
(ε = 0) are always the same in all our evaluated settings.
With these two optimizations, the dynamic programming
can finish within a minute in our evaluations.

Estimating tfwd . To avoid the cost of evaluating tfwd(i, j)

for all O(L2) combinations of i, j on real clusters, we use
a simple performance model to estimate tfwd . Specifically,
we split tfwd(i, j) into two terms:

tfwd(i, j) = tfwd(i, 0) + tctx (i, j), (9)

where tfwd(i, 0) is the forward propagation time without
any extra context input and tctx (i, j) is the latency overhead
brought by the extra context input. We measure the first
term with all L choices of i and we fit a simple linear model
tctx (i, j) = a0+ a1i+ a2j+ a3ij for the second term with
a subset of all (i, j) combinations. In our experiments, the
linear model can achieve a < 2% relative prediction error
compared to the actual overhead.

The development above can be applied to backward propaga-
tion time tbwd , since the backward propagation computation
in transformers is symmetric with its forward counterpart.
One step further, we can replace all the tfwd above with
tfwd + tbwd to derive the optimal slicing scheme that mini-
mizes the total training time.

3.4. Combining with Other Parallel Training methods

The new dimension to perform pipeline parallelism pro-
posed by TeraPipe is orthogonal to all previous model paral-
lel techniques, hence can be naturally combined with them.
We explain next how TeraPipe can be combined with other
parallelization methods and show, when combined, it signif-
icantly boosts parallelization performance in Section 4.

Combine with microbatch-based pipeline parallelism.
To combine with microbatch-based pipeline parallelism
(Huang et al., 2019), we slice the batch dimen-
sion and the token dimension jointly to form the
pipeline. Specifically, consider a training input batch
(x(1), x(2), . . . , x(B)), where each x(i) is an input sequence
(x

(i)
1 , . . . , x

(i)
L ) of length L, we partition the input batch

into (s(1), s(2), . . . , s(D)), such that each s
(d)
i includes
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(a)
l , x
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r ), (x
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(x
(b)
l , x

(b)
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(b)
r ), which is the subsequence from po-

sition l to r of input data a to b. During training, all
slices s(1)1 , . . . , s

(1)
M , s

(2)
1 , . . . , s

(2)
M , . . . , s

(D)
1 , . . . , s

(D)
M can

execute on cells c1, . . . , cK in a pipelined fashion. To jointly
optimize the sequence slicing and batch splitting, the DP al-
gorithm in Section 3.3 can be extended to include the batch
dimension: we can first run the whole DP algorithm in Sec-
tion 3.3 for all different batch sizes b from 1 to B. For each
b, we derive the optimal Tb and the corresponding slicing
scheme sb. With all Tb and sb, we only need to determine
the size of each slice in the batch dimension b1, . . . , bD such
that b1 + · · ·+ bD = B and Tb1 + · · ·+ TbD is minimized.
This reduces to a 1D knapsack problem and can be solved
using off-the-shelf solvers.

Combine with operation partitioning. TeraPipe is orthog-
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Table 1. Model settings and parallel training setups used in the evaluation. N : Number of Transformer layers. H: Hidden state size.
#Params: Number of total parameters. L: Input sequence length. #GPUs: Total number of GPUs. B: Batch size. #Data: Number of data
parallel shards. #Pipe: Number of pipeline stages. #Op: Number of GPUs used for operational partitioning by each Transformer layer.

Model N H #Params L #GPUs B #Data #Pipe #Op

(1)
GPT3-1B 24 2048 1B 2048 192

128 8 24 1
(2) 72 2 12 8
(3) 72 1 24 8

(4) GPT3-13B 40 5120 13B 2048 320 32 2 20 8
(5) 32 1 40 8

(6)
GPT3-44B 96 6144 44B 2048 384

8 4 96 1
(7) 8 2 24 8
(8) 8 1 48 8

(9) GPT3-175B 96 12288 175B 2048 384 2 1 96 4
(10) 2 1 48 8
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Figure 5. Training iteration latency for all configurations with and without TeraPipe. Details for each configuration are listed in Table 1.

onal from operation partitioning in the sense that: opera-
tion partitioning is intra-operation parallelism that paral-
lelizes the execution of a single operation, whereas TeraPipe
pipelines the execution of different operations. To com-
bine with operation partitioning, we distribute each pipeline
parallel cell cK to a set of target devices and then perform
operation partitioning across target devices.

Combine with data parallelism. Similarly, because data
parallelism maintains multiple identical copies of the model,
we can perform model parallelism for each data parallel
model replica and synchronize the gradient updates between
the replicas after each forward and backward propagation.

Combine with memory optimization. Same as previous
pipeline parallel methods (Huang et al., 2019), TeraPipe
stores the activations of a whole mini-batch in our imple-
mentation. TeraPipe can also be combined with various
memory optimization techniques, e.g., gradient accumula-
tion (Fan et al., 2020), rematerialization (Chen et al., 2016;
Jain et al., 2019), or memory swapping (Ren et al., 2021).
See supplementary material for more discussions on com-
bining TeraPipe with gradient accumulation.

4. Evaluation
TeraPipe is a synchronous model parallel training method
that performs exactly the same underlying optimization al-
gorithm as training the model on a single device. The opti-
mization performance of TeraPipe (i.e. training loss versus
training iterations) is hence the same compared to training
on a single device. Therefore, in this paper, we focus on the
per-iteration latency (i.e. wall-clock time used per training
iteration) as our evaluation metric.

We evaluate TeraPipe following the setup in Brown et al.
(2020). Specifically, we test 3 settings in Brown et al. (2020):
GPT3-1B, GPT3-13B, and GPT3-175B, which have 1 bil-
lion, 13 billion, and 175 billion parameters in total, respec-
tively. Note that GPT3-175B is the largest setting in Brown
et al. (2020). In addition, we also test on a GPT3-44B model
with half the hidden state size H of the GPT3-175B model,
which includes 44 billion parameters in total.

For each model, we select multiple data parallelism, oper-
ation partitioning, and pipeline parallelism setup combina-
tions. The configuration details are shown in Table 1. For all
configurations, we set the input sequence length L = 2048
following Brown et al. (2020). We evaluate the configu-
rations on an AWS cluster with p3.16xlarge nodes (each
with 8 NVIDIA V100 GPUs). For each model, we select a
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Figure 6. Training iteration latency of TeraPipe with uniform slic-
ing scheme with different number of slices and the optimal slicing
scheme find by the dynamic programming algorithm.

cluster size based on its model size and number of layers
so that each pipeline stage (each cell ck) has the same num-
ber of layers. Since operation partitioning requires higher
inter-connection speed compared to pipeline parallelism, we
perform operation partitioning only inside a node, where all
GPUs have high-speed inter-connection thanks to NVLink.
For each configuration, we select the maximal batch size
that can fit the memory of the GPUs.

We compare the per-iteration latency achieved by previous
model parallel methods without TeraPipe and the latency
achieved by TeraPipe for each configuration. Specifically,
for the setup without TeraPipe, we measure the training
latency with GPipe (Huang et al., 2019) as the pipeline par-
allel training method. For TeraPipe, we perform a joint
dynamic programming on both batch and token dimension
as shown in Section 3.4 and measure the training latency
with the optimal slicing scheme found by the dynamic pro-
gramming algorithm. All the latency results in the paper are
averaged over 10 runs. The detailed numbers of the latency
results and the solution find by the dynamic programming
algorithm can be found in the supplementary material.

4.1. Main Results

We show the latency results for all configurations in Fig-
ure 5. TeraPipe accelerates the training for all models: For
GPT3-1B, TeraPipe accelerates training for setting (1) by
1.21x. For setting (2) and (3), because of the large batch
size, the optimal slicing scheme found by our dynamic pro-
gramming algorithm only slices the batch dimension and
thus TeraPipe does not provide speedup. For GPT3-13B,
TeraPipe speeds up the training by 1.40x for both setting (4)
and (5). For GPT3-44B, TeraPipe accelerates the training by
1.88x, 1.56x, and 2.40x for setting (6), (7), and (8), respec-
tively. For GPT3-175B, TeraPipe accelerates the training by
6.75x and 5.02x for setting (9) and (10), respectively.

TeraPipe provides higher speedup for larger models: Larger
models have a larger hidden state size H, and a larger por-
tion of GPU memory is devoted to storing the model weights
and hidden states. Therefore, the batch size B has to be
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Figure 7. Training iteration latency of TeraPipe with different input
sequence length for the GPT3-13B model.

decreased to fit the model into the GPU memory, as shown
in the setup in Table 1. Smaller batch size B limits the pre-
vious microbatch-based pipeline parallel methods’ ability
to saturate the pipeline bubbles, while the token dimension
used by TeraPipe still provides abundant opportunity to im-
prove pipeline efficiency. In addition, larger models have
more pipeline stages compared to smaller models, because
larger models have more layers and each layer takes more
memory than the smaller models. More pipeline stages
require more input slices to saturate the pipeline.

4.2. Dynamic Programming

In this subsection, we provide an ablation study on the effec-
tiveness of the dynamic programming algorithm proposed in
Section 3.3. We compare the training latency with the slic-
ing scheme found by the dynamic programming algorithm,
to a simple heuristic that slices the input sequence uniformly.
Specifically, we evaluate GPT3-44B with setting (8) and
GPT3-175B with setting (9). For the uniform slicing base-
line, we slice the whole input on the batch dimension and
range the number of slices on the token dimension from 1 to
16 and 1 to 128 for two settings, respectively, and evaluate
the iteration latency for each uniform slicing scheme.

The result is shown in Figure 6. As in Section 3.2, too fine-
grained pipeline (e.g. #slices=128 in Figure 6b) performs
badly because of the underutilization of the GPUs. Also,
too coarse-grained pipeline (e.g. #slices=4 in Figure 6b)
has large pipeline bubbles, which leads to high iteration la-
tency. In addition, because of the non-uniform running time
brought by the Transformer structure, the slicing scheme de-
rived by the dynamic programming program achieves better
performance compared to the best uniform sliced pipeline:
the optimal solutions found by dynamic programming are
1.12x and 1.04x faster compared to the best uniform slicing
scheme for GPT3-44B and GPT3-175B model, respectively.

4.3. Longer Sequence Length

A growing set of works start to focus on increasing the input
sequence length of the Transformers (Tay et al., 2020; Za-
heer et al., 2020; Kitaev et al., 2020). Long sequence length
enables Transformers to reason about long-term dependen-
cies and thus extends its applicability to more complex ap-
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plications such as modeling documents. However, longer
sequences increases the memory usage of a single input
sequence, and decreases the maximum batch size allowed,
which limits the pipeline efficiency of previous microbatch-
based pipeline parallelism methods.

In this subsection, we vary the sequence length from 2048 to
8192 for the GPT3-13B model (setting (5)) and evaluate the
training iteration latency. Because of the growth in memory
usage, the batch sizes for sequence length 4096, 6144, 8196
are reduced to 8, 4, 2, respectively. We show the results in
Figure 7. TeraPipe achieves 2.76x, 4.97x, 7.83x speedup
for sequence length 4096, 6144, and 8196, respectively.
As the sequence length grows, the gap between the perfor-
mance with and without TeraPipe significantly increases,
as expected. Meanwhile, longer sequence length provides
more space on the token dimension and thus TeraPipe can
perform even better – TeraPipe enables efficient training of
future-emerging LMs with growing sequence lengths.

5. Conclusion
We present TeraPipe, a high-performance token-level
pipeline parallel algorithm for training large-scale
Transformer-based language model. We develop a novel
dynamic programming-based algorithm to calculate the op-
timal pipelining execution scheme, given a specific LM
and a cluster configuration. TeraPipe is orthogonal to other
model parallel training methods and can be complemented
by them. Our evaluations show that TeraPipe accelerates
the synchronous training of the largest GPT-3 models with
175 billion parameters by 5.0x on an AWS cluster with 48
p3.16xlarge instances compared to previous methods.
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