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The HTTP adaptive streaming technique opened the door to cope with the fluctuating network conditions

during the streaming process by dynamically adjusting the volume of the future chunks to be downloaded.

The bitrate selection in this adjustment inevitably involves the task of predicting the future throughput of

a video session, owing to which various heuristic solutions have been explored. The ultimate goal of the

present work is to explore the theoretical upper bounds of the QoE that any ABR algorithm can possibly reach,

therefore providing an essential step to benchmarking the performance evaluation of ABR algorithms. In our

setting, the QoE is defined in terms of a linear combination of the average perceptual quality and the buffering

ratio. The optimization problem is proven to be NP-hard when the perceptual quality is defined by chunk size

and conditions are given under which the problem becomes polynomially solvable. Enriched by a global lower

bound, a pseudo-polynomial time algorithm along the dynamic programming approach is presented. When

the minimum buffering is given higher priority over higher perceptual quality, the problem is shown to be

also NP-hard, and the above algorithm is simplified and enhanced by a sequence of lower bounds on the

completion time of chunk downloading, which, according to our experiment, brings a 36.0% performance

improvement in terms of computation time. To handle large amounts of data more efficiently, a polynomial-

time algorithm is also introduced to approximate the optimal values when minimum buffering is prioritized.

Besides its performance guarantee, this algorithm is shown to reach 99.938% close to the optimal results, while

taking only 0.024% of the computation time compared to the exact algorithm in dynamic programming.
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programming; • Networks→ Network performance modeling;
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1 INTRODUCTION

With the rapidly increasing popularity of Internet video, the online delivery of video content now

dominates a major fraction of the Internet traffic. The competition of the network resource for

rapid data transmission over the Internet leads to typical phenomena like the freezing screen or the

blurring display, which seriously affect the viewer’s satisfaction and engagement [7, 16, 20]. How

to achieve higher quality of experience (QoE) in the delivery of video content is being extensively

studied. One of the essential issues to the study is the adaptation of the content delivery to different

network conditions.

The network condition for a video session is affected by many factors like the geographical

location of the player, the connectivity type of the video session, the device type, and so forth. It

also varies along the time horizon in the sense that the download speed over the Internet does not

stay constant throughout an entire viewing session. The HTTP adaptive streaming technique has

emerged in this regard to cope with the diversified and dynamically changing network conditions.

With this technique, a video is chopped into chunks, each associated with several files to choose

from. Selecting a lower bitrate for a chunk, for example, results in a smaller chunk size, which could

be more suitable when the network condition is poor. Applications of this technique include, for

example, the HTTP Live Streaming from Apple and the HTTP Dynamic Streaming from Adobe.

How to dynamically select a suitable bitrate for each chunk is normally carried out by a process

running an adaptive bitrate (ABR) algorithm, either on the server or on the client side, accord-

ing to the network conditions. Whether a selected bitrate is suitable or not depends on the future

network condition during which this chunk is downloaded. Consequently, this selection inevitably

involves predicting the future throughput of the current video session. Owing to this prediction,

various heuristic solutions have been explored in recent years [2, 5, 6, 9, 11, 13, 15, 17, 18, 23, 25–27].

Some of them provide different design logics [6, 11, 26], while some others offer different

ways to reach more suitable parameters through customization [2] or more suitable models

through learning [17, 18]. See [4] for a summary of various state-of-the-art bitrate adaptation

algorithms.

The performance amongABR algorithms is largely impacted by different techniques on through-

put prediction. Here we take the viewpoint that the throughput prediction is 100% correct. The ul-

timate goal is to find the theoretical upper bounds of the QoE that any ABR algorithm can possibly

reach, therefore providing an essential step to benchmarking the evaluations of ABR algorithms.

During a session of video play, the throughput rate can be periodically measured. A piecewise

function of time obtained from connecting these throughput rates can then be brought into the

study on the improvement of ABR algorithms (see, e.g., [2, 12, 24]). In an effort to build benchmark

models, we take the throughput trace from a played video session and define the optimal bitrate

sequence on it where the bitrates are selected with the full knowledge of the future throughput

rates at each decision point. In this sense, we define the optimality: an optimal value on each

throughput trace defines the upper bound of the QoE obtained from any ABR algorithm applied

to this trace. With the factor of the prediction removed, the present work differs from existing

ones involving the analysis and experiment based on a given set of throughput traces for the

development of online ABR algorithms [1, 2, 8, 17, 18, 22, 24]. Note that our optimization model is

defined on throughput traces instead of bandwidth traces because bandwidth information is hard

to retrieve from real systems.

A number ofmetrics have been defined to quantitativelymeasure the quality of the video display

from the perspective of the video viewers. In this article, we consider join time a parameter to the

model, and QoE is defined in terms of a linear combination of the average perceptual quality and

the buffering ratio.
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Our study shows that, in the above setting, the optimization problem is NP-hard when the per-

ceptual quality is defined by chunk size. Limited to constant bitrate (CBR) encoding, the problem

is NP-hard when the number of bitrates is considered a variable, and polynomially solvable oth-

erwise. Enriched by a global lower bound, we present a pseudo-polynomial-time algorithm along

the dynamic programming approach. When the minimum buffering is given higher priority over

perceptual quality, in the sense that minimizing buffering is considered more important than any

improvement of the perceptual quality, the problem is proven to be also NP-hard, and the above

algorithm is simplified and enhanced by a sequence of lower bounds on the completion time of

chunk downloading. According to our experiment, this brings a 36.0% performance improvement

in terms of computation time. To facilitate the processing of a large amount of data, a more efficient

polynomial-time algorithm is introduced to the problem with minimum buffering prioritized. In-

ternally called gold standard, this algorithm was implemented in Conviva Inc. in 2015. Since then,

it has served within the company as a benchmark for the performance evaluation of the ABR

algorithms. In this article, the algorithm is proven to provide an approximation to the optimal value

with a guaranteed lower bound. Compared to the exact algorithm in the dynamic programming

approach, it gets 99.938% close to the optimal results while taking only 0.024% of the computation

time.

The rest of the article is organized as follows: In Section 2, we provide a brief introduction to the

preliminary background and relatedwork. The problem definitions are presented in Section 3, after

a summary of our working context and the notations used in this article. In Section 4, we present

our results on the problem complexity. The general dynamic programming algorithm is given in

Section 5, and we present in Section 6 its enhancement for the special setting where minimum

buffering is prioritized. The greedy approximation is introduced in Section 7, together with the

claim on its performance. Included in Section 8 are the comparisons between the proposed bench-

mark and two parameterized online ABR algorithms, followed by the performance comparisons

among our general dynamic programming approach, its enhancement when minimum buffering

is prioritized, and the greedy approximation. The conclusion and some final remarks are found in

Section 9.

2 PRELIMINARIES AND RELATED WORK

In this section, we give a brief summary of the QoE measurement proposed in the literature, fol-

lowed by an introduction to existing work on ABR approaches.

2.1 Quality of Experience

Quality display in terms of viewer experience is measured in various aspects. Join time, buffering

ratio, rate of buffering events, average bitrate, and so forth are all well-addressed QoE metrics [3, 7].

Mostly defined on a single video session, QoE metrics can also be interpreted on a group of video

sessions [1, 21].

The join time refers to the period counted from themoment the user clicks on a video for viewing

to the moment when the video starts to play. During the join time, the play buffer gets loaded with

one or more initial chunks.

The buffering time is the total amount of time in a session when the video gets stopped (i.e.,

frozen) because the play buffer is drained. Buffering ratio is the percentage of the buffering time

over the total amount of play time or session time. The rate of buffering eventsmeasures the number

of times buffering occurs within a video session.

A video comes with a set of quality levels, each with a targeted bitrate (also called bitrate

candidate in the following) averaged across all the chunks in the entire video. The selection of a

bitrate from this set of candidates for a specific chunk determines the chunk file associated with
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this bitrate to be downloaded. The average bitrate for a video session for QoE measurement refers

to the average of the bitrates among all the chunks downloaded during this viewing session. It is

an indicator of the overall display quality in a video session.

The total quality switch refers to the total number of bitrate changes in a session.

2.2 Related Work

The QoEmetrics like those listed above are very often conflicting to each other, so the performance

of anABR algorithmhas to be a trade-off among them. The followingABR examples illustrate some

different handling of this trade-off in regard to the rendering quality:

• In MPC [26], four QoE metrics are considered: (1) average bitrate, (2) buffering time, (3)

join time, and (4) quality switch. The overall quality of experience is defined by their linear

combination, each metric associated with a given coefficient representing the weight of the

corresponding metrics that should be taken into account. A higher weight is given to the

total bitrate changes, for example, when bitrate changes are considered an essential impact

factor to the viewer’s satisfaction and engagement, and this guides the bitrate adaptation to

put in more effort to reduce the changes.

• According to BBA [11], the bitrate is determined by the state of the play buffer via a prede-

finedmapping function. The emphasis on different QoEmetrics is reflected in the coefficients

of this function.

In addition to making bitrate selection based on different principles about the trade-off of QoE

metrics, the ABR algorithms also distance each other by adopting different strategies of predicting

the throughput for downloading the future chunks. In some ABR designs, this prediction is more

explicit (see, e.g., [6, 13, 26]). In others, it is implicit.

• In MPC [26], the throughput prediction is based on the average throughput rate recorded

during the downloading of the previous chunks, with the assumption that network condi-

tions are reasonably stable on short timescales.

• In ELASTIC [6], feedback control theory is adopted to construct a controller to fill up the

buffer to a certain length in order to avoid future buffering. The calculation includes the

speed of the changes of the buffer length, which, to some extent, represents the predicted

future network condition.

• In BBA [11], the bitrate selection is based solely on the amount of data the client currently

possesses in the play buffer, not explicitly on the prediction of the throughput rate. The

throughput prediction is embedded in the coefficients of its mapping function.

• In HYB [2], both the predicted throughput and the current buffer state are explicitly used to

determine the next bitrate. A higher predicted throughput value and larger buffer state are

contributors to the selection of a higher bitrate.

The ABR model proposed in MPC [26] is expressed in terms of an objective function and

a set of constraints. Although designed for the application in the actual systems, it could also

be considered an optimization model without the impact factor of the prediction, provided that

(1) the throughput remains a constant and (2) the sliding window used to limit the computation is

no smaller than the total number of chunks in the video session.

The idea and some initial work appeared in the literature in recent years on computing an

offline optimal ABR solution based on recorded throughput traces for the purpose of building a

benchmark for the evaluation of ABR solutions. In [19], Gurobi is adopted to solve two offline

optimal ABR problems. One is to maximize the average bitrate with no occurrence of buffering.

The other is to minimize the quality switches. The authors pointed out that these are known as
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themultiple-choice nested knapsack problem and quadratic multiple-choice nested knapsack problem,

respectively, both NP-hard. The detailed proof of the first one appears in [10]. Mostly about online

ABR design, the work of [23] also includes an implementation of an offline algorithm for optimal

ABR along the dynamic programming approach.

3 CONTEXT, NOTATIONS, AND PROBLEM DEFINITION

We work in the following context: (1) Each video is associated with a given set of bitrates. (2) The

size of each chunk at each bitrate in a session is known. (3) For any chunk, selecting a bigger

bitrate implies getting a larger chunk size and receiving higher perceptual quality. (4) All chunks

are of an equal duration, which is measured by their amount of play time. (5) The bitrate selection

is always performed upon the completion of each chunk. (6) The play buffer is large enough to

keep the download procedure from pausing. (7) The throughput trace of each session is given in

terms of a piecewise function of time. Note that the results presented in this work are not affected

by how frequently the throughput rates are measured or how the throughput function is defined

from the measured rates, provided that, upon the comparison between an optimal offline solution

and that from a particular online ABR algorithm, the same throughput functions are applied.

We will be using the following notations:

• maxbr denotes the total number of bitrate candidates.

• rmin and rmax denote the smallest and largest bitrate candidates, respectively.

• maxch denotes the total number of chunks in a session.

• chdr denotes the chunk duration.

• chsz (r , i ) denotes the size of chunk i at bitrate r (1 ≤ i ≤ maxch).
• q(r , i ) denotes the perceptual quality of chunk i at bitrate r (1 ≤ i ≤ maxch).
• jt denotes the join time.

• bf ([r1, . . . , rk ]) denotes the total amount of buffering time when downloading the k chunks

with bitrate sequence [r1, . . . , rk ], starting from time 0.

• T denotes the given piecewise throughput function. Each video session for analysis has its

own throughput function starting from time 0.

• E (t , i, [r1, . . . , rk ]), for 0 ≤ i ≤ maxch − 1 and k ≥ 1, denotes the completion time of

downloading a sequence of chunks i +1, . . . , i +k , from the given starting time t , with given

throughput T (omitted from the notation for simplicity), and a given sequence of bitrates

r1, . . . , rk . E (t , i, (r ,k )) is an abbreviation of E (t , i, [r1, . . . , rk ]) when r1 = · · · = rk = r .
• (a)+ takes value a when a ≥ 0 and value 0 when a < 0.

Note that chsz (r , i ),q(r , i ), bf ([r1, . . . , rk ]),E (t , i, [r1, . . . , rk ]) may not be functions. They are

written with parenthesis to avoid double subscript.

The QoE of a video session is a linear combination of its average perceptual quality avp and its

buffering ratio bfr, expressed by function

qoe (avp, bfr ) = avp − α ∗ bfr,

with a buffering penalty coefficient α to express the desired ratio between the two QoE metrics.

When α increases, the QoE gets more sensitive to the buffering time.

avp is the average of the perceptual quality q(r , i ) for each chunk i at its selected bitrate r . Al-
though precisely measuring the perceptual quality q(r , i ) may not be easy, there are various ways

to approximate it. The chunk size chsz (r , i ), for example, is a possible choice of the measurement

(see, e.g., [10, 19]). Note that a specific measurement of the perceptual quality q(r , i ) could bring in
additional conditions to the optimization problems. Setting q(r , i ) to be chsz (r , i ), for example, im-

plies that the optimization problems are considered in a special setting with the added relationship
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between q(r , i ) and the download completion time. The presence of additional conditions could

have an impact on the study of the problems considered. In this article, we present our results for

both the setting with the general definition of q(r , i ) and the setting where q(r , i ) is measured by

chsz (r , i ): (1) For the problem complexity, we present our results for the special settingwhereq(r , i )
is set to chsz (r , i ), and the complexity in the general setting of q(r , i ) follows. (2) The algorithms

and the related performance guarantee presented in this work are valid for any setting of q(r , i ).
Given any coefficient α , join time jt , throughput function T , total number of chunks maxch,

chunk duration chdr , and a set of bitrate candidates, the maximum linearly combined QoE

(MLQ) problem is to find a sequence ofmaxch bitrates to maximize QoE. Let ri denote the bitrate
selected for the ith chunk and bi the buffering time during the downloading of the ith chunk. The

problem is to maximize

1

maxch

maxch∑
i=1

q(ri , i ) − α ∗
1

chdr ×maxch
bf ([r1, . . . , rmaxch]),

where

bf ([r1, . . . , rmaxch]) =
maxch∑
i=1

bi

bi =
��
�
E (0, 0, [r1, . . . , ri ]) − jt − (i − 1) ∗ chdr −

i−1∑
j=1

bj
��
�+

i = 1, . . . ,maxch.

bf ([r1, . . . , rmaxch]) can also be expressed by the maximum of the tardiness among each

chunk downloading: bf ([r1, . . . , rmaxch]) = max {tni ([r1, . . . , ri ]) | 1 ≤ i ≤ maxch}. Here,
tni ([r1, . . . , ri ]) is the tardiness of the ith chunk downloading:

tni ([r1, . . . , ri ]) = (E (0, 0, [r1, . . . , ri ]) − jt − (i − 1) ∗ chdr )+.

Join time is a parameter to our model, and there is no restriction on its value. It does not need

to guarantee the existence of a buffering-free bitrate sequence. If the join time is set small and the

download of the first chunk could not get finished before that time, the difference between the

download completion time of the first chunk and the join time is counted as buffering time.

From the viewpoint of multi-objective optimization, the MLQ optimization falls in the line of

the weighted sum approach to reach the nondominated or Pareto optimal solutions.

When minimizing buffering time is given higher priority over improving perceptual quality, we

keep the buffering time at its minimum. Clearly, this problem is single-objective. The minimum

buffering time, denoted byminbuf, is obtained by adopting the smallest bitrate candidate rmin for

all chunks. The problem, denoted byMB-MLQ, then amounts tomaximizing the average perceptual

quality while keeping the buffering time to this minbuf—that is, to maximize

1

maxch

maxch∑
i=1

q(ri , i )

s.t.

E (0, 0, [r1, . . . , ri ]) ≤ jt + (i − 1) ∗ chdr +minbuf i = 1, . . . ,maxch.

4 COMPLEXITY

Theorem 4.1. If the perceptual quality is defined by chunk size, the MLQ problem is NP-hard.
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Proof. We prove this claim by reducing the subset sum problem to the MLQ decision problem.

Given S = {a1, . . . ,an } and K (for simplicity, n > 1), the subset sum problem is to determine the

existence of a subset S ′ ⊆ S so that
∑

ai ∈S ′ ai = K . The MLQ instance is constructed as follows: (1)

α = chdr ∗ n. (2) The number of chunks in a session is n. (3) The set of bitrate candidates is {1, 2}.
(4) chsz (1, i ) = chdr , chsz (2, i ) = chdr + chdr ∗ n ∗ ai (1 ≤ i ≤ n). (5) jt = chdr . (6) The throughput
function

T (t ) =
⎧⎪⎨⎪⎩
1 + n ∗ K 0 ≤ t < chdr

1 t ≥ chdr .

TheMLQ decision problem is to determine, for any givenQ , whether there exists a bitrate sequence
[br1, . . . ,brn] with QoE ≥ Q . Let Q = chdr + chdr ∗ K .

For any S ′ ⊆ S where
∑

ai ∈S ′ ai = K , let bri = 1 if ai � S ′ and bri = 2 if ai ∈ S ′. Then, the
total buffering time b = (chdr ∗ n + chdr ∗ n ∗∑ai ∈S ′ ai − chdr ∗ (1 + n ∗ K ) − chdr ∗ (n − 1))+ =
chdr ∗n ∗ (∑ai ∈S ′ ai −K )+ = 0.QoE = (

∑n
i=1 chsz (bri , i ))/n = (chdr ∗n+chdr ∗n ∗∑ai ∈S ′ ai )/n = Q .

So, we have QoE ≥ Q .
On the other hand, for any given bitrate sequence [br1, . . . ,brn] with QoE ≥ Q , let S ′ = {ai |

bri = 2}. We have thatQoE = chdr +chdr ∗∑ai ∈S ′ ai −chdr ∗n ∗ (
∑

ai ∈S ′ ai −K )+. In the following,

we show that it is not possible to have
∑

ai ∈S ′ ai < K or
∑

ai ∈S ′ ai > K .

(1) If
∑

ai ∈S ′ ai < K , then QoE = chdr + chdr ∗ ∑ai ∈S ′ ai ≥ Q = chdr + chdr ∗ K , which gives∑
ai ∈S ′ ai ≥ K (contradiction).

(2) If
∑

ai ∈S ′ ai > K , then QoE = chdr + chdr ∗ ∑ai ∈S ′ ai − chdr ∗ n ∗ (
∑

ai ∈S ′ ai − K ) ≥ Q =
chdr + chdr ∗ K , which implies (n − 1) ∗ (K − ∑ai ∈S ′ ai ) ≥ 0. This gives

∑
ai ∈S ′ ai ≤ K

(contradiction).

Thus,
∑

ai ∈S ′ ai = K . �

Theorem 4.2. If the perceptual quality is defined by chunk size, the MB-MLQ problem is NP-hard.

The MB-MLQ decision problem is to determine, for any given Q , whether there exists a bitrate
sequence [br1, . . . ,brn] so that the total buffering time is minbuf and QoE ≥ Q . The proof is

analogous to that of Theorem 4.1. Note that in the proof of Theorem 4.1, minbuf = 0 according

to the construction of the instance. Note also that item (2) is not needed for the proof of MB-

MLQ because any solution to the MB-MLQ problem implies that there is no buffering. Hence,∑
ai ∈S ′ ai − K ≤ 0.

The MLQ problem is a generalization of the MLQ problem with perceptual quality defined by

chunk size. So the MLQ problem is also NP-hard. Analogously, the MB-MLQ problem is NP-hard.

The subset sum (SS) is a well-known NP-hard problem widely adopted to analyze the complex-

ity of various problems and to exemplify the reduction technique in complexity theory. Similar to

the knapsack problem,which has come along with variants like the bounded knapsack problem, the

unbounded knapsack problem, the knapsack problem with fixed number of items, and so forth, the SS

problem is also followed by several interesting variants. Here, we consider the subset sum with

fixed subset size (SSF) problem and the unbounded subset set with fixed subset size (USSF)

problem.

Given a set S of natural numbers, and natural numbers k andK , the SSF problem is to determine

whether there exists a subset S ′ of S with cardinality k so that the total sum of the numbers in S ′

is K . This is a variant of the SS problem in the sense that the cardinality of S ′ must be the given

number k . The USSF problem is different from the SSF problem in that S ′ is a multiset, and there

is no bound on how many times a same number could occur in S ′.
The SSF problem is NP-hard: Following the reduction from the 3-dimension matching (3DM)

problem to the SS problem (see, e.g., [14]), we obtain straightforwardly the reduction from the 3DM
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problem to the SSF problem. The USSF problem can also be proven to be NP-hard, the conclusion

of which will be used in this article to prove Theorem 4.4. We outline the proof of the NP-hardness

of USSF in the following, based on a reduction from the SSF problem.

Theorem 4.3. USSF problem is NP-hard.

Proof outline: Consider any SSF instance with set S = {a1, . . . ,an }, cardinality k of the subset,

and the total sum K . Let B be an arbitrary number greater than a1, . . . , an . Let

bi = (2n+1 + 2i ) ∗ (n + 1)2 ∗ B i = 1, . . . ,n

ci = (2n+1 + 2i ) ∗ (n + 1)2 ∗ B + ai ∗ (n + 1) + 1 i = 1, . . . ,n

K ′ = �
�
n ∗ 2n+1 +

n∑
i=1

2i�
�
∗ (n + 1)2 ∗ B + K ∗ (n + 1) + k .

Define an instance of USSF with set {b1, . . . ,bn , c1, . . . , cn }, cardinality n of the subset, and the

total sum K ′. K ′ takes a sum of three terms. The first term of K ′ is used to make sure that any

solution L to the USSF instance must be a set (i.e., without repeating elements), and for each i
(1 ≤ i ≤ n), either bi or ci , with an exclusive or, must be in the solution. The second term of K ′ is
used to guarantee that

∑
ci ∈L ai = K . The third term ofK ′ is used tomake sure that |{i | ci ∈ L}| = k .

It can be proved that each solution to the SSF instance corresponds to a solution to the USSF

instance and vice versa.

Theorem 4.4. Let perceptual quality be defined by chunk size. With CBR, if the number of bitrate

candidates is not fixed, the MLQ problem is NP-hard.

Proof. We prove the NP-hardness by reducing the USSF problem to the MLQ decision problem.

Given any USSF instance with set S = {a1, . . . ,an }, k, and K , we construct an MLQ instance as

follows: (1) α = chdr ∗k . (2) The set of bitrate candidates is {a1, . . . ,an }. (3) The number of chunks

in a session is k . (4) chsz (ai , j ) = chdr + chdr ∗ k ∗ ai (1 ≤ i ≤ n, 1 ≤ j ≤ k). (5) jt = chdr . (6) The
throughput function

T (t ) =
⎧⎪⎨⎪⎩
1 + k ∗ K 0 ≤ t < chdr

1 t ≥ chdr .

TheMLQ decision problem is to determine, for any givenQ , whether there exists a bitrate sequence
[br1, . . . ,brn] with QoE ≥ Q . Let Q = chdr + chdr ∗ K .

For any multiset S ′ = {b1, . . . ,bk } from S where
∑k

i=1 bi = K , consider the bitrate sequence

[b1, . . . ,bk ]. The total buffering time is chdr ∗k ∗ (∑k
i=1 bi−K )+ = 0.QoE = (

∑k
i=1 chsz (bi , i ))/k = Q .

So, we have QoE ≥ Q .
On the other hand, for any given bitrate sequence [br1, . . . ,brk ] with QoE ≥ Q , let multiset

S ′ = {br1, . . . ,brk }. We have thatQoE = chdr + chdr ∗∑k
i=1 bri − chdr ∗ k ∗ (

∑k
i=1 bri −K )+. In the

following, we show that it is not possible to have
∑k

i=1 bri < K or
∑k

i=1 bri > K .

(1) If
∑k

i=1 bri < K , then QoE ≥ Q implies
∑k

i=1 bri ≥ K (contradiction).

(2) If
∑k

i=1 bri > K , then QoE ≥ Q implies
∑k

i=1 bri ≤ K (contradiction).

So we have
∑k

i=1 bri = K . �

Theorem 4.5. Let perceptual quality be defined by chunk size. With CBR, if the number of bitrate

candidates is not fixed, the MB-MLQ problem is NP-hard.

The proof is analogous to that of Theorem 4.4. Note that in the proof of Theorem 4.4,minbuf = 0

according to the construction of the instance. Note also that item (2) is not needed for the proof of
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MB-MLQ because any solution to the MB-MLQ problem implies that there is no buffering. Hence,∑k
i=1 bri ≤ K .

Theorem 4.6. With CBR, if the number of bitrate candidates is fixed, the MLQ problem and the

MB-MLQ problem can be solved in time O (maxchmaxbr ).

Proof. In the context of CBR, chsz (r , i ) = chsz (r , j ) (for any r , i, j), and we work in the setting

where r ≤ r ′ implies chsz (r , i ) ≤ chsz (r ′, i ). Let [r1, . . . , rn] be an optimal bitrate sequence, and

[r ′1, . . . , r
′
n] its permutation in nondecreasing order. Then [chsz (r ′1, 1), . . . , chsz (r

′
n ,n)] is a non-

decreasing permutation of [chsz (r1, 1), . . . , chsz (rn ,n)]. This implies that using bitrate sequence

[r ′1, . . . , r
′
n] instead of [r1, . . . , rn] will not increase the buffering time. Furthermore, it does not

change the perceptual quality. Therefore, for either the MLQ or MB-MLQ problem, [r ′1, . . . , r
′
n] is

also an optimal sequence. This means that in the effort of searching for an optimal solution, we

could enumerate all bitrate sequences in nondecreasing order, which amounts to determining how

many times each bitrate is selected. For each bitrate, there are at mostmaxch + 1 different choices.

So, there are at most (maxch + 1)maxbr distinct sequences in nondecreasing order.We can examine

each sequence to determine which one yields the maximum QoE. �

5 DYNAMIC PROGRAMMING

In regard to problems with high complexity, dynamic programming, when applicable, very often

offers a promising approach to the solutions. Given that the MLQ problem is proven to be NP-hard

in our setting, we show in this section that the problem could be resolved in pseudo-polynomial

time along the dynamic programming approach. To improve the efficiency, a global lower bound

is embedded into the algorithm. Note that this algorithm (called DP in the following) is based on

the quantization of the session length and the buffering time. Therefore, rigorously speaking, it is

an approximate algorithm.

The bitrates in each video session are selected iteratively from the first chunk to the last one.

The decision on the bitrate selection for the ith chunk depends solely on the information obtained

from the computation on the (i−1)th chunk.Wemaintain twomatrices P and N at any time during

the execution to keep the information of the previous chunk and of the next chunk. Suppose that

we are currently in the iteration for the (i + 1)th chunk. If P[t][b] is not null, it represents the
existence of a bitrate sequence for the initial i chunks ending with download completion time t
and total buffering time b, and among the sums of the perceptual quality values of those sequences

with t and b, P[t][b] keeps the largest one.
The soundness of this algorithm is based on the following property: Let s = [r1, . . . , ri ] and

s ′ = [r ′1, . . . , r
′
i ] be two bitrate sequences for the initial i chunks that lead to the same download

completion time t and same total buffering timeb.
∑i

j=1 q(r j , j ) ≤
∑i

j=1 q(r
′
j , j ). Then for any bitrate

candidate r , [r1, . . . , ri , r ] and [r ′1, . . . , r
′
i , r ] will also lead to the same download completion time

and the same total buffering time. Therefore, between s and s ′, we only need to keep s ′ because s
will not lead to any better QoE than what s ′ can lead to.

The algorithm is enriched by a global lower bound for efficiency. A partial bitrate sequence can

be removed if it will not lead to any optimal sequence. Given the perceptual quality and buffering

time for a partial bitrate sequence of the initial k chunks (1 ≤ k ≤ maxch − 1), we can derive a

possible QoE from it for the entire video session assuming that rmax is used for all the rest of the

maxch − k chunks and no buffering occurs during the downloading of these maxch − k chunks.

The obtained QoE is the maximum that this partial sequence can possibly lead to. If this QoE value

cannot compete with the lower bound, the partial bitrate sequence is removed from consideration.

Choosing rmin for all chunks provides a possible lower bound for this purpose.
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The program runs in time O (maxch ∗ n1 ∗ n2 ∗maxbr ), where n1 is the quantized maximum

session length, and n2 is quantized maximum buffering time.

For CBR, we only need to consider bitrate sequences in nondecreasing order. To do so, we record

in matrix P and N the largest r among all those bitrates already selected in the previous i chunks.
Then only bitrates no smaller than r will be considered for the (i + 1)th chunk.

6 MINIMUM BUFFERING CONSTRAINTS

When minimum buffering is given higher priority, the QoE can be obtained from the above DP

algorithm by setting a large α . In this section, we present a more efficient algorithm (called DP0

in the following) designed specifically for MB-MLQ. This efficiency enhancement is based on the

following property in the MB-MLQ problem.

Proposition 6.1. If E (0, 0, [r1, . . . , rk ]) = E (0, 0, [r ′1, . . . , r ′k ]), bf ([r1, . . . , rk ]) ≤ minbuf , bf ([r ′1,
. . . , r ′

k
]) ≤ minbuf , then for any r ′′

k+1
, . . . , r ′′

maxch
, bf ([r1, . . . , rk , r

′′
k+1

, . . . , r ′′
maxch

]) = minbuf

implies bf ([r ′1, . . . , r
′
k
, r ′′

k+1
, . . . , r ′′

maxch
]) = minbuf .

Proof. E (0, 0, [r1, . . . , rk ]) = E (0, 0, [r ′1, . . . , r ′k ]) implies that tni ([r1, . . . , rk , r
′′
k+1

, . . . , r ′′i ]) =
tni ([r

′
1, . . . , r

′
k
, r ′′

k+1
, . . . , r ′′i ]) for k + 1 ≤ i ≤ maxch. Then we havemaxtn =maxtn′, where

maxtn =max {tni ([r1, . . . , rk , r
′′
k+1

, . . . , r ′′i ]) | k + 1 ≤ i ≤ maxch}
maxtn′ =max {tni ([r

′
1, . . . , r

′
k
, r ′′

k+1
, . . . , r ′′i ]) | k + 1 ≤ i ≤ maxch}.

Since bf ([r1, . . . , rk , r
′′
k+1

, . . . , r ′′
maxch

]) = minbuf , we have maxtn ≤ minbuf . So maxtn′ ≤
minbuf . This, together with bf ([r ′1, . . . , r

′
k
]) ≤ minbuf , gives bf ([r ′1, . . . , r

′
k
, r ′′

k+1
, . . . , r ′′

maxch
]) ≤

minbuf and the conclusion follows. �

Let s and s ′ be two bitrate sequences for the initial k chunks where s has a higher quality than s ′.
According to Proposition 6.1, if s and s ′ have the same download completion time and both have

buffering time no greater than minbuf, then we can discard the information of s ′, no matter what

buffering time it has, because for any bitrate sequence s ′′, if s ′ concatenated with s ′′ is a feasible
MB-MLQ sequence, then s concatenated with s ′′ is also a feasible MB-MLQ sequence.

Since there is no need to keep the information about the buffering time, we derive DP0 from

DP by replacing the matrix P[t][b] (and N [t][b]) with an array P[t] (and N [t]). If P[t] is not null,
it represents the existence of a bitrate sequence for the initial k chunks ending with download

completion time t and total buffering time no greater than minbuf, and among the sums of the

quality values of these sequences, P[t] keeps the largest one.
To make sure that P[t] records information of only those sequences whose total buffering time

is no greater than minbuf, we introduce a sequence of lower bounds on the download completion

time. These bounds provide conditions stronger than guaranteeing that a (partial) bitrate sequence

has a total buffering time no greater thanminbuf: it also guarantees that it can lead to at least one

feasible solution. For a bitrate sequence [r1, . . . , rk ] with download completion time t , we put

condition on time t to make sure that the total buffering time of the entire session does not exceed

minbuf if chunks i + 1, . . . , maxch are all downloaded at bitrate rmin. Note that this condition

implies that the total buffering time of [r1, . . . , rk ] is no greater than minbuf. This bound on t is
the largest time t ′ satisfying

E (t ′, i, (rmin, j )) ≤ jt + chdr × (i + j − 1) +minbuf ∀j . 1 ≤ j ≤ maxch − i .
These bounds are expressed in array latest, one per chunk index. For chunk i , latest[i] is

the latest time required to complete the download of the initial i chunks in order to guarantee

minimum buffering if all the rest of the chunks are downloaded with rmin. If the download of

chunk i cannot be completed by this latest time, any bitrate sequence selected for the rest of the

chunks will lead to more buffering than minbuf, which means the sequence can be discarded.
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ALGORITHM 1: Latest[i] for minimum buffering constraints

for i =maxch to 1 do

latest[i] = jt + chdr × (i − 1) +minbuf ;

if i < maxch then

latest[i] =min{latest[i],prev (latest[i + 1], rmin)};

The values of latest[i] for 1 ≤ i ≤ maxch can be computed once for all before the bitrate selec-

tion starts. The computation is carried out in a backward manner. For chunkmaxch, latest[maxch]
is the time when chunk maxch is about to play with minbuf of delay, i.e., jt + chdr × (maxch −
1) + minbuf . For chunk i where i < maxch, latest[i] is the smaller one between (1) the time

when chunk i is about to play with minbuf of delay, i.e., jt + chdr × (i − 1) + minbuf , and (2)

prev (latest[i +1], rmin). Here, for any t , we use prev (t , r ) to denote the time to start downloading

a chunk at bitrate r so that the completion time is t .
The pseudocode of latest is given in Algorithm 1. The entire DP0 algorithm runs in time

O (maxch ∗ n ∗maxbr ), where n is the quantized maximum session length.

In the setting of CBR, we canmake use of the nondecreasing order to achieve better performance

in terms of computation time. Let [r1, . . . , ri ] be a bitrate sequence where r is the largest in it.

Since any bitrate selected in the future will only be r or higher, we could extend the latest[i] into

a two-dimensional array latest[r ][i]. For bitrate candidate r and chunk i , latest[r ][i] is the latest
time required to complete the downloading of the initial i chunks in order to guarantee minimum

buffering if all the rest of the chunks are downloaded with r . The calculation of latest[r ][i] follows
that of latest[i] straightforwardly.

7 GREEDY APPROXIMATION

To handle a large amount of data, more efficient algorithms are in demand, even though this means

some possible compromise to the optimality. Given that the optimization problems are set up for

benchmarking purposes, a heuristic algorithm is acceptable only if it could provide answers always

within a known distance from the optimal ones. We present here an efficient algorithm for the MB-

MLQ problem. It runs in time O (maxch ∗maxbr ) with guaranteed lower bound.

Following the greedy strategy, this algorithm consists of two essential steps: (1) Use play time

constraints to mark, for each chunk, the latest download completion time latest[i] that guaran-
tees the minimum buffering. (2) Select, for each chunk, the highest bitrate so that its file can be

completely downloaded before the latest download completion time for this chunk.

The pseudocode is given in Algorithm 2. Let ti (1 ≤ i ≤ maxch) be the download completion

time of chunk i (t0 = 0). The bitrate selected for the ith chunk is

max {rk | 1 ≤ k ≤ maxbr , E (ti−1, i − 1, [rk ]) ≤ latest[i]}.

Condition E (ti−1, i − 1, [rk ]) ≤ latest[i] is used to make sure that selecting bitrate rk will result

in a download completion time that can lead to at least one complete bitrate sequence without

causing more buffering than minbuf.

Now we show that the result from this greedy algorithm approximates the optimal value with

a guaranteed lower bound. Given the selected bitrate r for chunk i , define weight

w (r , i ) =
chsz (r , i )

q(r , i )
.

The lower bound of the greedy algorithm is defined with the maximum and the minimum of

the weightsw (r , i ):
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ALGORITHM 2: Greedy algorithm

calculate latest ;

total = 0;

t = 0;

for i from 1 tomaxch do

for j frommaxbr to 1 do
t ′ = E (t , i − 1, [r j ]);
if t ′ ≤ latest[i] then

total = total + r j ;

t = t ′;
break;

return total/maxch;

• minw =min{w (ri , j ) | 1 ≤ i ≤ maxbr , 1 ≤ j ≤ maxch}
• maxw =max {w (ri , j ) | 1 ≤ i ≤ maxbr , 1 ≤ j ≤ maxch}

Let r1, . . . , rmaxbr be the given bitrate candidates in nondecreasing order. Then q(r1, i ), . . . ,
q(rmaxch , i ) is also in nondecreasing order for 1 ≤ i ≤ maxch. The lower bound of the perfor-

mance is related to the largest difference between two adjacent quality values:

maxdiff =max
{
q(rk+1, i ) −

minw

maxw
× q(rk , i ) | 1 ≤ k ≤ maxbr − 1, 1 ≤ i ≤ maxch

}
.

Let [дr1, . . . ,дrmaxch] (1 ≤ i ≤ maxch) be the bitrate sequence selected for each chunk according

to the greedy strategy. Let [or1, . . . ,ormaxch] (1 ≤ i ≤ maxch) be the optimal bitrate sequence. The

performance guarantee of the algorithm is expressed in the following statement.

Theorem 7.1.

1

maxch

maxch∑
i=1

q(дri , i ) ≥
minw

maxw

1

maxch

maxch∑
i=1

q(ori , i ) −
maxdiff

maxch
.

Proof. We prove by induction on the length of the sequence of the chunks that for all j (1 ≤
j ≤ maxch),

j∑
i=1

q(дri , i ) ≥
minw

maxw
×

j∑
i=1

q(ori , i ) −maxdiff .

(1) Base step (j = 1):

дr1 and or1 both get applied to the same starting time 0, and they both guarantee the minimum

buffering time of the session. According to the way дr1 is selected, we have дr1 ≥ or1, which
implies q(дr1, 1) ≥ q(or1, 1). So we have

q(дr1, 1) ≥
minw

maxw
× q(or1, 1) −maxdiff .

(2) Induction step (j = k + 1):
Assume that we have the hypothesis

k∑
i=1

q(дri , i ) ≥
minw

maxw
×

k∑
i=1

q(ori , i ) −maxdiff .
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We prove the inequation for k + 1 in two situations:

(2.1) дrk+1 is the maximal bitrate candidate.

In this case, дrk+1 ≥ ork+1, which implies q(дrk+1,k + 1) ≥ q(ork+1,k + 1). So, according to the

hypothesis, the inequation for k + 1 holds.
(2.2) дrk+1 is not the maximal bitrate candidate.

Let дr ′
k+1

be the smallest bitrate candidate that is greater than дrk+1: дr
′
k+1

= min {r |дrk+1 <
r }. Since дrk+1 is selected according to the greedy strategy, we know that E (0, 0, [дr1, . . . , дrk ,
дr ′

k+1
]) cannot lead to any complete bitrate sequence with buffering time no greater than minbuf.

[or1, . . . ,ork ,ork+1], on the other hand, can do so. Therefore,

E (0, 0, [дr1, . . . ,дrk ,дr ′k+1]) ≥ E (0, 0, [or1, . . . ,ork ,ork+1]),

which implies

k+1∑
i=1

q(дri , i ) ∗w (дri , i ) + δ ≥
k+1∑
i=1

q(ori , i ) ∗w (ori , i ),

where δ = (q(дr ′
k+1
,k + 1) ∗w (дr ′

k+1
,k + 1) − q(дrk+1,k + 1) ∗w (дrk+1,k + 1)). So we have

k+1∑
i=1

q(дri , i ) ≥
minw

maxw

k+1∑
i=1

q(ori , i ) −maxdiff . �

8 EXPERIMENT

Included in this section are the experimental results related to the proposed methods. The experi-

ment is based on a proprietary dataset from Conviva Inc. The backlogged data consists of 201,904

throughput rate recordings for 8,408 records of sessions, together with a set of seven bitrate candi-

dates. The bitrate values fall in the range of (150, 2500). The chunk duration is 6s. The throughput

functions obtained from the recordings are piecewise constant functions. The throughput traces

from different sessions vary widely in terms of their lengths. Those traces from long sessions are

trimmed to 300s in order to keep the memory consumption and computation time reasonable dur-

ing the execution of DP and DP0. The perceptual quality is approximated by bitrate and measured

by kbps. The average perceptual quality is also called average bitrate in this section. The buffering

time is measured by milliseconds.

In regard to the results of the computation time, the programs are written in C and executed

on a server machine running GNU/Linux with x86_64 instruction set on 24-core Genuine Intel(R)

CPU at 2.50GHz.

This section is organized as follows. In Section 8.1, the optimal values discussed in this work are

compared with those from two configurable online ABR algorithms. We first consider the optimal

values obtained from DP, then those obtained from DP0. Section 8.2 is dedicated to the character-

istics of the proposed DP algorithm, which is demonstrated through the variation of the join time

as well as the variation of the α values. Experiments related to DP0 are presented in Section 8.3,

where the effectiveness of the simplification of the data structure and the introduction of the lower

bound to the download completion time in DP0 is given via the performance comparison between

DP and DP0. In Section 8.4, results regarding the greedy algorithm are presented: the performance

comparison between DP0 and its greedy approximation shows how much we gain when the latter

is put into practice.

8.1 Benchmark at Work

Sided by two ABR algorithms in the literature, we demonstrate in this section the proposed bench-

mark at work. The two ABR algorithms we have sampled are both simple for our presentation and
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Fig. 1. Average bitrate and buffering ratio from BBA with different configurations.

configurable for illustrating the comparisons with parameters both in the ABR solutions and in

our proposed methods.

We have taken two examples of α values, 5,000 and 20,000. To obtain QoE from DP, the program

is executed twice with two different values of α . To obtain QoE from a sample ABR, the ABR

program is executed only once: with the average bitrate and buffering ratio obtained from the

execution, the QoE is calculated with different α values. The join time is the same in both DP and

the sample ABR algorithms.

The first ABR example is the BBA algorithm proposed in [11]. According to this algorithm, a

piecewise function is defined to map the states of the play buffer to the bitrate candidates. This

mapping function is introduced with parameters. The first parameter, called a reservoir, represents

the minimum required buffer length to avoid future buffering. If this reservoir is set high, the ABR

algorithm would prefer that the bitrate stay at its minimum. The second parameter, called slope,

represents the speed to increase the buffer length to the desired range. The algorithm will be more

aggressive when the slope is set high.

In our experiment, the BBA algorithm is exemplified with two pairs of configurations: (1) reser-

voir = 3,000ms, slope = (maxbr-1)/3,000; (2) reservoir = 6,000ms, slope = (maxbr-1)/6,000. They

are labeled by bba3000 and bba6000, respectively. bba3000 is more aggressive in choosing higher

bitrates and taking higher risk of buffering. This is shown in Figure 1 where the bottom two

figures are drawn with only those 578 sessions that have at least one nonzero value in bba3000

and bba6000.

The comparison between BBA andDP is shown in Figure 2withα = 5,000 andα = 20,000.When

α = 5,000, the averages of the QoE values from DP, bba3000, and bba6000 are 2,249.23, 2,025.69,

and 1,965.90, respectively. When α = 20,000, the averages of the QoE values from DP, bba3000, and

bba6000 are 2,210.23, 1,863.93, and 1,953.05, respectively. Between the figures with bba3000 (the

first and the third in the row) and those with bba6000 (the second and the fourth in the row), we

see how the gaps from the QoE of the ABR solution to the QoE of the DP solution change when the

former moves from a more aggressive to a more conservative configuration. Between the figures
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Fig. 2. QoE comparison between DP and BBA.

with α = 5,000 (the first and the second in the row) and those with α = 20,000 (the third and the

fourth in the row), we see the change of the gaps from the QoE of the same ABR program and

the same configuration to the QoE of the DP, due to the change of our QoE goal expressed via the

value of α .
The second sample ABR algorithm, called HYB [2], considers both the predicted throughput

and the buffer state to determine the next bitrate. Let p be the predicted throughput based on

past samples, and len the current buffer length. For each chunk i , HYB picks the largest bitrate r
satisfying condition chsz (r , i ) < β ∗ len ∗ p. Like the reservoir and slope in BBA, β is a parameter

in this formula. A higher β value will lead to more aggressive bitrate selection.

In our experiment, HYB is exemplified with two configurations: β = 0.3 and β = 0.8. The
predicted throughput is set to the average of five samples of past throughput rates in the same

session. Figure 3 shows the average bitrate and buffering ratio of hyb03 and hyb08, where the

bottom two figures are drawn with only those 86 sessions that have at least one nonzero value in

hyb03 and hyb08. The buffering issue is very well handled in both hyb03 and hyb08: hyb03 has

only 10 nonzero values and hyb08 has only 86.

The comparison between HYB and DP is shown in Figure 4 with α = 5,000 and α = 20,000.
When α = 5,000, the averages of the QoE values from DP, hyb03, and hyb08 are 2,249.23, 2,039.08,

and 2,084.15, respectively. When α = 20,000, the averages of the QoE values from DP, hyb03, and

hyb08 are 2,210.23, 2,038.47, and 2,078.17, respectively. Since the buffering happens very rarely

in HYB, there is not much difference between the QoE values with α = 5,000 and those with

α = 20,000 in hyb03 and hyb08, respectively.

In addition to DP, the online ABR algorithms could also be compared with DP0. With this com-

parison, there is no α involved, and the average bitrate and buffering ratio are compared separately.
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Fig. 3. Average bitrate and buffering ratio from HYB with different configurations.

For the comparison of the buffering ratio between DP0 and the two sample ABR algorithms, we

have set the join time in a way so thatminbuf is zero. Therefore, the comparison could be found in

Figure 1 and Figure 3, where the buffering ratios from DP0 are all zero and are not plotted. bba3000

and bba6000 have an average buffering ratio valued at 1.0784% and 0.0857%, respectively. hyb03

and hyb08 have an average buffering ratio 0.0041% and 0.0399%, respectively.

The comparison of average bitrate among DP0, bba3000, and bba6000 is shown in Figure 5, with

the bitrate averaged across all chunks valued at 2,205.97, 2,079.61 and 1,970.19 respectively. The

comparison of average bitrate among DP0, hyb03, and hyb08 is shown in Figure 6, with the bitrate

averaged across all chunks valued at 2,205.97, 2,039.29 and 2,086.14, respectively.

8.2 Characteristics of DP

The DP algorithm is parameterized by the join time and the α value. Here, we show the variations

of the benchmark data according to the given parameter values.

When join time increases, the potential of buffering is reduced. So the QoE value is likely to get

increased. Figure 7 shows theQoE variationswith join time 50ms, 500ms, and 1,000ms. The average

QoE values obtained from these join time values are 2,208.42, 2,241.39, and 2,261.75 respectively.

The increase of the QoE value comes from either the increase of the average bitrate or the decrease

of the buffering ratio, or both. The average bitrate for different join times is given in Figure 8. The

average bitrate from DP across all sessions results in values of 2,259.16, 2,263.12, and 2,270.91,

respectively, for the three join time values. The buffering ratio for different join times is presented

in Figure 9, with the average of 0.507%, 0.217%, and 0.091%,and the number of zero values 15, 4,125,

and 6,090, respectively.

The increase of the α value leads to the selection of lower bitrate in order to reduce the buffering

time. The QoE values very often tend to decrease. We have set α = 5,000, 10,000, and 20,000 to

demonstrate this trend. Figure 10 shows the QoE with these three α values. On average, the QoE

are valued at 2,249.21, 2,228.50, and 2,210.22, respectively. Figure 11 shows the average bitrate with

these three α values. Their average bitrates across all sessions are valued at 2,277.77, 2,258.64, and

2,231.31, respectively. Figure 12 shows the buffering ratio with the three α values, the average

being 0.570%, 0.301%, and 0.105%, respectively.
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Fig. 4. QoE comparison between DP and HYB.

Fig. 5. Comparison of average bitrate between DP0 and BBA.
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Fig. 6. Comparison of average bitrate between DP0 and HYB.

Fig. 7. QoE from DP with different join times.

8.3 Efficiency of DP0

When the minimum buffering is prioritized, the optimal value can be obtained from running

either DP (with a large α ) or DP0. The latter is less demanding on memory occupancy and comes

with added constraints on the download completion time. Figure 13 shows the comparison of the

computation time between DP and DP0 from our experiment. α is set to 20,000. To obtain a matrix
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Fig. 8. Average bitrate from DP with different join times.

Fig. 9. Buffering ratio from DP with different join times.

or an array indexed by the download completion time, the two algorithms used granularity of

1ms to quantize the session time. To obtain a matrix indexed by the buffering time, DP used time

granularity of 100ms. On average, the execution of DP0 takes 46.61ms, giving 36.0% improvement

compared to the average of 72.78ms from DP. Note that this percentage should be interpreted

together with the session length and the granularity of time.
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Fig. 10. QoE from DP with different α values.

Fig. 11. Average bitrate from DP with different α values.

8.4 Gaining from Approximation

The performance guarantee provided in Theorem 7.1 for the greedy approach only expresses the

largest gap its solution could possibly have from the optimal value. In general, this gap is much

smaller. Among 8,408 sessions, 7,450 results from the greedy algorithm are optimal. Those not

optimal are plotted in Figure 14. The figure shows how close the average bitrates obtained from
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Fig. 12. Buffering ratio from DP with different α values.

Fig. 13. Computation time of DP and DP0.

the greedy approach are from those obtained from DP0. The difference is in the range of 0 to 55.

On average, the greedy approach gives an average bitrate of 2,204.60. Compared to 2,205.97 from

the optimal solution, this is not a significant difference (0.062%).

The difference in the computation time, on the other hand, is counted by at least three orders

of magnitude. The computation time of DP0 is in the range of 0 to 180.99ms, with an average of

46.61ms (Figure 15). The computation time of the greedy algorithm is in the range of 0 to 0.053ms,

with an average of 0.01126ms.
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Fig. 14. Comparison of average bitrate between DP0 and greedy approach.

Fig. 15. Comparison of computation time between DP0 and greedy approach.

9 CONCLUSION AND FINAL REMARKS

The offline ABR optimization problems we considered are NP-hard and remain NP-hard in some

special settings we have examined. At this point, dynamic programming offers a possible approach

to the exact algorithms, where careful design is in demand to reduce the amount of space required

for the execution. The proposed algorithms DP and DP0 provide some possible ways of doing so.

The large volume of the data for analysis undoubtedly calls for algorithms that are both time and

space efficient. To this end, our near-optimal greedy approach shows an excellent example with

its striking performance.

Taking an initial step toward the benchmark of ABR solutions, we did not include in our study

the effect of the buffer size: we only considered buffer sizes that are sufficiently large so that the

download procedure never pauses. In doing so, we have left open the exploration of effective

techniques to parameterize the buffer size.

Another factor not included in our study is the impact of the bitrate selection on the available

bandwidth.
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In regard to QoE, we have only considered threemetrics: join time, average bitrate, and buffering

ratio. Extending the study to other metrics also remains an interesting problem.
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