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Abstract—State estimation (SE) of water distribution networks
(WDN:s) is difficult to solve due to nonlinearity/nonconvexity of
water flow models, uncertainties from parameters and demands,
lack of redundancy of measurements, and inaccurate flow and
pressure measurements. This paper proposes a new, scalable
successive linear approximation to solve the SE problem in
WDNs. The approach amounts to solving either a sequence
of linear or quadratic programs—depending on the operators’
objectives. The proposed successive linear approximation offers a
seamless way of dealing with valve/pump model nonconvexities, is
different than a first order Taylor series linearization, and can be
incorporated into with robust uncertainty modeling. Two simple
test-cases are adopted to illustrate the effectiveness of proposed
approach using head measurements at select nodes.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

Water distribution networks (WDNs) are designed to de-
liver water to various residential and business consumers with
sufficient pressure and flow [1]. The calculation of flows and
heads/pressures in WDNs can be obtained by the principles
of conservation of mass and energy. The former implies the
continuity of flow at nodes, and the latter states that energy
difference stored in a component equals the energy increases
minus energy losses, such as, frictional and minor losses [2].

The challenging part of monitoring WDNSs is that pipes are
usually buried underground and are inaccessible [3]. Hence,
it is impossible to monitor the flow in all pipes and the head
at all nodes even with modern supervisory control and data
acquisition (SCADA) systems, let alone enable continuous
monitoring of WDNs, which is limited in practice due to high
investment, operations and maintenance costs [4].

A practical approach to gain a network-wide observability,
while addressing the aforementioned limitations, is to use state
estimation (SE), which can determine the unknown variables
of a system based on a set of local measurements and a
hydraulic network model [5]. Usually, the set of measurements
consists of heads at key nodes and the flows through key
links. However, the SE problem is difficult due to uncertainty
from pipe roughness coefficients, demands, and measurement
errors [6]. One way to reduce uncertainty is by introducing
redundancy of observations, which significantly improves the
performance of the SE procedure. The degree of redundancy
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is achieved by combining actual measurements (e.g., heads and
flows) with the pseudo-measurements (e.g., demands); however,
due to limited measurement availability, the application of SE
algorithms to WDNSs is an ongoing research [3].

In WDNs, the SE problem is predominantly cast as an
inverse problem to determine unknown system conditions with
an objective, e.g., weighted least-squares (WLS), to minimize
the mismatch between measurements and hydraulic model
estimations [7]. The authors in [8] discuss a way to obtain the
solution from over-determined measurements. The study [9]
produces solutions that are consistent with available SCADA
data by adjusting estimated demands based on WLS method.
The authors in [10] use Monte Carlo simulation (MCS) to
evaluate the effect of variable demands on pressure and water
quality, and their work is extended by [11]. In order to overcome
the computational time of MCS, a new approximate method for
uncertainty analysis is proposed in [12].

The authors in [13] propose a SE in the presence of control
devices with switching behavior, such as pressure reducing
valves after a minor modification of existing WLS solvers. An
approach combining regression-trees with genetic algorithms to
fit demands to the observations was proposed in [14]. In [6], the
authors solve the real-time SE problem using interval lineariza-
tion of the nonlinear flow equations and successively tightening
the interval bounds. In summary, the SE problem results in
nonlinear and nonconvex system of equations, which exhibit
serious scalability issues when applied to realistic WDNSs.

This paper proposes a new, scalable successive linear ap-
proximation to solve the SE problem in WDNSs. The approach
amounts to solving either a sequence of linear or quadratic
programs (LP/QP), depending on the operator’s objectives. The
proposed successive linear approximation offers a seamless
way of dealing with valve/pump model nonconvexities, is
different than a first order Taylor series linearization, and can
be easily incorporated into uncertainty modeling. The paper’s
contributions can be summarized as follows:

o The classical, highly nonlinear and nonconvex state estimation
problem is converted into successive convex LP/QP problems
via geometric programming (GP) approximation [15].

e A new optimization technique is introduced to solve the
nonconvex SE problem through a tractable computational al-
gorithm for a general WDN topology. The proposed research
builds on our recent work on pump control of WDNs using
GP [16], but offers a different approach through LP formulation,
in comparison with our prior work.

The paper organization is given next. Section II describes SE
formulation. In Section III, the proposed optimization-based
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Tab. I: Hydraulic models of pipes and pumps and their converted models (time index k is ignored for each variable for simplicity).

Pipes Pumps
Original Hydraulic Model Ahf} = h; — hj = Rijqijlai;|* 7 (1) Ah% =h; —h; = —Sfj(ho - T(Qijs,;jl)y) )
~ o~ ~ A A ~ _ N _AM
GP Form hihCE a5t =1 3) hihi HCM] T G172 = 1 @)
Linear Form Ahy; = hi —hj = Cj; + qij ®) Ahy =hi —hj = CY + CYgi; (6)

SE technique is introduced, conversion of nonconvex SE into
LP/QP is given, and two test-cases are used to illustrate the
effectiveness of our approach in Section IV. Finally, Section V
presents the paper’s limitations and future research directions.

II. MODELING AND STATE ESTIMATION OF WDNS

WDN is modeled by a directed graph (V, £). Set V defines
nodes and is partitioned as V = J | J 7 |JR where J, T, and
‘R stand for the collection of junctions, tanks, and reservoirs.
Let £ < V x V be the set of links, and define the partition
E =PYUM|JW, where P, M, and W stand for the collection
of pipes, pumps, and valves. For the i*" node, set A\ collects
its neighboring nodes and is partitioned as A; = N | JNPUE,
where A™ and N " stand for the collection of inflow and
outflow nodes. According to the principles of conservation of
mass and energy, we present the modeling in WDN5s next.

A. Modeling WDNs

In this section, we introduce the modeling of WDNss.

1) Tanks and Reservoirs: The water hydraulic dynamics
in the 7'M tank can be expressed by a discrete-time difference
equation [16]

At

hI¥(k + 1)=hiTK(k)+W

Z qji(k)— Z aij(k)} (D
JEND JENPUE
where b ¥, ATK respectively stand for the head, cross-sectional
area of the i'!" tank, and At is sampling time; g;;(k), j € Ni"is
inflow, while ¢;;(k), j € NPU is outflow of the ;' neighbor.
We assume that reservoirs have infinite water supply and the
head of the t" reservoir is fixed as thsef [17], [18] which is
perfectly accurate. This also can be viewed as an operational
constraint (9a).

2) Junctions and Pipes: Junctions are the points where water
flow merges or splits. The expression of mass conservation of
the i*? junction can be written as

D) wilk) = D (k) = dik),
JeN® JeNPH
where d; (k) stands for end-user demand that is extracted from
node i at time k.

The major head loss of a pipe from node 7 to j is due to
friction and is determined by (1) from Tab. I, where R is the
pipe resistance coefficient and p is the constant flow exponent,
both are determined by the corresponding formula, Hazen-
Williams, Darcy-Weisbach, or Chezy-Manning. The approach
we proposed considers any of the three formulae [18]. Minor
head losses are not considered in this paper, but can be easily
modeled through equivalent pipe length.

®)

3) Head Gain in Pumps: A head increase/gain can be
generated by a pump between suction node ¢ and delivery node
j. Generally, the head gain can be expressed as (2), where
ho, 7, and v are the pump curve coefficients; ¢;; is the flow
through a pump; s;; € [0, sj3**] is the relative speed of the
pump, we assume that the speed is fixed and can be expressed
as s;; = s73° = 1. Notice that head gain h}}/ is always negative,
and can be viewed as an operational constraint (9b).

For all the operational limitations of head at each junction
and flow though each pipe, we list them as (9c). Hence, the

compact constraints are

Constraints : hR (k) = bt (%a)
hi (k) <0 (9b)
W < (k) < BP9, g™ < qi(k) < g (9¢)

B. State Estimation Formulation

Classical state estimation problems are typically presented as

y=9&) +e (10
where £ is the unknown variable, vector y includes all measured
quantities, the g(&) is the model of system including nonlinear
functions, and the € represents error between true model and
measured values via sensors. As we mentioned in Section I, it
is impossible to measure flows and pressures in the entire WDN,
except for key locations. Hence, £ can be a vector collecting all
unknown variables and defined as

g(k) = {R’ (k). h™ (k). K™ (). ¢" (k). (W)} (1D
where h?, h®, and hT¥ collects the heads at junctions, reser-
voirs, and tanks; g* and g™ collects the flow through pipes and
pumps. The y can be treated as the vector collecting several
measured key heads in the scenario of WDNs (sensors are
assumed available to measure head). The overall WDN-SE
problem can now be written as

WDN-SE : rgr&r)l fle) = S0, € (k)W (k)e(k)

st. AT (k +1) = K™ (k) + ET™%¢" (k) (12a)
d(k) = E [qp(k)] (12b)

71 g™ (k)
Constraints (9) (12¢)

where k is time-index; 7' is time-horizon; &(k) for all k =
1,...,T is the optimization variable that includes unmeasured
heads h and flows q; n. represents the number of measure-
ments; €(k) € R"*! is the error to be minimized; f(€) is a
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WLS objective function and
ARP (k) = ®P(q" (k ] ~
ek)=FE
()= B AR (k) = @M (g1(k)) | ~ &2
Yy

~—
~—

~~

9(§)
where ®F(-) and () collect the nonlinear head loss (1) of
all pipes and the nonlinear head gain (2) of all pumps. The
residual € is reminiscent of the model in (10) and captures the
error between the true model and differences Ah(k) between
head measurements, while matrix E}, is related to the position
of sensors.

The weight matrix at time & is given by a diagonal matrix
W (k): smaller diagonal elements in W (k) imply more accurate
measurements. In practice, sensors are usually fixed in key
nodes, and accuracy of sensors can also be assumed as fixed.
Hence, W (k) is assumed to be a constant matrix. The objective
function is thus designed to minimize the weighted error, and
we refer to W as accuracy matrix. The constraints in WDN-SE
are discussed next.

Equation (12a) collects the dynamics (7) of all tanks in the
network, and ETK is formed by the coefficients of flows in (7).
In fact, this constraint can be added and removed according
to the situation; e.g., this constraint can be removed when
performing single period analysis. Equation (12b) collects (8)
at all nodes, where matrix E; is defined by WDNs topology,
and vector d(k) collects water demands at all junctions. We
do not consider demand uncertainty, and thus d(k) is assumed
known and perfectly accurate. Constraint (12c) includes the
linear constraints presented in Section II-A; i.e., the heads of
reservoirs are usually fixed and equal to their elevation. Hence,
we assume that the measurement of h® is very accurate.

Notice that any head difference can be expressed as the linear

combination of nonlinear models of pipes and pumps using Ej,.
This key observation is thoroughly illustrated in Fig. 3(a) in
Section IV. We note the following about the WDN-SE problem.
e Two scenarios exist in SE problem in WDNs [8]: Scenario 1
is described by having sufficient measurements, e.g., all states
can be determined if heads at tanks and reservoirs are known,
see the blue line in Fig. 3(a). In fact, the SE in this scenario
has equal number of variables and equations. Scenario 2 refers
to the case with over-determined equations, e.g., additional sets
of head are measured at several key nodes besides the head at
tanks and reservoirs, see the red line in Fig. 3(a). Numerical
tests are given in Section IV for both scenarios.
¢ WDN-SE Problem (12) is nonconvex due to the nonlinearity
and nonconvexity of head loss/gain models ®% (-) and ® () of
pipes and pumps—the nonconvexity shows up in the objective
function, rather than the constraints. The only optimization vari-
able in WDN-SE is £(k), and other variables such as AhY (k)
are expressions of vectors included in & (11). Finally, certain
variables in £(k), notably the measured heads at reservoirs and
tanks, are considered to be known.
o While WDN-SE pertains to SE given a batch of measurements
for k = 1,...,T and then reconstructs the estimates &(k) for
that time-period, a simple windowing algorithm can yield near
real-time state estimates.

III. NEW LINEAR APPROXIMATION OF WDN-SE

In this section, we propose a new method inspired by
geometric programming to convert the nonlinear head loss
model (1) and head gain model (2) into GP constraints which
can also be rewritten as linear constraints. A basic introduction
to GP is given at first, and then a new optimization technique
related with GP is proposed for ensuing sections.

A. Geometric Program and A New Optimization Technique

A geometric program [19] is a type of optimization problem
can be expressed as

GP: min

x>0

fo(z)
st.  filx)<l,i=1,---,m

gz<m) = 17Z = 17' D,
where x is an entry-wise positive optimization variable, f;(x)
are posynomial functions and g;(x) are monomials.

One main requirement of the GP formulation is the positive-
ness of the decision variables, which limits some decision vari-
ables and physical constraints in our setting, e.g., flows in pipes
and headloss equation. To overcome this modeling limitation
we are inspired by linear programming (LP) techniques. In the
simplex method [20], for example, the free variables are split
into a positive and negative part, both being nonnegative. In our
case, we introduce an exponential function f(x) = b® to convert
a nonpositive variable to a positive one, since f(z) is always
positive. Using this technique, we can convert some problems
with negative feasible regions into a new problem with a positive
feasible region, and then solve it by using modern optimization
solvers. This technique has been successfully applied to solve
the control of WDNSs in our recent work [16]. The SE problem
here is similar to the control problem of WDNs; however, in
the current paper, we convert the SE problem (12) into an LP or
QP problem instead of a GP, which provides more elegant—and
computationally more efficient—solutions.

13)

B. Conversion of Energy Balance Equations

Based on the newly introduced optimization technique in
Section III-A, we first convert the nonlinear hydraulic model
of WDNs into its GP form and then into its LP form. Here,
we convert the head at the i*" node h; and the flow g;; into
positive values h; and G;; through exponential functions, hy =
b, G;j = b%i, where b = 1 + § is a constant base and J is a
small positive number. Notice that we only need to convert the
®P(-) and ®(-) into linear form because others are already
linear. Tab. I show detailed conversions of all physical models
that are all discussed in the following sections.

Next, we convert the pipe model, and let ﬁfj be the GP form
of head loss of a pipe, which is obtained by exponentiating both
sides of (1) as follows

~ o L PPN 2 N -~ N
hth] 1_ pii (Ru‘(lm\“ 1) Gij = CE (qz'_j) i

where CT (g;;) = b7 (Risla:3" ™" =1) is a function of ;. Hence,
the head loss constraint for each pipe can be written as a
monomial equality constraint, which is expressed as (3), if a
an estimate of C};— (gi;) is known. In order to make it linear, we
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can execute the log function on both sides of (3) and obtain (5)
where CZ (qij) turns into CZ (qij) = qij (Rij|qij|“_1 — 1).

We note that the expression above is linear with respect to
C(qij) if ;5 is known, hence we develop a method to find
g;j by sequentially updating ¢;; and C’g (gi;)- The technique is
introduced here. At first, we can make an initial guess denoted
by {gi; o for the 0" iteration ({C}; >0 can be obtained if {g;; )o is
known), thus, for the n*" iteration, the corresponding values are
denoted by {g;; y» and <C’5 Y. If the flow rates are close to each
other between two successive iterations, we can approximate
(CFon using (CF)n 1, that is (C}))n ~ (C})n—1. Then, for
each iteration n, we have

(Cin = {Gijon—1 <R|<qij>n71|“*1 - 1),

and it can be approximated by a constant given the flow value
{gijyn—1 from the previous iteration.

Similarly, the new variables ¢;; = b%7 and §;; = b%% for
(i,7) € M are introduced for pumps. Let ﬁ%l be the GP form
of head increase of a pump

P p—1 —s2.h \ral T2 AM s \CM
hihy ™ = b"%ute (b%9) 5 %6 = O (Gi) 77
~ 2 ~ o
where CM = 75" and CM = Tq;; 15% Y. Hence, the

approximating equation for the pump head increase becomes the
monomial equality constraint (4) in Tab. I. After executing log
function on both sides of (4), the equation (6) can be obtained,
v/v\hich is aAlineaI constraint. And at the same time, the parameters
CM and CM become CM and C}, that is
O = —sijho, C3' = log, (rq;; ' s37).

Parameters CM are fixed, while C)! follow a similar iterative
process as C};. That is, starting with an initial guess for the
flow rates and relative speeds, the constraints are approximated
at every iteration via constraints abiding by the linear form,
as listed in Tab. I. This process continues until a termination
criterion is met. The details are further discussed in Algorithm 1.

C. LP/QP Formulation of SE

After the conversion of pipe and pump model constraints, we
can express the converted problem as

LP/QP-SE : ming fle) (14a)
s.t. (12a) — (12¢) (14b)
ARY (k) = q% (k) + CY (k) (14¢)

ARM(k) = CY'(k) + CY' (k)g™ (k) (14d)
where constraints and variables remain the same as in (12)
except that constraints (14c) and (14d) are now linear and
viewed as constraints. The parameters C* is a R™»*! vector
collecting the C;; for each pipe. Similarly, the C}' and C3" are
a R™m*nm diagonal matrices collecting CM and C)! for each
pump.

We note the following: (i) LP/QP-SE (14) is only an ap-
proximation of WDN-SE (12) at a specific point (the flow
through pipes and pumps g;;), in other words, the nonconvex
WDN-SE can be approximated by successive convex LP/QP-
SE. (ii) The converted model is linear but it is not the equivalent
to the first order Taylor series linearization. We present the
geometric meaning of the conversion we applied via a concrete

Algorithm 1: Successive approximation of WDN-SE.

Input: WDN topology, (€0, demand {d(k)}F_,,
measurements of head h, the accuracy matrix W

Output: The estimated state value {£sg(k)}i_;

1 Set €save :=<€)o, n=1,step=4,a =3

2 while error > threshold OR n < maxlIter do

3 Obtain (C{;)n, (C1' Y, and (C3"),, from (€)n—1

4 Generate constraints and form it as LP/QP-SE (14)

5 Solve (14) and obtain (&),

6

7

8

9

if mod(n, step) = 0 then
AL =(&)n — (En—2
(En =(En +aAg
end if
10 Calculate error := norm({€), — &save)
11 Update €save = (&) and n =n+ 1
2 end while

3 Set £SE = <£>n

example in Section IV-Al. (iii) LP/QP-SE can be expressed
as either an LP or QP depending on the objective function.
When f(€) is modeled through the absolute weighted error,
Le., Yh_y S w;(k)|ei(k)|, the problem can be written as an
LP. When it is based on WLS, then it becomes a standard QP.

-

D. Iterative Algorithm

In order to solve all the unknown variables, our algorithm
needs to know the basic information at first, e.g., the topology
of tested network to form the matrices E,, demand d, measure-
ments of head 7L, and the accuracy matrix W.

Notice that all variables are collected in & by (11) and the
notation (¢),, in Algorithm 1 stands for the n'" iteration value
&. For the 0" iteration, we initialize all flow {q" ) and (g™,
in (¢)¢ with historical average flows. In fact, this algorithm
still works by initializing all the flow in (£)y with random
number. However, the convergence is relatively slow. All initial
statuses of pumps, tanks, and reservoirs are initialized with the
value set in “.inp” source file which is a standard input file
used by EPANET, e.g., the initial status (open or close) and
speed (if open) of pumps, and the initial head value (h%); and
(h™¥)q of tanks and reservoirs. The parameters (C}> )1, (C1')1,
and (C)); are then calculated by initialized values according
to Section III-B, and all constraints are automatically generated
for different WDNSs topologies.

After solving (14) and obtaining the current solution {£),,,
and defining the iteration error as the Euclidean distance be-
tween two consecutive iterations, we set (€ ),, as the saved value
for error calculation in next iteration by assigning &save = (€)n.-
The iteration continues until the error is less than a predefined
threshold (threshold) or a maximum number of iterations
(maxIter) is reached, and the final solution is £sg. The bottle-
neck of this algorithm is solving a scalable LP/QP successively
which should not cause a large computational burden, even if
tens of iterations are required to converge. We note that Steps 7
and 8 are used to accelerate the computational times, since the
direction of the search is known, and the acceleration parameter
a in Step 8 is needed to be adjusted according to the specific
WDN. This will be investigated in future work. We finally
note that Algorithm 1 does not show the windowing process
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(a) 3-node network.

Viewed from top
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10 q23

-10
1000 0 0
31 1000 -2000
(b) Visualization of equation (15) of 3-node network.

Fig. 1: 3-node network and visualization of its equations.

Tab. lI: Formulations of 3-node network (time index k is ignored).

Original formulation

@55 (a23) + @54 (a4) — Ahaal|
s.t. q23 —q34 =d3
SE formulation

min (15)

QP-SE formulation

min €' e (16) | min €'e

st 0= [1 —1] [‘123] +ds st 0= [1 —1] [‘123] +ds
434 434
ARP — | ®os(a23) ARP — |3 Cls
% (g34) q34 ch,
of performing real-time SE, as the algorithm only shows batch
state estimation. However, a moving horizon window can be

implemented within Algorithm 1 thereby allowing real-time
state estimation.

a7

IV. CASE STUDIES

We present two simulation examples to illustrate the appli-
cability of our approach. The first 3-node network is used to
illustrate the geometric meaning of proposed method, and then
we test the 8-node network to illustrate that our approach can
handle looped topology. All numerical tests are simulated using
EPANET Matlab Toolkit [21] on Ubuntu 16.04.4 LTS with an
Intel(R) Xeon(R) CPU ES5-1620 v3 @ 3.50 GHz. CVX [22]
is used to solve the optimization problem. We set the base
b = 1.001 when converting the variables. All case studies are
performed for T' = 1 time-horizon; the head unit is ft; and the
flow unit is GPM. All codes, parameters, and tested networks
are available in [23].

A. Three-node Network

The 3-node network comprised of 3 junctions and 2 pipes is
shown in Fig. 1(a), and no demand at Junctions 2 and 4.

1) Sufficient measurements scenario: Suppose that we mea-
sure head difference Ahos between Junction 2 and 4, and
estimates of the flows ¢23 and ¢34 are sought. According to (10),
the classical SE is presented as (15) in Tab. II. In fact, it can
be visualized as Fig. 1(b) where the red surface is nonlinear
L. (q23) + ®%,(g34), the blue surface is linear conservation
of mass constraint,and the gray surface is measured head

B Head loss surfaceJDemand surface [iMeasured Ahay
Linearized surfaceIteration process

Ahyy X
Solution .

0.6 0.6 Initial
0.4 0.4 point
0.2 0.2 /

_ -100

0 100 ‘
q23 423

Fig. 2: (Left) 3D visualization of (15); (Right) Iteration process of
solving scenario 1 (sufficient measurements) for 3-node network.
difference AiNL24. The solution is in the intersection of these
three surfaces. In order to see the feasible set, we can view 3D
plot from top (ignore Ahoy4 dimension). Notice that the feasible
set can be viewed as the intersection of red and gray surfaces,
and it is highly nonconvex in 2D.

After conversion, the corresponding QP form of SE (16) is
presented as (17) in Tab. II, where e = [1 1] AR —Ahyy.
Iteration process is presented in Fig. 2, and intersection of blue
and red surface in the left plot are approximated by the intersec-
tion of blue surface and multi-green surfaces in the right plot.
As we mentioned, this is a new type of linear approximation
but not the first order Taylor series of the nonlinear function,
we can notice this from the green surfaces.

2) Over-determined measurements scenario: Suppose that
we measure two head differences Ahos anci Ahsy and that the
Ahgs is ten times more accurate than Ahsoy. Therefore, the
weight in the objective function must be updated. Hence, the
SE problem can simply be presented as

min || B55(ga3) — Ahos||+0.1(| 855 (g23) + P54 (g34) — Ahas |

s.t. qo3 — q3a = d3 (18)
With such changes, the objective function in (17) becomes
€ diag(1,0.1)e and the corresponding expression is

€= [1 0} ARP _ | P23
1 1 Ahoy
and notice that it is still a QP. In order to prove the effectiveness
of our approach, our results is compared with solutions from
other solvers. On one hand, the nonlinear optimization prob-
lems (15) and (18) can be solved optimally via fmincon with
GlobalSearch option in Matlab, on the other hand, it can
be solved via Algorithm 1. The final results and comparisons
are listed in Tab. III(a). We can see that the proposed algorithm
yields similar solutions to fmincon and if measurement Ahos
is more reliable than Ahsgy, then final results change accord-
ingly.
B. 8-node Network

The 8-node network from EPANET Users Manual [18] is
a looped network, and labels for various components are all
shown in Fig. 3(a). If the head at reservoir and tank, b and hT¥,
are known, then it satisfies the sufficient scenario which means
the solution can be determined with just these two measure-
ments. The solution &sg solved by Algorithm 1 and EgpaNET
from EPANET are given in Tab. ITI(b) when h® = 834 ft
and hY = 700 ft, and final error ||{sg — €rpaneT|| presented

)
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Tab. lll: Results of 3-node and 8-node network.
(a) Results for the 3-node network.

Sufficient
measurements scenario

Over-determined
measurements scenario

Variables q23 q34 q23 g34
Fmincon with
GlobalSearch 238.607 38.607 234.690 34.690
Algorithm 1 238.538 38.528 235.007 35.007
(b) Results for the 8-node network.
hg¥ hs hs Q46
True value: EgpPANET 834.00 875.89 863.49 82.50
Measurement: é 834.60 875.64 — —
Estimation from Case 1 834.56 876.40 864.01 82.44
Algorithm 1 (§s) | Case2 | 833.89 | 875.81 | 863.36 | 83.81
1 2 3 7 8
[ s r
—_— P P
M P
D75 Dy3 37 78
4 6
5 ¢

(a) 8-node network topology and over-determined mea-
surements scenario (additional measurement h3), blue
line is head difference Ahig, and red line is Ahq3.

L4 [9] J. Davidson and F.-C. Bouchart, “Adjusting nodal demands in SCADA
e 1 constrained real-time water distribution network models,” Journal of
s —logyo(||&sE — Erpanet]|) Hydraulic Engineering, vol. 132, no. 1, pp. 102-110, 2006.
0 1‘0 2‘0 (;‘0 4‘0 5‘0 6‘0 [10] B. D. Barkdoll and H. Didigam, “Effect of user demand on water quality
Itcr{'xtion : and hydraulics of distribution systems,” in World Water & Environmental
‘ Resources Congress 2003, 2003, pp. 1-10.
(b) Error between solution from EPANET and our approach in [11] M. Pasha and K. Lansey, “Analysis of uncertainty on water distribution
sufficient measurements scenario. hydraulics and water quality,” in Impacts of Global Climate Change,
. . . . . 2005, pp. 1-12.
Fig. 3: 8-node network and its results under multi-scenarios. [12] D. Kang, M. Pasha, and K. Lansey, “Approximate methods for uncer-
in Fig. 3(b) reaches 0.1 which illustrates the effectiveness of tainty analysis of water distribution systems,” Urban Water Journal,
roposed method vol. 6, no. 3, pp. 233-249, 2009.
prop o . . [13] F. Fusco and E. Arandia, “State estimation for water distribution
As we mentioned in Section 1I-B, we assume that the mea- networks in the presence of control devices with switching behavior,”
surements of heads at tanks and reservoirs are very accurate. We Procedia Engineering, vol. 186, pp. 592-600, 2017. o
measure one more head at Junction 3 (fg) thereby defining the (141 & A% T0 C EETE B O o models of urban witer
over-determined scenario. There are two cases based on which networks,” Journal of Water Resources Planning and Management, vol.
measurement is more trustful. For Case 1, if we postulate that 137, no. 4, pp. 343-351, 2011.
th — 834.60 ft is more accurate and setting the accuracy [15] R. Duffin, E. Peterson, and C. Zener, Geometric programming - theory
. ’ . . . and application. New York: Wiley, 1967.
matrix as W = diag(1,0.1), we see the resulting kg is very [i16] S. Wang, A. F. Taha, N. Gatsis, and M. Giacomoni,
close to the measured value in Tab. III(b), while h3 is far from “Geometric ~ programming-based ~ control ~ for nonlinear, dae-
. . P . constrained water distribution networks,” in 2019 American
1ts.meas.ureme¥1t since it is considered l'ess accura'te. For Case Control Conference, Philadelphia, US, July 2019, pp. 1470-1475.
2, if h3 is considered more accurate, hg is close to its measured https://arxiv.org/pdf/1902.06026.pdf
value 875.64 ft. Besides that, the two estimated variables hs and  [17] A. S. Zamzam, E. Dall’Anese, C. Zhao, J. A. Taylor, and N. Sidiropou-
los, “Optimal water-power flow problem: Formulation and distributed
d46 a,re shown, and we can see that both are clos.e to the values optimal solution,” IEEE Transactions on Control of Network Systems,
provided by the EPANET software, but vary slightly between 2018.
Cases 1 and 2. [18] L. A. Rossman et al., “Epanet 2: users manual,” 2000.
V. PAPER’S LIMITATIONS AND FUTURE WORK ) eomenc programiing: Optimization and engineering, vo. S, no. 1
The paper’s limitations include the lack of uncertainty p. 67, 2007. . .
quantification from nodal water demands, leaks in pipes, and 20 I J. Lustig, R. E. Marsten, and D. F. Shanno, “Interior point methods
. for linear programming: Computational state of the art,” ORSA Journal
pipe roughness parameters. The proposed approach can handle on Computing, vol. 6, no. 1, pp. 1-14, 1994.
ellipsoidal and cardinal-polyhedral uncertainty by updating the  [21] D. Eliades and M. Kyriakou, “Epanet matlab toolkit,” University of
constraints through the successive linear approximation, given 221 Icy”cr{’,s)’(Rli’; ’;lsilrcdff Cé’\’,r;s Iz\fl)gﬁb software for disciplined convex
historical sets of demands and network parameters. programming, version 2.0, http://cvxr.com/cvx, Aug. 2012.
To this end, future work will focus on deriving a robust, yet  [23] “Shenwang9202/state estimation,” accessed 15 March 2019. https:
still scalable state estimation routine that addresses uncertainty /github.com/ShenWang9202/StateEstimation
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stemming from the aforementioned sources, in addition to
modeling various types of valves in the SE problem, and
thoroughly comparing our approach to the state-of-the-art in
the literature.
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