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Abstract

Recent work learns contextual representations
of source code by reconstructing tokens from
their context. For downstream semantic under-
standing tasks like code clone detection, these
representations should ideally capture pro-
gram functionality. However, we show that the
popular reconstruction-based RoOBERTa model
is sensitive to source code edits, even when the
edits preserve semantics. We propose Con-
traCode: a contrastive pre-training task that
learns code functionality, not form. Con-
traCode pre-trains a neural network to iden-
tify functionally similar variants of a pro-
gram among many non-equivalent distractors.
We scalably generate these variants using
an automated source-to-source compiler as a
form of data augmentation. Contrastive pre-
training outperforms RoBERTa on an adver-
sarial code clone detection benchmark by 39%
AUROC. Surprisingly, improved adversarial
robustness translates to better accuracy over
natural code; ContraCode improves summa-
rization and TypeScript type inference accu-
racy by 2 to 13 percentage points over com-
petitive baselines. All source is available at
https://github.com/parasj/contracode.

1 Introduction

Programmers increasingly rely on machine-aided
programming tools that analyze or transform code
automatically to aid software development (Kim
et al.,, 2012). Traditionally, code analysis uses
hand-written rules, though the wide diversity of
programs encountered in practice can limit their
generality. Recent work leverages machine learn-
ing for richer language understanding, such as
learning to detect bugs (Pradel and Sen, 2018) and
predict performance (Mendis et al., 2019).

Still, neural models of source code are suscep-
tible to adversarial attacks. Yefet et al. (2020)
and Schuster et al. (2021) find accuracy degrades
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Figure 1: Robust code clone detection: On source
code, RoBERTu is not robust to simple label-preserving
code edits like renaming variables. Adversarially se-
lecting between possible edits lowers performance be-
low random guessing (dashed line). Contrastive pre-
training with ContraCode learns a more robust repre-
sentation of functionality, consistent across code edits.
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functionally different programs

Figure 2: For many analyses, programs with the same
functionality should have similar representations. Con-
traCode learns such representations by pre-training an
encoder to retrieve equivalent, transformed programs
among many distractors.

significantly under adversarial perturbations for
both discriminative and generative code models.
In our work, we investigate adversarial attacks on
code clone detection. Successful adversarial at-
tacks could circumvent malware detectors.

While self-supervision can improve adversar-
ial robustness (Hendrycks et al., 2019), we find
that RoBERTa is sensitive to stylistic implemen-
tation choices of code inputs. Fig. 1 plots the per-
formance of ROBERTa and ContraCode, our pro-
posed method, on a code clone detection task as
small label-preserving perturbations are applied to
the input code syntax. With just three minor ad-
versarial edits to code syntax, RoOBERTa underper-
forms the random classifier (in gray). In Fig. 3,

5954

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5954-5971
November 7-11, 2021. (©)2021 Association for Computational Linguistics


https://github.com/parasj/contracode

we show that RoBERTa’s representations of code
are sensitive to code edits in agreement with prior
work (Wang and Christodorescu, 2019; Wang and
Su, 2019; Rabin and Alipour, 2020).

To address this issue, we develop ContraCode: a
self-supervised representation learning algorithm
that captures program semantics. We hypothesize
that programs with the same functionality should
have similar underlying representations for down-
stream code understanding tasks.

ContraCode generates syntactically diverse but
functionally equivalent programs using source-to-
source compiler transformation techniques (e.g.,
dead code elimination, obfuscation and constant
folding). It uses these programs in a challeng-
ing discriminative pretext task that requires the
model to identify similar programs out of a large
dataset of distractors (Fig. 2). To solve this task,
the model must embed code semantics rather than
syntax. ContraCode improves adversarial robust-
ness in Fig. 1. Surprisingly, adversarial robustness
transfers to better natural code understanding.

Our novel contributions include:

1. the novel use of compiler-based transforma-
tions as data augmentations for code,

2. the concept of program representation learn-
ing based on functional equivalence, and

3. a detailed analysis of architectures, code
transforms and pre-training strategies, show-
ing ContraCode improves type inference top-
1 accuracy by 9%, learned inference by 2%-—
13%, summarization F1 score by up to 8%
and clone detection AUROC by 2%—46%.

2 Related work

Self-supervised learning (SSL) is a learning
strategy where some attributes of a datapoint
are predicted from remaining parts. BERT (De-
vlin et al.,, 2018) is a SSL method for NLP
that reconstructs masked tokens as a pretext
task. RoBERTa (Liu et al., 2019) further tunes
BERT. Contrastive approaches minimize distance
between learned representations of similar ex-
amples (positives) and maximize distance be-
tween dissimilar negatives (Hadsell et al., 2006).
CPC (Oord et al., 2018; Hénaff et al., 2019) en-
codes segments of sequential data to predict fu-
ture segments. SImCLR (Chen et al., 2020a) and
MoCo (He et al., 2019; Chen et al., 2020b) use
many negatives for dense loss signal.
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Figure 3: A UMAP visualization of JavaScript method
representations learned by RoBERTa and ContraCode,
in R?. Programs with the same functionality share
color and number. RoBERTa’s embeddings often do
not cluster by functionality, suggesting that it is sensi-
tive to implementation details. For example, many dif-
ferent programs overlap, and renaming the variables
of Program 19 significantly changes the embedding.
In contrast, variants of Program 19 cluster in Contra-
Code’s embedding space.

Code representation learning We address
clone detection (White et al., 2016), type infer-
ence (Hellendoorn et al., 2018), and summariza-
tion (Alon et al., 2019a). Others explored summa-
rization (Movshovitz-Attias and Cohen, 2013; Al-
lamanis et al., 2016; Iyer et al., 2016; Ahmad et al.,
2020) and types (Pradel et al., 2019; Pandi et al.,
2020; Wei et al., 2020; Allamanis et al., 2020;
Bielik and Vechev, 2020; Allamanis et al., 2018)
for various languages. Inst2vec (Ben-Nun et al.,
2018) embeds statements in LLVM IR by process-
ing a flow graph with a context prediction objec-
tive (Mikolov et al., 2013). Code2seq (Alon et al.,
2019a) embeds AST paths with an attentional en-
coder for seq2seq tasks. Kanade et al. (2020) and
Feng et al. (2020) pre-train a Transformer on code
using the masked language modeling (MLM) ob-
jective (Devlin et al., 2018; Taylor, 1953).

Adversarial attacks on code models Yefet
et al. (2019) find code models are highly sensitive
to adversarial code edits in a discrimative setting.
Schuster and Paliwal (1997) discovers in-the-wild
attacks on code autocompletion tools. Compared
to language models, code models may be more
vulnerable to adversarial attacks due to synthetic
labels (Ferenc et al., 2018; Pradel and Sen, 2018;
Benton et al., 2019) and duplication (Allamanis,
2019) that degrade generalization.
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function x(maxLine) {
const section = {
text: '
data function x(t) {
. const n = {
"text': "',
for (; i < maxLine; i += 1) 'data’: data
section.text += “${lines[iJ}\n"; 3
For (i <t;i+=1){
n.text += lines[i] + '\n';
if (section)
parsingCtx.sections.push(section); N n

}

parsingCtx.sections.push(n);

Renamed variables, explicit object style,

Original JavaScript method explicit concatenation, inline conditional

Figure 4: A JavaScript method from our unlabeled training set with two auto-
matically generated semantically-equivalent programs. The method is from the

StackEdit Markdown editor.

3 Approach

Our core insight is to use compiler transforms as
data augmentations, generating a dataset of equiv-
alent functions (§3.1, 3.2). We then use a con-
trastive objective to learn a representation invari-
ant to these transforms (§3.3).

3.1 Compilation as data augmentation

Modern programming languages afford great flex-
ibility to software developers, allowing them to
implement the same function in different ways.
Yet, crowdsourcing equivalent programs from
GitHub is difficult as verifying equivalence is un-
decidable (Joshi et al., 2002; Bansal and Aiken,
2006) and approximate verification is costly and
runs untrusted code (Massalin, 1987).

Instead of searching for equivalences, we pro-
pose correct-by-construction data augmentation.
We apply compiler transforms to unlabeled code
to generates many variants with equivalent func-
tionality, i.e. operational semantics. For example,
dead-code elimination (DCE) is an optimization
that removes operations that do not change func-
tion output. While DCE preserves functionality,
Wang and Christodorescu (2019) find that up to
12.7% of the predictions of current supervised al-
gorithm classification models change after DCE.

We parse a particular source code sequence,
e.g. Wxx + b into a tree-structured representa-
tion (+ (+ W x) b) called an Abstract Syntax
Tree (AST). We then transform the AST with au-
tomated traversal passes. A rich body of prior
programming language work explores parsing and
transforming ASTs to optimize a program. If
source code is emitted by the compiler rather
than machine code, this is called source-to-source
transformation or transpilation. Transpilation is
common for optimizing and obfuscating dynamic
languages like JavaScript. Further, if each trans-

function x(t){const
n={'text':'", 'data':data};for(;i<t;i+=
1)n. text+=lines[i]
+'\n';n&parsingCtx.sections.push(n)}
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Figure 5: Histogram of the num-

ber of unique transformed vari-

ants per JavaScript method dur-
ing pre-training.

Code compression Identifier modification

v Reformatting (R) v/ Variable renaming (VR)

v Beautification (B) v Identifier mangling (IM)

v Compression (C) Regularization

v/ Dead-code elimination (DCE) « Dead-code insertion (DCI)

v/ Type upconversion (T) v/ Subword regularization (SW)
v Constant folding (CF) X Line subsampling (LS)

v/ = semantics-preserving transformation X = lossy transformation

Table 1: We augment programs with 11 automated
source-to-source compiler transforms. 10 are correct-
by-construction and preserve operational semantics.

form preserves code semantics, then any composi-
tion also preserves semantics.

We implement our transpiler with the Ba-
bel and Terser compiler infrastructures (McKen-
zie et al., 2020; Santos et al., 2020) for the
JavaScript programming language. In future work,
a language-agnostic compiler (Koppel et al., 2018)
could be used to extend ContraCode to other lan-
guages. Each compiler transformation is a func-
tion 7 : P — P, where the space of programs P is
composed of the set of valid ASTs and the set of
programs in tokenized source form. Fig. 4 shows
variants of an example program. Table 1 and Ap-
pendix A list program transformations in detail,
but we broadly group them into three categories:

* Code compression changes the syntactic
structure of code and performs correct-
by-construction transforms such as pre-
computing constant expressions.

* Identifier modifications substitute method
and variable names with random tokens,
masking some human-readable information
in a program but preserving functionality.

* Finally, Regularizing transforms improve
model generalization by reducing the number
of trivial positive pairs with high text over-
lap. The line subsampling pass in this group
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Algorithm 1 Transform dropout for stochastic
program augmentation.

1: Input: Program source z, transformation functions
T1, ... Tk, transform probabilities p1, . . . px, count N

2: Returns: N variants of

3: V « {z}, a set of augmented program variants

4: for SAMPLEi < 1...N — 1do

5 2 «=x

6: for transform ¢ <— 1...k do

7: Sample y;: ~ Bernoulli(p)

8: if y¢ = 1 then

9: if REQUIRESAST(7:(-)) and —ISAST(x")
then x’ < PARSETOAST(z')

10: else if ~-REQUIRESAST(7:(+)) and ISAST(z')
then 7’ <+ LOWERTOSOURCE(x’)

11: x' « 1(z")

12: end if

13:  end for

14:  if ISAST(z') then 2’ < LOWERTOSOURCE(z")
15 V+Vu{z'}

16: end for

17: return V

potentially modifies program semantics.

3.2 Diversity through transform dropout

Stochastic augmentations in other modalities like
random crops generate diverse outputs, but most
of our compiler-based transformations are deter-
ministic. To produce a diverse set of transformed
programs, we randomly apply a subset of available
compiler passes in a pre-specified order, apply-
ing transform 7; with probability p;. Intermediate
programs are converted between AST and source
form as needed for the compiler. Algorithm 1 de-
tails our transform dropout procedure.

Figure 5 measures the resulting diversity in pro-
grams. We precompute up to 20 augmentations
of 1.8M JavaScript methods from GitHub. Algo-
rithm 1 deduplicates method variants before pre-
training since some transforms will leave the pro-
gram unchanged. 89% of the methods have more
than one alternative after applying 20 random se-
quences of transformations. The remaining meth-
ods without syntactically distinct alternatives in-
clude one-line functions that are obfuscated. We
apply subword regularization (Kudo, 2018) as a
final transformation to derive different tokeniza-
tions every batch, so pairs derived from the same
original method will still differ. All transforma-
tions are fast; our compiler transforms 300 func-
tions per second on a single CPU core.

3.3 Contrastive pre-training

We extend the Momentum Contrast (MoCo)
methodology (He et al., 2019) that was designed

for contrastive image representation learning. In
our case, we learn a program encoder f, that maps
a sequence of program tokens to a single, fixed
dimensional embedding. We organize programs
into functionally similar positive pairs and dissim-
ilar negative pairs. Generating two augmentations
of the same GitHub program yields a positive pair
(z4,2*"), and an augmentation of a different pro-
gram yields a negative 2* . The program z? is
called a “query” used to retrieve the correspond-
ing “key” s during contrastive pre-training. We
use these to shape representation space, drawing
positives together and pushing away from nega-
tives. Negatives are important to prevent the en-
coder f, from mapping all programs to the same,
trivial representation (Arora et al., 2019).

Pre-training objective Like He et al. (2019),
we use the InfoNCE loss (Oord et al., 2018), a
tractable objective that frames contrastive learn-
ing as a classification task: can the positives be
identified among negatives? InfoNCE computes
the probability of selecting the positive by taking
the softmax of projected embedding similarities
across a batch and a queue of negatives. Eq. (1)
shows the InfoNCE loss, a function whose value
is low when ¢ is similar to the positive key em-
bedding £ and dissimilar to negative key embed-
dings k~. t is a temperature hyperparameter pro-
posed by Wu et al. (2018).

exp(q - kT /t)
exp(q - kT /t) + > - exp(q -k~ /t)

The query representation ¢ = f,(2?) is computed
by the encoder network f,, and x? is a query pro-
gram. Likewise, k = fi(x*) using a separate key
encoder fi. The summation ),  in the normal-
izing denominator is taken over the queue of pre-
computed negatives in the batch.

Following He et al. (2019), to reduce memory
consumption during pre-training, we cache em-
bedded programs from past batches in a queue
containing negative samples, as shown in Fig. 6.
The query encoder f, is trained via gradient de-
scent while the key encoder fj is trained slowly
via an exponential moving average (EMA) of the
query encoder parameters. The EMA update sta-
bilizes the pre-computed key embeddings across
training iterations. Since keys are only embedded
once per epoch, we use a very large set of nega-
tives, over 100K, with minimal additional compu-
tational cost and no explicit hard negative mining.

—log ey
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Figure 6: ContraCode pre-trains a neural program encoder f,; and transfers it to downstream tasks. A-B. Unlabeled

programs are transformed C. into augmented variants.

D. We pre-train f, by maximizing similarity of projected

embeddings of positive program pairs—variants of the same program—and minimizing similarity with a queue of
cached negatives. E. ContraCode supports any architecture for f, that produces a global program embedding such
as Transformers and LSTMs. f;, is then fine-tuned on smaller labeled datasets.

ContraCode is agnostic to the architecture of the
program encoder f,. We evaluate contrastive pre-
training of 6-layer Transformer (Vaswani et al.,
2017) and 2-layer BILSTM (Schuster and Paliwal,
1997; Huang et al., 2015) architectures (§4).

Transfer learning After pre-training converges,
the encoder f, is transferred to downstream tasks.
For code clone detection, we use f,(z) without
fine-tuning. For tasks where the output space dif-
fers from the encoder, we add a task-specific MLP
or Transformer decoder after f,, then fine-tune the
resulting network end-to-end on labeled task data.

4 Evaluation

In order to evaluate whether ContraCode defend
against adversarial code inputs, we benchmark ad-
versarial code clone detection accuracy (Baker,
1992). We evaluate results over natural and adver-
sarial edits. We then evaluate how improvements
to adversarial robustness translate to improve-
ments on established in-the-wild code bench-
marks. While improvements on adversarial bench-
marks would not be expected to translate to real
code, we find significant improvements in extreme
code summarization (Allamanis et al., 2016) and
type inference (Hellendoorn et al., 2018) tasks.
Clone detection experiments show that con-
trastive and hybrid representations with our
compiler-based augmentations are predictive of
program functionality in-the-wild, and that con-
trastive representations are the most robust to ad-
versarial edits (§4.1). Contrastive pre-training out-
performs baseline supervised and self-supervised

methods on all three tasks (§4.1-4.3). Finally, ab-
lations suggest it is better to augment unlabeled
programs during pre-training rather than augment-
ing smaller supervised datasets (§4.4).

Experimental setup Models are pre-trained on
CodeSearchNet, a large corpus of methods ex-
tracted from popular GitHub repositories (Husain
et al., 2019). CodeSearchNet contains 1,843,099
JavaScript programs. Only 81,487 methods have
both a documentation string and a method name.
The asymmetry between labeled and unlabeled
programs stems from JavaScript coding practices
where anonymous functions are widespread. The
pre-training dataset described in Section 3.1 is the
result of augmenting all 1.8M programs.

As our approach supports any encoder, we eval-
uate two architectures: a 2-layer Bidirectional
LSTM with 18M parameters, similar to the super-
vised model used by Hellendoorn et al. (2018),
and a 6-layer Transformer with 23M parameters.
For a baseline self-supervised approach, we pre-
train both architectures with the RoOBERTa MLM
objective, then transfer it to downstream tasks.

4.1 Robust Zero-shot Code Clone Detection

ContraCode learns to match variants of programs
with similar functionality. While transformations
produce highly diverse token sequences (quanti-
fied in the supplement), they are artificial and do
not change the underlying algorithm. In con-
trast, human programmers can solve a problem
with many data structures, algorithms and pro-
gramming models. To determine whether pre-
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Natural code

Adversarial (N=4) Adversarial (N=16)

AUROC AP AUROC AP AUROC AP
Edit distance heuristic 69.55+081 73.75 31.6310s2 42.85 12.11x0s¢  32.46
Randomly initialized Transformer =~ 72.31+079 75.82 22724020 37.73  3.09102s 30.95
+ RoBERTa MLM pre-train 74.04+077 77.65 25.83+021 39.46 451403 31.17
+ ContraCode pre-train 75. 734075 78.02 64.97:1024 66.23 58.32:05s  59.66
+ ContraCode + ROBERTa MLM  79.39+070 81.47 37.81+02¢ 51.42  10.09=+050 32.52

Table 2: Zero-shot code clone detection with cosine similarity probe. Contrastive and hybrid representations
improve clone detection AUROC on unmodified (natural) HackerRank programs by +8% and +10% AUROC
over a heuristic textual similarity probe, respectively, suggesting they are predictive of functionality. Contrastive
representations are also the most robust to adversarial code transformations.

function processData(input) {
var parse_fun = function (s) { return parseInt(s, 10); };

var lines = input.split('\n');
var A = parse_fun(lines[0]);
var B = parse_fun(lines[1])

console.log(A + B);

process.stdin. resume();

process.stdin.setEncoding("ascii");

var _input = "";

process.stdin.on("data", function (input) { _input += input; });
process.stdin.on("end", function () { processData(_input); });

(function() {

var input;
process.stdin.setEncoding(‘ascii');
input = "";
var sum = function(a,b){return a+b}

process.stdin.on('data', function(data) {
if (data === "\n")
process.stdin.emit("end");
input += data;

1}

process.stdin.on('end', function() {
var sum = input.split("\n").reduce(function(a,b){return (+a)+(+b)});
process.stdout.write(sum);
process.exit(0);

s

}).call(global);

Figure 7: Code clone detection example. These programs solve the same HackerRank coding challenge (reading
and summing two integers), but use different coding conventions. The neural code clone detector should classify

this pair as a positive, i.e. a clone.

trained representations are consistent across pro-
grams written by different people, we benchmark
code clone detection, a binary classification task to
detect whether two programs solve the same prob-
lem or different ones (Fig. 7). This is useful for
deduplicating, refactoring and retrieving code, as
well as checking approximate code correctness.

Benchmarks exist like BigCloneBench (Sva-
jlenko et al., 2014), but to the best of our knowl-
edge, there is no benchmark for the JavaScript.
We collected 274 in-the-wild JavaScript programs
that correctly solve 33 problems from the Hack-
erRank interview preparation website. There are
2065 pairs solving the same problem and 70K
pairs solving different problems, which we ran-
domly subsample to 2065 to balance the classes.

Since we probe zero-shot performance based
on pre-trained representations, there is no train-
ing set. Instead, we threshold cosine similarity
of pooled representations of the programs u and
v: uTv/||ul|||v]|. Many code analysis methods for
clone detection measure textual similarity (Baker,

1992). As a baseline, we threshold the dissimi-
larity score, a scaled Levenshtein edit distance be-
tween normalized and tokenized programs.

Table 2 reports the area under the ROC curve
(AUROC) and average precision (AP, area under
Precision-Recall). All learned representations im-
prove over the heuristic on natural code. Self-
supervision through ROBERTa MLM pre-training
improves over a randomly initialized network by
+1.7% AUROC. Contrastive pre-training achieves
+3.4% AUROC over the same baseline. A hybrid
objective combining both the contrastive loss and
MLM has the best performance with +7.0% AU-
ROC (+5.4% over MLM alone). Although MLM
is still useful over natural code, ContraCode learns
overall stronger representations of functionality.

However, are these representations robust to
code edits? We adversarially edit one program in
each pair by applying the loss-maximizing code
compression and identifier modification transfor-
mation among N samples from Algorithm 1.
These transformations preserve program function-
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ality, so ground-truth labels are unchanged. With
only 4 edits, RoOBERTa performs worse than the
heuristic (-5.8% AUROC) and worse than random
guessing (50% AUROC), indicating it is highly
sensitive to these kinds of implementation de-
tails. ContraCode retains much of its performance
(+39% AUROC over RoBERTa) as it explicitly
optimizes for invariance to code edits. Surpris-
ingly, the hybrid model is less robust than Contra-
Code alone, perhaps indicating that MLLM learns
non-robust features (Ilyas et al., 2019).

4.2 Fine-tuning for Type Inference

JavaScript is a dynamically typed language, where
variable types are determined at runtime based on
the values they represent. Manually annotating
code with types helps tools flag bugs by detecting
incompatible types. Annotations also document
code, but are tedious to maintain. Type inference
tools automatically predict types from context.

To learn to infer types, we use the an-
notated dataset of TypeScript programs from
DeepTyper (Hellendoorn et al., 2018), excluding
GitHub repositories that were made private or
deleted since publication. The training set con-
tains 15,570 TypeScript files from 187 repositories
with 6,902,642 total tokens. Validation and test
sets are from held-out repositories. For additional
supervision, missing types are inferred by static
analysis to augment user-defined types as targets.
A 2-layer MLP head predicts types from token
embeddings output by the DeepTyper LSTM. We
early stop based on validation set top-1 accuracy.

For the rest of our experiments, baseline
RoBERTa models are pre-trained on the same aug-
mented data as ContraCode for fair comparison.
Learning representations that transfer from unla-
beled JavaScript programs is challenging because
TypeScript supports a superset of JavaScript’s
grammar, with types annotations and other syntac-
tic sugar that need to be learned during fine-tuning.
Further, the pre-training data only has methods
while DeepTyper’s dataset uses entire files (mod-
ules). The model is only given source code for a
single file, not dependencies.

In Table 3, contrastive pre-training outperforms
all baseline learned methods. ContraCode is ap-
plied in a drop-in fashion to each of the base-
lines. Pre-training with our contrastive objective
and data augmentations yields absolute accuracy
improvements of +1.2%, +6.3%, +2.3% top-1 and

Method Acc@1 Acc@5

TypeScript CheckJS 45.11% —
DeepTyper, variable name only 28.94% 70.07%

GPT-3 Codex (zero-shot, 175B) 26.62% —
GPT-3 Codex (few-shot, 175B) 30.55% —

45.66% 80.08%
+ RoBERTa MLM pre-train ~ 40.85% 75.76%
+ ContraCode pre-train 46.86% 81.85%
+ ContraCode + MLLM (hybrid) 47.16 % 81.44 %

Transformer

DeepTyper BILSTM 51.73% 82.71%
+ RoBERTa MLM pre-train ~ 50.24% 82.85%
+ ContraCode pre-train 54.01% 85.55%

Table 3: Type inference accuracy on TypeScript
programs. As ContraCode does not modify model
architecture, contrastive pre-training improves both
BiLSTM and Transformer accuracy (1.5% to 2.28%).
Compared with TypeScript’s built-in type inference,
we improve accuracy by 8.9%.

+1.8%, +5.7%, +2.8% top-5 over the Transformer,
RoBERTa, and DeepTyper, respectively.

The RoBERTa baseline may perform poorly
since the MLM objective focuses on token re-
construction that is overly sensitive to local syn-
tactic structure, or because sufficient fine-tuning
data is available, described as weight “ossifica-
tion” by Hernandez et al. (2021). To combine
the approaches, we minimized our loss in addi-
tion to MLM as a hybrid local-global objective to
pre-training a Transformer, improving accuracy by
+6.31% over the ROBERTa Transformer.

We also evaluate the recent GPT-3 Codex model
by OpenAl (Chen et al., 2021) using their API. We
benchmark the 175B parameter DaVinci model in
both a zero-shot as well as a few-shot prompt-
ing setup. Although the Codex model was trained
over TypeScript programs, it performs poorly as
it achieves an accuracy of 26.6% in the zero-
shot setup and 30.6% in the few-shot setup. We
only evaluate Top-1 accuracy for GPT-3 models as
GPT-3 does not reliably output confidence scores.

Learning outperforms static analysis by a large
margin.  Overall, our best model has +8.9%
higher top-1 accuracy than the built-in Type-
Script CheckJS type inference system, showing
the promise of learned code analysis. Surfac-
ing multiple candidate types can also be useful to
users, while CheckJS only has a single prediction.

Fig. 8 shows two files from held-out reposito-
ries. For the first, our model consistently pre-
dicts the correct return and parameter types. The

5960



}

export function rendererLog (msg): void 53.7% {
write(msg, rendererTraceCategory);

} }

export function rendererError ( message: string 99.5% ): void 99.7% {
write(message, rendererTraceCategory, messageType.error);

export function viewUtilLog (msg): void 100.0% {
write(msg, viewUtilCategory);

}

export function routerLog ( message: string 99.9% ): void 100.0% {
write(message, routerTraceCategory);

}

export function rou rategyLog ( ge: string 99.8% ): void 99.98% {
write(message, routeReuseStrategyTraceCategory);

}

export function styleError ( message: string 99.97% ): void 100.0% {
write(message, categories.Style, messageType.error);

} }

export function listViewLog ( message: string 100.0% ): void 100.0% {
write(message, listViewTraceCategory);

export function listViewError ( message: string 99.93% ): void 100.0% ...

const factory = this.resolver.resolveC
const componentRef = this.containerRef.createComponent (

import { import {
write, ComponentRef,
categories, ComponentFactory,
messageType ViewContainerRef,
} from "s"; Component,
export const animationsTraceCategory = "s"; Type,
export const rendererTraceCategor: s"; ComponentFactoryResolver,
export const viewUtilCategory = " ChangeDetectorRef
export const routerTraceCategory = "s"; } from "s";
export const routeReuseStrategyTraceCategory = "s"; import {
export const listViewTraceCategory = "s"; write
export function animationsLog ( message: string 100.0% ): void 99.9% { } from "s";
write(message, animationsTraceCategory); export const CATEGORY = "s";

function log( message: string 56.95 ) {
write(message, CATEGORY);

@ Component ({
selector: "s",
} template: “template”
}) export class DetachedLoader {
constructor (private resolver: ViewContainerRef 63.85% (GT: ComponentFactoryResolver) ,
c

private changeD : Ref 100.0% ,
private containerRef: ViewContainerRef 100.0% ) {}

private loadInLocation (

componentType<any>: TemplateRef 99.6% (GT: Type)) <ComponentRef<any>>: Promise 100.0% {
Factory ( Type);

factory, this.containerRef.length, this.containerRef.parentInjector);

log("s"):
return Promise.resolve(componentRef);

public detectChanges() {
this.changeDetector.markForCheck () ;

public loadComponent (

componentType<any>: TemplateRef 99.9% (GT: Type)) <ComponentRef<any>>: Promise 100.0% {

log("s");
return this.loadInLocation(componentType);

} o

Figure 8: A variant of DeepTyper pre-trained with ContraCode generates type annotations for two held-out pro-
grams. The model consistently predicts correct function return types, and often correctly predicts project-specific
variable types imported at the top of the file. Metrics are in the top row of Table 8 (not our best performing model).

Method Precision Recall F1
code2vec 10.78% 8.24%  9.34%
code2seq 1217%  7.65% 9.39%
RoBERTa MLM 15.13% 11.47% 12.45%
Transformer 18.11% 15.78% 16.86%
+ ContraCode 20.34% 14.96% 17.24%

Table 4: Results for different settings of code sum-
marization: supervised training with 81K functions,
masked language model pre-training, training from
scratch and contrastive pre-training with fine-tuning.

model correctly predicts that the variable message
is a string, even though its type is ambiguous with-
out access to the imported write method signa-
ture. For the second, ContraCode predicts 4 of
8 types correctly including ViewContainerRef and
ChangeDetectorRef from the Angular]S library.

4.3 Extreme Code Summarization

The extreme code summarization task asks a
model to predict the name of a method given
its body (Allamanis et al., 2016). These
names often summarize the method, such as
reverseString(...). Summarization models could
help programmers interpret poorly documented
code. We create a JavaScript summarization
dataset using the 81,487 labeled methods in the
CodeSearchNet dataset. The name is masked in
the method declaration. A sequence-to-sequence
model with an autoregressive decoder is trained to

function x(url, callback, error) {
var img = new Image();
img.src = url;
if(img.complete){
return callback(img);

Ground truth: 1oadImage
Prediction: 1loadImage

Top predictions:

img.onload = function(){
img.onload = null; L.
callback(img);
b 2.
img.onerror = function(e){
img.onerror = null;
error(e);

} ¥ 4. getImageSrcCSS

getImageItem
createImage

3. loadImageForBreakpoint

Figure 9: A held-out JavaScript program from Code-
SearchNet and method names generated by a Trans-
former pre-trained with ContraCode. The correct
method name is predicted as the most likely decoding.

maximize log likelihood of the ground-truth name,
a form of abstractive summarization. All models
overfit, so we stop early according to validation
loss. As proposed by Allamanis et al. (2016), we
evaluate model predictions by precision, recall and
F1 scores over the set of method name tokens.
Table 4 shows results in four settings: (1) su-
pervised training using baseline tree-structured
architectures that analyze the AST (code2vec,
code2seq), (2) pre-training on all 1.8M programs
using MLM followed by fine-tuning on the labeled
programs (RoBERTa), (3) training a Transformer
from scratch and (4) contrastive pre-training fol-
lowed by fine-tuning with augmentations.
Contrastive pre-training outperforms code2seq
by +8.2% test precision, +7.3% recall, and
+7.9% F1 score. ContraCode outperforms self-
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Code summarization model F1
Transformer (Table 4) 16.86
+ augmentations 15.65
Type inference model Acc@1
Transformer (Table 3) 45.66
+ augmentations 44.14
DeepTyper (Table 3) 51.73
+ augmentations 50.33

Table 5: Compiler data augmentations degrade perfor-
mance when training supervised models from scratch.

supervised pre-training with ROBERTa by +4.8%
F1. ContraCode also achieves slightly higher
performance than the Transformer learned from
scratch. While this improvement is smaller, code
summarization challenging as identifier names are
not consistent between programmers.

Figure 9 shows a qualitative example of pre-
dictions for the code summarization task. The
JavaScript method is not seen during training. A
Transformer pre-trained with ContraCode predicts
the correct method name through beam search.
The next four predictions are reasonable, captur-
ing that the method processes an image. The 2nd
and 3rd most likely decodings, getImageItem and
createlmage, use get and create as synonyms for
load, though the final two unlikely decodings in-
clude terms not in the method body.

4.4 Understanding augmentation importance

We analyze the effect of augmentations on super-
vised learning and on pre-training.

Supervised learning with augmentations As a
baseline, we re-train models from scratch with
compiler transforms during supervised learning
rather than pre-training. Data augmentation artifi-
cially expands labeled training sets. For sequence-
to-sequence summarization, we apply a variety of
augmentations (LS, SW, VR, DCI). These all pre-
serve the method name. For type inference, labels
are aligned to input tokens, so they must be re-
aligned after transformation. We only apply token-
level transforms (LS, SW) as we can track labels.
Table 5 shows results. Compiler-based data
augmentations degrade supervised models, per-
haps by creating a training distribution not reflec-
tive of evaluation programs. However, as shown
in §4.1-4.3, augmenting during ContraCode pre-
training yields a more accurate model. Our con-

Pre-training augmentations Acc@1 Acc@5
All augmentations (Table 3) 52.65% 84.60%
w/o identifier modification (-VR, -IM) 51.94% 84.43%
w/o line subsampling (-LS) 51.05% 81.63%
w/o code compression (-T,C,DCE,CF) 50.69% 81.95%

Table 6: Ablating compiler transformations used dur-
ing contrastive pre-training. The DeepTyper BiLSTM
is pre-trained with constrastive learning for 20K steps,
then fine-tuned for type inference. Augmentations are
only used during pre-training. Each transformation
contributes to accuracy.

trastive learning framework also allows learning
over large numbers of unlabeled programs that su-
pervised learning alone cannot leverage. The ab-
lation indicates that augmentations do not suffice,
and contrastive learning is important.

Ablating pre-training augmentations Some
data augmentations could be more valuable than
others. Empirically, pre-training converges faster
with a smaller set of augmentations at the same
batch size since the positives are syntactically
more similar, but this hurts downstream perfor-
mance. Table 6 shows that type inference accu-
racy degrades when different groups of augmen-
tations are removed. Semantics-preserving code
compression passes that require code analysis are
the most important, improving top-1 accuracy by
1.95% when included. Line subsampling serves
as a regularizer, but changes program semantics.
LS is relatively less important, but does help accu-
racy. Identifier modifications preserve semantics,
but change useful naming information.

5 Conclusion

Large-scale code repositories like GitHub are a
powerful resource for learning machine-aided pro-
gramming tools. However, most current code rep-
resentation learning approaches need labels, and
popular label-free self-supervised methods like
RoBERTa are not robust to adversarial inputs. In-
stead of reconstructing tokens like BERT, learn-
ing what code says, we learn what code does. We
propose ContraCode, a contrastive self-supervised
algorithm that learns representations invariant to
transformations via compiler-based data augmen-
tations. In experiments, ContraCode learns effec-
tive representations of functionality, and is robust
to adversarial code edits. We find that Contra-
Code significantly improves performance on three
downstream JavaScript code understanding tasks.
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Appendices
A Program transformation details

We use the Babel compiler infrastructure (McKen-
zie et al., 2020) and the terser JavaScript li-
brary for AST-based program transformations. We
perform variable renaming and dead code inser-
tion (variable declaration insertion) using cus-
tom Babel transforms, subword regularization
with sentencepiece Python tokenization library,
line subsampling using JavaScript string manipu-
lation primatives and other transformations with
terser. Terser has two high-level transformation
modes, mangling and compression, each with finer
grained controls such as formatting, comment and
log removal, and dead code elimination. We show
an example merge sort with variants in Figure 10.

Reformatting, beautification, compression
(R, B, C): Personal coding conventions do not af-
fect the semantics of code; auto-formatting nor-
malizes according to a style convention.

Dead-code elimination (DCE): In this pass,
all unused code with no side effects are removed.
Various statements can be inlined or removed as
stale or unneeded functionality.

Type upconversion (T): In JavaScript, some
types are polymorphic & can be converted be-
tween each other. As an example, booleans can
be represented as true or as 1.

Constant folding (CF): During constant fold-
ing, all expressions that can be pre-computed at
compilation time can be inlined. For example, the
expression (2 + 3) 4 1is replaced with 2e.

Variable renaming, identifier mangling (VR,
IM): Arguments can be renamed with random
word sequences and identifiers can be replaced
with short tokens to make the model robust to
naming choices. Program behavior is preserved
despite obfuscation.

Dead-code insertion (DCI): Commonly used
no-ops such as comments and logging are inserted.

Subword regularization (SW): From Kudo
(2018), text is tokenized in several different ways,
with a single word (_function) or subtokens (_func
tion).

Line subsampling (LS): We randomly sample
(p = 0.9) lines from a method body. While not
semantics-preserving, line subsampling serves as
a regularizer.

// Split the array into halves and merge
them recursively
function mergeSort (arr) {
if (arr.length === 1) {
// return once we hit an array with a
single item
return arr
}
const middle = Math.floor(arr.length / 2)
// get the middle item of the array
rounded down
const left = arr.slice(@, middle)
// items on the left side
const right = arr.slice(middle)
// items on the right side
return merge(
mergeSort(left),
mergeSort(right)

)
}
Original merge sort program

function mergeSort(e) {
if (e.length === 1) {

return e;
}
const t = Math.floor(e.length / 2);
const 1 = e.slice(0, t);
const n = e.slice(t);

return merge(mergeSort(l), mergeSort(n));

3

Variable renaming, comment removal, refor-
matting

function mergeSort(e) {
if (1 === e.length) return e;
const t = Math.floor(e.length / 2), r =
e.slice(@, t), n = e.slice(t);
return merge(mergeSort(r), mergeSort(n));

}

Combining variable declarations, inlining con-

ditional

Figure 10: Given a JavaScript code snippet imple-
menting the merge sort algorithm, we apply semantics-
preserving transformations to produce functionally-
equivalent yet textually distinct code sequences. Vari-
able renaming and identifier mangling passes change
variable names. Compression passes eliminate unnec-
essary characters such as redundant variable declara-
tions and brackets.

B How similar are transformed
programs?

To understand the diversity created by program
transformations, we compute the Levenshtein
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Figure 11: Histogram of pairwise token dissimilarity for contrastive positives (transformed variants of the same
method) and negatives (transformed variants of different methods). Code transformations produce positives with

dissimilar token sequences.

minimum edit distance between positive pairs in
the precomputed pre-training dataset, i.e. trans-
formed variants of the same source method. For
comparison, we also compute the edit distance be-
tween negative pairs: transformed variants of dif-
ferent programs.

The edit distance D (x4, ;) computes the mini-
mum number of token insertions, deletions or sub-
stitutions needed to transform the tokenized query
progrm x, into the key program x;. To normalize
by sequence length | - |, let

D(xtpxk)
max(|zql, [z|)

2

dissimilarity , (z4, zx) =

Dissimilarity ranges from 0% for programs
with the same sequence of tokens, to 100%
for programs without any shared tokens. Note
that whitespace transformations do not affect the
metric because the tokenizer collapses repeated
whitespace. For the positives, we estimate dissim-
ilarity by sampling one pair per source program
in the CodeSearchNet dataset (1.6M source pro-
grams with at least one pair). We sample the same
number of negative pairs.

Fig. 11 shows a histogram of token dissimilar-
ity. Positive pairs have 65% mean dissimilarity,
while negatives have 86%. Negatives are more
dissimilar on average as source sequences could
have different lengths, idioms and functionality.
Still, the transformations generated quite different
positive sequences, with less than half of their to-
kens shared. The 25th, median and 75th percentile
dissimilarity is 59%, 66% and 73% for positives,
and 82%, 87% and 90% for negatives.

C Experimental setup

Architectures  The Transformer encoder has 6
layers (23M parameters) in all experiments. For
code summarization experiments, we add 4 de-
coder layers with causal masking to generate the
natural language summary. We leverage the de-
fault positional embedding function (sin, cos) as
used in the original Transformer architecture. The
network originally proposed in DeepTyper (Hel-
lendoorn et al., 2018) had 11M parameters with
a 300 dimensional hidden state. We increase the
hidden state size to 512 to increase model capac-
ity, so our BiLSTM for type prediction has 17.5M
parameters. During fine-tuning, across all experi-
ments, we optimize parameters using Adam with
linear learning rate warmup and decay. For the
Transformer, the learning rate is linearly increased
for 5,000 steps from 0 to a maximum of 10~%.
For the bidirectional LSTM, the learning rate is
increased for between 2,500 and 10,000 steps to a
maximum of 10~3. Type inference hyperparame-
ters are selected by validation top-1 accuracy.
ContraCode pre-training The InfoNCE ob-
jective is minimized with temperature ¢ = 0.07
following He et al. (2019). Also following He
et al. (2019), the key encoder’s parameters are
computed with the momentum update equation
0 < mby + (1 — m)f,, equivalent to an EMA
of the query encoder parameters 6,. To pretrain a
Transformer using the ContraCode objective, we
first embed each token in the program using the
Transformer. However, the InfoNCE objective is
defined in terms of a single embedding for the
full program. The ContraCode Transformer is
pre-trained with a batch size of 96. Our model
averages the 512-dimensional token embeddings
across the sequence, then applies a two-layer MLP
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with 512 hidden units and a ReLLU activation to ex-
tract a 128-dimensional embedding for the loss.

The DeepTyper bidirectional LSTM architec-
ture has two choices for extracting a global pro-
gram representation.  We aggregate a 1024-
dimensional representation of the program by
concatenating its four terminal hidden states
(from two sequence processing directions and two
stacked LSTM layers), then apply the same MLP
architecture as before to extract a 128-dimensional
representation.  Alternatively, we can average
the hidden state concatenated from each direction
across the tokens in the sequence before applying
the MLP head. We refer to the hidden-state config-
uration as a global representation and the sequence
averaging configuration as a local representation
in Tab. 8. We pre-train the BiLSTM with large
batch size of 512 and apply weight decay.

Code clone detection on HackerRank pro-
grams Figure 7 shows two programs sam-
pled from the HackerRank clone detection dataset.
These programs successfully solve the same prob-
lem, so they are clones. We report metrics that
treat code clone detection as a binary classification
task given a pair of programs. 2065 pairs of pro-
grams solving the same HackerRank problem and
2065 pairs of programs solving different problems
are sampled to construct an evaluation dataset. We
use the area under the Receiver Operating Char-
acteristic (AUROC) metric and Average Precision
(AP) metrics. The standard error of the AUROC is
reported according to the Wilcoxon statistic (Fog-
arty et al., 2005). Average Precision is the area
under the Precision-Recall curve. AUROC and
AP are both computed using the scikit-learn li-
brary (Pedregosa et al., 2011).

A Transformer predicts contextual embeddings
of each token in a program, but our thresholded
cosine similiarity classifier requires fixed length
embeddings of whole programs. To determine if
two programs that may differ in length are clones,
we pool the token representations across the se-
quence. We evaluated both mean pooling and max
pooling the representation. For the hybrid model
pre-trained with both RoOBERTa (MLM) and con-
trastive objectives, mean pooling achieved the best
AUROC and AP. For other models, max pooling
performed the best.

Type prediction Following DeepTyper (Hel-
lendoorn et al., 2018), our regenerated dataset
for type prediction has 187 training projects with

0 5000 10000 15000
Method body length

(a) Character length per code sample

0 20 40 60
Identifier length

(b) Character length per method name

Figure 12: CodeSearchNet code summarization dataset
statistics: (a) The majority of code sequences are un-
der 2000 characters, but there is long tail of programs
that span up to 15000 characters long, (b) JavaScript
method names are relatively short compared to lan-
guages like C* and Java.

15,570 TypeScript files, totaling 6,902,642 tokens.
We tune hyperparameters on a validation set of
23 distinct projects with 1,803 files and 490,335
tokens, and evaluate on a held-out test set of 24
projects with 2,206 files and 958,821. The training
set is smaller than originally used in DeepTyper as
several projects were made private or deleted from
GitHub before May 2020 when we downloaded
the data, but we used the same commit hashes
for available projects so our splits are a subset of
the original. We have released the data with our
open-source code to facilitate further work on a
stable benchmark as more repositories are deleted
over time. We perform early stopping to select the
number of training epochs. We train each model
for 100 epochs and select the checkpoint with the
minimum accuracy @1 metric (all types, including
any) on the validation set. Except for the model
learned from scratch, the Transformer architec-
tures are pre-trained for 240K steps. Models with
the DeepTyper architecture converge faster on the
pre-training tasks and are pre-trained for 20K iter-
ations (unless otherwise noted).

Extreme code summarization by method
name prediction = We train method prediction
models using the labeled subset of CodeSearch-
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Net. Neither method names nor docstrings are
provided as input to the model: the docstring is
deleted, and the method name is replaced with the
token ‘x’. Thus, the task is to predict the method
name using the method body and comments alone.

To decode method names from all models ex-
cept the code2vec and code2seq baselines which
implement their own decoding procedures, we use
a beam search with a beam of size 5 and a maxi-
mum target sequence length of 20 subword tokens.
We detail the cumulative distribution of program
lengths in Figure 12. The ContraCode summa-
rization Transformer only needed to be pre-trained
for 20K iterations, with substantially faster con-
vergence than RoBERTa (240K iterations). Dur-
ing fine-tuning, we apply the LS,SW,VR,DCI aug-
mentations to ContraCode.

D Baselines

Baselines for code summarization and type predic-
tion trained their models on an inconsistent set of
programming languages and datasets. In order to
normalize the effect of datasets, we selected sev-
eral diverse state-of-the-art baselines and reimple-
mented them on the JavaScript dataset.

AST-based models The authors of
code2vec (Alon et al., 2019b) and code2seq (Alon
et al., 2019a), AST-based code understanding
models, made both data and code available, but
train their model on the Java programming lan-
guage. In order to extend the results in their paper
to JavaScript for comparison with our approach,
we generated an AST path dataset for the Code-
SearchNet dataset. The sensitivity of path-mining
embeddings to different datasets is documented in
prior work, so published F1 scores are not directly
comparable; F1 scores for code2vec (Alon et al.,
2019b) vary between 19 (Alon et al., 2019a) and
43 (Alon et al., 2019b) depending on the dataset
used. Therefore, we use the same dataset genera-
tion code as the authors for fair comparison. We
first parse the source functions using the Babel
compiler infrastructure. Using the original code
on these ASTs, up to 300 token-to-token (leaf-to-
leaf) paths are extracted from each function’s AST
as a precomputed dataset. Then, we generate a
token and AST node vocabulary using the same
author-provided code, and train the models for 20
epochs, using early stopping for code2seq. We ob-
served that code2vec overfits after 20 epochs, and
longer training was not beneficial.

DeepTyper (Hellendoorn et al., 2018) Deep-
Typer uses a two layer GRU with a projection
over possible classes, with an embedding size
of 300 and hidden dimension of 650. However,
we found improved performance by replacing the
GRU with a bidirectional LSTM (BiLSTM). We
normalize the LSTM parameter count to match our
model, and therefore use a hidden dimension size
of 512. We also use subword tokenization rather
than space delimited tokens according to Kudo
(2018), as subwords are a key part of state-of-the-
art models for NLP (Sennrich et al., 2015).

RoBERTa We pre-trained an encoder
using RoBERTa’s masked language modeling
loss on our augmented version of CodeSearch-
Net, the same data used to pre-train Contra-
Code. This model is then fine-tuned on down-
stream datasets. Unlike the original BERT pa-
per which cuBERT (Kanade et al., 2020) is based
on, hyperparameters from RoBERTa have been
found to produce better results during pre-training.
RoBERTa pre-trains using a masked language
modeling (MLM) objective, where 15% of tokens
in a sentence are masked or replaced and are re-
constructed by the model. We did not use the
BERT Next Sentence Prediction (NSP) loss which
RoBERTa finds to be unnecessary. We normalize
baseline parameter count by reducing the number
of Transformer layers from 24 to 6 for a total of
23M parameters.

E Additional results and ablations

Code clone detection ROC, PR curves Fig. 13
plots true postive rate vs false positive rate and pre-
cision vs recall for different zero-shot classifiers
on the code clone detection downstream tasks.
These classifiers threshold a similarity score given
by token-level edit distance for the heuristic ap-
proach or cosine similarity for the neural network
representations. The hybrid self-supervised model
combining ContraCode’s contrastive objective and
MLM achieves better tradeoffs than the other ap-
proaches. Fig. 14 shows the AUROC and Average
Precision of four Transformer models on the same
task under adversarial transformations of one in-
put program. Untrained models as well as models
pre-trained with RoBERTa’s MLLM objective are
not robust to these code transformations. How-
ever, the model pre-trained with ContraCode pre-
serves much of its performance as the adversarial
attack is strengthened.

5969



=
)
-
5}

o
@
o
®

o
o
Precision

True positive rate
o
=

1 S
—— Hybrid \ TN
—— Contrastive 0.2 .
—— RoOBERTa
—— Edit distance

°
N}

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate Recall

°
o°
o\

Figure 13: Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) curves for non-adversarial
classifiers on the code clone detection task. Equal F1
score curves are shown on right.
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Figure 14: Adversarial AUROC and Average Precision
for four models on the code clone detection task: a
randomly initialized transformer, and transformers pre-
trained on code with the RoOBERTa MLLM objective, our
contrastive objective, or both. Representations learned
by the contrastive model transfer robustly.

Which part of the model should be trans-
ferred? SimCLR (Chen et al., 2020a) proposed
using a small MLP head to reduce the dimension-
ality of the representation used in the InfoNCE
loss during pre-training, and did not transfer the
MLP to the downstream image-classification task.
In contrast, we find it beneficial to transfer part
of the contrastive MLP head to type inference,
showing a 2% improvement in top-5 accuracy over
transferring the encoder only (Table 7). We be-
lieve the improvement stems from fine-tuning both
the encoder and MLP which allows feature adap-
tation, while SIimCLR trained a linear model on
top of frozen features. We only transferred the
MLP when contrasting the mean of token embed-
dings during pre-training, not the terminal hidden
states, as the dimensionality of the MLP head dif-
fers. These representations are compared next.

Should we pre-train global or local represen-
tations?  We compare pre-training DeepTyper
with two variants of ContraCode. We either use
the mean of token hidden states across the program
(averaging local features), or the terminal hidden
states as input to the MLP used to extract the con-

Table 7: If local representations are learned, transfer-
ring part of the Contrastive MLP head improves type
inference. The encoder is a 2-layer BiLSTM (d=512),
with a 2-layer MLP head for both pre-training purposes
and type inference. The mean hidden state representa-
tion is optimized for 10K iterations for the purposes of
this ablation.

Warm-started layers Acc@1 Acc@5
BiLSTM 49.32% 80.03%
BiLSTM, 1 layer of MLP 49.15% 82.58%

trastive representation ¢ = f, () (global features).
Token-level features might capture more syntactic
details, but averaging pooling ignores order. Ta-
ble 8 shows the accuracy of a BILSTM pre-trained
with each strategy. Using the global features for
pre-training yields significantly improved perfor-
mance, +2.38% acc@1 after 10K iterations of pre-
training (not converged for the purposes of abla-
tion). The global pre-training strategy achieves
our best results.

Do pre-trained encoders help more with shal-
low decoders? For the sequence-to-sequence
code summarization task, ContraCode only pre-
trains the encoder of the Transformer. In Ta-
ble 9, we ablate the depth of the decoder to un-
derstand how much shallow decoders benefit from
contrastive pre-training of the encoder. Similar
experiments were performed in a vision context
by (Erhan et al., 2010), where different numbers
of layers of a classifier are pre-trained. After 45k
pre-training steps, the 4-layer decoder achieves
0.50% higher precision, 0.64% higher recall and
0.77% higher F1 score than the 1-layer model, so
additional decoder depth is helpful for the down-
stream task. The 1-layer decoder model also ben-
efits significantly from longer pre-training, with
a 6.3% increase in F1 from 10k to 45k itera-
tions. This large of an improvement indicates
that ContraCode could be more helpful for pre-
training when the number of randomly initialized
parameters at the start of fine-tuning is small. For
larger decoders, more parameters must be opti-
mized during-finetuning, and the value of pre-
training is diminished.

Contrastive representation learning strate-
gies In Figure 15, we compare two strategies
of refreshing the MoCo queue of key embeddings
(the dictionary of negative program representa-
tions assumed to be non-equivalent to the batch of
positives). In the first strategy, we add 8 items out
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Table 8: Contrasting global, sequence-level representations outperforms contrasting local representations. We
compare using the terminal (global) hidden states of the DeepTyper BiLSTM and the mean pooled token-level

(local) hidden states.

Representation  Optimization Acc@1 Acc@5
Global InfoNCE w@th term@nal h%dden state, 20K steps  52.65% 84.60%
InfoNCE with terminal hidden state, 10K steps  51.70%  83.03%

Local InfoNCE with mean token rep., 10K steps 49.32%  80.03%

Table 9: Training time and decoder depth ablation on the method name prediction task. Longer pre-training
significantly improves downstream performance when a shallow, 1 layer decoder is used.

Pre-training Supervision ..
Decoder (1.8M programs) (81K programs) Precision  Recall F1
Transformer, 1 layer =~ MoCo, 10k steps Original set 11.91% 5.96% 7.49%
Transformer, 1 layer =~ MoCo, 45k steps Original set 17.71% 12.57% 13.79%
Transformer, 4 layers  MoCo, 45k steps Original set 1821% 13.21% 14.56%

Top 5 accuracy

1x queue fill rate
= 12x queue fill rate

Figure 15: Pre-training quickly converges if negative
programs in the queue are frequently changed.

of the batch to the queue (1x), while in the sec-
ond we add 96 items (12x). In addition, we use a
larger queue (65k versus 125k keys) and a slightly
larger batch size (64 versus 96). We observe that
for the baseline queue fill rate, the accuracy de-
creases for the first 8125 iterations as the queue
fills. This decrease in accuracy is expected as the
task becomes more difficult due to the increasing
number of negatives during queue warmup. How-
ever, it is surprising that accuracy grows so slowly
once the queue is filled. We suspect this is be-
cause the key encoder changes significantly over
thousands of iterations: with a momentum term
m = 0.999, the original key encoder parame-
ters are decayed by a factor of 2.9 x 10~ by the
moving average. If the queue is rapidly refreshed,
queue embeddings are predicted by recent key en-
coders, not old parameters. This also indicates that
a large diversity of negative, non-equivalent pro-
grams are helpful for rapid convergence of Con-
traCode pre-training.

t-SNE visualization of representations We
qualitatively inspect the structure of the learned

ROBERTA embeddings

ContraCode ROBERTA + ContraCode

Figure 16: t-SNE (Maaten and Hinton, 2008) plot
of mean pooled program representations learned with
masked language modeling (RoBERTa), contrastive
learning (ContraCode), and a hybrid loss (RoBERTa +
ContraCode). Transformed variants of the same pro-
gram share the same color. Note that colors may be
similar across different programs.

representation space by visualizing self-
supervised representations of variants of 28
programs using t-SNE (Maaten and Hinton, 2008)
in Figure 16. Representations of transformed
variants of the same program are plotted with the
same color. ContraCode (BiLSTM) clusters vari-
ants closely together. Indeed, contrastive learning
learns representations that are invariant to a wide
class of automated compiler-based transforma-
tions. In comparison, the representations learned
by masked language modeling (RoBERTa) show
more overlap between different programs, and
variants do not cleanly cluster. With a hybrid
loss combining masked language modeling and
contrastive learning, representations of variants of
the same program once again cluster.
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