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Robust Tensor Recovery with Fiber Outliers for

Traffic Events

YUE HU and DANIEL B. WORK, Vanderbilt University

Event detection is gaining increasing attention in smart cities research. Large-scale mobility data serves as an

important tool to uncover the dynamics of urban transportation systems, and more often than not the dataset

is incomplete. In this article, we develop a method to detect extreme events in large traffic datasets, and to

impute missing data during regular conditions. Specifically, we propose a robust tensor recovery problem

to recover low-rank tensors under fiber-sparse corruptions with partial observations, and use it to identify

events, and impute missing data under typical conditions. Our approach is scalable to large urban areas, tak-

ing full advantage of the spatio-temporal correlations in traffic patterns. We develop an efficient algorithm

to solve the tensor recovery problem based on the alternating direction method of multipliers (ADMM) frame-

work. Compared with existing l1 norm regularized tensor decomposition methods, our algorithm can exactly

recover the values of uncorrupted fibers of a low-rank tensor and find the positions of corrupted fibers under

mild conditions. Numerical experiments illustrate that our algorithm can achieve exact recovery and outlier

detection even with missing data rates as high as 40% under 5% gross corruption, depending on the tensor

size and the Tucker rank of the low rank tensor. Finally, we apply our method on a real traffic dataset corre-

sponding to downtown Nashville, TN and successfully detect the events like severe car crashes, construction

lane closures, and other large events that cause significant traffic disruptions.
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1 INTRODUCTION

1.1 Motivation

Event detection is an increasing interest in urban studies [33, 51]. Efficiently analyzing the impact
of large events can help us assess the performance of urban infrastructure and aid urban manage-
ment. Nowadays, with the development of intelligent transportation systems, large scale traffic
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6:2 Y. Hu and D. B. Work

data are accumulating from loop detectors, Global Positioning System devices, and high-resolution
cameras. The large amount of data provides us insight into the dynamics of urban environments
in the presence of large scale events. The main objective of this article is to develop a method to
detect extreme events in traffic datasets describing large urban areas, and to impute missing data
during regular conditions.

There are two major challenges in detecting extreme events in traffic datasets. First, most large
traffic datasets are incomplete [9, 14, 45], meaning there are a large number of entries for which the
current traffic condition is not known. The missing data can be caused by the lack of measurements
(e.g., no instrumented vehicles recently drove over the road segment), or due to senor failure (e.g.,
a traffic sensor which loses communication, power, or is physically damaged). Missing data can
heavily influence the performance of traffic estimation [9, 10, 45, 52], especially as the missing data
rate increases. Naive imputation of the missing entries to create a complete dataset is problematic,
because without a clear understanding of the overall pattern, an incorrect value can be imputed
that will later degrade the performance of an outlier detection algorithm. Consequently, missing
data should be carefully handled.

The second challenge is to fully capture and utilize the pattern of regular traffic, in order to
correctly impute missing data and separate the outliers out from regular traffic. Studies have sug-
gested that for regular traffic patterns, there exist systematic correlations in time and space [2, 16,
20, 58]. For example, due to daily commute patterns, traffic conditions during Monday morning
rush hour are generally repeated but with small variation from one week to the next (e.g., the
rush hour might start a little earlier or last a little longer). Also, traffic conditions are spatially
structured due to the network connectivity, ending up in global patterns. For example, the traffic
volume on one road segment should influence and be influenced by its downstream and upstream
traffic volumes, respectively.

Most existing research has not fully addressed these two challenges. On the one hand, missing
data and outlier detection tend to be dealt with separately. Either it is assumed that the dataset is
complete for the purpose of outlier detection [19, 24], or it is assumed that the dataset is clean, for
the purpose of missing data imputation [1, 41]. Yet in reality, missing data and outliers often exist at
the same time. On the other hand, currently many studies on traffic outliers consider only a single
monitoring spot or a small region [11, 18, 40, 49], not fully exploiting the spatio-temporal corre-
lations. Only a few studies scale up to large regions to capture urban-scale correlations. Examples
here include the work of Yang et al. [58], which proposes a coupled Bayesian robust principal com-

ponent analysis (RPCA) approach to detect road traffic events, and Liu et al. [34], which constructs
a spatio-temporal outlier tree to discover the causal interactions among outliers.

In this article, we tackle the traffic outlier event detection problem from a different perspective,
taking into account missing data and spatio-temporal correlations. Specifically, we model a robust
tensor decomposition problem, as illustrated in Section 1.2. Furthermore, we develop an efficient
algorithm to solve it. We note that the application of our method is not limited to traffic event
detection, but can also be applied to general pattern recognition and anomaly detection, where
there exist multi-way correlations in datasets that are either completely or partially observed.

1.2 Solution Approach

In this subsection, we develop a robust tensor decomposition model for the traffic extreme
event detection problem, and develop a robust tensor completion problem considering partial
observations.

To exploit these temporal and spatial structures, a tensor [17, 25] is introduced to represent the
traffic data over time and space. We form a three-way tensor, as shown in Figure 1. The first dimen-
sion is the road segment, the second dimension is the time of the week, (Monday midnight 1 am all
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Fig. 1. Traffic data are arranged in three-way tensor, with the dimensions corresponding to (i) the hour of

the week, (ii) the road segment number, and (iii) the week number.

Fig. 2. Observation data decomposed into low-rank tensor for regular traffic and fiber-sparse tensor for

outlier events.

the way to Sunday 11 pm midnight, 24 × 7 = 168 entries in total), and the third dimension is the
week in the dataset. In this way, the temporal and spacial patterns along different dimensions are
naturally encoded. One effective way to quantify this multi-dimensional correlation is the Tucker
rank of the tensor [17, 25, 48], which is the generalization of matrix rank to higher dimensions.

As for the extreme events, we expect them to occur relatively infrequently. We encode the out-
liers in a sparse tensor, which is organized in the same way as the traffic data tensor. Furthermore,
extreme events tend to affect the overall traffic of an urban area. That is, we assume that at the
time when extreme event occurs, the traffic data of all road segments deviates from the normal
pattern. Thus, the outliers occur sparsely as fibers along the road segment dimension with hour of
week fixed. This sets it apart from random noises, which appear scattered over the whole tensor
entries and are unstructured. This fiber-wise sparsity problem is studied in the two-dimensional
matrix case [56], where the l2,1 norm is used to control the column sparsity, and we adapt it for
higher dimensions.

Putting these together, we organize the traffic data into a tensor B, then decompose it into two
parts,

B = X + E,

where tensor X contains the data describing the regular traffic patterns, and tensor E denotes
the outliers, as illustrated in Figure 2. Because the normal traffic pattern is assumed to have strong
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6:4 Y. Hu and D. B. Work

correlation in time and space, it is approximated by a low-rank tensorX. Similarly, because outliers
are infrequent, we expect the tensor containing outliers, E, to be sparse. With these ideas in mind,
it is possible formulate the following optimization problem:

min
X,E

rank(X) + λ sparsity(E)

s.t. B = X + E .
(1)

The objective function in problem (1) is the weighted cost of the tensor rank of X denoted as
rank(X), and the fiber-wise sparsity of E (denoted as sparsity(E)), and λ is a weighting parameter
balancing the two costs. A more precise formulation of the problem is provided in Section 4.

In the presence of missing data, we require the decomposition to match the observation data
only at the available entries, resulting in the following optimization problem:

min
X,E

rank(X) + λ sparsity(E)

s.t. Bi1i2 ...iN
= (X + E)i1i2 ...iN

,

where (i1, i2, . . . , iN ) is an observed entry.

(2)

In this article, we turn problems (1) and (2) into convex programming problems, and solve them
by extending from the matrix case to the tensor case a singular value thresholding algorithm [7,
8] based on alternating direction method of multipliers (ADMM) framework. Our algorithm can
exactly recover the values of uncorrupted fibers of the low rank tensor, and find the positions of
corrupted fibers, based on relatively mild conditions on the observation and corruption ratio.1

1.3 Contributions and Outline

To summarize, this work has the following three main contributions:

(1) We propose a new robust tensor recovery with fiber outliers method for traffic ex-
treme event detection under full or partial observations, to take full advantage of spatial-
temporal correlations in traffic patterns.

(2) We propose ADMM-based algorithms to solve the robust tensor recovery under fiber-
sparse corruption and partial observation. Our algorithm can exactly impute the values of
uncorrupted fibers of the low-rank tensor, and find the positions of corrupted fibers under
mild conditions, outperforming the existing state-of-the-art methods for tensor recovery
and completion under this setting.

(3) We apply our method on a large traffic dataset in downtown Nashville and successfully
detect large events.

The rest of the article is organized as follows. In Section 3, we provide a review of tensor basics and
related RPCA methods. In Section 4, we formulate the tensor outlier detection problem, and pro-
pose efficient algorithms to solve it. In Section 5, we demonstrate the effectiveness of our method
by numerical experiments. In Section 6, we apply our method on real world dataset and show its
ability to find large scale events.

2 RELATED WORK

In this section, we review the literature on outlier detection. We also compare our methodology
with other relevant works.

1The resulting source code is available at https://github.com/Lab-Work/Robust_tensor_recovery_for_traffic_events.
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2.1 Outlier Detection

The outliers we are interested in this work are due to outliers caused by extreme events. Another
related problem considers methods to detect outliers caused by data measurement errors, such as
sensor malfunction, malicious tampering, or measurement error [5, 11, 40]. The latter methods
can be seen as a part of a standard data cleaning or data pre-processing step. On the other hand,
outliers caused by extreme traffic have valuable information for congestion management, and can
provide agencies with insights into the performance of urban traffic networks. The works [26, 34,
39] explore the problem of outlier detection caused by events, while the works [28, 33, 44, 57] focus
on determining the root causes of the outlier.

2.2 Low Rank Matrix and Tensor Learning

Low rank matrix and tensor learning has been widely used to exploit structure in data. Various
applications have benefited from matrix- and tensor-based methods, including data completion [2,
43], link prediction [15], and network structure clustering [50]. There are two threads of work
most relevant with ours, namely, robust matrix and tensor principal component analysis (PCA)
for outlier detection, and low-rank tensor completion with missing data.

Regarding robust matrix and tensor PCA for outlier detection, l1 norm regularized robust tensor
recovery, as proposed by Goldfarb and Qin [17], is useful when the data are polluted with unstruc-
tured random noises. Other distributions, such as the Cauchy distribution and the chi-squared
distribution, are also used [54, 59] to deal with gross corruption and small noises simultaneously.
Tan et al. [46] use l1 norm regularized tensor decomposition for traffic data recovery in the presence
of random noise corruptions. But if the outliers are structured, for example grouped in columns,
l1 norm regularization does not yield good results. In addition, although traffic is also modeled as
a tensor in [46], only a single road segment is considered and thus does not account for network
spacial structures.

When the data contains large structured events, the outliers can group in columns or fibers of the
dataset, as illustrated in Section 1.2. In this setting, l2,1 norm regularized decomposition is suitable
for group outlier detection, as shown in [47, 56] for matrices, and [42, 62] for tensors. In addition,
Li et al. [30] introduce a multi-view low-rank analysis framework for outlier detection, and Wen
et al. [51] use discriminant tensor factorization for event analytics. Our methods differ from the
existing tensor outlier pursuit methods [42, 62] which deal with slab outliers, i.e., outliers form an
entire slice instead of fibers of the tensor. Moreover, compared with existing works, we also address
the setting with partial observations. As stated in Section 1.1, without an overall understanding of
the underlying pattern, one can incorrectly impute missing entries that later influence decisions
about outliers.

Regarding tensor completion methods, an overview is provided by Song et al. [43] from the per-
spective of big data analysis. Two tensor factorization methods, namely, CANDECOMP/PARAFAC
(CP) decomposition [23] and Tucker decomposition [48], are used for tensor completion. Accord-
ing to the CP decomposition framework, Zhao et al. [61] propose a fully Bayesian probabilistic
model for tensor factorization and completion. Wu et al. [55] also use CP decomposition and take
numerous priors into account to propose a fused CP method for tensor completion. Tucker decom-
position is used in [13], where manifold information is incorporated to propose a simultaneous ten-

sor decomposition and completion (STDC) method. Implementations of several methods discussed
above can be found at [53].

The major difference of our method with the existing methods is our problem setting. We con-
sider the problem when the data contains simultaneously fiber-wise gross corruption and missing
data. This is more difficult than the problem when only missing data exists, or only corrupted
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6:6 Y. Hu and D. B. Work

data exists. Moreover, this is an important setting in large-scale traffic analysis where large out-
lier events occur and missing data is common. In comparison, while Zhou and Feng [62] address
large outliers, the situation of missing data is not explicitly considered. Chen et al. [13] address
missing data without outliers, and Wu et al. [55] and Zhao et al. [61] assume small Gaussian noise
corruption with missing data. We will demonstrate in our simulations in Section 5 that our algo-
rithm can improve the accuracy of the reconstruction by several orders of magnitude when gross
corruption and missing data are present, compared to other methods that are designed to handle
missing data [13, 59, 61].

3 PRELIMINARIES

In this section, we briefly review the mathematical preliminaries for tensor factorization, adopting
the notation of Kolda and Bader [25], and Goldfarb and Qin [17]. We also summarize RPCA [8],
since it serves as a foundation for our extension to higher-order tensor decomposition.

3.1 Tensor Basics

In this article, a tensor is denoted by an Euler script letter (e.g., X); a matrix by a boldface capital
letter (e.g., X); a vector by a boldface lowercase letter (e.g., x); and a scalar by a lowercase letter
(e.g., x ). A tensor of order N has N dimensions, and can be equivalently described as an N -way
tensor or an N -mode tensor. Thus, a matrix is a second order tensor, and a vector is a first order
tensor.

A fiber is a column vector formed by fixing all indices of a tensor but one. In a matrix for example,
each column can be viewed as a mode-one fiber, and each row a mode-two fiber.

The unfolding of a tensor X in the nth mode results in a matrix X(n) , which is formed by rear-
ranging the mode-n fibers as its columns. This process is also called flattening or matricization.
The inverse function of unfolding is denoted as foldn (·), i.e.,

foldn (X(n) ) = X.
The inner product of two tensors X,Y ∈ RI1×I2×···×IN is the sum of their element-wise product,

similar to vector inner products. Let xi1i2 ...iN
and yi1i2 ...iN

denote the (i1, i2, . . . , iN ) element of X
and Y respectively. Then tensor inner product can be expressed as

〈X,Y〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

xi1i2 ...iN
yi1i2 ...iN

.

The tensor Frobenius norm is denoted by ‖ · ‖F , and computed as

‖X‖F =
√
〈X,X〉.

Multiplication of a tensor by a matrix in mode n is performed by multiplying every mode-n
fiber of the tensor by the matrix. The mode-n product of a tensor X ∈ RI1×I2×···×IN and a matrix
A ∈ RJ×In is denoted byX ×n A = Y , whereY ∈ RI1×I2×···×In−1×J×In+1×···×IN . It is also equivalently
written via its mode-n unfolding as Y(n) := AX(n) .

The Tucker decomposition [17, 25] is the generalization of matrix PCA in higher dimensions. It
approximates a tensor X ∈ RI1×I2×···×IN as a core tensor multiplied in each mode n by an appro-

priately sized matrix U
(n) :

X ≈ G ×1 U
(1) ×2 U

(2) × · · · ×N U
(N ) . (3)

G ∈ Rc1×c2×···×cN in (3) is called the core tensor, where c1 through cN are given integers. If cn < In
for some n in (1, 2, . . . ,N ), the core tensor G can be viewed as a compressed version of X. The

matrices U
(n) ∈ RIn×cn are factor matrices, which are usually assumed to be orthogonal.
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The n-rank of X, denoted by rankn (X), is the column rank of X(n) . In other words, it is the
dimension of the vector space spanned by the mode-n fibers. If we denote then-rank of the tensorX
asRn forn = 1, 2, . . . ,N , i.e.,Rn = rankn (X), then the set of the N n-ranks ofX, (R1,R2, . . . ,RN ), is
called the Tucker Rank [25]. In Tucker decomposition (3), if cn = rankn (X) for all n in (1, 2, . . . ,N ),
then the Tucker decomposition is exact. In this case, we can easily conduct the decomposition by

setting U
(n) as the left singular matrix of X(n) . Otherwise, if cn < rankn (X), the decomposition

holds only as an approximation.

3.2 RPCA

We briefly summarize robust variants of PCA in the matrix setting, which are extended to higher-
order tensor settings in Section 4. RPCA belongs to the family of dimension-reduction methods
aiming at combating the so-called curse of dimensionality that often appears when dealing with
large, high dimensional datasets, by finding the best representing low-dimensional subspace. PCA
is a widely used technique in this family, yet it is sensitive to corruptions [8]. For example, consider
a large data matrix that comes from a low rank matrix randomly corrupted by large noises, i.e.,

B = X + E,

where B ∈ RI1×I2 is the data matrix, X ∈ RI1×I2 is a low rank matrix, and E ∈ RI1×I2 is a sparse cor-
ruption matrix of arbitrary magnitude. In this setting traditional PCA can fail to find the subspace
for X given only B.

To address the problem of gross corruption, Candès et al. [8] proposed an RPCA method known
as Principle Component Pursuit (PCP):

min
X,E

‖X‖∗ + λ‖E‖1

s.t. B = X + E,
(4)

with the l1 matrix norm ‖ · ‖1 of E given by:

‖E‖1 :=

I1∑
i=1

I2∑
j=1

|ei j |,

and where ei, j denotes the (i, j )th element of E. The nuclear norm of a matrix X is denoted as ‖ · ‖∗
and is computed as the sum of the singular values of X:

‖X‖∗ :=
∑

i

σi .

where the Singular value decomposition (SVD) of X is X =
∑

i σi ui v
T
i .

The nuclear norm in Equation (4) is proposed as the tightest convex relaxation of the matrix
rank [7]; and the l1 norm is the convex approximation for element-wise matrix sparsity. Candès
et al. [8] showed that PCP can exactly recover a low rank matrix when it is grossly corrupted at
sparse entries. Moreover, by adopting an ADMM algorithm, it is possible to solve Equation (4) in
polynomial time. The PCP formulation (4) requires incoherence of the column space of the sparse
matrix E [8, 56], and does not address the setting where entire columns are corrupted.

An alternative problem formulation using an l2,1 norm on E in Equation (4) is introduced for
matrix recovery with column-wise corruption [47, 56]. The l2,1 norm of a matrix E ∈ RI1×I2 is
defined as

‖E‖2,1 =
I2∑

j=1

√√√
I1∑

i=1

(ei j )2.
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It is essentially a form of group lasso [22], where each column is treated as a group. Minimizing
‖E‖2,1 encourages the entire columns of E to be zero or non-zero, and leads to fewer non-zero
columns.

Note that it is hard to recover an uncorrupted column from a completely corrupted one. There-
fore, instead of trying to recover the complete low-rank matrix, Xu et al. [56] seek instead to re-
cover the exact low-dimensional subspace while identifying the location of the corrupted columns.
Tang and Nehorai [47] make an assumption that if a column is corrupted (i.e., E has nonzero en-
tries in this column), then the entries of the corresponding column in the low-rank matrix X are
zero. This choice allows exact recovery of the low-rank matrix in the non-corrupted columns.

Like PCA for a matrix, we note that the Tucker decomposition of a tensor is also sensitive to
gross corruption [17]. Motivated by the ideas of Candès et al. [8] and Tang and Nehorai [47] for
robust matrix PCA, in the next section we address the problem of robust decomposition of tensors
with gross fiber-wise corruption.

4 METHODS

In this section, we define and pose the higher-order tensor decomposition problem in the pres-
ence of fiber outliers and its partial-observation variant as convex programs, and provide efficient
algorithms to solve them.

4.1 Problem Formulation

The precise setup of the problem is as follows. We are given a high-dimensional data tensor B ∈
RI1×I2×···×IN which is composed of a low-rank tensor X ∈ RI1×I2×···×IN that is corrupted in a few
fibers. In other words, we haveB = X + E, whereE ∈ RI1×I2×···×IN is the sparse fiber outlier tensor.
We know neither the rank of X, nor the number and position of non-zero entries of E. Given
only B, our goal is to reconstruct X on the non-corrupted fibers, as well as identify the outlier
location. Moreover, we might have only partial observations of B, and we seek to complete the
decomposition nevertheless.

We do assume knowledge of the mode along which the fiber outliers are distributed; without
loss of generality let it be the first dimension. Then it is equivalent to say the mode-1 unfolding of
the outlier tensor is column-wise sparse. Thus, we can formulate the problem as:

min
X,E

rank(X) + λ‖E(1) ‖2,1

s.t. B = X + E .
(5)

The mode along which to unfold the outlier tensor E in Equation (5) will influence what kind
of outliers the algorithm will detect. One can extend the algorithm by adding terms of l2,1 norm
of other unfoldings, corresponding to outliers along other dimensions (e.g., gross corruption in
time). In our work, we seek to discover large (in space) events that are acute in time. As a result,
we select the l2,1 norm along the spatial dimension.

Computing the rank of a tensorX, denoted by rank(X) is generally an NP-hard problem [17, 21].
One commonly used convex relaxation of the tensor rank is

∑
i ‖X(i ) ‖∗, which sums the nuclear

norm of the tensor unfoldings in all modes [17]. In this way, we generalize the matrix nuclear norm
to the higher-order case, and explore the potential low rank structure in all dimensions. Problem
(5) thus becomes

min
X,E

N∑
i=1

‖X(i ) ‖∗ + λ‖E(1) ‖2,1

s.t. B = X + E .
(6)
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Next, we deal with the case when the data are only partially available, in addition to observation
data being grossly corrupted. We only know the entries (i1, i2, . . . , iN ) ∈ Ω, where Ω ⊂ [I1] × [I2] ×
· · · × [IN ] is an observation index set. Let XΩ denote the projection of X onto the tensor subspace
supported on Ω. Then XΩ can be defined as:

XΩ =

{
Xi1i2 ...iN

, (i1, i2, . . . , iN ) ∈ Ω
0, otherwise.

Then we can force the decomposition to match the observation data only at the available entries,
and find the decomposition that minimizes the weighted cost of tensor rank and sparsity, leading
to the following model:

min
X,E

N∑
i=1

‖X(i ) ‖∗ + λ‖E(1) ‖2,1

s.t. BΩ = (X + E)Ω .

(7)

Note that related problems to Equation (7) for the matrix setting are addressed in [8, 12].

4.2 Algorithm

In this section, we develop algorithm for tensor decomposition with fiber-wise corruption model
formulated in Section 4.1. We first solve Equation (6) for the full-observation setting, then for the
partial-observation setting Equation (7), adopting an ADMM method [17] for each.

4.2.1 Higher-order RPCA. Problem (6) is difficult to solve because the terms ‖X(i ) ‖∗ in the objec-
tive function are interdependent, since each X(i ) is unfolded from the same tensorX. Alternatively,

we split X into N auxiliary variables, X1,X2, . . . ,XN ∈ RI1×I2×···×IN , and rewrite (6) as:

min
Xi ,E

N∑
i=1

‖Xi (i ) ‖∗ + λ‖E(1) ‖2,1

s.t. B = Xi + E, i = 1, 2, . . . , N ,

(8)

where Xi (i ) are the unfoldings of Xi in the ith mode. The N constraints B = Xi + E ensure that
X1,X2, . . . ,XN are all equal to the original X in problem (6).

Next, we proceed to solve problem (8) via an ADMM algorithm. A full explanation of the general
ADMM framework can be found in [6]. The corresponding augmented Lagrangian function for
problem (8) is

L (X1,X2, . . . ,XN ,E,Y1,Y2, . . . ,YN ; μ ) =
N∑

i=1

‖Xi (i ) ‖∗ + λ‖E(1) ‖2,1

+

N∑
i=1

( μ
2
‖Xi + E − B)‖2F − 〈Yi ,Xi + E − B〉

)
.

Here Yi are the Lagrange multipliers, and μ is a positive scalar.
Under the ADMM framework, the approach is to iteratively update the three sets of variables

(X1,X2, . . . ,XN ),E, (Y1,Y2, . . . ,YN ). To be specific, at the start of the k + 1th iteration, we fix
E = Ek and Yi = Yk

i , then for each i solve:

Xk+1
i = argmin

Xi

L (Xi ,Ek ,Yk
i ; μ ). (9)
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Then, we fix Xi = Xk+1
i and Yi = Yk

i to solve:

Ek+1 = argmin
E
L (Xk+1

i ,E,Yk
i ; μ ). (10)

Finally we fix Xi = Xk+1
i and E = Ek+1, and update Yk

i :

Yk+1
i = Yk

i + μ
(
B − Xk+1

i − Ek+1
)
. (11)

Next we derive closed form solutions for problem (9) and for problem (10). Problem (9), written
out, reads:

Xk+1
i = argmin

Xi

‖Xi (i ) ‖∗ +
μ

2
‖Xi + Ek − B)‖2F −

〈
Yk

i ,Xi + Ek − B
〉
. (12)

Using the property of the Frobenius norm, ‖A1 +A2‖2F = ‖A1‖2F + ‖A2‖2F + 2〈A1,A2〉, prob-
lem (12) can be written as:

Xk+1
i = argmin

Xi

‖Xi (i ) ‖∗ +
μ

2

�����
1

μ
Yk

i + B − Ek − Xi

�����

2

F

= argmin
Xi

‖Xi (i ) ‖∗ +
μ

2

�����
1

μ
Y

k
i (i ) + B(i ) − E

k
(i ) − Xi (i )

�����

2

F

.

(13)

In the second line of Equation (13), we change the Frobenius norm of a tensor into the Frobenius
norm of its i-th unfolding, which does not change the actual value of the norm. As a result, the
objective function of problem (13) only involves matrices, so we can solve for Xi (i ) using the well-

established closed form solution (e.g., see proof in Cai et al. [7]): X
k+1
i (i )
= T 1

μ
( 1

μ
Y

k
i (i )
+ B(i ) − E

k
(i )

).

Then we fold the matrix X
k+1
i (i )

back into a tensor, i.e.,Xk+1
i = foldi (Xk+1

i (i )
). The truncation operator

Tτ (X) for a matrix X = U ΣVT is Tτ (X) = U Στ̄V
T , where Σ = diag(σi ) is the eigenvalue diagonal

matrix for X. The operation Στ̄ = diag(max(σi − τ , 0)) discards the eigenvalues less than τ , and
shrinks the remaining eigenvalues by τ .

We now proceed to derive a closed form solution to update E in problem (10). Problem (10) is
equivalent to solving:

Ek+1 = argmin
E

λ‖E(1) ‖2,1 +
N∑

i=1

(μ‖Xk+1
i + E − B)‖2F − 〈Y

k
i ,Xk+1

i + E − B〉). (14)

Following the same technique as earlier, (14) is equivalent to:

Ek+1 =argmin
E

λ‖E(1) ‖2,1 +
N∑

i=1

�
�
μ

2

�����
1

μ
Yk

i + B − Xk+1
i − E

�����

2

F

�
�
. (15)

By the proof of Goldfarb and Qin [17], problem (15) shares the same solution with:

Ek+1 =argmin
E

˜λ ���E(1)
���2,1
+
μN

2

������
E − 1

N

N∑
i=1

(
1

μ
Yk

i + B − Xk+1
i

)������
2

F

, (16)

since they have the same first-order conditions. In order to simplify expression (16), we denote the

term 1
N

∑N
i=1 ( 1

μ
Yk

i + B − X
k+1
i ) by a single variable C ∈ RI1×I2×···×IN . Thus,

Ek+1 = argmin
E

λ‖E(1) ‖2,1 +
μN

2
‖E − C‖2F

= argmin
E

λ‖E(1) ‖2,1 +
μN

2
‖E(1) − C(1) ‖2F ,

(17)
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ALGORITHM 1: Tensor RPCA for fiber-wise corruptions

1: Given B, λ, μ. Initialize Xi = E = Yi = 0.
2: for k = 0, 1, . . . do

3: for i = 1 : N do � Update X
4: X

k+1
i (i )
= T 1

μ

(
1
μ

Y
k
i (i )
+ B(i ) − E

k
(i )

)
.

5: Xk+1
i = foldi

(
X

k+1
i (i )

)
6: end for

7: C = 1
N

∑N
i=1

(
1
μ
Yk+1

i + B − Xk+1
i

)
� Update E .

8: for j = 1, 2, . . . ,p do

9: E
k+1
(1)j
= C(1)j max

{
0, 1 − λ

μN ‖C(1)j ‖2

}
10: end for

11: Ek+1 = fold1 (Ek+1
(1)

)

12: for i = 1 : N do � Update Y .
13: Yk+1

i = Yk
i + μ (B − Xk+1

i − Ek+1).
14: end for

15: end for

16: return Xk = 1
N

∑N
i=1Xk

i ,Ek

where in the second line we use the same approach as in (13) in which we replace the tensor Frobe-
nius norm by the equivalent Frobenius norm of the mode one unfolding. The objective function
of problem (17) only involves matrices, and the closed form solution is [47]:

E
k+1
(1)j = C(1)j max

{
0, 1 − λ

μN ‖C(1)j ‖2

}
, for j = 1, 2, . . . ,p, (18)

where E(1)j is the jth column of E(1) , C(1)j is the jth column of C(1) , and the integer p = I2 × I3 ×
· · · × IN is the total number of columns in C(1) . This operation effectively sets a column of C(1)

to zero if its l2 norm is less than λ
μN

, and scales the elements down by a factor 1 − λ
μN ‖C(1)j ‖2

otherwise [47].
Note that compared with the ADMM method where we just update Xi and E once, the aug-

mented Lagrangian multipliers (ALM) method [31] seeks to find the exact solutions for primal
variables Xi and E before updating Lagrangian multipliers Yi = Yk

i , yielding the framework as

(Xk+1
i ,Ek+1) = argmin

Xi ,E
L (Xi ,E,Yk

i ; μ )

Yk+1
i = Yk

i + μ (B − Xk+1
i − Ek+1).

As pointed out by Lin et al. [31], compared with ALM, not only is ADMM still able to converge
to the optimal solution for Xi and E, but also the speed performance is better. It is also noted
that while in ALM, the X and E are optimized jointly, in the ADMM implementation, they are in
fact updated sequentially [6]. It is often observed in the matrix settings (see e.g., Lin et al. [31])
that updating the term containing outliers before the low rank term (i.e., E before X in the tensor
setting) the low rank term results in faster convergence. As a consequence this is the approach
followed in the numerical implementation of Algorithm 1 used later in this work.
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In the implementation of Algorithm 1, we set the convergence criterion as:

‖B − E − X‖F
‖B‖F

≤ ϵ, (19)

Where ϵ is the tolerance.

4.2.2 Partial Observation. Now we provide an algorithm to solve problem (7). Similar to the
matrix setting in Tang and Nehorai [47], we set the fibers of the low-rank tensor to be zero in the
locations corresponding to outliers. We introduce a compensation tensor O ∈ RI1×I2×···×IN , which
is zero for entries in the observation set Ω, and can take any value outside Ω. Thus using the same
auxiliary variables technique as in Equation (8), we can reformulate problem (7) as:

min
Xi ,E

N∑
i=1

‖Xi (i ) ‖∗ + λ‖E(1) ‖2,1

s.t. B = Xi + E + O, i = 1, 2, . . . , N ,

OΩ = 0.

(20)

Since O compensates for whatever the value is in the unobserved entries of B, we only need to
keep track of the indices of the unobserved entries, and can simply set the unobserved entries of
B to zero. The augmented Lagrangian function for problem (20) is:

L (X1,X2, . . . ,XN ,E,O,Y1,Y2, . . . ,YN ; μ ) =
N∑

i=1

‖Xi (i ) ‖∗ + λ‖ E(1) ‖2,1

+

N∑
i=1

( μ
2
‖Xi + E + O − B)‖2F − 〈Yi ,Xi + E + O − B〉

)
.

We again use the ADMM framework now iteratively updatingXi , E, O andYi . The proof of the
closed form solution for updating Xi , E andYi is similar to Algorithm 1. For O, we fix Xi = Xk+1

i ,

E = Ek+1 and Yi = Yk
i , to solve Equation (21):

Ok+1 = argmin
O

L (Xk+1
i ,Ek+1,O,Yk

i ; μ )

s.t. OΩ = 0.
(21)

Following the same procedure as before (see Equations (14)–(16)), we have:

Ok+1 = argmin
O

N∑
i=1

( μ
2
���X

k+1
i + Ek+1 + O − B)���

2

F
− 〈Yk

i ,Xk+1
i + Ek+1 + O − B〉

)

= argmin
O

N∑
i=1

�
�
μ

2

�����
1

μ
Yk

i + B − Xk+1
i − Ek+1 − O

�����

2

F

�
�

= argmin
O

μN

2

������
O − 1

N

N∑
i=1

(
1

μ
Yk

i + B − Xk+1
i − Ek+1

)������
2

F

,

s.t. OΩ = 0.

(22)

For Equation (22), we simply set O = 1
N

∑N
i=1 ( 1

μ
Yk

i + B − X
k+1
i − Ek+1) for entries

(I1, I2, . . . , IN ) ∈ ΩC , and zero otherwise. The procedure is summarized in Algorithm 2.
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ALGORITHM 2: ADMM for robust tensor completion

1: Given B, λ, μ. Initialize Xi = E = Yi = O = 0.
2: for k = 0,1, · · · do

3: for i = 1:N do � Update X
4: X

k+1
i (i )
= T 1

μ
(B(i ) +

1
μ

Y
k
i (i )
− E

k
(i )
− O

k
(i )

),

5: Xk+1
i = foldi (Xk+1

i (i )
)

6: end for

7: C = 1
N

∑N
i=1

(
1
μ
Yk+1

i + B − Xk+1
i − Ok+1

)
� Update E .

8: for j = 1, 2, . . . ,p do

9: E
k+1
(1)j
= C(1)j max

{
0, 1 − λ

μN ‖C(1)j ‖2

}
10: end for

11: Ek+1 = fold1 (Ek+1
(1)

)

12: Ok+1 =
(∑N

i=i

(
1
μ
Yk

i + B − Xk+1
i − Ek+1

))
ΩC
. � Update O.

13: for i = 1 : N do � Update Y .
14: Yk+1

i = Yk
i + μ (B − Xk+1

i − Ek+1 − Ok+1)
15: end for

16: end for

17: return Xk = 1
N

∑N
i=1Xk

i ,Ek

We set the convergence criterion of Algorithm 2 as

‖B − E − X − O‖F
‖B‖F

≤ ϵ,

which is similar to Equation (19) but accounts for the additional tensor O.
The convergence of Algorithms 1 and 2 is guaranteed. The proposed algorithms are special

cases of the ADMM framework. The convergence guarantee thus follows the ADMM algorithm,
which is established in [27, 32] for example. We also refer to works [31, 60] for more discussion
on convergence of ADMM algorithms for matrix low rank and sparse decompositions.

In terms of computational cost, we note that each iteration is dominated by the singular value
decomposition used when updating the low-rank tensor. Because the SVD is the computationally
expensive step, in our source code, we use an efficient implementation from [29]. As we show in
Section 5, only a few iterations (i.e., 10–40) are sufficient to achieve good precision, consistent with
the observation in [8] (for matrices).

5 NUMERICAL EXPERIMENTS

In this section, we apply Algorithms 1 and 2 developed in Section 4.2 on a series of test prob-
lems using synthetically generated datasets. We first conduct tensor decomposition on fiber-wise
corrupted data, then we examine the case when the data are only partially observed and are also
fiber-wise corrupted. For the fully observed case, we compare our approach with l1 norm con-
strained decomposition [17, 46]. For the partially observed case, in addition to the l1 norm con-
strained decomposition, several other state-of-the-art tensor completion methods are also used
for comparison: STDC [13], FBCP [61], W-ST, and C-ST [59]. We demonstrate via the numerical
experiments that under fiber-wise gross corruption and partial observation, our method provides
an exact recovery and is several orders of magnitude more accurate than the other approaches.
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5.1 Performance Measures and Implementation

For each of the numerical experiments, the performance of the algorithms are measured by the
relative error (RE) of the low-rank tensor, as well as the precision and recall of the outlier fibers.
The RE of low-rank tensor is calculated as:

RE =
‖X0 − X̂‖F
‖X0‖F

,

where X0 is the true low-rank tensor modified to take the value 0 in the entries corresponding to

the corrupted fibers; X̂ is the estimated low-rank tensor resulting from application of Algorithm 1
or 2, which also has the value 0 in the fibers that are estimated to be corrupted.

We compute the precision of the algorithm to assess the potential to correctly identify only the
outlier fibers. It is computed as:

precision =
tp

tp + fp
,

where the true positives (tp) corresponds the number of estimated outlier fibers which are true
outliers, and the false positives (fp) corresponds to the number of estimated outlier fibers which
are not true outliers.

The recall, which measures the ability to find all outlier fibers, is defined as:

recall =
tp

tp + fn
,

where the false negatives (fn) correspond to the number of true outlier fibers that were not correctly
identified by the estimator.

For the convergence criterion, we set ϵ = 10−7, and we use an empirical value λ = 1
0.03Im

, where

Im = max(I1, . . . , IN ). The hyperparameter λ in l1 norm constrained decomposition algorithm is
also tuned for its best performance in our settings.

All of the experiments are carried out on a Macbook Pro with quad-core 2.7 GHz Intel i7
Processor and 16 GB RAM, running Matlab R2018a. We modify and extend the code of Lin
et al. [31], using PROPACK toolbox [29] to efficiently calculate the SVD. The code is modi-
fied to update variables in line with the distinct problem formulation using the l2,1 norm and
to scale to tensors rather than matrices. The Tensor Toolbox for Matlab [4], [3] is also used
for tensor manipulations. The resulting source code is available at https://github.com/Lab-Work/
Robust_tensor_recovery_for_traffic_events.

5.2 Tensor RPCA

In this subsection, we apply higher-order RPCA to the problems where we have fully observed
data with fiber-wise corrupted entries.

5.2.1 Simulation Conditions. We synthetically generate the observation data as B = X0 + E0 ∈
RI1×I2×I3 , where X0 and E0 are the true or “ground truth” low-rank tensor and fiber-sparse tensor,
respectively. We generate X0 ∈ RI1×I2×I3 as a core tensor G ∈ Rc1×c2×c3 with size c1 × c2 × c3 and
Tucker rank (c1, c2, c3), multiplied in each mode by orthogonal matrices of corresponding dimen-

sions, U
(i ) ∈ RIi×ci :

X0 = G ×1 U
(1) ×2 U

(2) ×3 U
(3) .

The entries of G are independently sampled from standard Gaussian distribution. The orthogonal

matrices U
(i ) are generated via a Gram-Schmidt orthogonalization on ci vectors of size RIi drawn

from standard Gaussian distribution. The sparse tensor E0 ∈ RI1×I2×I3 is formed by first generating
a tensor E′0 ∈ RI1×I2×I3 , whose entries are i.i.d uniform distributionU (0,1). Then we randomly keep
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Table 1. Application of Algorithm 1 on Fiber-wise Corrupted Tensors with Full

Observation, and Comparison with l1 Norm Constrained Decomposition

(a) Algorithm 1: l2,1 norm constrained decomposition

(I1, I2, I3) (c1, c2, c2) RE precision recall iter time(s)
(70,70,70) (7,7,7) 1.23 × 10−7 1.0 1.0 29 9.9
(90,90,90) (9,9,9) 1.24 × 10−7 1.0 1.0 28 16.2

(150,150,150) (15,15,15) 6.68 × 10−8 1.0 1.0 28 50.5
(210,210,210) (21,21,21) 7.35 × 10−8 1.0 1.0 28 133.0

(b) Comparison: l1 norm constrained decomposition

(I1, I2, I3) (c1, c2, c2) RE precision recall iter time(s)
(70,70,70) (7,7,7) 2.10 × 10−1 1.0 1.0 28 1.4
(90,90,90) (9,9,9) 2.28 × 10−1 1.0 1.0 29 2.6

(150,150,150) (15,15,15) 2.23 × 10−1 1.0 1.0 28 14.7
(210,210,210) (21,21,21) 2.27 × 10−1 0.99 1.0 35 101.0

For different tensor sizes (I1, I2, I3) and Tucker ranks (c1, c2, c2), where we set c = 0.1I , we

show the REs of low rank tensors (RE), the precision and recall of outlier fibers identification, as

well as the number of iterations (iter) and total time for convergence.

a fraction γ of the fibers of E′0 to form E0. Finally, the corresponding fibers of X0 with respect to
non-zero fibers in E0 are set to zero.

5.2.2 Algorithm Performance for Varying Problem Sizes. We apply Algorithm 1 on B of varying

tensor sizes (I1, I2, I3) and underlying Tucker rank (c1, c2, c3), and predict X̂ and Ê using Algo-
rithm 1. We also apply l1 norm constrained decomposition on the same settings. Table 1 compares
the result. The corruption rate is set to 5%, i.e., γ = 0.05. In all cases, for our algorithm the relative
residual errors are less than 10−6, which is the same precision that we set for convergence toler-
ance. That is to say, we can exactly recover the low rank tensors in this setting. The precision and
recall are both 1.0, indicating that the outlier detection is also exact. Similar to the observation
of Candès’ et al. [8], the iteration numbers tend to be constant (between 28 and 29 in this case)
regardless of tensor size. This indicates that the number of of SVD computations might be limited
and insensitive to the size, which is important since SVD is the computational bottleneck of the
algorithm. Furthermore, this property is important to allow the problem to solve quickly even on
datasets of moderate sizes, as will be shown in a case study in Section 6.

In comparison, although l1 norm constrained decomposition can also detect outliers with high
precision and recall, the relative residual errors are relatively high, on the order of 10−1. This
indicates that l1 norm constrained decomposition can do an adequate job when the corruption
ratio is low (γ = 0.05), but cannot achieve exact recoveries.

5.2.3 Influence of the Corruption Rate. Next, we investigate the performance of Algorithm 1
as the corruption ratio changes, and compare the result with l1 norm constrained decomposition.
We fix the low-rank tensor X0 at size R70×70×70 with a Tucker rank of (5, 5, 5), then vary the gross
corruption ratio γ from 0% to 60%. The results are shown in Figure 3 as an average over 10 trials.
In this setting, we see that as long as the corruption ratio is below 0.47, Algorithm 1 can precisely
recover the low rank tensor, and correctly identify the outlier fibers. On the other hand, the RE
of l1 norm constrained decomposition is constantly higher. After the corruption ratio exceeds 0.2,
the estimation is no longer useful, with the RE exceeding 100%.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 6. Publication date: December 2020.



6:16 Y. Hu and D. B. Work

Fig. 3. Comparison of Algorithm 1 (l2,1 norm regularized tensor decomposition), with l1 norm regularized

tensor decomposition, as gross corruption rate changes. We fix the tensor size at R70×70×70, and fix the

Tucker rank of low-rank tensor X0 at (5, 5, 5), then vary the gross corruption ratio γ from 0% to 100%. The

result is an average over 10 trials.

5.3 Robust Tensor Completion

In this subsection, we look at the performance of Algorithm 2 when the data are only partially
observed. We first compare it with several baseline tensor completion methods, then demonstrate
how the performance of our method changes with varying conditions. We finally investigate sen-
sitivity of our method regarding the algorithm hyper-parameter λ.

5.3.1 Simulation Conditions. We first generate full observation data B′ = X0 + E0 ∈ RI1×I2×I3

in the same way as Section 5.2.X0 ∈ RI1×I2×I3 is the low-rank tensor, and E0 ∈ RI1×I2×I3 is the sparse
tensor. Then, we form the partial observation data B ∈ RI1×I2×I3 by randomly keeping a fraction
ρ of the entries in B′. We record the indices of the unobserved entries, and set their values in B
as 0.

5.3.2 Method Comparison. We compare the performance of Algorithm 2 (l2,1 norm regularized
tensor completion), with l1 norm regularized tensor completion [17, 46], STDC [13], FBCP [61],
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Table 2. Performance of Our Algorithm Compared to l1 Norm Regularization [17, 46]

and Tensor Completion Methods [13, 59, 61]

corruption rate 0% corruption rate 5%
observation 100% 60% 20% 100% 60% 20%
our method - 8.25 × 10−8 5.38 × 10−1

1.30 × 10
−7

2.54 × 10
−7

6.75 × 10
−1

l1 norm [17, 46] - 9.58 × 10−8 5.54 × 10−1 2.19 × 10−1 4.76 × 10−1 1.00
W-ST [59] - 1.55 × 10−1 6.51 × 10−1 1.62 × 10−1 1.84 × 10−1 6.80 × 10−1

C-ST [59] - 2.43 × 10−1 1.00 1.59 × 10−1 2.71 × 10−1 1.00
STDC [13] - 1.01 × 10−3 4.17 × 10−1 5.16 4.33 4.13
FBCP [61] - 2.4 × 10

−9
6.33 × 10

−10 4.63 4.21 9.12

RE is shown under different gross corruption rate and observation rate. We fix the tensor size at R50×50×50, and fix

the Tucker rank of low-rank tensor X0 at (5, 5, 5).

W-ST [59], and C-ST [59], using source code provided in the manuscripts and also at [53]. For each
method, algorithm hyperparameters are set according to the source paper, or tuned if improved
performance can be obtained. We compare the methods under the setting where no gross corrup-
tion is present, and also in the setting in which gross corruption is present (i.e., at 5%). The results
are shown in Table 2.

The main findings are as follows. In the setting where gross corruptions are present, our method
offers the best performance over a range of missing data rates. Moreover, if at least 60% of the data
are observed, and 5% of the entries are corrupted, our method provides an exact recovery and is
several orders of magnitude more accurate than the other approaches. When gross corruptions
are not present, method [61] outperforms all other approaches, while our method offers simi-
lar or better performance to [13] and [59]. These results illustrate the importance of designing
algorithms to treat missing and grossly corrupted data, which is the main contribution of our
approach.

5.3.3 Influence of the Corruption and Observation Ratios. In the following subsections, we in-
vestigate the performance of Algorithm 2 with varying conditions. First, we apply Algorithm 2 on
simulated data with a varying corruption ratio and observation ratio. We fix the low-rank tensor
X0 at size R70×70×70 with a Tucker rank of (5, 5, 5). For gross corruption ratio γ at 0.05, 0.1, 0.2, we
vary the observation ratio ρ from 0.1 to 1 and run Algorithm 2. We run 10 times and average the
results.

Figure 4 shows that for the detection of corrupted fibers, the recall stays at 1. The precision stays
at 1 when ρ is above 0.6 but drops dramatically for smaller ρ. The RE of low-rank tensor is zero
when the observation ratio ρ > 0.6 with corruption ratio γ = 0.05, and when the observation ratio
ρ > 0.8 with γ = 0.1. We observe a phase-transition behavior, in that the decomposition is exact
when the observation ratio ρ is above a critical threshold, but the performance drops dramatically
below the threshold. This critical threshold on the observation ratio ρ varies for each case, namely,
the algorithm can handle more missing entries as the number of outliers γ is reduced. But when
the corruption ratio is too large, exact recovery is not guaranteed.

Overall, the performance is promising, since we can exactly identify the outlier positions and
recover the low-rank tensor at non-corrupted entries, even with relatively a large missing ratio,
for example when 5% of the fibers are corrupted and 40% of the data are missing.

5.3.4 Influence of the Observation Ratio and the Tensor Rank. Next we fix the low-rank tensorX0

at size R70×70×70 and gross corruption ratio γ = 0.1. For X0 of different Tucker ranks (2,2,2),(5,5,5),
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Fig. 4. Results of Algorithm 1 as a function of observation ratio with different corruption rates. The low-rank

tensor X0 size is fixed at R70×70×70 with a Tucker rank of (5, 5, 5), and the gross corruption ratio γ is set at

0.05, 0.1, or 0.2. The result is an average over 10 trials.

and (8,8,8), we vary the observation ratio from 0.1 to 1 and run Algorithm 2. The result is shown
in Figure 5, which is an average across 10 trials. Again, we observe a phase-transaction behavior,
that when observation ratio is above a critical threshold, the decomposition is exact, with preci-
sion and recall at one, and RE at zero. For tensor ranks (5,5,5) and (8,8,8), this threshold is about
0.8. For tensor rank (2,2,2), it is lower, about 0.5. This indicates that when the underlying ten-
sor rank is lower, we can exactly conduct the decomposition with even with a lower observation
ratio.

5.3.5 Phase Transition Behavior. Now, we further study the phase transition property of
Algorithm 2 in terms of the observation ratio and the tensor rank. We fix the gross corruption
ratio at γ = 0.1 and the tensor size at R70×70×70. Then we vary the observation ratio from 0.3 to
1, and the Tucker rank of X0 from (1,1,1) to (20,20,20). For each combination we conduct 10 trials.
Figure 6 shows the success rate out of 10 trials for varying tensor rank and observation ratio.
We regard a trial successful if both the precision and recall of the outlier location identification
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Fig. 5. Results of Algorithm 2 as a function of the observation ratio consideringX0 with varying Tucker rank.

The low-rank tensorX0 is generated with a Tucker rank of (2,2,2), (5,5,5), and (8,8,8) respectively, with a fixed

size of R70×70×70, and a gross corruption ratio γ = 0.1. The plotted result is an average over 10 trials.

are greater than 0.99. The result shows that the possibility of success rises as observation ratio
increases and Tucker rank of X0 decreases. For observation ratios greater than 0.7 and Tucker
rank smaller than (5,5,5), the outlier identification is always successful.

5.4 Parameter Sensitivity

Since the hyperparameter λ is empirically chosen, we conduct a series of experiments to investi-
gate the sensitivity regarding λ. To show the effective value of λ under different tensor sizes, we
vary the tensor size from (50, 50, 50) to (200, 200, 200), and conduct tensor recovery experiments
with different λ. The results (Figure 7) show that there is a range of λ that can achieve exact re-
covery, and that as tensor size increases, the value of λ should decrease. We have thus chosen an
empirical value λ = 1

0.03Im
in our simulation experiments, which is sufficiently simple and falls in

the range. We note that one can further adjust/optimize λ to achieve desired results if problem
specific information is known.
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Fig. 6. Rate of successful outlier identification across 10 trials. The color denotes the rate of success. For

each trial we create a tensor with size R70×70×70 and Tucker rank (c,c,c) (x-axis), fiber-wise corrupt it at ratio

γ = 0.1. We vary the observation ratio rho from 0.3 to 1 (y-axis).

6 CASE STUDY: NASHVILLE, TN TRAFFIC DATASET

In this section, we apply our proposed method to a dataset of real-traffic data and use it to detect
traffic events. We use the traffic speed data of downtown Nashville from January 1 to April 29, 2018
obtained from a large-scale traffic aggregator. Given that this is a real empirical dataset, we do not
have access to the true low-rank traffic conditions and the true outliers. As a consequence, it is
not possible to evaluate the precision and recall of the outlier detection algorithm as was done in
the numerical examples in the previous section. Nevertheless, our algorithm can mark the events
that are confirmed to be severe car crashes, construction lane closures, or large events that caused
significant disruption on traffic of downtown Nashville.

We select a subset of road segments within downtown Nashville area that regularly have traffic
data available. The base traffic dataset consists of the 1-hour average speed of traffic on each road
segment in the network. The dataset has an observation ratio of 0.807, and records 556 road seg-
ments for 17 weeks, every week containing 24 × 7 = 168 hours, for a total of 2,856 hours. We can
thus construct a data tensor of size 556 × 168 × 17. The map of the final-selected road segments are
shown in Figure 8, containing major interstate highways I-40, I-24 and I-440, among other major
surface streets.

Since the data are not fully observed, we adopt the robust tensor completion algorithm
(Algorithm 2). We set λ = 1.47, leading to a corruption ratio of 1.18%. This means over the
17 weeks (2,856 hours), 36 hours are marked as abnormal. Algorithm 2 takes 19 seconds to run on
this dataset. Figure 9 plots the timeline when these outlier events take place.

Next, we investigate the outlier events identified by Algorithm 2. Out of the 36 hours detected
as abnormal, 31 can be easily matched to recorded incidents. This includes construction lane
closures, car crashes, and large events like the annual St. Jude Rock ‘N’ Roll Marathon [36].
This process is done by manually comparing the events identified by Algorithm 2 with the
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Fig. 7. Sensitivity of parameter λ for different tensor sizes. The gross corruption ratio γ is set at 0.05, and

observation ratio is set at 80%. For each tensor size (I, I, I), we set Tucker rank of low-rank tensor at (c,c,c),

where c = 0.1 I.

accident records of the Nashville fire department [35], and lane closure records of theTennessee

Department of Transportation [38], which is the state transportation authority. Most incidents
clear out after 1 hour, while some last for 2 hours or more. For the five outlier hours that
do not immediately correspond to events logged by authorities, we observe that the average
speed of of many roads appear faster than normal, corresponding to abnormally light traffic
conditions.

Figures 10 and 11 visualize some outlier events for illustration. In each figure, the heat maps
in the right column show the average speed of the road during each hour, and the left column
shows how many standard deviations the road segment is from the average speed of that hour. We

calculate the average speed by looking at the low-rank matrix X̂ of Algorithm 2, which is expected
to be the normal traffic pattern, and calculate the mean speed of 17 weeks for every hour of the
week.

Figure 10 shows an event that corresponds to a series of car crashes. At noon on March 2, 2019,
several severe car crashes occurred. The crashes occurred on a major freeway and an important
arterial in Nashville, namely, Interstate 40 (labeled 1 in the second row of Figure 10) and Charlotte
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Fig. 8. Map of downtown Nashville. The studied road segments are marked in blue and consist of the major

freeways and surface streets.

Fig. 9. Stem plot of detected outlier events. Each column indicates the time when an detected outlier event

takes place.

Avenue (labeled 2 in the second row), as well as on and Carroll street (labeled 3 in the second row).
At about 13:00, two other car crashes occurred on different segments of Interstate 40 (labeled 4 and
5 in the third row of Figure 10) [35]. The sequence of severe crashes created unusual congestion
for that time of day, and took 2 hours to clear out. The corresponding hours 12:00 and 13:00 are
detected by our method as outliers. We clarify that while we marked the locations identified to be
car crashes, we also observe that other road segments are slower than usual, even though we do
not know the underlying cause. The fact that we observe outliers on other portions of the network
at the same time is in fact consistent with the design of the l2,1 norm to find hours in which large
portions of the network are anomalous.
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Fig. 10. Detected car crashes. The second and third row, i.e., 12:00 and 13:00 are marked as outliers. At 12:00,

several severe car crashes happened on Interstate 40 (area 1 in the second row), Charlotte Avenue (area 2 in

the second row), and Carroll street (area 3 in the second row). At about 13:00, two other car crashes occur at

different segments of Interstate 40 (areas 4 and 5 in the third row).

Figure 11 shows a detected construction event. From 20:00 Tuesday evening through 5:00 the
following day, there were road closures for bridge rehabilitation, resurfacing, and maintenance
on the major freeways around downtown Nashville, namely, Interstate 24 (the north-south route
marked as 1), Interstate 40 (the east-west route marked as 2), as well as streets connecting to
Interstate 24 [37]. The first 2 hours of the lane closure, i.e., 20:00 and 21:00, observed the most
congestion and were detected as outliers. The late night hours of Tuesday evening and the early
Wednesday morning hours did not experience significant congestion and were consequently not
detected as outliers.
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Fig. 11. Detected road closure. The second and third row, i.e., 20:00 and 21:00 are marked as outliers. It is the

time when segments of Interstate 24 (the north-south route marked as 1), Interstate 40 (the east-west route

marked as 2), as well as streets connecting to Interstate 24, were closed for bridge rehabilitation, resurfacing,

and maintenance.

7 CONCLUSIONS

In this work, we introduced a tensor completion problem to detect extreme traffic conditions that
exploits the spatial and temporal structure of traffic patterns in cities. An algorithm was proposed
to perform the detection even in the presence of missing data. The method was applied to numer-
ical examples that demonstrate exact recovery of the underlying low-rank tensor is possible in a
range of settings with corrupted and missing entries, with lower quality results achieved as the
fraction of missing entries increases. A case study on traffic conditions in Nashville, TN, demon-
strated the practical performance of the method.

One limitation of the proposed approach is that the method exploits linear relationships between
the traffic patterns, and is not designed to capture nonlinear spatial and temporal relationships. In
our future work, we are interested in exploring possible neural network extensions might gener-
alize the outlier detection tools for more complex relationships.
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