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Abstract— State estimation in water distribution net-
works (WDN), the problem of estimating all unknown net-
work heads and flows given select measurements, is chal-
lenging due to the nonconvexity of hydraulic models and
significant uncertainty from water demands, network pa-
rameters, and measurements. To this end, a probabilistic
modeling for state estimation (PSE) in WDNs is proposed.
After linearizing the nonlinear hydraulic WDN model, the
proposed PSE shows that the covariance matrix of un-
known system states (unmeasured heads and flows) can
be linearly expressed by the covariance matrix of three
uncertainty sources (i.e., measurement noise, network pa-
rameters, and water demands). Instead of providing de-
terministic results for unknown states, the proposed PSE
approach (i) regards the system states and uncertainty
sources as random variables and yields variances of in-
dividual unknown states, (ii) considers thorough modeling
of various types of valves and measurement scenarios in
WDNSs, and (iii) is also useful for uncertainty quantification,
extended period simulations, and confidence limit analysis.
The effectiveness and scalability of the proposed approach
is tested using several WDN case studies.

Index Terms— Water distribution networks, probabilis-
tic state estimation, confidence limit analysis, uncertainty
quantification.

[. INTRODUCTION AND LITERATURE REVIEW

tate estimation (SE) is a technique used to estimate the
S unknown state variables based on a set of measurements, a
mathematical model linking the measurable and unmeasurable
(unknown) variables, and model parameters [1]. SE plays an
important role in a water distribution network (WDN) with a
variety of applications such as detecting water loss [2]. System
states in a WDN include the collections of heads and flow rates
in our paper. These variables depend on water demands, which
are characterized by frequent temporal changes and inherent
variability and uncertainty; hence the state variables require
frequent estimation. The parameter estimation or calibration
problem [3], [4] is closely related to SE problem, in which
unknown or unmeasurable model parameters need to be esti-
mated based on measurements and the mathematical model.
However, the distinction between parameter and state es-
timation is manifested in the frequency of calibration or the
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time scales—and their subsequent applications. For example,
the studies [3], [4] investigate estimation of fast-changing
variables (for states such as heads, flow rates, settings, and
demands) and slow-changing parameters (pipe roughness co-
efficients). In our paper, the model parameters, i.e., pipe rough-
ness coefficients, statuses or settings of pumps and valves, are
assumed to be known [5].

The measurements in a WDN typically include (i) a small
(relative to the system size) subset of flows in pipes and
pumps, heads in junctions and storage tanks which can be mea-
sured by a supervisory control and data acquisition (SCADA)
system, and (ii) consumer demands which are viewed as
pseudo-measurements.

The WDN mathematical model linking system states, mea-
surements, and parameters is built on the principles of conser-
vation of mass and energy. The former implies the continuity
of flow at each node, and the latter states that the energy
difference between two connected nodes is equal to the energy
losses or gains due to pipe friction or pumping [6]. With such
a mathematical model, the unknown and unmeasurable system
states can be computed or estimated with known measurements
from sensors located in key network locations and pseudo-
measurements.

In particular, the SE problem is referred to as deterministic
state estimation (DSE) or point state estimation when all
measurements, parameters, and variables used in that math-
ematical model are considered to be deterministic. However,
measurements and parameters in practice contain a significant
amount of uncertainty [7] which might lead to inaccurate SE—
and mislead the planning and management of the WDN. To
that end, the paper’s objective is three-fold: (i) to propose
probabilistic modeling for SE (PSE) via viewing all system
states, network parameters, and uncertainty as random vari-
ables, (ii) to investigate scalable computational algorithms to
solve the probabilistic SE problem in WDN considering the
various sources of uncertainty, and (iii) to explore the impact
on system states from the uncertainty sources under general
or specific statistical distributions.

In this work, the typical sources of uncertainty are con-
sidered including sensor measurement noise, demand esti-
mation errors, and WDN pipe parameters. Other sources of
uncertainty such as cyber-attacks to SCADA systems [8], [9]
or pressure-deficient conditions that could incur from pump
failures, pipe leaks, and fire demands, are not considered in our
study. The literature of SE in WDN is rich and is summarized
as follows.



2 IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY, IN PRERSS, MARCH 2021

A. Literature review

The DSE problem is typically formulated as an inverse
optimization problem in which the objective is minimizing
the error between the mathematical model and measure-
ments, constrained by the network hydraulics and parameter
bounds/limits [1]. DSE formulations treat each variable as
a deterministic one, and uncertainty is often not considered
yielding a deterministic solution. The studies in [1], [5], [10]-
[12] make up the bulk of recent DSE literature.

DSE formulations can result in unconstrained or constrained
problems depending on the specific optimization approach and
problem formulation. The unconstrained DSE, can be divided
into the following groups [13]: (i) least squares (LS) where
the sum of squared differences between measurement and
model is minimized, (ii) least absolute value (LAV) where the
sum of absolute differences is minimized, and (iii) minimax
where the maximum difference is minimized. The sensitivity
to errors of above methods varies. Recently, we propose a
novel geometric programming (GP)-based method [11] to
solve the DSE problem which relies on derivative-free and
scalable formulations.

The aforementioned DSE studies do not comprehensively
consider the inherent uncertainty embedded in WDN. As
previously mentioned, the main sources of uncertainty stem
from: (i) measurement noise of sensors, (ii) demands, and
(iii) pipe roughness coefficients [14]-[19]. In order to over-
come the limitations of DSE, uncertainty quantification in
WDN—also termed as confidence limit analysis (CLA)—
is first proposed in [14]. Specifically, the authors present
three CLA techniques which can calculate the inaccuracy of
heads and flows caused by the uncertainty of measurements
and network parameters. The techniques are based on Monte
Carlo Simulation (MCS) method, an optimization method, and
a sensitivity matrix technique. The study [15] presents two
CLA-based techniques based on a least squares loop flows
state estimation. This approach computes the confidence limits
(lower and upper limit) for the system state variables (i.e.,
flows and heads at unmeasured locations). Another study [16]
presents a method quantifying uncertainties propagated from
measurement noises, demand uncertainties, and model simpli-
fication errors to the states in their uncertainty quantification
section.

In [18], a two-step sequential method for estimation of
demand and pipe roughness coefficient is presented based on
a weighted LS scheme. The uncertainty in estimated variables
and resulting nodal head predictions are quantified in terms
of confidence limits using first-order second moment (FOSM)
method. The authors in [19] set out an alternative approach
with respect to the weighted LS problem to determine the
upper and lower limits of states. This enables general quan-
tification of SE uncertainty for all state variables by applying
the FOSM method. Moreover, it enables the computation of
the covariance matrix of state variables. Another branch of
CLA is interval state estimation (ISE), introduced recently
in [17], [20], based on interval arithmetic which aims to find
the DSE solution region, rather than finding a specific point-
based solution.

B. Research gaps, paper contributions and organization

The research gaps are summarized as follows. First, the
deterministic SE studies [1], [5], [10]-[12] do not consider
critical uncertainty (demand and pipe coefficient uncertainty)
as random variables in the network with different types of
valves and various measurement scenarios that could lead to
significantly different estimates for unmeasured state variables.
Second, the methods based on CLA or uncertainty quantifica-
tion [14]-[19] suffer from the following limitations. The first
one is that there is an absence of deriving or studying all three
uncertainty sources simultaneously and their impact on state
estimates as well as the covariance of uncertain variables and
unknown system states variables. We note that FOSM only
produces a mapping from some uncertainty sources to specific
systems states (particular heads and flows). Furthermore, the
CLA approach focuses on how the state variables are impacted
by uncertainty instead of studying the relationship between
probability distribution functions (PDF) of state variables and
PDF of uncertainties when variables follow a certain type of
distribution, i.e., normal distribution and uniform distribution.

Third, we note that the probabilistic modeling proposed
in [21], built for water distribution reliability analysis instead
of state estimation, only considers the SE of heads. Further-
more, it is unclear how the method in [21] can solve the over-
determined measurement scenario, i.e., when there are more
observations or measurements than unknown variables [22].
A novel contribution in [21] is the authors’ correct conjecture
that

If the uncertainty from nodal demands, reservoir
levels, and pipe roughness coefficients are normally
distributed, the linearized nodal heads also follow a
normal distribution.

However, no formal proof is given, and the PDF produced
in [21] only depicts heads in the network. Specifically, it
remains unclear how changes in the uncertainty distribution
(i.e., if the uncertainty follows a non-Gaussian distribution)
impacts PDF of heads and flows in the network. Finally, it is
also unclear how the aforementioned studies can be extended
to various types of valves.

The paper’s objective is to address the aforementioned
research gaps by proposing probabilistic modeling for SE that
generalizes the approaches in the literature while consider-
ing various sources of uncertainty with arbitrary statistical
distributions, types of valves, and sufficient/over-determined
measurement scenarios. The specific paper contributions are:

o The presented PSE views system states, measurements,
and network parameters as random variables, and offers
a general method to connect unknown system states with
uncertain variables. This contribution generalizes various
types of distributions (i.e., uniform, normal, and Laplace
distributions) of the uncertainty random variables as long
as their expectation and covariance exist.

o A scalable algorithm to find the covariance matrix of
system states is proposed given the covariance matrix of
uncertainty through solving a linear system of equations.
In particular, we prove that the linear systems of equations
have a solution under mild conditions. Various types of
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valves and measurement scenarios are considered in this
algorithm which makes it applicable to various WDN
state estimation scenarios.

o We also show that if the uncertainty follows the normal or
uniform distribution (motivated by empirical evidence),
then system state variables also follow the corresponding
distribution. Uncertainty propagation in water networks is
studied and the importance or impact of each uncertainty
source is given and verified by case studies.

o Thorough case studies are presented showcasing the
scalability and effectiveness of the proposed PSE formu-
lations in dealing with uncertainty.

The rest of the paper is organized as follows. Section II
introduces WDN modeling and assumptions. PSE formulation
is given first, then methods and the corresponding algorithm to
solve the PSE are presented in Section III. The generalization
of flows and heads distributions are discussed in Section IV.
Section V presents important discussions and insights related
to the proposed PSE algorithm and different measurement
scenarios. Section VI presents case studies to corroborate the
paper’s theoretical findings. Mathematical proofs and exten-
sive details about the presented models are all given in the
appendices. The notation for this paper is introduced next.
Notation. Italicized, boldface upper and lower case charac-
ters represent matrices and column vectors: a is a scalar,
a is a vector, and A is a matrix. The notation R" de-
notes the sets of column vectors with n real numbers. For
x € R™, y € R", a compact column vector in R™*"
is defined as {z,y} = [z y"]". Similarly, for matrices
A and B with same number of columns, {A, B} stands
for [AT BT]T. For any random vector ¢,b € R", and
x = [T1,29,...,2,] ", the E(x) = [E(z1),E(z2), ..., E(z,)] T,
Var(x) = [Var(z;), Var(zz), ..., Var(z,,)] T, and K, are the
expectation, variance, and covariance matrix of the vector x.
We also define the operation of covariance over a linear system
of equations Az = b, the notation Cov(Axz = b) stands
for Cov(Ax, Ax) = Cov(b,b), which is to apply covariance
operator to each side of Ax = b. By this notation, another
equivalent formulation of Ax = b is Ax — b = 0, and the
operation of covariance over it results in Cov((Ax—b), (Ax—
b)) = 0. We note that Cov(Ax, Axz) = Cov(b,b) and
Cov((Ax—b),(Ax—b)) = 0 are equivalent; see Appendix L

The variables with upper case characters -7, -®, .TK .P .M
and - represent the variables related to junctions, reservoirs,
tanks, pipes, pumps, and valves.

bl

1. WDN MODELING AND ASSUMPTIONS

We define the column vectors h? € R , h® € R"", and
hTK € R™ to collect the heads at n; junctions, n, reservoirs,
and n, tanks, respectively; the column vectors qP € R",
g™ € R™ and g € R™ to collect the flow through n,, pipes,
n., pumps, and n; valves, respectively. Then, the compact
column vectors h € R™ and q € R™ collect all heads and
flows are defined as h £ {h‘], hE, hTK}, q= {qP, gV, qL} .
Vector & € R"= at time k, collects all heads and flows, is
defined as

x(k) = {h(k),q(k)}. (1)

Note that n;, = n; + n, + ng, ng = np + Ny, + ng, and
Ng = Np + Ng.

1) DAE form of WDN: The modeling of a WDN can be
written in the form of difference algebraic equation (DAE)

DAE: h"™(k+1) = Aph™ (k) + Byq(k) (2a)
0 = Ejq(k) + d(k) (2b)

where n; X ng; matrix Ap, n; X ng matrix Bg, nj X ng
matrix Eg, and n, X n, matrix Ej are constant matrices
that depend on the topology and hydraulic properties of the
underlying WDN. Equation (2a) collects the dynamic equa-
tions of tanks (22); Equation (2b) collects the mass balance
equations for all junctions (21); the nonlinear function ®(-) in
Equation (2¢) includes the nonlinear pipe (23), pump (24), and
valve (27), (28) models in Appendix II. Note that the statuses
and settings of pressure reducing and flow control valves are
assumed to be known in (27), (28). The roughness coefficients
for pipes are collected in vector c(k).

2) Operational limits: The state of operational conditions
in WDN is bounded by physical and operational constraints,
hence, the overall operational limits of hydraulic elements can
be expressed as

Limits x; (k) = 25 (k) (3a)
:B;-nin <z;k) < w}“ax, (3b)

where 7 # j indicates that each element in x is either limited
by equality or inequality expression. For example, we assume
that the head at Reservoir ¢ is constant for simplicity, but they
can be seamlessly modeled as uncertain similar to water levels
in tanks. The relative speeds of pumps are assumed to be
fixed as 1 (full speed) and the flow in pipe j is limited by
g < gi(k) < g

3) Measurement modeling: The model for WDN measure-
ments (select heads and flows at certain nodes in the network)
can be expressed as

Measurements :

y(k) = Ca(k) + v(k), )

where y(k) € R™ is measurement vector, C' is the binary
selection matrix with n, X n, depicting where sensors are
installed, and v(k) € R™ is measurement noise vector;
see [23] for a study on sensor placement in water networks.

Before we propose PSE formulation next, an assumption
and an definition are introduced. Common statistical assump-
tions [7], [10], [21] is given next.

Assumption 1. The entries of the demand vector d, measure-
ment noise vector v, and pipe roughness coefficient vector c
are mutually independent.

The assumption is reasonable seeing there is no connection
between the three uncertain variables. The definition of the
cross-covariance matrix is given as follows.

Definition 1. For column vectors © = [x1, T2, ..., 2] and
Y = [y1,Y2, -, Yn] | consisting of random variables, then the
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cross-covariance matrix Ky, [24] is the matrix whose (i, j)
entry is the covariance between x; and y;. That is

Cov(z1,y1) Cov(z1,y2) Cov(z1,yn)
Cov(wa,y1) Cov(wz,y2) Cov(x2,yn)

Kay = : : . : -
Cov(zm,y1) Cov(zm,y2) Cov(zm, yn)

Note that (i) Cov(z,y) = Kgy, (ii) when & = y, the cross-
covariance matrix Kz, turns into K, which is the covariance
matrix, and (iii) according to the definition and notation of
Var(x), each entry in Var(x) is on the diagonal of K.

I1l. FORMULATING AND SOLVING THE PSE PROBLEM

As mentioned in Section I, the uncertainty of SE lies in
demand in the mass balance equations d(k), pipe roughness
coefficients ¢(k), and measurement noise v(k), and these
uncertainty sources would impact the system state x(k). The
objective of the presented probabilistic state estimation (PSE)
is to find the covariance of the unknown variable x(k), or
Kgz, over a time-horizon k to k + T thereby producing the
variance of all variables in vector x. This contrasts point-
based estimation which focuses on generating estimates for
(k). To formulate the PSE problem, we first obtain an
operating point ° := {x°(k), ..., x°(k+T)} through solving
the existing and well-developed deterministic state estimation
routine (see [11] or a general DSE formulation in [1]) given
the means of all uncertainty for all time-steps and given the
measurement vector yo. For example, we consider that a
demand prediction is given from k to & + 7. The PSE can
be depicted as the following high-level optimization problem

find Km:z;
s.t. Cov(DAE (2), Limits (3a), Measurements (4)).

(6a)
(6b)

Problem (6) finds a feasible covariance matrix of x while
satisfying the constraints (6b). The constraint set is an implicit
function of the covariance matrix. The set also physically
defines the probabilistic propagation of uncertainty to the
system states. Before proceeding to the paper’s approach, we
emphasize the following traits of (6):
(i) Problem (6) is nonconvex and extremely difficult to solve
for large networks, due to the nonlinear, nonconvex hydraulic
constraints and the corresponding covariance operator.
(ii) The covariance operation of equality limits (3a) has
clear physical meaning: Reservoir ¢ has a fixed head h;, the
deviation of head is Cov(h;, h;) = 0 implies that the head at
Reservoir ¢ does not change and is deterministic. However, the
covariance operation over the inequality constraint (3b) is not
meaningful and thus not included in (6b). With that in mind,
the operating point z° satisfies (3b).
(iii) The optimization variable is K, which is encoded in (6b)
after performing the covariance operation on DAE, Limits,
and Measurements models.

The objective of this paper is to solve a simplified version
of (6) through a scalable computational method.

A. Linear modeling

We regard the elements in  as random variables from a
statistical perspective, apply covariance operation Cov on the
constraints in (6), and use the law of covariance of linear com-
bination to build the relationship between uncertainty sources
and system state . However, the DAE model (2) remains
nonlinear and the law of covariance of linear combination can
not be applied. Hence, the first step to solve (6) is to linearize
the nonlinear hydraulic model around an operating point 2°.
Note that this linearization procedure does not compromise
modeling integrity due to slow hydraulic time constants in
WDN.

From the nonlinear DAE model (2) for various network
components and hydraulic models, we obtain a linearized DAE
model around x°. Appendices II and III include the complete
derivation for the nonlinear and linearized DAE models. The
linearized, compact form for all pipes and pumps can be
written as

ALY (k) = K} q(k) + K[ c(k) + b"
ARM(k) = —K)q(k) + bM.

(7a)

(7b)
where K}, KT, and K" are diagonal slope matrices with
size ny X Ny, Ny X Ny, and Ny, X Ny vectors bY and bM are
intercepts with size n, x 1 and n,, x 1. These matrices/vectors
are all known and can be calculated around operating point
20 efficiently. All pipe roughness coefficients are collected in
c(k). Hence, the linear DAE can be expressed as

DAEjinear : BN (k+ 1) = Aph™™ (k) + Byq(k)

0= E(k)x(k) — z(k).

(8a)
(8b)

where z(k) = {d(k), Klc(k) + bY(k),b™(k),L(k)}, and
l(k) is an n; x 1 vector. Equation (2b), collecting the mass
balance equations for all junctions, is included in (8b). Matrix
E(k) in (8b) depends on the topology and parameters in the
linearized model. Details of the linearized model are all given
in Appendix III.

B. Reformulating the PSE problem

The PSE can now be written as

find Kex 9
s.t. Cov(Limits (3a), Measurements (4), DAEjipcar (8)).

Interestingly, all constraints in (9) can be expressed as a
compact linear system of equations A[k]x[k] = b[k], where

2 {xk),x(k+1),...,x(k+T)} € RT"=
Alk] £ {A[K], ATE[K]}, blk] = {b%[k], b7 [K]}.

We now show the structure of the linear system of equations
Alklx[k] = blk]. This linear system of equations can be
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obtained as
[ A%k) [ b°(k) ]
b3 (k+1)
b (k+2)

xzlk] = bs(k:JrT)

where the submatrices/vectors in A[k]| and b[k| are discussed
next. Note that only the current & is considered since subma-
trices from k£ + 1 to k + T have similar structure.

First, the matrices Ap, Bq, and I, x5, from (8a) are col-
lected in ATX(k), and the right-hand side for these dynamic
constraints is the zero vector of dimension n;. That is, each
subvector in bTX[k] is 0, x1.

Second, the equality constraints given in (3a) can be col-
lected in (4), i.e., the elevations at reservoirs can be viewed as
measurements without any noise. Thus, we only need to deal
with (4) and (8b) in the constraints (9). After merging (4)
and (8b), we obtain

W ECE ]

—— —_———
As(k) b5 (k)

where AS(k) € R(wHne—ni=nr)xns js 3 matrix collecting
and modeling the linear DAEs (8b), equality limits (3a), and
measurement modeling; vector b*(k) is a vector collecting
uncertainty source from demand, pipe, and measurement noise.
Appendix IV contains more details about this derivation. In
short, we have now mapped all the constraints inside the
covariance operation in (9) into the following problem

find Kez
s.t. Cov(Alk]x[k] = blk]).

(10)

(11a)
(11b)

The solution to Problem (11) provides the covariance of x[k],
and the variance of each entry of [k] is located in the diagonal
element of K .. Two main questions need to be investigated
for (11):

(Q1) How is the constraint (11b) constructed given A[k] and
b[k]?

(Q2) 1Is Problem (11) convex and is there a closed-form, unique
solution in terms of the problem data?

For (Q1), the construction of constraint (11b) is obtained
by the cross-covariance properties Cov(Ax, Ax)=AK, ;AT
and Cov(b,b) = Kpp; see Definition 1 and [25]. Hence, we
can now write

Constraint (11b) < A[k]Kez(A[E])T = Kpp,

where Kpp is the covariance matrix of all sources of uncer-
tainty which is given next.

Recall that z(k) = {d(k), KFe(k) + b" (k), bM(k),1(k)},
and measurement vector y(k) in (10) is known from sensors,
and is replaced by y°(k) around the given operating point

2% (k). Vectors b" (k), b(k), and I(k) are not random vari-
ables, and they are constant since they are all computed around
x°(k), while z(k), c(k), d(k), and v (k) are all random. Given
Assumption 1, define the covariance matrix of uncertainty
Kpsps around z°(k) as

—d(k) —d(k)
bY (k)+ KL c(k) b* (k)+ K’ (k)
Kpsps (k) = Cov bM(k) , bM (k)
L(k) L(k)
y°(k)—v(k) y°(k)—v(k)
Var(d(k)) + demand uncertainty
(KF)2Var(c(k))| |+ pipe uncertainty
= diag Onmxl
Onl x1
Var(v(k)) + noise uncertainty.

We note that
Cov(KFe(k), KFe(k)) = KT Cov(e(k), e(k))(KF)T

= diag (K} )?Var(c(k)))
since KF and Cov(c(k),c(k)) are diagonal. Note that the
covariance of bTX[k] is a zero matrix. If we consider all time-
steps then we can obtain the aggregate covariance matrix of
all uncertainty sources as

Kpp = diag (Kpsps[k], Kprpri [k])

= dlag (Kbsbs (k), . aKbSbS (k + 11)7 0) (13)

This shows how the covariance operator of the linear equality
constraints can be constructed.

C. Explicit solution for PSE and a real-time algorithm

As for (Q2), Problem (11) now becomes a feasibility
problem and is convex since the constraint only consists of
linear equality constraints. Here, we present explicit solutions
to the PSE problem, thereby addressing the second part of
(Q2). To solve (11), we can compute the covariance matrix
through solving

A[KKza(A[K]) " = Ko (14)

The next result provides a solution to (14) with a guarantee
on an existence of a unique solution.

Theorem 1. Matrix Alk] := A is full rank, and the solution
to (14) is uniquely given by

Koo = (ATA)TAT Ky A(ATA)L (15)

The proof of Theorem 1 is given in Appendix IV. The
physical meaning of (15) indicates that uncertainty of system
state (k) can be expressed through a linear combination of
the uncertainty from demand d(k), pipe parameters c(k), and
measurement noise v(k). That is, the covariance matrix of
system states K., is expressed by the linear combination of
covariance matrix of uncertainty Kpp. Note that the above
discussion on (Q2) is similar as the observability analysis
identifying if a set of available measurements is sufficient to
estimate the system state; see [26], [27] for details.



6 IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY, IN PRERSS, MARCH 2021

Algorithm 1: Estimating the covariance matrix of x.

Input: WDN topology, expectation of measurement y(k),
demand {d(k)}{:l, variance of measurement noise
{Var(v(k))}E_,, demand {Var(d(k))}_,, pipe
parameter {Var(c(k))}gz1

Output: The estimated covariance matrix of x: {Kmm}gzl

1 Setk=1

2 while £ <7T do

3 Obtain an operating point x

Linearize the nonlinear DAE around z° via (@)

Compute Kgq through (15)

Extract the variances of heads and flows from the
diagonal elements of Kza

7 Update k =k + 1

s end while

0

A &

Given the above discussions, Algorithm 1 presents a near
real-time algorithm to solve the PSE in water networks. That
is, the algorithm solves the PSE for the expectation and
covariance of the heads and flows assuming demand, pipe
roughness coefficients, and measurement follow any statistical
distribution, while knowing the expectation and variance for
the uncertain variables.

We note that the system matrix A[k] can have more equa-
tions than variables—in the case of over-determined measure-
ment scenario. Under such scenario, some equations in (14)
might be more reliable than their counterparts. For example,
the demand predictions that are encoded in (14) might be less
reliable than the flow and head measurements. As a result, the
weighted version can be rewritten as

ATWAzx[k] = ATWb[k],
~—— —_——
AW [k] by [K]

where W is a diagonal, positive-definite weight matrix. The
corresponding weighted version of (14) is

AV [K]Koa(AY[K]) " = Kpyp, -

Corollary 1. The weighted formulation (17) with full-rank
matrix AW has a unique solution given by

(16)

a7

Kaup = (AW AW) 1AW T Ky AW (AW T AW (18)

Corollary 1 builds on Theorem 1 with nearly identical
proof; see Appendix IV. We note that (17) is a simple yet
powerful formula to calculate the covariance matrix of system
states. Intuitively, we know that the state uncertainty in a
system is reduced when more measurements on system states
are performed. For example, if all states are measured and
corresponding equations are given larger weights, then the
uncertainty is only introduced from the noise of sensors,
and the other uncertainty sources are suppressed. Specifically,
when more head and flow measurements are obtained, the
impacts are not only on the measured states themselves but
also on the other unmeasured states due to the system equation.

Algorithm 1 suits both sufficient and over-determined sce-
narios with various types of valves when the corresponding
formulations are adopted; see Section V-B. We note here
that (15) and (18) do not rely on any statistical distribution of

the uncertainty. Furthermore, this approach for PSE is scalable
to networks with thousands of nodes due to the fact that system
matrix Alk] is highly sparse. Section VI produces examples
on the scalability of this algorithm.

Remark 1. Equation (14) is not based on the first-order sec-
ond moment (FOSM) method, since FOSM uses the sensitivity
matrix which is the Jacobian matrix and only focuses on the
relationship between part of system states and uncertainty
source [7], [21], [28]. Moreover, FOSM needs to be applied
two or more times to find the mapping between all system
states and uncertainty, whereas (14) uses system matrix A[k]
and our formulation connects between all system states and
all uncertainty sources in one shot.

V. GENERALIZATION OF FLOWS AND HEADS
DISTRIBUTIONS

In Section III, we showcase that (15) computes the variance
of each system state efficiently, but it still cannot explain
how uncertainty propagates to the system states clearly and
intuitively for the linearized or the original, nonlinear hy-
draulic modeling. That is, how would the distributions of
unmeasured flows and heads change with the change in the
uncertainty distribution? Furthermore, and albeit useful, (15)
cannot generate insights related to which uncertainty source
is more critical than the other in terms of SE performance. In
this section, in order to answer the above questions, we need
a further assumption that builds on Assumption 1.

Assumption 2. Demand d, measurement noise v, and pipe
roughness coefficient c follow either normal or uniform dis-
tributions.

This assumption is not needed to run Algorithm 1; rather,
it is given to investigate how uncertainty propagates for
specific distributions. With that in mind, Section V-A presents
a thorough discussion on the practicality of Assumption 2.
The next theorem and corollary explain how distributions of
flows and heads change with the uncertainty distribution for
linearized or nonlinear hydraulic models.

Lemma 1. For tree networks with nonlinear hydraulic models,
flows are normally (uniformly) distributed as long as the nodal
demands follow the normal (uniform) distribution, whereas
the heads are never normally (uniformly) distributed even if
all uncertainty sources are normally (uniformly) distributed.
Furthermore, for looped networks with nonlinear hydraulics,
neither heads nor flows are normally (uniformly) distributed.

Theorem 2. For tree or looped water networks with lin-
earized hydraulics, all heads and flows follow the normal (uni-
form) distribution when uncertainty is (uniformly) distributed.

The proof of Lemma 1 and Theorem 2 are given in
Appendix V along with the corresponding PDFs for flows and
heads for linearized head loss models. The proof explains the
propagation of uncertainty and the importance of each uncer-
tainty source. The next discussion summarizes and explains
these findings.

In the proof of Lemma 1, we show the PDF of head gain of
a pump Ah;and head loss of a pipe AhJ; in tree network with
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Fig. 1: A tree network (left), and a looped network (right).
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Fig. 2: PDF of the flow ¢ through a pump (left), original head
increase curve of the pump and its linear form (middle), and
PDF of original and linearized head increase (right).

nonlinear hydraulic modeling, given by fa H%_(Ah%) (38)
and fapr (Ahf}) (39). By comparing them with the formula
of normal distribution function, and we know that they are
not normally distributed. We also depict these conclusions in
Figs. 2 and 3, which are based on simple numerical tests for a
network shown in Fig. 1. The nonlinear pump curve and pipe
head loss curve are the yellow lines in the middle of Figs. 2
and 3, whereas the shape of fAHM (Ah}}) and fAHp (Ah})
are yellow lines on Figs. 2 and 3 (rlght) when the PDF of ﬂow
q is normally distributed.

Based on these results, we conclude that (i) the normal-
ity of demand uncertainty results in the normality of flows
in tree networks regardless of nonlinear or linear hydraulic
modelings. Furthermore, the uncertainty from pipe roughness
coefficients prevents the propagation of normality from flows
to heads. (ii) The normality of noise uncertainty only impacts
the variables it measures, i.e., the flow (head) measurement
noise uncertainty only impacts flows (heads). The linearization
bridges the gap between the normality of flows and heads,
which makes the system states follow normal distributions.
These discussions are abstractly depicted in Fig. 4. From
the discussions, the importance or impact of each uncertainty
source is given in the next remark.

Remark 2. Impact of pipe roughness parameter uncertainty
> Impact of demand uncertainty > Impact of measurement
noise uncertainty.

Remark 2 is discussed in breadth in the case studies section.

V. DISCUSSIONS AND INSIGHTS

This section presents some discussions that are relevant to
uncertainty and its distribution, different measurement scenar-
i0s, and relevance and connections to the literature.

A. Dealing with uncertainty

The rationale behind Assumption 2 is discussed here
even though Algorithm 1 can be implemented regardless of

—Pipe head loss —PDF of ALY
0.02 — Linearized head loss —PDF of AhP (linear)
200 0.1
>
g 100 y
goo = 8 0.0
15} g VYo
= < 5]
<) 0 =
0 0
0 200 0 200 400 0 100 200
q q ARP

Fig. 3: PDF of flow ¢ through a pipe (left), original head loss
curve of the pipe and its linear form based only on demand
(middle), and PDF of original and linearized head loss base
only on demand (right).
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Flow
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Fig. 4: Propagation of uncertainty.

the uncertainty distribution type. For the uncertainty from
measurement noise, we simply assume that they follow a
known normal distribution [10]. A uniform distribution can
also be applicable in our paper as we mentioned. As for the
uncertainty for pipe roughness coefficients, and specifically
for the Hazen-Williams coefficients, typical values lie in
[75,130] [29], which is narrow enough, and can be fully
covered by a normal distribution N'(100,135.5). This means
the worse case [75,130] is covered by A(100,135.5) with
99% confidence level. If the material of pipes is known,
the range can be further narrowed down. In this way, we
can deal with the uncertainty from roughness coefficient. In
fact, the network calibration research [30] is able to estimate
the roughness coefficient, and recently, the standard deviation
errors for the estimated pipe roughness are available [31].

For demand uncertainty, various methods [32]-[34] can
be adopted to estimate the demand (mean and variance).
For example, the authors in [34] propose a gated recurrent
unit network model to predict short-term water demand, and
the histogram of relative errors indicates that 95% of the
forecast relative errors fall within the range of £12.65%
for 24-hour forecasts. In addition to these prediction studies,
demand estimation studies based on the historical and real-
time measurements (a calibration process using sensors), such
as [35], [36], the knowledge of population densities, and
billing data from water utilities are also helpful to deal with
demand uncertainty.

Thus, given above studies, prediction or estimation error of
demand can be assumed to follow a certain type of distri-
butions, i.e., a uniform distribution or a normal distribution
and vary around a prediction value (mean) with a standard
deviation [10]. Fig. 5 illustrates a 24-hour estimated demand
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Fig. 5: Demand prediction with 95% confidence interval.

and the associated 95% confidence interval.

B. Sufficient and over-determined scenarios

There are two scenarios for SE in water networks [11],
[22]: (i) Sufficient scenario is described by having the same
number of equations and unknowns. When measurements
include the heads at tanks and reservoirs, and demand pseudo-
measurements are available for state estimation, we consider it
as a sufficient scenario. In fact, the DSE problem under suffi-
cient scenario is similar to the water flow problem (WFP) [37]
or reliability analysis [21]. (ii) Over-determined scenario has
more equations than unknowns. For example, additional sets
of heads are measured at several key nodes besides the head at
tanks and reservoirs. For more details of solving deterministic
SE (DSE) under both scenarios, please refer to the examples
in [11], [22]. For PSE, we note that as the number of extra
measurements increases, the uncertainty of system variables
gradually disappears, and SE accuracy is enhanced.

VI. CASE STUDIES

We present several simulation examples (illustrative
three-node network, 8-node network [38], Anytown, BAK,
PESCARA, OBCL, and D-Town [39]) to illustrate the appli-
cability of our approach. The first three-node network is used
to illustrate the details of proposed method. Then we test the
8-node network to illustrate that our approach can deal with
the looped topology and various types of valves. The rest of
testcases are used to test the scalability and the efficacy of the
proposed approach for non-Gaussian uncertainty distributions.
All test cases are simulated using MCS methods via EPANET
Matlab Toolkit [39] on Ubuntu 16.04.4 LTS with an Intel(R)
Xeon(R) CPU E5-1620 v3 @ 3.50 GHz, and results of MCS
are used to verify the accuracy of proposed approach. All
codes, parameters, tested networks, and results are available
on Github [40].

In order to compare our solution to MCS (with 1000
randomization), we need to define the criteria at first. The
absolute error between oyics and opsg is defined as AE =
|onmes — opsk|, and the corresponding relative error is RE =
Iaﬁgs\ x 100%, where the entries in o are standard deviations.

Assumption 2 (only normality) are used in case studies, and
there are three equivalent ways to express the uncertainty of a
normally distributed random variable x. First, the direct way is
using distribution x ~ N (p1,;, 02) which indicates the E(x) =
pe and Var(z) = o2. The second one is given by E(z) =
1o and the correspondlng margin of error (ME) which is the
percentage of relative changes deviating from the E(z) under

s%(ho — r(a/s)")

—s—x

0 500 1000
Flow: ¢ (GPM)

B
f=3
=
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()
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Fig. 6: Three-node network(left) and its variable-speed pump
curve (right). The ®(-) function denotes nonlinear head loss
or head gain.

TABLE I: Setup of uncertainty (99% confidence interval).

Uncertainty Estimated ME Distribution

source value (%) N(u, o?) Range
Demand d_| 100 GPM | 20% | N(100,60.28) | _ [80,120]
Roughness c 100 20% | N(100,60.28) |  [80,120]
Noise v 0 ft 1% N(0,0.0241) | [—0.04,0.04]

a certain confidence interval. That is, the x,9 notation defines
that Az falls into the range of +a% around value E(x) under
a 99% confidence interval, and ME of z is calculated by a =
2.576 ZC’ x 100%. For 95% confidence interval, a = 1. 96 7= To x
100%. Quantity x(g indicates that x is not a random Varlable
Third, the uncertainty can also be described via a range given
by E(z) and Az under a certain confidence interval, that is
z € [E(z) — Az, E(z) + Ax].

A. Three-node network

The three-node network includes one junction, one tank,
one pipe, one pump, and one reservoir, and is shown in Fig. 6
(left). The corresponding pump curve is shown in Fig. 6
(right). Only Junction 2 consumes water, and we assume that
estimated demand is pg, = 100 GPM, and the uncertainty
sources and corresponding values are summarized in Table I
under 99% confidence interval. For example, 99% of the
estimated demand relative errors fall within the range of £20%
around estimated value 14, = 100GPM (denoted as doq), or
dy ~ N(pay, 03,) and og, = 22('7;‘;;2 = 7.7. Similarly, we
assume the uncertainty of Hazen-Williams coefficient ¢ for
Pipe 23 and measurement noise v for Tank 3 are in cop9; and
V19 situation when measurements of head y,, = 908 ft with
0,213 = 0.0241. The head at Reservoir 1 equals to its elevation
which is treated as a constant without any uncertainty. that is,
a equality limit y5,, = 700 ft with o7 = 0.

As mentioned, state estimation contains two typical scenar-
ios: sufficient and over-determined scenarios. The solution of
DSE under sufficient (over-determined) scenario is served as
operating point 2° for PSE under sufficient (over-determined)
scenario. We note that the sufficient measurement scenario
corresponds to the traditional water flow problem [37] which
can be solved by the standard water system simulation soft-
ware EPANET. That is, we can use EPANET to verify our
solutions under the sufficient scenario even though EPANET
cannot solve state estimation problems.

1) Sufficient measurements scenario: Supposing that we
only know the measurements of head y;, and y;, for Reser-
voir 1 and Tank 3. The operating point 2 is obtained first
using the authors’ approach in [11]. The approach is based on
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TABLE [I: Covariance matrix for g2, g23, and h3.

Over-determined Sce-
nario by Corollary 1

Sufficient Scenario
by Theorem 1

q12 q23 h2 | q12 g3 he | q12  q23 ha

MCS

qi2 | 0.17 0.18 -034| 0.16 0.20 -0.31| 0.00 -0.07  0.00
g23 | 0.18 5546 -035|0.20 5544 -0.39|-0.07 11.50 0.03
ho [-0.34 -0.35 0.65 [-0.31 -0.39 0.60 | 0.00 0.03 0.00

*Only result in sufficient scenario is compared with MCS since MCS
cannot provide solution for over-determined scenario.

8
Probabilistic

R 6

)
4} Deterministic
Weight
2
10 5 0

Weight of q12 — q23 = d

Fig. 7: Changes of o,,, when weight of gia — q23 = da
decreases.

linear approximations of the nonlinear state estimation prob-
lem under no uncertainty. This linear approximation returns
nearly identical solutions to EPANET.

Next, the corresponding PSE is solved to obtain covariance
matrix Kg,. The linear system of equations for three-node
network when 7" = 1 based on (10) can be expressed as*

000 -1 17 do
1 0 -1 -kl 0 hf by + kL eo3
110 0 K|, = b5 (19)
001 0 0 Yhy — Vh
q23 3 3
010 0 0" Yhy — Vny
1 00 0 0 Yhy = Vhsy
A b

Based on (13) and Table I, the uncertainty of demand,
pipe roughness coefficient, and measurement noise is Kpp =
diag([60.28, (k)260.28,0,0.00241,0]). Thus, we can solve
the covariance matrix K., by (15) of Theorem 1, and the
solution under sufficient scenario is presented in Table II and
compared with MCS. Notice that only the entries for g2, go3,
and ho in covariance matrix K, are listed since h; and hs
are measurements.

The variance of ¢q2, ¢23, and ho are 0.16, 55.44, and 0.6
from Table II. We note that (i) the uncertainty introduced from
demand ds, pipe roughness coefficient c;2, and measurement
noise vp3 are mainly passed to go3, (ii) the solution from
PSE are close to the one from MCS which confirms the
effectiveness of proposed approach.

2) Over-determined measurements scenario: Under the
over-determined scenario, an extra head measurement at Junc-
tion 2 (red in Fig. 6) is provided with y,, = 910 ft with
0,212 = 0.0241. Its corresponding formulation is also marked
as red in (19), and results found by (18) in Corollary 1. As
we mentioned, a diagonal 6 x 6 weight matrix W can be
introduced to reflect the importance of each equation of (19).

*Measurement formulation under sufficient scenario is in blue; Formulation
of extra measurement is in red, and over-determined scenario consider both
blue and red formulation.The tank dynamic equations are not listed due to
T =1, hence A = A® and b = b® in this case.
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Fig. 8: 8-node network. The ®(-) function denotes the non-
linear head loss or head gain.
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We note that the weight matrix W chosen has a significant
impact on the state variances as we discussed after presenting
Corollary 1.

Suppose that the weight of the equation g2 — go3 = da is
10, and we decrease the weight due to lack of confidence
in the prediction of demand, then the role it plays is less
important while solving for Kg,. Fig. 7 demonstrates the
changes in o4,, = /Var(gs3) as a function of decreasing
weight of the continuity constraint at Junction 2. We note that
04y changes from 7.7 to 3.39 (Var(go3) = 11.50 in Table II,
and 4/11.50 = 3.39) when weight of ¢12 —g23 = do decreases,
and it means the uncertainty of go3 is reduced with extra
measurement at Junction 2, and it relatively becomes more
deterministic. This result is reasonable because uncertainty
from demand is less valued. The covariance matrix under over-
determined scenario with weighted equation is presented as
the last three columns in Table II. Note that the result is
not compared with MCS since MCS cannot be applied to
over-determined scenario. From the result, we can see that
uncertainty is reduced not only on the measured head ho
but also on the other variables compared with the sufficient
scenario.

B. Eight-node network

The 8-node network, adapted from EPANET [38], is a
looped network shown in Fig. 8. The measurement noise,
demand, and pipe coefficients are assumed to be in the range of
4+20% around the average values with 99% confidence level,
similar to the setup in previous three-node network.

For this case study, we only show the results under sufficient
scenario. That is, the head at reservoir yp, = 700 ft and tank
Yns = 834 ft are known. We have 17 variables in (k) with 17
equations since we are considering the sufficient measurement
scenario and 7' is set as 1. The final solution and comparison
with MCS are presented in Table III, and the accuracy of
proposed method is guaranteed by the small relative error RE.

1) Extended period simulation: We present the results of an
extended period simulation (EPS) for 7' = 24 hours after
applying Algorithm 1. We select three nodes (Junctions 3 and
5, Tank 8) and fours links (Pipes 23, 37, and 78 and Pump 12)
(see Fig. 8), and show the 80% and 95% confidence intervals
after solving the PSE for 24 hours. The confidence intervals
for the estimated heads and flows for the selected nodes and
links are presented in Figs. 9 and 10.

The green lines in Figs. 9 and 10 represent the operating
point or expectation, and the red interval is in 80% confidence
level, whereas the blue one is in 95% confidence level. Both
intervals are calculated according to the standard deviation
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TABLE Il1: Results of 8-node network under sufficient scenario
(T =1).

MCS PSE
b Standai[’d deviation o AB RE(%)
J2 4.276 4.183 0.094 | 2.191%
I3 4.281 4.189 0.092 | 2.151%
Head J4 4.265 4.169 0.096 | 2.241%
J5 4.365 4.267 0.098 | 2.241%
J6 4.26 4.161 0.099 | 2.325%
J7 4.245 4.145 0.099 | 2.343%
T8 0.015 0.015 0.00 0.00%
P23 7.625 7.434 0.191 2.506%
P34 14.17 13.92 0.256 1.806%
P45 4.943 4.862 0.081 1.642%
P37 16.7 16.4 0.305 1.825%
Flow P46 12.69 12.51 0.181 1.429%
P76 17.04 16.78 0.258 1.515%
P65 5.746 5.622 0.125 2.171%
P78 13.23 13.11 0.117 | 0.888%
PU12 | 7.625 7.434 0.191 2.506%
F.xp{‘r:tmiunlFJ:’r'_.".'- confidence inl.:‘r\':ill?ift'}& confidence interval
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Fig. 9: Confidence intervals for flow (GPM) of Pipes 23, 37,
and 78 and Pump 12.

(square root of variance) obtained by PSE in Theorem 1. In
Fig. 9, the expectation of flow in Pipe 37 pig,, is relatively
small, whereas the corresponding variance o, is larger than
the other three links. This is because the flow direction in
Pipe 37 changes frequently along with water consumption at
junctions. Compared with Fig. 10, the flow fluctuates more
than the head. The head intervals of 80% and 95% confidence
level at Tank 8 are small and almost overlapping with each
other due to sensors accuracy and the small variance of
measurement noise. The head at Junctions 3 and 7 are mainly
decided by the overall network modeling: they tend to fluctuate
more compared to Tank 8, hence reflecting the uncertainty in
demand and pipe coefficients as well.

The pumped water is either consumed by junctions or
injected into tanks. In particular, the water pumped by Pump
12 is the sum of user demand and water injected into Tank 8,
that is g12 = > d;+¢7s. While it might be intuitive to consider
that o4,, should be large because all uncertainty of o4, are
accumulated in ¢;9, this case study shows that o,,, is much

Expectat illlll!)i’)"j{. confidence i|1|c'1'\';ail?m€}{.- confidence interval
= 036 : /
NN sl NS
o Lk g g | /
= 825 \'/v-,_/ \’V \/\../ \/
T o L
/ ;A
\ -
g i .
836 =
4 8 12 L6 20 24
Time (h)

Fig. 10: Confidence intervals for head (ft) of Junctions 3 and
5 and Tank 8 under sufficient scenario.
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dy59
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%

v .
V5% Uncertainty

Vo%
Fig. 11: Effects of 3 different uncertainty sources on the
standard deviations of components’ heads (J2-J7, and T8) and
flows (P23-P78, and PU12), see Table III for details of ID.

smaller than we expected (see flow through Pump 12 in Fig. 9).
This is because Tank 8 acts as a buffer for the network, thereby
providing sufficient pressure and flow if demand in network
is huge. Otherwise, Tank 8 performs as a junction to consume
water when demand—and its corresponding uncertainty—is
small. The uncertainty from demand is actually handled by
the buffer mechanism from tanks which leads to small flow
fluctuation in pumps.

2) Effects of different uncertainty sources: We test the in-
dividual effects of the uncertainty sources on the standard
deviation of x (head and flow) when head at Reservoir 1
hy, Tank 8 hg are measured and demands at junctions are
available. Fig. 11 shows the standard deviations when the
margin of errors of uncertainty sources changes. Note that
the measurement noise uncertainty v is the smallest among
all three uncertainty source because the modern sensors are
accurate. Most sensors are in v,9, 7, and we assume the worst
case is vsy,. The pipe roughness coefficient uncertainty c is
the largest among all sources since c is difficult to estimate

TQuantity v, ¢ defined in Section VI-A means the 99% of estimated error
fall into the range of +a% around estimated value. Particularly, vy, indicates
an ideal situation, that is, there is no measurement uncertainty.
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accurately nowadays, but ¢ has a certain range in practice
(see Section V-A) which can be fully covered by c3py under
99% confidence interval, and the worst case for demand are
assumed as dggy.

The first three bar graphs (marked with different shades of
blue) show the impact of measurement noise uncertainty v (for
h1 and hg) on the standard deviation o of each component with
fixed di59 and ci59. As the margin of error of v increases
from 0%, 2.5%, to 5%, the standard deviation o of some
components (P34, P46, P76, and P78) has relatively larger
changes compared with other components, but the overall
changes for all components are not significant. This indicates
that the impact of noise uncertainty is relatively small (see
Remark 2).

The second group of three bar graphs present the impact
of demand uncertainty under fixed cq59, and vig. Only the
standard deviation of pipes (P23-P78) changes obviously as
the margin of error of demand d goes from 0%, 15%, up to
30%. However, the head at each node still remains relatively
unchanged, and this result reflects the demand uncertainty has
direct impact on flows instead of heads shown in Fig. 4.

The third group three bar graphs show the impact of pipe
roughness uncertainty under fixed dq50, and v, 59,. Note that
all standard deviations o of all components change signifi-
cantly as range of the roughness parameter ¢ goes from 0%,
15%, to 30%. We also test other networks, including the BAK
and PESCARA, and the results are similar which verifies the
Remark 2.

The result also indicates the main impact of uncertainty
is from pipe roughness coefficients and demand. This guides
the network operator in selecting a larger weight W in the
modeling of PSE and improve the accuracy of state estimation.
Specifically, the weight on measurements should be relatively
large as the measurements are reliable, whereas the weight on
mass balance equation where demands are encoded should be
relatively small. The uncertainty from pipe roughness coeffi-
cients have the greatest impact on state estimation in WDN.
An ideal way to improve the performance of state estimation is
to curb the pipe roughness coefficients uncertainty propagation
through adding more sensors.

Based on the results of the three- and eight-node networks,
the Theorem 2 has been verified using Kolmogorov-Smirnov
test [41], and the plots comparing the CDF based on the results
with the standard CDF of normal distribution are omitted due
to space limitation.

C. Extended Eight-node network with valves

In order to validate our method with water networks with
valves, a flow control valve (FCV) and a pressure reducing
valve (PRV) are modeled in extended eight-node network
shown in Fig. 12. We assume that the FCV is installed between
J3 and J4 to limit the flow through the link, and the PRV is
installed to maintain the pressure at J9, J10, and J11. For the
FCV, no head loss exists in OPEN status and its flow is set
to g"<t in ACTIVE status according to (27). In particular,
the g%t = 500 GPM for this test case. The extended period
simulation (EPS) results for the FCV are presented in Fig. 13.

1 2 3 7 8
- > >—19%
FCV X Y

. 6] .. 910
4 L] o L]
Y PRV%
5 11

Fig. 12: Exteneded 8-node network with FCV and PRV.
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Fig. 13: Head and flow related to FCV.

The variables instead of component ID are used as Y labels
for convenience in Fig. 13 and Fig. 14. We can see that the
valve is in OPEN status during time period 1—6, 11 —12, and
15—17, the expectation and variance of h3 and h4 are exactly
the same, and the flow through it ¢34 is not controlled by FCV.
For the rest of time period in 24 hours, it is in ACTIVE status,
and the expectation of ¢34 is under g“st, and the variance of
Q34 18 zero.

For the PRYV, its head hyq is set to At = 815 ft in ACTIVE
status according to (28), and corresponding EPS results for the
PRV are presented in Fig. 14. We can see that it is in OPEN
status during time period 10, 13 — 14, and 24, the expectation
and variance of hg varies since it is not under control. For
the rest of time period in 24 hours, it is in ACTIVE status,
and the expectation of hg is equal to hls with zero variance.
Note that once hg is under control and equal to less than the
settings hlset, the pressures at J10 and J11 are also less than
settings. We note that the upper limit of confidence interval
may be incorrect when the FCV or PRV are in OPEN status.
The reason is that a valve is considered as a pipe with zero
head loss, and the result is not limited by the setting value.

D. Testing scalability and various uncertainty
distributions

In order to verify the scalability of our proposed PSE
approach, we test different networks with varying size and
complexity including Anytown, BAK, PESCARA, OBCL,
and D-Town networks [31]. The details of each network
(number of components), problem size, average relative error
of standard deviation (absolute error of expected value), and
computational time of each method and network are all sum-
marized in Table IV. For example, the Anytown network has
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Fig. 14: Head and flow related to PRV.

TABLE IV: Tested networks and their corresponding average
RE of ¢ (AE of u) and computational time with pipe rough-
ness and measurement uncertainty following normal distribu-
tions while demand uncertainty following normal, uniform, or
laplace distribution.

Network Anytown| BAK |PESCARA| OBCL D-Town
Number of each | {19,3,0,|{35.1,0,] {68,3.0, | {262,1,0, | {364,1,7,
component* 40,10} | 58,00} | 99,00} | 288,10} | 405,114}
Dimension of Kez |63 X 6394 x 94[170 x 170|552 x 552|783 x 783

Average T 12.96% | 1.78% | 1.72% 0.37% 1.61%
RE ormat 1(0.5944)| (1.070) | (0.3249) | (0.0072) | (0.0547)

of o % Unif 2.64% | 239% | 1.96% 0.29% 1.51%
(Average |YMOTM (1 150y | (1.374) | (0.5337) | (0.0053) | (0.0643)

AE Lanace| 1:36% | 1.49% | 1.69% 0.49% 2.05%
of ) PLACe] 0.1992)((0.2219)| (0.0729) | (0.0068) | (0.1031)

| Mcs | 194 | 275 4.85 16.17 21.45

Time (sec)’
PSE | 0.02 | 0041 | 0.063 0.11 0.56

*{# Junctions, # Reservoirs, # Tanks, # Pipes, # Pumps, # Valves}

TTime under all uncertainty sources follow normal distribution.

19 junctions, 3 reservoirs, 40 pipes, and one pump. The total
number of components is 63. The results showcase that the
PSE formulation is indeed scalable for networks with hundreds
of components due to the highly sparse system matrix A[k].
We have also verified that A[k] for each network is full column
rank using sprank command from Matlab—thereby ensuring
the existence of solution.

Besides that, to verify the generality of our method (un-
certainty sources can follow different types of distributions,
or even do not have to follow specific distributions as long
as their expectation and covariance exist), we use normal
distributions for pipe roughness and measurement uncertainty,
while the demand uncertainty varies from the normal distribu-
tion, uniform distribution, to Laplace distribution. The small
average relative error of all states is presented as the fourth
row in Table IV. The results indicates that our method still
maintains good performance even with different uncertainty
distributions.

The last row list the average computational time for MCS
and PSE (16) when all uncertainty sources follow the normal
distribution. The results of computational time for the mixture
of distributions are similar and thus omitted but can be
recovered via running the provided codes on Github.

VIl. PAPER SUMMARY AND FUTURE WORK

The paper’s objective is to develop probabilistic modeling
for water network state estimation through scalable computa-
tional algorithms considering various sources of uncertainty.
To this end, a probabilistic state estimation algorithm is
proposed. We analytically show that the covariance matrix of
unknown system states can be linearly expressed by the covari-
ance matrix of uncertainty from measurement noise, network
parameters, and demand at arbitrary operating points. Case
studies demonstrate the applicability of the proposed method
in bounding unmeasured WDN states. Future work will focus
on the following relevant problems that are not addressed in
this work: (i) probabilistic modeling and estimation of network
parameters such as demands and pipe roughness coefficients;
(ii) designing sensor placement methods to maximize the
observability of the nonlinear WDN model.
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APPENDIX |
EQUIVALENT COVARIANCE OPERATION

For random vectors a and b, let a = Az, and assume that
a = b. We show that

Cov((a —b),(a — b)) =0 < Cov(a,a) = Cov(b,b).
According to linear combinations covariance property,

Cov((a —b),(a — b)) = Cov(a,a) — 2Cov(a, b) + Cov(b, b)
= Cov(a,a) — 2Cov(b,b) + Cov(b, b)
= Cov(a,a) — Cov(b, b).

Note that the fact @ = b is used from the first equality to the
second one in above proof. Thus,

Cov((a —b),(a — b)) =0« Cov(a,a) = Cov(b,b).

APPENDIX Il
MODELING WDN & BACKGROUND

We model the WDN by a directed graph G = (V, £). Set V
defines the nodes and is partitioned as V = J UT UR where
J, T, and R stand for the collection of junctions, tanks, and
reservoirs, respectively. Let £ C V x V be the set of links,
and define the partition £ = P U M U L, where P, M,
and £ stand for the collection of pipes, pumps, and valves,
respectively. The directed graph G can be expressed by its
incidence matrix Eg (20) which stands for the connection
relationship between vertices and edges. For the ‘" node,
set A collects its neighboring nodes and is partitioned as
N; = N U NP, where NJ™ and N" are the sets of
inflow and outflow neighbors of the i*" node. Notice that
the assignment of direction to each link (and the resulting
inflow/outflow node classification) is arbitrary. Thus, Eg is
comprised of —1, 0, and 1 representing negative connection,
no connection, and positive connection. Besides, Eg has
row partitioned form [EX ' EM ' EL '] and column partitioned
form [E); EX; ETX] from different perspectives.
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Pipe Pump Valve
Junction| E} | E} | E] |} E}
; R R R R
E _ Reservoin Ep | Ey | EY } ;K (20)
Tank | ETX | ETX | ETX |} E;

pT MT LT
E, E, Ey

According to the principles of conservation of mass and
energy, we present the corresponding modeling of each com-
ponent of a WDN. Models of network nodes and links are
given below.

1) Conservation of mass at junctions, tanks, and reservoirs:
Junctions are the points where water flow merges or splits. The
expression of mass conservation of the i*" junction at time &
can be written as

Yooauk) = > aylk) = dik),

JEN® JENPut

21

where g;i(k), j € N is the inflow from the j*" neighbor,
qi;(k), j € N is the outflow to the 5" neighbor, and d; (k)
is the demand extracted from node i. Here, we assume there
is are either no leaks or that leaks uncertainty is encoded in
the d(k) demand uncertainty in (21).

The water hydraulic dynamics in the i*" tank can be
expressed by a discrete-time difference equation

RIE(k+1) =R (k) +

At
AT > i)=Y ai(k)], 22)

'G./\/?n jeN;mt

where h;FK A;FK respectively stand for the head, cross-
sectional area of the it tank, and At is the discretization time.
We also assume that reservoirs have infinite water supply and
the head of the i*" reservoir is fixed [38, Chapter 3.1].

2) Conservation of energy at pipes, pumps, and valves:
The major head loss of a pipe is determined by Hazen-
Williams, and can be expressed as (23) in Table V, where
resistance coefficient R;; = 4.727LF (CTW)~1.852(pP)—4.871
is a function of the corresponding roughness coefficient CW,
pipe diameter D, and pipe length LY. The minor head loss
of a pipe is not considered.

The head gain generated by a pump from suction node
i to delivery node j is determined by the pump curve and
can be expressed as (24) in Table V, where ¢;; and s;; are
the flow and speed of a pump; quantities hg,  and 3 are
the pump curve coefficients. Flow control valve (FCV) and
pressure reducing valve (PRV) are commonly used valves to
regulate flow or pressures, respectively, and are controlled
through valve openness or set points. The valve models used in
our paper is based on [38]. FCV limits the flow to a specified
setting g'ct, when the head h; at upstream node i is greater
than the head h; at downstream node j; otherwise, FCV is
treated as an open pipe with minor head loss. In short, FCV
can be modeled as

{h% = hi — h;j = li;qijlq:5] = 0, OPEN

27
¢ij = q"=*, ACTIVE

where lu = 25#5],
A;; is the corresponding cross-sectional area of the FCV, g
is the acceleration of gravity, and all three parameters are
constant which make /;; also as a constant. gt is the setting
value.

PRV limits the pressure at a specific location (reverse flow
is not allowed) and set the pressure to P*°* on its downstream
side j when the upstream side ¢ pressure is higher than
Pset [38, Chapter 3.1]. Given the status of a PRV, it can be

modeled as
h%J = h; — hj = 1i;¢i5]g:;| = 0, OPEN
hj = hl=t ACTIVE

and k;; is the minor head loss coefficient,

(28)

where [;; is the same constant as the one of PRV; hlset ig
a constant head converted from the constant pressure setting
Ps°t. The fact that reverse flow is not allowed in PRVs can
be expressed as a limit ¢;; > 0 and included in (3b). Besides
that, minor head losses in PRVs and FCVs are not considered
in this paper, and that [;; is set as O results in the linear model
for PRVs and FCVs.

APPENDIX Il
DERIVATION OF LINEARIZED DAE

The linearized pipe and pump modeling (7) is included in

Table V and can be rewritten as (time index k is ignored during
the following derivation)

AhRP K? q° K? c bF
— q c
{AhM} [ —K}I\/I} [qM 1 "o] [o] o] P
Head difference Ah" and AhM across any pipe or pump can

also be represented as h; — h;, and h; or h; must be in set
h?, h®, and hTK. Hence, we have

hJ

ARP

{AhM} =B | B | =B
hTK

where Ej, is a submatrix of Eg (20) defined as E; =
[EY EM]T. Substituting it to (29), the linearized hydraulic
equations are obtained as

P P P
_ q K; c|l |b
o= o] o)
h

where Ej, = diag{K ,—KM}. We can reorganize (30) into
[En —Ei] | q"
M

the following form
_ [KP cl, b*
o of o] " [pM]|-
q

Recall that both FCV (27) and PRV (28) have two different
statuses, and the total number of combinations is four. How-
ever, regardless of whether valves are open or active, it is
linear. Hence, we can model them as

(30)

€19

0
[Ei | O(nytnp)xn, | B = 1|0, (32)
l

QF‘QZ Qw‘ ~
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TABLE V: Hydraulic modeling of pipes and pumps (time index k is ignored for each variable for simplicity).
Pipes Pumps
Original Hydraulic Model Ah% = h; — h; = Ri;jqijlqi;|*? 23) Ah% =h; —h; = 7512]. (ho — T(Qijs;jl)ﬁ) 24)
First Order Taylor Series Form Ahfj =h; —hj = k«ij Qij + kzj cij + bfj (25) Ah% =h; —hj = —k%qij + b%l (26)
where matrix E; includes rows of matrix Eﬁ—r in Eg matrix after applying row operations on AS(k).
[see (20)] for FCVs and PRVs in open status; or selects the 3 3
. . ¢ hf T o 0 | EJk) 0 | Ek
ppropriate entry o or a PRV in active status; matrix Ej/ B, ()=En(h) 0 o
is comprised of 0 or 1 corresponding to the active status rank WARMIZ TR = | | =rank
. T o L Ei(k)] 0 Euk) E;, (k)-Ei(k) 0
in (27); 1 is a n; x 1 vector consisting of the combination C B[ 0 Epk)
. . . !
of either O or setting of FCV or PRV. With the compact form ! !
of conversion of mass (2b), linearized form of conservation A3 (k) As (k)
of energy (31), and linear valve modeling (32), the overall (35)

linearized Hydraulic Modeling can be rewritten as

L e [
= = | e +

E}Z OkEl/ Zlf 008 b(zd

Ek) g
—d 0 —d
T e e L e

0 l l
z

Here we redefine the matrices in the left and right hand as
E(k) and z for simplicity, the corresponding dimension are
(nj + ng) X ny and (n; + ng) x 1, and the final linearized
DAE can be rewritten as

DAEjinear : B"X(k+1) = Aph"™ (k) + Bgq(k)
0=Ek)x(k) — z(k).

This shows the compact, linearized DAE model.

APPENDIX IV
PROOF OF THEOREM 1 AND COROLLARY 1

Proof. (of Theorem 1) The proof consists of two parts. The
first part shows that A[k] is indeed full rank. Actually if the
submatrix A%[k] is full rank, then A[k] is full rank. This is
because A[k] has more rows than columns, and it is clear that
each row in ATK[K] is linearly independent from the rows in
AS[k]. Next we show the AS[k] is full rank and it is given by

AS[k] = diag{A%(k), ..., A%(k +T)}.

where A%(k) is given in (10). After substituting E (k) (33) into
A3(k), the rank(A®(k)) can be expressed as the left hand side
in (35). Matrix row operations do not impact the matrix rank,
thus, rank(AS(k)) = rank(AS(k)) where AS(k) is the new

We consider the simple case (sufficient scenario) and show
As (k) is full column rank first, that is, C only selects heads
at tanks and reservoirs. Because the linear models of PRVs
and FCVs are used, and after expanding E’, E,, E., E
and Ey which are defined in Appendix III, the A®(k) can be
expressed as

Onj><nj EFJ> El\]/[ Eﬂ
In,~><nr
I, xn,
B} E. By |-K! G0
EY  EY B K
EY EL  Ely E;

Note that (i) Asis a square matrix with size of n, x ng; (ii)
As s split into six block-columns as shown in (36), that is
As = [A3s A5 A3 A5 A3 A3, (iii) K and K} are diagonal
matrices; (iv) E [E} Ei E{] = {EY, B\, E%}T =
E?T, and Eg is the reduced incidence matrix of Eg because
reservoirs and tanks are not included in Eg; the last diagonal
block in AS is E; and it covers all possible situations when
PRVs and/or FCVs are open or active.

In order to prove As is full column rank, we only need to
prove each column is linearly independent from each other,
meaning that each block Af‘ is full column rank and it is
linearly independent from Az when ¢ # j € {1,...,6}. It is
clear that the four columns (A3, Ag, Ai, and Ag) are linearly
independent of each other due to the fact that the I, x,,,
I, xn,, K 5 ,and K }XI are diagonal matrices. Next we need to
show A? (Eg) and A$ (Ej) are full column rank and linearly
independent from the rest of columns.

We note that Eg is encoded in (21). Examining the water
flow in the mass balance equation (21) and using network-
and electric circuit-theoretic results from [42, Theorem 3.2],
matrix Eg is linearly row independent. In other words, the

E(‘l] (EJq) is linearly row (column) independent. Hence, Aﬁ
is full column rank. We next discuss the full column rank
property of A§. We now assume that the links with open valves



16 IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY, IN PRERSS, MARCH 2021

(PRVs and FCVs) do not form a loop in water network. This
assumption is practical due to the way valves are installed
in water networks, and is corroborated by examining tens
of water network templates. Hence, E; (EY¥) has linearly
independent columns. Hence, Ag is also full column (row)
rank.

Note that A? is linearly column independent of the rest five
column matrices, because each submatrix in A? can not be
eliminated with the corresponding I, xp,» I, xn,» K} . K",
or E;/. Similarly, this also holds true for AZ. Hence, AS is
full column rank. In fact, matrix AS is full row rank since we
have shown Eg and E% are full row rank, and the row blocks
are linearly independent of each other after splitting As into
six row-blocks. Thus, the original matrix A%(k) is full rank
which results in a full rank A[k] = {A3[k], AT¥[K]}.

Then, we consider C under over-determined scenario, that
is, C selects extra measurements besides heads at tanks or
reservoirs. In this case, the indices new added of measure-
ments can be reformed in diagonal matrix, which cannot be
eliminated with any other columns. Matrix A* remains full
rank under over-determined scenario. Hence, A is full rank.

The second part of the proof derives (15) from (14). After
multiplying AT and A on the left and right side of (14), we
have (AT A)Kzz(ATA) = ATKppA (index k is removed to
make the equation clear), and the solution K, can be obtained

by inverting the full rank matrix A" A. O

Proof. (of Corollary 1) The proof of Corollary 1 is similar to

the proof of Theorem 1 and hence omitted for brevity. O
APPENDIX V

PROOF OF LEMMA 1 AND THEOREM 2

Before presenting the following proofs, we note that (i) the
results are applicable when the distribution is uniform. As
a result, we stick to normally distributed uncertainty. (ii) In
the proof of Lemma 1 or Theorem 2, we consider the tree
network at first, then consider the looped/grid network. The
valve models are linear in this paper, hence, are not considered
in this proof.

Proof. (of Lemma 1 for networks with nonlinear hydraulic
models)

Tree network: According to Definition 2.2.2 in [43], a tree
T is a graph in which any two vertices are connected by ex-
actly one path, or equivalently a connected acyclic undirected
graph. Mathematical induction is used to prove that the flows
follow the normal distribution in a tree network for normally
distributed demand.

Base case: We show that the statement holds for a tree 7;;
with only two nodes with demand d; and d; and one link
with flow ¢;;. We assume that flow direction is from i to j
which means ¢;; = d;. When demand d; ~ N(ua;, 03),
flow qi; ~ N (pa;, 0'31_) based on Assumption 2. This base
case can be viewed as a subtree of another high level tree.
Inductive step: We show that if base case (subtree) holds, then
a tree T consisting of two base cases (subtrees) also holds; see
Fig. 1 (left) for the notation. Note that two subtrees Tjm, Tjn
intersect at node j connecting anther node i. According to the

conservation of mass, ¢;; is also normally distributed since
djm> Gjn and d; follow a normal distribution:

Qij — Qim — Qjn = dj (37a)
qim = dm (37b)
qjn = dn (370)

Since both the base and inductive step have been performed,
by mathematical induction the statement for flows holds for
vV 7 in WDN.

Second, we prove the statement for heads in a tree network
with nonlinear modeling of hydraulics. The nonlinearities from
a pump and a pipe are different, and we consider the pump
first.

Case 1: Link ¢ is installed with a pump and the corresponding
PDF can be noted as fq,;(gij). We derive the PDF for
nonlinear head increase of a pump Ah% next. We need to
rewrite the cumulative distribution function (CDF) of Ah% in
terms of the CDF of ¢;;.

Fam(AR) = PAHY <AhY) = P(—(ho — rq;;) <ARyY)

1 1
ho + AR} \ 7 ho + AR\ 7

r

The PDF equals to the derivative of CDF, hence, we obtain
Famy(Ahij) = Fyp (AR3;) (38)

1_ 1
_ 1 ho + Ah% e s ho + Ah%l P
B r Qi r

Usually, the suction side of a pump is connected with
another node which is either a reservoir or a junction, see
Fig. 1 (left). If it is a reservoir, then the head is fixed as
the elevation which a constant. If it is a junction, the head
can be measured and the measurement noise is normally
distributioned. In either way, h; is normally distributed. Now
we consider a simple case, which is the node ¢ is a reservoir.
At the delivery side of a pump, the head h; = h; +Ah% is not
normally distributed, since f,(h;) is not a normal function.
Next, we consider the pipe.

Case 2: Link 7j is a pipe. Similarly, the PDF of nonlinear
head loss Ahfj derived as follows. As for the nonlinear head
loss model, we have

P‘ o
Fanr (Ahiy) = P(AH; < AR) =P | ¢ < ( fﬂ>

Fo, (52
— Q1,j o s

and the corresponding PDF is

1
ARE\ *
fAHzF; (Ahg) = /AHZ' (Ahf;) = /Qz'j ( Rijj>

1_ 1
NI A ARP\®
-~ Ry \\ Ry fau Rij

(39)
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Unfortunately, the PDF for Ak} (38) and Ah;; (39) are not
normal.

From the above, we note that the head at arbitrary node
is not normally distributed in nonlinear tree network as
mentioned in statement.

Looped/grid network: A looped network is different from
the tree one where flow variables can be only presented by
the linear combination of demands. However, the random
variables, flow and demand, could be dependent on each other
in a looped network making it difficult to find the exact
distribution even after linearization.

Now we simply connect Junction m and n in Fig. 1 (left)
together, and a looped network is constructed and shown in
Fig. 1 (right). If we list all conservation of mass and energy for
this looped network, we can obtain (40) and (41). Compared
with (37), the flow ¢;,, and g, are related now, and cannot
be only presented by demands in (40). Besides that, we have
one more head loss equation in (41) due to the newly-added

pipe.

hi —hj = AR} (41a)
¢ij — qjm — @jn = d; (40a) hj — by = ABY - (41b)
Gjm = gmn = dm  (40b) hj —h, = ARL (4lc)
Qjn + Gmn = dn “0c)  h. —h, =AKE  (41d)

From mentioned tree network case, we know that the PDFs
for pump curve ARM and head loss function AhY in (41)
are not normally distributed. After solving (40) and (41)
together, it is impossible that heads and flows follow the
normal distribution. O

Proof. (of Theorem 2 for networks with linearized hydraulic
models )

Note that the proof of Theorem 2 is based on the proof of
Lemma 1, please refer to it before reading this proof.

Tree network: Considering the same tree 7;; with two nodes
with demand d; and d; and one link with flow g;;. The flow
qij ~ N (g, » aij) based on Lemma 1. Thus, only the heads
need to be disscused for linearized tree network.

Similarly, we still need to discuss the pump case and pipe
case, but the derivation of PDF of linearized pump and
pipe modeling are omitted, since the linear transformation of
normal distribution would remain as normal distribution. The
pump is considered next.

Case 1: Link 4j is a pump and the corresponding linearized
modeling is (26). According to the rule of expectation and
variance of linear combination for random variables, Ah%l ~
N (ki g, + b3, (kjog,;)?). Similarly, h; = h; + Ah}}.
Hence, we have hj ~ N (kM g, + b} + hq, (K} og,;)?). For
the pipe case, we have

Case 2: Link ¢j is a pipe and the corresponding lin-
elelrized modeling is (25). , Ahj; ~ A.[(k};" fhq,; + kzj fhe; +
by, (kg 0q:;)° + (ki 04,,)%). According to, hj = hi + Ahp,

we have j ~ N (kg pug,; + ke, pe,; +bi; + hi, (kg 0g,,) +

J Cij J qij

(kzj 04,,)?), because we know h; is normally distributed based
on the discussion of nonlinear case, so h; also follows the
normal distribution.

Looped/grid network: In WDN, after linearization for (41)
around operating points, we obtain the first order Taylor series

model (42).

hi — hj + k}jqij = bl (42a)

hj = hm = Kb @im = b5 4 kS, Cim (42b)
hj = hn — K @in = b5, + kS cin (42¢)
P — hn — k‘fy’QOn = bf;m + k»,cyjzncmn (42d)

From (40) and (42), we can see that (i) flow q is related with
d, and the head h is determined by linearized model with g
and c. Hence, head h is also related with d. (ii) Each random
variable in d are assumed to be independent of each other, but
we note that they are correlated with flow g and head h. (iii)
in order to find each head and flow, we need to solve the linear
equations consisting of (40) and (42), and this is the different
part comparing with a tree network where the expectation and
variance of heads and flows can be solved directly. Now we
can summarize the PSE for any type of networks in WDN.
Next, we show the proof of Theorem 2 for general looped
network.

For a general looped network, we need to solve the linear
equation (10), and if we consider it in sufficient scenario, then
x = A~ 'b. The proof on invertibility of A is in Appendix IV.
According to the rule of variance of linear combination, the
head is also distributed normally when b follow a normal
distribution. The above process can be repeated using (16)
under over-determined scenario. Thus, the statement holds true
for any scenario in WDN.

Based on the above two cases, the statement holds true for
any network. O
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