
TinyADC: Peripheral Circuit-aware Weight Pruning

Framework for Mixed-signal DNN Accelerators

Geng Yuan�1, Payman Behnam�2, Yuxuan Cai1, Ali Shafiee3, Jingyan Fu4, Zhiheng Liao4, Zhengang Li1,

Xiaolong Ma1, Jieren Deng5, Jinhui Wang6, Mahdi Bojnordi7, Yanzhi Wang1, Caiwen Ding5

1Northeastern University, 2Georgia Institute of Technology, 3Samsung, 4North Dakota State University,
5University of Connecticut, 6University of South Alabama, 7University of Utah

1{yuan.geng, cai.yuxu, li.zhen, ma.xiaol, yanz.wang}@northeastern.edu,
2
payman.behnam@gatech.edu

3
ali.shafiee@samsung.com

4{jingyan.fu, zhiheng.liao}@ndsu.edu,
5 {jieren.deng, caiwen.ding}@uconn.edu, 6

jwang@southalabama.edu,
7
bojnordi@cs.utah.edu

Abstract—As the number of weight parameters in deep neural
networks (DNNs) continues growing, the demand for ultra-efficient
DNN accelerators has motivated research on non-traditional ar-
chitectures with emerging technologies. Resistive Random-Access
Memory (ReRAM) crossbar has been utilized to perform in-
situ matrix-vector multiplication of DNNs. DNN weight pruning
techniques have also been applied to ReRAM-based mixed-signal
DNN accelerators, focusing on reducing weight storage and accel-
erating computation. However, the existing works capture very few
peripheral circuits features such as Analog to Digital converters
(ADCs) during the neural network design. Unfortunately, ADCs
have become the main part of power consumption and area cost
of current mixed-signal accelerators, and the large overhead of
these peripheral circuits is not solved efficiently.

To address this problem, we propose a novel weight pruning
framework for ReRAM-based mixed-signal DNN accelerators,
named TINYADC, which effectively reduces the required bits for
ADC resolution and hence the overall area and power consump-
tion of the accelerator without introducing any computational
inaccuracy. Compared to state-of-the-art pruning work on the
ImageNet dataset, TINYADC achieves 3.5× and 2.9× power and
area reduction, respectively. TINYADC framework optimizes the
throughput of state-of-the-art architecture design by 29% and
40% in terms of the throughput per unit of millimeter square
and watt (GOPs

s×mm2 and GOPs

w
), respectively.

I. INTRODUCTION

In recent years, DNNs have achieved remarkable progress

across many fields such as computer vision [1], natural lan-

guage processing [2]. However, as Moore’s Law is coming to an

end, the massive memory and computational required by state-

of-the-art DNN models have been burdening traditional Von-

Neumann architecture. To mitigate the intensive computation

and memory storage of DNN models, the crossbar arrays using

ReRAM device have been widely investigated. The main reason

is that crossbar arrays perform matrix-vector multiplication (the

most computing intensive operation in DNNs) in the analog

domain and solve systems of linear equations in O(1) time

complexity [3]. As a result, ReRAM-based mixed-signal DNN

accelerators are developed for high efficient DNN computa-

tions [4]–[6].

On the other hand, weight pruning techniques have also

been applied to ReRAM-based DNN accelerators to effectively

reduce the DNN model storage and computations [7]–[10].

However, by taking low power and high integration density

�These Authors contributed equally.

advantages of the ReRAM devices, in the recent development

of mixed-signal DNN accelerators, the major portion of the

area and power consumption comes from the peripheral circuits

such as ADCs. For example, in [5], more than 51% and 31%

of the area and power overhead of a tile is the ADC usage.

The hardware cost of ADCs can even go beyond 90% in

some cases [11]. Unfortunately, such a high percentage of

ADC makes current weight pruning techniques inefficient to

reduce the overall hardware costs of the DNN accelerators,

even with a high weight pruning rate, i.e., the bottleneck is

not storage but ADC peripheral circuitry. The current weight

pruning techniques are peripheral circuit oblivious and do not

considers the costs of ADCs during neural network design.

Thus, a peripheral circuit-aware solution is highly desired,

which can effectively reduce the hardware costs of both model

storage and peripheral circuits while maintaining the DNN

model accuracy.

To address the challenge, we propose TINYADC, a weight

pruning framework considering the required ADC resolution

during pruning process. TINYADC can effectively and system-

atically reduce the area and power consumption cost on both

the model storage and the ADC circuit, while a high model

accuracy can be preserved. We summarize the contributions as

follows:

• We propose a novel pruning scheme, named column

proportional pruning, which reduces the required bits for

ADC resolution during DNN inference. Smaller ADCs can

be used to replace the original ADCs without introducing

any computational inaccuracy.

• Our framework combines structured pruning schemes with

our proposed column proportional pruning in a crossbar

size-aware fashion. As a two-pronged solution, our com-

bined pruning scheme reduces both the cost of individual

ADC and the number of ADCs (and crossbars). The over-

all hardware costs of the accelerator are further reduced.

• Compared to state-of-the-art pruning works, TINYADC

achieves a higher pruning rate while maintaining higher

accuracy. Moreover, lower area and power consumption

and higher throughput are achieved when TINYADC

framework is applied to ReRAM-based mixed-signal DNN

accelerators.

926978-3-9819263-5-4/DATE21/ c©2021 EDAA

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on December 20,2021 at 18:31:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. (a) Non-structured pruning and (b) structured pruning.

II. BACKGROUND AND MOTIVATION

A. DNN Weight Pruning

There are two most trendy pruning schemes: Non-structured

pruning and structured pruning.

1) Non-structured Pruning: The non-structured pruning

methods [12], [13] aim to heuristically prune the redundant

weights on arbitrary locations, as shown in Fig. 1(a). It has

high flexibility on selecting desired pruning locations, which

can generally maintain the accuracy under a high pruning

rate. However, due to its irregular weight distribution, in a

ReRAM-based mixed-signal accelerator, the pruned weights

(zero weights) still need to be mapped on the ReRAM crossbars

and cannot lead to any hardware reduction or acceleration.

2) Structured Pruning: Structured pruning is proposed

to structurally remove entire filters, channels or filter shapes

from the weight matrix [7], [14], as shown in Fig. 1(b). By

taking advantage of the regular shapes of the pruned weight

matrices, structured pruning avoids introducing extra indices

to indicate the pruned locations and becomes more hardware-

friendly. However, due to the coarse pruning granularity used

in structured pruning, a considerable accuracy drop can be

observed under a high pruning rate. This drawback limits the

hardware reduction and acceleration achieved by structured

pruning.

B. ADC in ReRAM-based Mixed-signal DNN Accelerator

In ReRAM-based mixed-signal DNN accelerators, the

weights in a DNN layer (especially for the later layers which

contain a huge number of weights) are usually stored in

multiple crossbar arrays. Generally, each crossbar array will

have its own ADC(s), and each ADC will be shared by some

or all the columns within the same crossbar array. Assuming v

input bits are shifted into crossbar arrays per cycle, w weight

bits are stored per ReRAM cell on the crossbar arrays, and r

rows per each crossbar array are activated. The required number

of bits for ADC is computed as follows:

ADCbits =

{
v + w + log(r), if v > 1 & w > 1

v + w + log(r)− 1, otherwise.
(1)

For example, if the crossbar array has 8 activated rows, 1-

bit DAC is used, and we use a 2-bit multi-level ReRAM cell

(MLC), then a 5-bit ADC is required to ensure computational

accuracy. The area and power consumption of ADCs is growing

almost exponentially by adding each 1-bit precision [15]. This

makes ADCs the main contributor of hardware overhead in

mixed-signal DNN accelerators.

C. Motivations

Weight pruning techniques have been demonstrated as an

effective method to reduce the DNN model size for less

computation and memory intensity. However, both of the non-

structured pruning and structured pruning have shortcomings

that prevent them from being the perfect solution for mixed-

signal DNN accelerator designs. Moreover, since the major por-

tion of the area and power consumption becomes the peripheral

circuits such as ADCs, the overall power and area reduction of

accelerators are limited by only reducing the weight storage.

Thus, we raise two design questions:

• Question 1: Is there a desired pruning scheme that takes both

the advantage of non-structured pruning and structured prun-

ing and effectively reduces the hardware costs of peripheral

circuits in ReRAM-based accelerators?

• Question 2: How does the desired pruning scheme compare

with existed schemes? Are they able to work collaboratively?

III. FRAMEWORK DESIGN

A. ADC-aware Column Proportional Pruning

To answer the first question in Section II-C, we propose

an ADC-aware pruning scheme, named column proportional

pruning, which targets on reducing the required bits for ADC

resolution and hence the area and power consumption of

ReRAM-based crossbars. Column proportional pruning is an

intermediate pruning scheme takes both the high model accu-

racy advantage of non-structured pruning and the hardware-

friendliness advantage of structured pruning.

In column proportional pruning, we fix the number of non-

zero weights on each column of a crossbar array, while we

do not specify the locations for those non-zero weights. At the

same time, we require the number of non-zero weights the same

for all columns. Fig. 2 demonstrates an example of column

proportional pruning with the crossbar array size of 8×8 and

assumes 1-bit DAC and 2-bit MLC ReRAM cells are used. In

this case, blocks of 8×8 weights from the DNN weight matrix

will be mapped on to the 8×8 ReRAM crossbar arrays. If a

4× column proportional pruning is applied, only two non-zero

weights will be allowed in each column of weight matrix and

the remaining weights will be pruned to zero during the offline

training process. Then, the column proportional pruned weights

will be mapped to crossbar arrays for inference. Without prun-

ing, all eight weights (ReRAM cells) on each column are non-

zero, which indicates all eight rows of the crossbar are activated

and need to participate in the computation. Thus, a minimum

of 5-bit ADC is required to avoid computational inaccuracy,

as we mentioned in Section II-B. On the contrary, with the

column proportional pruning, six weights (ReRAM cells) on

each column are pruned to zero, which can be considered as

deactivating those six rows during the computation regardless

of the input data. Thus, a 3-bit ADC can be used to replace the

5-bit ADC without introducing any computational inaccuracy.

By reducing two bits resolution of ADCs, the power and area

of each ADC can be significantly reduced.

Design, Automation and Test in Europe Conference (DATE 2021) 927

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on December 20,2021 at 18:31:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Column proportional pruning using 8×8 crossbar array.

The high model accuracy of column proportional pruning

is attributed to the structural flexibility. Since we do not restrict

the position of the non-zero weights in each column, it provides

high flexibility of searching the desired pruning locations.

The hardware-friendliness is achieved by avoiding the use

of the indices during the computation. By limiting the number

of non-zero weights in each column, it ensures the number of

activated rows calculated by the ADC, thus we do not need to

identify the exact locations of pruned weights.

B. Dynamic Regularization-based Optimization using ADMM

To obtain DNN models with our proposed column pro-

portional pruning feature, we incorporate alternating direction

method of multipliers (ADMM) [13] during the offline training

process. ADMM is an optimization technique that has been

introduced to transform the DNN weight pruning problems

into an optimization problem of dynamically updating the

regularization terms restricted by the designated constraint sets

(i.e., pruning with specific dimensions or with any desired

weight matrix shapes). It decomposes an original DNN weight

pruning problem into two sub-problems, where one can be

solved by standard stochastic gradient descent (SGD) while the

other one can be solved by iteratively updating regularization

terms with ADMM steps.

We formulate the weight pruning problem in an N -layer

DNN as:
min

{Wi},{bi}

L
(
{Wi}

N

i=1, {bi}
N

i=1

)
,

subject to Wi ∈ Si, i = 1, . . . , N,
(2)

where Wi and bi represent the weights and biases in i − th

layer. L is the loss function with respect toWi and bi. Si is the

constraint of the remaining weights satisfying the requirement

of column proportional pruning.

The weights of a convolutional layer are represented in a

4-D tensor format Wi ∈ R
w×h×c×f , where w, h, c, f , are the

weight kernel width, kernel height, number of channels, and

number of filters, respectively. In ReRAM-based mixed-signal

DNN accelerator, the column proportional pruning constraint

is based on the crossbar array. A large layer needs several

crossbar arrays to accommodate all the weights, thus we

divide the weights into several blocks, where the block size

is the same as the size of crossbar arrays. Each block of

weights will be mapped to one corresponding crossbar array.

Assume the weights in i-th are divided into bi blocks, and

crossbar array size is m × n. Given the value of li (number

of non-zero values in each column of crossbar arrays in i-th

layer), the constraint in the i-th convolutional layer becomes

Wi ∈ Si := {Wi | ∀colα,β : card(colα,β) ≤ li, for α ∈

1, . . . , n, β ∈ 1, . . . , bi}, where card(·) returns the number of

non-zero weights in colα,β , meaning the α-th column in β-th

block.

Since the problem (2) with constraint cannot be directly

solved by classic stochastic gradient descent (SGD) methods

as original DNN training, we utilize the ADMM regularization

to reforge and separate the problem into two sub-problems, then

solve them iteratively.

First, we incorporate the constraint Si by using indicator

function, which is

gi(Wi) =

{
0 if Wi ∈ Si,

+∞ otherwise.

We reformulate problem (2) as follows:

minimize
{Wi},{bi}

f
(
{Wi}

N

i=1
, {bi}

N

i=1

)
+

N∑
i=1

gi(Zi),

subject to Wi = Zi, i = 1, . . . , N,

(3)

where Zi is an auxiliary variable. With the formation of

augmented Lagrangian [16], problem (3) can be decomposed

into two subproblems (4) and (5),

minimize
{Wi},{bi}

f
(
{Wi}

N

i=1, {bi}
N

i=1

)
+

N∑

i=1

ρi

2
‖Wi−Z

t

i+U
t

i‖
2
F , (4)

minimize
{Zi}

N∑

i=1

gi(Zi) +

N∑

i=1

ρi

2
‖Wt+1

i − Zi +U
t

i‖
2
F , (5)

where Ui denotes dual variable and t is the iteration index.

The positive scalars ρi is a penalty hyperparameter for the L2
regularization. The first subproblem can be solved by classic

SGD, and the solution for the second subproblem is given by

Z
t+1

i =
∏

Xi

(Wt+1

i +Uti), (6)

where
∏
Xi

(�) is Euclidean projection to Xi ∈ Si, thereby

weight matrices are column proportional pruned. These two

subproblems will be iteratively solved and we update Ui in

each iteration by Ut

i
:= Ut−1

i
+Wt

i
− Z

t

i
until convergence.

Here, we have the pruned model with the weights satisfying

the column proportional constraint, and can be used to map to

the ReRAM crossbar arrays.

C. ReRAM Crossbar Mapping Scheme

When mapping a large number of DNN weights onto the

ReRAM crossbar arrays, multiple crossbar arrays are needed

to accommodate all the weights from one layer. For instance,

as shown in Fig. 3, we first flatten the weights to form a

2-D weight matrix, which each column of the 2-D weight

matrix contains all the weights from one filter. The first column

on the 2-D weight matrix (marked as yellow in Fig. 3 top)

represents the weights from filter 1. If we choose the ReRAM

crossbar arrays with the size of m rows×n columns, the 2-

D weight matrix is split into multiple blocks, with the total

size of m rows× n columns. Since the column proportional

pruning is applied during the training process, the weights in

each block column satisfy the column proportional constraint

928 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on December 20,2021 at 18:31:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. ReRAM crossbar mapping scheme.

(which only allows ls fixed non-zero weights). The weights

in each block (including the zero weights) will be mapped

onto the corresponding ReRAM crossbar array. Note that if

the number of columns/rows cannot be divided by the block

column/row size, then additional crossbar arrays are needed

for those weights on the remaining columns/rows.

Due to the high hardware overhead of sense amplifiers of

high ReRAM MLCs and also reliability issues, using more than

2-3 ReRAM bit cells are not practical. As a result, multiple

ReRAM cells are used jointly to represent one weight.

D. Exploration of Combined Pruning

To answer the second question in Section II-C, we manage

to combine structured pruning with our proposed column

proportional pruning. Our column proportional pruning can

effectively reduce the power and area costs of each ADC, while

the structured pruning reduces the number of crossbar arrays

and their associated peripheral circuits. Thus, the combined

pruning can be used as a two-pronged solution, reducing both

the cost of each ADC and the number of crossbar arrays with

their peripheral circuits. Eventually, the overall hardware costs

of the accelerator are further reduced.

Two types of structured pruning methods are used in

TINYADC, which are filter pruning and filter-shape prun-

ing [7]. Pruning a filter can be considered as removing the

weights of one entire column from the 2-D weights format

in Fig. 3, while pruning a filter-shape represents removing

the weights on one entire row. TINYADC uses an efficient

structure pruning by considering the crossbar array size during

the training process. In each DNN layer, we only prune the

number of filters/filter-shapes that equals the multiples of the

column/row size of the crossbar array. For example, if the

crossbar array size is 128×128, then the possible numbers of

pruned filters/filter-shapes are 128, 256, 384, 512 and so on.

In this way, after removing the pruned weights, the remaining

weights can still reform a dense matrix with the size of the

multiples of crossbar array size. As the result, the structural

pruned weights can be fully converted to the crossbar array

reductions.

In combined pruning, the filter pruning can be applied before

or after the column proportional pruning. However, the filter-

shape pruning can only be applied before the column propor-

tional pruning. Because the reformed weight matrix may violate

the column proportional constraint if the filter-shape pruning is

applied after the column proportional pruning. Compared to

only using the column proportional pruning, the pruning rate

of column proportional pruning may be reduced to maintain

accuracy when it is combined with the structured pruning.

IV. EVALUATION

A. Experimental Setup

We evaluate our framework on the CIFAR-10 and CIFAR-

100 dataset using ResNet18, ResNet50, and VGG16, respec-

tively. For large dataset, we test on the ImageNet dataset using

ResNet18. Our sparse models are trained on a server with four

NVIDIA RTX-2080Ti GPUs using PyTorch.

We utilize a developed in-house tool at 32nm named

NVCACTI to model the area and power of all crossbar

arrays, buffers, sense amplifiers and on-chip interconnects

[17]. NVCACTI builds a unified framework that can models

both volatile and non-volatile memories with multi-banking

properties and efficient wiring model. We use the VTEAM

ReRAM model [18] to set the parameters of crossbar arrays and

conservatively consider a 10% process variation during evalu-

ations. To make a fair and consistent comparison, we compute

the power, and area of the same ADC [19] with different

resolutions. To do so, we scale down the area, and power the

memory, clock, and vref buffer linearly, and the capacitive DAC

exponentially. In our design, 2-bit MLC ReRAM and 128×128
crossbar arrays [5] are used, and all the results are normalized

to a non-pruned design.

B. Evaluation on Column Proportional Pruning

1) Pruning Rate & Accuracy: Table I shows the results of

model accuracy under different column proportional pruning

rate on various networks and datasets. The “CP pruning”

column in the table represents the column proportional pruning

rate, which equals to crossbar array column size

non−zero weights per column
. For example,

with the column size of 128, 32× column proportional pruning

leads to only 4 non-zero weights remained on each column,

and all other 124 weights are pruned to zero. The “ADC Bits

Reduction” column represents the reduction of required bits of

ADC resolution compared with the non-pruned design which

uses crossbar arrays of size 128 × 128 and 8-bit ADCs. The

results in Table I refer to applying a uniform pruning rate to

all the convolutional layers except the first layer. Thus, the

ADC bits reduction is evenly applied to all ADCs except for

the first layer. On the CIFAR-10 dataset, TINYADC achieves

up to 64× and 32× column proportional pruning rate without

accuracy degradation on ResNet18 and VGG16 respectively.

This will lead to a 6-bits and 5-bits reduction on ADCs’

required bits without introducing computational inaccuracy.

Design, Automation and Test in Europe Conference (DATE 2021) 929

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on December 20,2021 at 18:31:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ACCURACY UNDER DIFFERENT COLUMN PROPORTIONAL PRUNING RATE ON

DIFFERENT DATASETS AND NETWORKS

Method
Original
Acc. (%)

CP
pruning

Final
Acc. (%)

ADC
Reduction

CIFAR10

TinyADC

ResNet18
94.14

16× 94.51 -4 bits

32× 94.22 -5 bits

64× 94.17 -6 bits

TinyADC

VGG16
93.70

16× 93.95 -4 bits

32× 93.74 -5 bits

64× 92.41 -6 bits

CIFAR100

TinyADC

ResNet18
76.01

8× 76.13 -3 bits

16× 76.08 -4 bits

32× 75.98 -5 bits

TinyADC

ResNet50
77.85

8× 78.13 -3 bits

16× 78.01 -4 bits

32× 77.87 -5 bits

TinyADC

VGG16
74.62

8× 74.93 -3 bits

16× 74.60 -4 bits

32× 74.23 -5 bits

ImageNet

TinyADC

ResNet18 89.07

2× 89.09 -1 bits

4× 88.64 -2 bits

* The TinyADC results are based on column proportional pruning.

On the ImageNet dataset, we test our column proportional

pruning on ResNet18 and achieves 2× pruning rate without

any accuracy degradation, where there is a minor accuracy

degradation when we apply a 4× pruning rate. Since the

classification task on the ImageNet is much complex than on the

CIFAR-10, it is expected that the pruning rate on the ImageNet

is much lower than on the CIFAR-10.

2) Area & Power: Fig. 4 demonstrate the estimated power

and area results of accelerator designs that runs a specific

network over a specific dataset. The results belong to the best

column proportional pruning rate selected from Table I (i.e.,

bold rows) and they are normalized to the non-pruned baseline

results. Herein, we design separate accelerators to be able to

show the effectiveness of our column proportional pruning

scheme on different datasets and networks in terms of area and

power reduction. As the results show, 37% power reduction and

22% area reduction are achieved on ImageNet using ResNet18,

while up to 62% power reduction and 45% area reduction are

achieved on the CIFAR-10.

C. Evaluation on Combined Pruning

1) Pruning Rate & Accuracy: Table II shows the

comparison results between several previous works and

TINYADC (without and with combining the structured prun-

Fig. 4. (a) Power and (b) area results normalized to non-pruned design.

TABLE II
COMPARISON BETWEEN REFERENCE WORKS AND TINYADC WITH

COLUMN PROPORTIONAL PRUNING AND COMBINED PRUNING ON

DIFFERENT DATASETS AND NETWORKS

Network Method
Original
Acc. (%)

Structured
Pruning

CP
Pruning

Overall
Pruning

Final
Acc. (%)

Crossbar
Reduction

ADC Bits
Reduction

CIFAR10

ResNet18

Ultra-Effifcient [7] 94.14 20.88× − 20.88× 93.20 -89.31% −

TinyButAcc [8] 94.14 59.84× − 59.84× 93.20 -93.12% −

TinyADC w/o SP 1 94.14 − 64× 64× 94.17 − -6 bits
TinyADC 94.14 7.5× 16× 120× 93.92 -86.38% -4 bits

VGG16

Ultra-Effifcient [7] 93.70 29.81× − 29.81× 93.36 -91.46% −

TinyButAcc [8] 93.70 44.67× − 44.67× 93.36 -93.46% −

TinyADC w/o SP 93.70 − 32× 32× 93.74 − -5 bits
TinyADC 93.70 7.63× 8× 61× 93.64 -86.81% -3 bits

CIFAR100

ResNet18
N2N [20] 72.22 4.64×2

− 4.64×2 68.01 − −

TinyADC w/o SP 76.01 − 32× 32× 75.98 − -5 bits
TinyADC 76.01 1.6× 16× 25× 75.79 -36.90% -4 bits

ResNet50
TinyADC w/o SP 77.85 − 32× 32× 77.87 − -5 bits
TinyADC 77.85 2.06× 32× 65.92× 76.80 -51.45% -5 bits

VGG16

SSL [21] 73.16 2.6× − 2.6× 73.18 -49.89% −

Decorralation [22] 73.16 3.9× − 3.9× 73.21 -51.88% −

TinyADC w/o SP 74.62 − 16× 16× 74.60 − -4 bits
TinyADC 74.62 1.78× 16× 28.48× 74.03 -43.90% -4 bits

ImageNet

ResNet18

DCP [23] 88.98 2× − 2× 87.60 -49.49% −

DCP [23] 88.98 3.3× − 3.3× 85.68 -68.81% −

TinyADC w/o SP 89.07 − 4× 4× 88.64 − -2 bits
TinyADC 89.07 2.3× 2× 4.6× 88.38 -54.63% -1 bits

1 TinyADC w/o SP stands for TinyADC without combining structured pruning.
2 The pruning rate for N2N [20] is based on non-structured pruning, which cannot achieve crossbar
reduction.

ing). Our proposed column proportional pruning scheme and

combined pruning scheme consistently outperforms the refer-

ence works in terms of pruning rate and accuracy on all datasets

and networks. Our results also indicate that the structured prun-

ing can be combined with our column proportional pruning.

By combining the structured pruning, the overall pruning rate

of our TINYADC can be significantly improved with minor

accuracy degradation. However, to maintain the accuracy, we

have to make a trade-off between the pruning rate of two

pruning schemes.

2) Area & Power: We also compare the area and power

of the combined pruning method with existing baselines 1.

Like the previous section, we consider for all of the baselines

and TINYADC and also for each network/dataset, a separate

architecture can be designed to show how much each different

technique can ameliorate the area and power. Fig. 5 shows

the area and power comparison results of TinyADC using

combined pruning with different baseline designs over different

neural networks and datasets. All the results are normalized

to a non-pruned design. Compared to non-pruned design, for

the CIFAR-10 using ResNet18, TINYADC achieves 15× and

12× reduction on power and area, respectively. The baseline

work TinyButAcc [8] also achieves similar area reduction

using structured pruning but with non-negligible accuracy drop.

TINYADC performs more obvious advantages on more com-

plex dataset CIFAR-100 and ImageNet. Compared to work

Decorralation [22], TINYADC saves 21% more area and saves

38% more power on the CIFAR-100 using VGG16. On the

ImageNet using ResNet18, compared to non-pruned design,

TINYADC achieves 3.5× and 2.9× reduction on power and

area, respectively, with 0.69% top-5 accuracy degradation. In

comparison, DCP [23] only achieves 2× reduction on both

1Some of the baselines didn’t provide the results for some networks and/or
baseline. Hence, we were not able to provide the area/power results for them

930 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on December 20,2021 at 18:31:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. (a) Power and (b) area results normalized to non-pruned design.

TABLE III
COMPARISON THE PEAK THROUGHPUT OF DIFFERENT ARCHITECTURES.

Architecture GOPs

s×mm2

GOPs

W

DaDianNao [24] 63.46 286.4
TPU [25] 40.88 301.91
PUMA [6] 338.76 497.25
ISAAC [5] 478.95 627.5
TinyADC(ISAAC) 621.19 879.1

power and area but with a 1.38% top-5 accuracy drop. When

DCP has a similar power and area reduction with TINYADC,

a 3.3% top-5 accuracy drop is observed.

D. Throughput Analysis

We optimize the state-of-the-art architecture design by adopt-

ing our TINYADC framework. Here, we consider a recon-

figurable design that can run all types of tested datasets and

networks on it. Thus, the worst case scenario (i.e., ImageNet

using ResNet18) is evaluated. Using smaller ADCs will lead

to fewer and smaller intermediate results compared with the

baseline architecture. Consequently, buffers, sample&hold and

shift-and-add logics are smaller and faster. Moreover, by re-

ducing the ADC resolution, designers are able to select smaller

ADCs with higher frequency or use more ADCs per crossbar.

As the result shows in Table III, optimized by TINYADC, the

throughput of ISAAC can be significantly improved by 29%

and 40% in terms of GOPs

s×mm2 and GOPs

w
, respectively.

E. Fault Tolerance Analysis

Interestingly, our proposed TINYADC framework also im-

proves the fault tolerance of ReRAM crossbars. Besides the

power saving and area reduction that is the same benefit

with the structured pruning method, our proposed column

proportional pruning intentionally holds a large amount of

zero weights on ReRAM crossbars. This provides TINYADC a

qualified tolerance for the Stuck-At-0 (SA0) Fault of ReRAM-

based crossbar arrays. By using the ReRAM SA0 failure model

in [26] with 5%, 10%, and 15% overall Stuck-At Fault rate,

on the complex dataset (i.e., ImageNet), TINYADC framework

demonstrates higher reliability property, i.e., the accuracy drop

of TINYADC is 0.5%, 1.8%, and 3.9% lower than that of DCP

(with 3.3× pruning rate).

V. CONCLUSION

In this paper, we propose TINYADC, a peripheral circuit-

aware pruning framework for ReRAM-based mixed-signal

DNN accelerators. TINYADC can effectively reduce the re-

quired bits for ADC resolution and hence the overall area and

power consumption of the accelerator without introducing any

computational inaccuracy.

ACKNOWLEDGEMENT

This work is funded by the National Science Foundation

Awards CCF-1937500 and CNS-1909172.

REFERENCES

[1] I. Goodfellow et al., Deep learning. MIT press, 2016.
[2] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers for

language understanding,” in Proceedings of NAACL-HLT, 2019.
[3] G. Yuan et al., “Memristor crossbar-based ultra-efficient next-generation

baseband processors,” in IEEE MWSCAS, 2017.
[4] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep

learning,” in 2017 IEEE International Symposium on HPCA, 2019.
[5] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with

in-situ analog arithmetic in crossbars,” in Proceedings of ISCA, 2016.
[6] A. Ankit et al., “Puma: A programmable ultra-efficient memristor-based

accelerator for machine learning inference,” in ASPLOS, 2019.
[7] G. Yuan et al., “An ultra-efficient memristor-based dnn framework with

structured weight pruning and quantization using admm,” in IEEE/ACM
ISLPED, 2019.

[8] X. Ma et al., “Tiny but accurate: A pruned, quantized and optimized
memristor crossbar framework for ultra efficient dnn implementation,”
2020 25th ASP-DAC, 2020.

[9] X. Ma, S. Lin et al., “Non-structured dnn weight pruning – is it beneficial
in any platform?” 2019.

[10] C. Ding et al., “Structured weight matrices-based hardware accelerators
in deep neural networks: Fpgas and asics,” in Great Lakes Symposium on
VLSI, 2018.

[11] M. Imani et al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in ISCA, 2019.

[12] S. Han et al., “Learning both weights and connections for efficient neural
network,” in Advances in NeurIPS, 2015.

[13] T. Zhang et al., “A systematic dnn weight pruning framework using
alternating direction method of multipliers,” in ECCV, 2018.

[14] Y. He et al., “Soft filter pruning for accelerating deep convolutional neural
networks,” in Proceedings of the 27th IJCAI, 2018.

[15] B. Murmann, “Adc performance survey 1997-2019,[online]. available:
http://web.stanford.edu/ murmann/adcsurvey.html.”

[16] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends® in
Machine Learning, 2011.

[17] P. Behnam, A. P. Chowdhury, and M. N. Bojnordi, “R-cache: A highly
set-associative in-package cache using memristive arrays,” in 2018 IEEE
36th International Conference on Computer Design (ICCD). IEEE, 2018,
pp. 423–430.

[18] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled
memristors,” IEEE Transactions on Circuits and Systems II: Express
Briefs, 2015.

[19] C.-H. Chan et al., “16.4 a 5mw 7b 2.4 gs/s 1-then-2b/cycle sar adc with
background offset calibration,” in 2017 IEEE ISSCC, 2017.

[20] A. Ashok et al., “N2n learning: Network to network compression via
policy gradient reinforcement learning,” 2017.

[21] W. Wen et al., “Learning structured sparsity in deep neural networks,” in
NeurIPS, 2016.

[22] X. Zhu et al., “Improving deep neural network sparsity through decorre-
lation regularization,” in Proceedings of the 27th IJCAI, 2018.

[23] Z. Zhuang et al., “Discrimination-aware channel pruning for deep neural
networks,” 2018.

[24] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in
Proceedings of the 47th Annual IEEE/ACM MICRO, 2014.

[25] Google supercharges machine learning tasks with TPU custom chip,
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip.html.

[26] C. Chen et al., “Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on
Computers, 2015.

Design, Automation and Test in Europe Conference (DATE 2021) 931

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on December 20,2021 at 18:31:19 UTC from IEEE Xplore. Restrictions apply.

