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Abstract—Control of water distribution networks (WDNs) can
be represented by an optimization problem with hydraulic models
describing the nonlinear relationship between head loss, water
flow, and demand. The problem is difficult to solve due to the
non-convexity in the equations governing water flow. Previous
methods used to obtain WDN controls (i.e., operational schedules
for pumps and valves) have adopted simplified hydraulic models.
One common assumption found in the literature is the modifi-
cation of WDN topology to exclude loops and assume a known
water flow direction. In this paper, we present a new geometric
programming-based model predictive control approach, designed
to solve the water flow equations and obtain WDN controls.
The paper considers the nonlinear difference algebraic equation
(DAE) form of the WDN dynamics, and the GP approach
amounts to solving a series of convex optimization problems and
requires neither the knowledge of water flow direction nor does
it restrict the water network topology. A case study is presented
to illustrate the performance of the proposed method.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

Water distribution networks (WDNs) are crucial infras-
tructures in urban areas. With the expansion of cities, the
complexity of WDNs poses challenges for utilities taking into
account multiple—potentially conflicting—objectives such as
minimizing economic costs, guaranteeing the stability of the
network, and maintaining safe water levels in tanks. The very
basic decision-making problem involved in the majority of
WDN operation problems involves solving for the water flow
and head in pipes given water demand forecasts. The hydraulic
models of head loss and water flow across pipes, valves, and
pumps are accurate, yet highly nonlinear and complex.This
subsequently hinders optimally solving management/operation
problems incorporating the WFP.

The literature of solving the nonconvex WFP is indeed rich
and elaborate [1]–[4]; a discussion on the merits of these
methods is outside the scope of this paper. Most of these
methods are iterative algorithms developed to solve a set of
linear and nonlinear equations to obtain the physical status
(flows and heads) of WDNs. In their recent paper [5], the
authors investigate the uniqueness of the WFP’s solution for
generic WDNs.

Several methods have been developed to solve operational
and pump/valve scheduling problems incorporating the WFP
in WDNs, and have been recently surveyed in [6] in great de-
tail. Model predictive control formulations have been reported
in [7], [8]. Specifically, the authors in [9] present a stochastic
MPC formulation to handle uncertainty in WDNs and apply
the proposed MPC to the Barcelona drinking water network
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with real demands. The authors in [7] address a nonlinear
economic MPC strategy to minimize the costs associated with
pumping and water treatment. A nonlinear MPC controller
is designed in [8] to meet consumer demands at desired
pressures.

The nonlinearity present in WDNs forms a set of nonlin-
ear difference algebraic equations (DAE) which are difficult
to handle when solving operation problems. Some recent
methods to deal with the nonlinearity are: linearizing the
objectives and constraints [10], constructing relaxations for
the nonlinear relationships [11], [12], keeping the nonlinearity
and formulating the problem as a nonconvex program [13],
applying convex approximations to convert the nonconvex
problem into a convex one [14], [15].

The two works closest to our paper are [16] and [14]. The
authors in [16] model WDNs as a directed graph, assume
the directions of water flow in pipes do not change, and
choose the Darcy-Weisbach equation to model head loss in
pipes. In [14], the authors convert the nonconvex head loss
equations into convex models using geometric programming
(GP) approximations, and hence a globally optimal solution
is guaranteed. An important contribution of [14] is that the
proposed GP method is non-iterative. However, it only works
under the two assumptions of a tree network topology and
known/unchanged flow direction.

The objective of this paper is to investigate convex
optimization-based methods to solve the nonconvex WFP, and
to subsequently solve an MPC formulation to manage WDN
controllers without restricting the WDN graph topology or
assuming knowledge of the water flow direction. The proposed
approach amounts to solving a series of convex optimization
problems, namely, geometric programs, and is embedded
within the MPC. We specifically show that the nonconvex,
DAE-constrained optimal control problem of WDNs can be
approximated by a convex one and solved efficiently. The
organization of this paper is given next. Section II discusses
control systems-oriented modeling and MPC formulation of
WDNs. Section III presents the introduction to GP, and the
conversion of the nonconvex hydraulic models to their corre-
sponding convex, GP forms follows. Section IV concludes the
paper with numerical tests.

II. MODELING OF WDNS

We model WDNs by a directed graph (V, E). Set V defines
the nodes and is partitioned as V = J

⋃
T
⋃
R where J ,

T , and R stand for the collection of junctions, tanks, and
reservoirs. Let E ⊆ V × V be the set of links, and define
the partition E = P

⋃
M
⋃
W , where P , M, and W stand

for the collection of pipes, pumps, and valves. For the i-th
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TABLE I
WDNS MODEL AND ITS DIFFERENCE ALGEBRAIC EQUATION (DAE) AND GEOMETRIC PROGRAMMING (GP) FORMS.

Original Hydraulic Model DAEs GP Form Abstracted GP

Tanks h
TK
i (k + 1)=h

TK
i (k)+

∆t

ATK
i

|N
in
i |∑

j=1

qji(k)−
|Nout
i |∑
j=1

qij(k)

 (1) (12a) ĥi(k)

|N
in
i |∏

j=1

q̂ji(k)

|Nout
i |∏
j=1

q̂
−1
ij (k)

 ∆t
ATK
i ĥ

−1
i (k+1)=1 (2) (18a)

Junction
nodes

∑|N in
i |

j=1 qji(k)−
∑|Nout

i |
j=1 qij(k) = di(k) (3) (12b)

∏|N in
i |

j=1 q̂ji(k)
∏|Nout

i |
j=1 q̂−1

ij (k)d̂−1
i (k) = 1 (4) (18b)

Pipes h
P
ij(k) = hi(k)− hj(k) = Rqij(k)|qij(k)|µ−1 (5)

(12c)
ĥi(k)ĥ

−1
i (k)[C

P
(k)]
−1
q̂
−1
ij (k) = 1 (6) (18c)

Pumps h
M
ij(k) = hi(k)− hj(k) = −s2ij(k)(h0 − r(qijs−1

ij )
ν
) (7) ĥi(k)ĥ

−1
i (k)ŝij(k)

−CM
1 (k)

q̂ij(k)
−CM

2 (k)
= 1 (8) (18d)

Constraints

h
min
i ≤ hi(k) ≤ hmax

i (9a)

h
R
i (k) = h

R
i (9b)

0 ≤ sij(k) ≤ 1 (9c)

q
min
ij ≤ qij(k) ≤ qmax

ij (9d)

(13)

ĥ
−1
i (k)ĥ

min
i ≤ 1, ĥi(k)

(
ĥ

max
i

)−1
≤ 1 (10a)

ĥ
−1
i (k)ĥ

R
i = 1 (10b)

ŝ
−1
ij (k) ≤ 1, ŝij(k)b

−1 ≤ 1 (10c)

q̂
−1
ij (k)q̂

min
ij ≤ 1, q̂ij(k)

(
q̂
max
ij

)−1
≤ 1 (10d)

(19)

node, set Ni collects its neighboring nodes and is partitioned
as Ni = N in

i

⋃
N out
i , where N in

i and N out
i stand for the

collection of inflow and outflow nodes. It is worth emphasizing
that the assignment of direction to each link is arbitrary, as the
presented optimizations yield optimal flow direction in pipes.

A. Conservation of mass and energy

The hydraulic equations describing the flow in WDNs
are derived from the principles of conservation of mass and
energy. According to these basic laws, the equations that
model mass and energy conservation for all components
(tanks, junctions, pipes, and pumps) in WDNs can be written
and provided in explicit and compact matrix-vector forms in
the first three columns of Table I. The last two columns of
Table I are needed in the ensuing sections of the paper.
Tanks and Junction Nodes — The water volume evolution
in the i-th tank at time k can be expressed by a discrete-time
difference equation (11a), while the head created by the tank
can be described as (11b)

Vi(k + 1)=Vi(k) + ∆t
(∑|N in

i |
j=1 qji(k)−

∑|Nout
i |

j=1 qij(k)
)

(11a)

hTK
i (k)=

Vi(k)

ATK
i

+ ETK
i , i ∈ T , (11b)

where Vi and ∆t are the volume and sampling time;
qji(k), i ∈ J , j ∈ N in

i stands for the inflow of j-th neighbor,
while qij(k), i ∈ J , j ∈ N out

i stands for the outflow of j-
th neighbor; hTK

i , ATK
i , and ETK

i stand for the head, cross-
sectional area, and elevation of the i-th tank. Combining (11a)
and (11b), the head changes from time k to k + 1 of the i-th
tank can be written as (1) in Table I. Junction nodes are the
points where water flow merges or splits. The expression of
mass conservation of the i-th junction at time k can be written
as (3) in Table I, and di(k) stands for the end-user demand
that is extracted from node i.
Head Loss in Pipes — The major head loss of a pipe from
node i to j is due to friction and is determined by (5) from
Table I, where hi and hj stand for the head of the i-th and
j-th node; hP

ij is the head loss of the pipe from i to j; R is
the resistance coefficient and µ is the constant flow exponent
in the corresponding formula. Table II represents the most

TABLE II
HEAD LOSS FORMULAE.∗

Formula Resistance Coefficient (R) Flow Exponent (µ)
Hazen-Williams 4.727LPC−1.852

HW (DP)−4.871 1.852

Darcy-Weisbach 0.0252LPf(ε,DP, q)(DP)−5 2

Chezy-Manning 4.66LPC2
CM(DP)−5.33 2

∗CHW , ε, CCM are roughness coefficients of Hazen-Williams, Darcy-Weisbach
and Chezy-Manning. DP (ft) is the pipe diameter, LP (ft) is the pipe length.
q (cfs) is the flow rate, f is friction factor (dependent on ε, DP, and q).

common formulae used in the literature to model the resistance
coefficient R. The approach presented in this paper considers
any of the three formulae in Table II. The numerical tests use
the Hazen-Williams formula [17], which is typically used to
analyze urban water supply systems.
Head Gain in Pumps/Reservoirs — A head increase can
be generated by a pump between the suction node i and the
delivery node j. The pump properties decide the relationship
function between pump flow and head increase [17]. Generally,
it can be expressed as (7), where hM

ij is head increase of the
pump from i to j; h0 is the shutoff head for the pump; qij
is the flow through a pump; sij ∈ [0, 1] is the relative speed
of the same pump; r and ν are the pump curve coefficients.
We also assume that reservoirs have infinite water supply, the
head of the i-th reservoir hR

i is fixed, and this can be viewed
as an operational constraint.
WDN Operational Constraints — The constraints (upper and
lower bounds on the heads of junctions, tanks and reservoirs,
pump speeds, and flows) are expressed as equations (9a)–(9d)
in Table I. Note that constraint (9c) can be replaced with binary
(on/off) constraints on the pump schedules if variable speed
pumps are not available in the water network. In this paper, we
assume that the relative speed of all pumps can be modulated
in the interval [0, 1], rather that needing integer constraints.

B. Difference algebraic equations (DAE) form of WDNS

The WDN model in previous section can be abstract in
the form of DAEs as (12). Define x, l, u, v, and s to be
vectors collecting heads at tanks, heads at junctions, flows
through pumps and valves, flows through pipes, and the
relative speed of pumps. And the corresponding dimensions
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are nt,nj ,nw+nm,nv , and nm. Collecting the mass and energy
balance equations of tanks (1), junctions (3), pipes (5), and
pumps (7), we write the following DAE model

DAE: x(k + 1) = Ax(k) +Buu(k) +Bvv(k) (12a)
0nj = Euu(k) +Evv(k) +Edd(k) (12b)

0nw+nm = Exx(k) +Ell(k) + Φ(u,v, s) (12c)

where A, E, and B are constant matrices that depend on
the WDN topology and the aforementioned hydraulics. The
function Φ(·) collects the nonlinear components in (5) and (7).
The physical constraints pertaining to (12) can be rewritten as

Constraints:

x(k) ∈ [xmin(k),xmax(k)], l(k) ∈ [lmin(k), lmax(k)]

u(k) ∈ [umin(k),umax(k)],v(k) ∈ [vmin(k),vmax(k)]

s(k) ∈ [0nm ,1nm ] . (13)

The next section discusses the WDN control objectives.

C. Control objectives

Multiple objectives can be applied depending on opera-
tional considerations, and can be expressed through

Γ1(x(k))=

{
0

(x(k)−xsf)>(x(k)−xsf),

Otherwise
if x(k)≤xsf

(14)

Γ2(∆u(k)) = ∆u(k)>∆u(k) (15)

where Γ1(·) enforces maintaining the safety water storage in
each tankdecided by the operator and xsf is a vector collecting
the safety head levels of tanks; Γ2(·) enforces the smoothness
of control actions through ∆u(k) = u(k) − u(k − 1) which
stands for the flow rate changes of controllable components
from time k − 1 to k. At initial time k = t0, define a vector
that collects all the optimization variables as

ξ[t0] ,
{
x(k + 1),u(k), l(k),v(k), s(k)

}k=t0+Hp

k=t0
,

where Hp is the prediction horizon of the MPC. Note that the
indexing for x(k) is different in ξ[t0] due to the fact that the
initial conditions of the tanks x(t0) is known, unlike other
optimization variables such as the flow and the pump controls
which we need to solve for from k = t0 through k = t0 +Hp.
The multi-objective cost function can be written as

Γ(ξ[t0]) =
∑2
i=1 Γi(ξ[t0]) = ξ>[t0]Ωξ[t0] + ω>ξ[t0] + ω,

where Ω,ω and ω are the corresponding weight matrix, vector,
and scalars from Γ1,2(ξ). Similar objective functions have
been used before in [10], [18].

D. MPC formulation

Here, we propose using MPC to solve the WDN opera-
tion problem considering the nonlinearities and nonconvex-
ities present in the energy balance equations in the DAE
model (12). At each time instant k, MPC obtains the control
input to be implemented, given a prediction of the current
disturbance, output, and states, and then finds an optimal

control sequence over a prediction horizon Hp. The MPC can
be written as

min
ξ[t0]

Γ
(
ξ[t0]

∣∣∣ x(t0), {d(k)}k=t0+Hp
k=t0

)
s.t. DAE (12), Constraints (13) (16)

The optimization problem (16) is nonlinear and nonconvex
due to the head loss models of pipes and pumps. WDN-
MPC requires the knowledge or prediction of the nodal water
demand for the entire prediction horizon as well as the initial
levels of tanks x(t0), and {d(k)}k=t0+Hp

k=t0
.

III. GP MODELING OF WDNS

A basic introduction to GP is provided first, followed by the
conversion of the nonconvex hydraulic models in (16) to their
corresponding convex, GP form. A geometric program (GP) is
a type of optimization problem with objective and constraint
functions that are monomials and posynomials [19].

Here, we propose a GP model without assuming a known
flow direction by mapping the optimization variable ξ[t0]
in (16) into its exponential form. The conversion helps to map
all of the non-positive values into positive ones. Specifically,
we convert the head and demand at the i-th node hi and di,
the flow qij , and relative speed sij into positive values ĥi, d̂i,
q̂ij , and ŝij through exponential functions, as follows

ĥi , bhi , d̂i , bdi , q̂ij , bqij , ŝij , bsij , (17)

where b = 1 + δ is a constant base and δ is a small positive
number. After conversion of variables, the ĥi, d̂i, q̂ij , and ŝij
are positive values which can then be used to transform the
nonconvex problem (16) into a GP. Converting the junction
and tank physical models as well as constraints follows from
the above exponential mapping (17), while converting the pipe
and pump models into GP form is more complicated. The last
two columns of Table I produce detailed as well as abstract
versions of the conversions of all physical models.
A. Conversion of mass and energy balance equations

For the models of tanks and junctions, the conversion
process is straightforward. After exponentiating both sides
of (1) and (3), variables qij , hi, and di are changed into q̂ij , ĥi,
and d̂i, while constraints (1) and (3) are converted to monomial
equality constraints (2) and (4) in Table I.

In order to clearly show the derivation for pipes, the time k
is ignored at first. At time k, let ĥP

ij be the GP form of head
loss of a pipe, which is obtained by exponentiating both sides
of (5) as follows

ĥiĥ
−1
i = ĥP

ij = b(qijR|qij |
µ−1−qij) · bqij = CP(qij) · q̂ij ,

where CP(qij) = bqij(R|qij |
µ−1−1) is a function of qij .

Note that variable qij(k) is unknown at each time k. The
premise is to solve a series of convex optimization problems
to find the final value for each time k. Hence, we can make
an initial guess denoted by 〈qij〉0 and 〈CP〉0 for iteration 0.
For the n-th iteration, the corresponding values are denoted
by 〈qij〉n and 〈CP〉n. If the flow rates are close to each other
between the (n−1)-th and n-th iteration, we can approximate
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〈CP〉n using 〈CP〉n−1, that is 〈CP〉n ≈ 〈CP〉n−1. Thus, for
each iteration n,

〈CP(k)〉n = b〈qij(k)〉n−1(R|〈qij(k)〉n−1|µ−1−1)

can be approximated by a constant given the flow value
〈qij(k)〉n−1 from the previous iteration. With this approxima-
tion, the head loss constraint for each pipe can be written as
a monomial equality constraint ĥi(k)ĥ−1

i (k) = CP(k)q̂ij(k)
which is equivalently expressed as (6). If we solve flow qij(k),
this value can be as an initialization for the next iteration,
implying that 〈CP(k + 1)〉0 = 〈CP(k)〉n which can accelerate
the convergence of the successive convex approximation.

Similarly for pumps, the new variables q̂ij(k) = bqij(k) and
ŝij(k) = bsij(k) for (i, j) ∈M are introduced. Let ĥM

ij be the
GP form of head increase of a pump:

ĥiĥ
−1
i =ĥM

ij =(bsij )−sijh0 · (bqij )rq
ν−1
ij s2−νij =(ŝij)

CM
1 (q̂ij)

CM
2 ,

where CM
1 = −sijh0 and CM

2 = rqν−1
ij s2−ν

ij . Parameters
CM

1 (k) and CM
2 (k) follow a similar iterative process as CP(k).

That is, they are treated at iteration n as constants based on
the flow and relative speed values at iteration n−1. Hence, the
approximating equation for the pump head increase becomes
the monomial equality constraint (8), where ν is a constant
parameter determined by the pump curve.

Therefore, starting with an initial guess for the flow rates
and relative speeds, the constraints in the DAE model are
approximated at every iteration by constraints abiding by the
GP form, as listed in Table I. This process continues until a
termination criterion is met. The details are further discussed
in Algorithm 1, after the presentation of the abstract GP form
and the conversion of the control objectives in the next section.
B. Abstract GP model

To express the GP-based form of WDN-MPC in a compact
form, we define some mathematical operators.

Definition 1. For matrices X and B ∈ Rm×n, the element-
wise exponential operation on X with base B is a matrix of
the same dimension with elements given by

X̂ = BX =

 b
x11
11 · · · bx1n

1n
...

. . .
...

bxm1
m1 · · · bxmnmn

 =

 x̂11 · · · x̂1n

...
. . .

...
x̂m1 · · · x̂mn

 .
Definition 2. For matrices Y ∈ Rn×m and matrix X ∈
Rm×p, the element-wise exponential matrix product C =
X?Y has elements given by cij =

∏m
k=1(x̂kj)

yik for i =
1, . . . , n and j = 1, . . . , p, where x̂kj = bxkj .

Property 1. For matrices Y with size n ×m and X with
size m×p, let X̂ = bX , where b is base. The following holds:

bY X = X̂?Y .

With the above definitions, we now derive the GP-based
DAE model and constraints of WDN. Performing an element-
wise exponential operation on both sides of (12) yields

bx(k+1) = bAx(k)+Buu(k)+Bvv(k)

1 = bEuu(k)+Evv(k)+Edd(k)

1 = bExx(k)+Ell(k)+Φ(u(k),v(k),s(k)).

Denote x̂(k) = bx(k) and similarly l(k), u(k), v(k), and
s(k) are converted into l̂(k),û(k),v̂(k) and ŝ(k). The models
of junctions and tanks can be written as monomials (18a)
and (18b) directly according to Property 1.

For a pipe from node i to j, according to (6), the expo-
nential of nonlinear function is CP(k)q̂ij(k). The head loss
constraints can be compactly written for all pipes using the
element-wise product Fv(k)◦v̂(k), where Fv(k) is a np × 1
column vector collecting the CP(k) parameters of pipes.

Similarly, for all pumps, define Fs(k) and Fu(k) as nm ×
1 column vectors respectively collecting all of parameters
CM

1 (k) and CM
2 (k) of pumps. In summary, (18c) and (18d) are

the abstract GP form of pipe and pump models. The overall
DAE-GP model is given as follows

DAE-GP:

x̂(k + 1) = [A?x̂(k)]◦[Bu?û(k)]◦[Bv?v̂(k)] (18a)

1nj = [Eu?û(k)]◦[Ev?v̂(k)]◦[Ed?d̂(k)] (18b)

[Ex?x̂(k)]◦[El?l̂(k)] = Fv(k)◦v̂(k) (18c)

[Ex?x̂(k)]◦[El?l̂(k)] = [ŝ(k)Fs(k)]◦[û(k)Fu(k)]. (18d)

In addition, the physical constraints (13) can be rewritten as

Constraints-GP:

x̂(k) ∈ [x̂min(k), x̂max(k)], l̂(k) ∈ [l̂min(k), l̂max(k)]

ŝ(k) ∈ [1nm , bnm ] (19)

û(k) ∈ [ûmin(k), ûmax(k)], v̂(k) ∈ [v̂min(k), v̂max(k)].

C. Conversion of control objectives

In this section, we covert the control objectives in the
nonconvex problem (16) to their convex, GP-based form.
In (14), notice that x is a vector collecting the head hi at
tanks. The objective (x(k) − xsf)>(x(k) − xsf) encourages
x(k) to be close to the constant xsf . Hence, we introduce
a new auxiliary variable ẑ(k) , bx

sf−x(k) which will be
pushed to be close to 1. Using the epigraph form, the original
objective function Γ1(x(k)) in Section II-C is replaced by
Γ̂1(ẑ(k)) =

∏nt
i=1 ẑi(k) and 2nt constraints are added as

Safety-GP: ẑ(k) ≥ 1nt (20a)

ẑi(k) = x̂sf
i x̂
−1
i (k) , i ∈ [1, nt] (20b)

where x̂sf and x̂(k) are the GP form of xsf and x(k). If
the water level of the i-th tank is above the safe level, then
variable ẑi(k) already satisfies the constraint, which implies
no objective function is applied. Otherwise, the objective is
ẑi(k), and the corresponding constraint is ẑi(k) = x̂sf

i x̂
−1
i (k).

Moving to the second part of the objective function (15),
∆u(k) = u(k) − u(k − 1) is a vector collecting the flow
changes of controllable flow u(k). We introduce a new aux-
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iliary variable p̂(k) , bu(k)−u(k−1) and perform an element-
wise exponential operation on both sides of (15) yielding

b[u(k)−u(k−1)]>∆u(k) = [û(k) ◦ û−1(k − 1)]∆u(k)

= (p̂(k))∆u(k).

Using the epigraph form, the original objective function
Γ2(∆u(k)) can be expressed as a new objective Γ̂2(p̂(k)) =∏nu
i=1(p̂i(k))∆ui(k) and nu + 1 constraints given as

Smoothness-GP:

p̂i(k) = ûi(k)û−1
i (k − 1),∀ i ∈ {1, nu}, Γ̂2(p̂(k)) ≥ 1. (21)

Given the above derivations, the final GP form of multi-
objective cost function can be rewritten as

Γ̂(ẑ(k), p̂(k)) = Γ̂1(ẑ(k)) + Γ̂2(p̂(k)), (22)

where Γ̂(ẑ(k), p̂(k)) is a posynomial function. The convex
GP-based MPC can now be expressed as

min
ξ̂[t0]

ẑ(k),p̂(k)

Γ̂

(
ẑ(k), p̂(k)

∣∣∣∣ x̂(t0),
{
d̂(k)

}k=t0+Hp

k=t0

)
s.t. DAE-GP (18), Constraints-GP (19) (23)

Safety-GP (20), Smoothness-GP (21).

In (23), two sets of optimization variables are included. The
first set comprises x̂, l̂, û, v̂, and ŝ which are collected in
variable ξ̂[t0]. The latter is the corresponding GP form of ξ[t0]
defined in Section II-C, that is, ξ̂[t0] , bξ[t0]. The second set
includes the auxiliary variables ẑ and p̂ introduced before.
Notice that the flow q̂ij is an optimization variable while qij
is not in (23), but a value used to calculate CP(k), CM

1 (k)
and CM

2 (k). Note that similar to the nonconvex problem (16),
Problem (23) also requires the knowledge of the state x̂(t0)
as well as a prediction of the demand pattern for an entire
prediction horizon Hp. The detailed form of (23) is given in
Table I. We next present how we integrate the GP iterations
with the MPC windows.

As we mentioned in Section III-A, the notation 〈qij(k)〉n
stands for the n-th iteration value of qij at time k. We use
the same notation system during iterations, e.g., 〈û(k)〉n and
〈ξ̂〉n are the n-th iterate value of û(k) and ξ̂. The algorithm
of GP method for a single optimization window is presented
in Algorithm 1. We initialize the flow 〈û(k)〉0 and 〈v̂(k)〉0

Algorithm 1 GP method for a single optimization window.

1: Input: x̂(t0), {d̂(k)}k=t0+Hp
k=t0

2: Output: ξ̂[t0]
3: Initialize n = 0, parameters 〈ξ̂〉0; set ξ̂SaveLast = 〈ξ̂〉0
4: while error ≥ threshold OR n ≤ maxIter do
5: n = n+ 1
6: Obtain 〈CP〉n, 〈CM

1 〉n and 〈CM
2 〉n by 〈ξ̂〉n−1

7: Solve (23) for ξ̂Sol; obtain error = ||ξ̂Sol − ξ̂SaveLast||
8: Assign 〈ξ̂〉n = ξ̂SaveLast = ξ̂Sol

9: end while

in 〈ξ̂(k)〉0, k ∈ [t0, t0 + Hp] with the historical statistical
average flow in the pipes and pumps, and 〈ŝ(k)〉0 is set to
1. The parameters 〈CP(k)〉1, 〈CM

1 (k)〉1 and 〈CM
2 (k)〉1 are

then calculated according to Section III-A. After solving (23)
and obtaining the ξ̂Sol, we save it as ξ̂SaveLast, obtain the
iteration error, and make ξ̂Sol as the initial value for next
iteration. In addition, we define the error as the distance
between current solution ξ̂Sol and previous solution ξ̂SaveLast.
The iteration continues until the error is less than a predefined
error threshold (threshold) or a maximum number of iterations
(maxIter) is reached. The details are in Algorithm 1. Upon
successfully solving for a single optimization window, we can
continue the process and solve for the overall simulation time
using a vintage MPC routine.

IV. NUMERICAL TESTS

In this section, we present a simple simulation example to
illustrate the applicability of the GP-based MPC formulation
for WDN operations. The considered water network is an
8-node network from EPANET Users Manual [17, Chapter
2]. The numerical tests are simulated using EPANET Matlab
Toolkit [20] with GP solver GGPLAB [21]. The basic parame-
ters in 8-node network including the elevation of nodes, length,
and diameter of pipes are obtained from [17]. We now present
the list of constraints and parameters used in the simulations.

Fig. 1. Water demand at various junctions and variable-speed pump curve
(h0 = 393.7, r = 3.7× 10−6, ν = 2.59).

• The initial head of Tank 8 is 834 ft, the water level range
of Tank 8 is [830, 850] ft, and the safety water level xsf (14)
of Tank 8 from Section II-C is set to 838 ft. We set the total
simulation time Tfinal to 24 hrs in Algorithm 1. The demand
pattern for 24 hours at different junctions is shown in Fig. 1.
This demand pattern is different from [17], as our intention is
to make the demand vary more rapidly to test the performance
of the presented GP-based MPC routine.
• The relationship between head increase and flow of Pump
9 defined by (7) is presented in Fig. 1. We observe that the
head increase and flow provided by a pump varies with the
relative speed s ∈ [0, 1] with s = 0 refers to the pump being
off. In (9), the physical constraints of the head imposed at the
i-th junction is greater than its corresponding elevation, and
the head of i-th reservoir is fixed at its elevation. Since we
have only one reservoir, this implies that hR

1 = 700 ft. As for
the flow, the direction is unknown, and we simply constrain
the flow to qi ∈ [−1000, 1000] GPM.
• For the geometric programming component of the presented
formulations, we set the base b = 1.005. The parameters we
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use in Algorithm 1 are selected as: error = 0.5 and maxIter =
40. We consider a sampling time of 1 hr, a prediction horizon
Hp = 10 hrs, and a simulation of 24 hrs.

Here, we present the solution to WDNs operation problem
after running Algorithm 1. Fig. 2 shows the optimal control
effort (the variable pump speed), the water level after applying
the pump control, and the water flow through some pipes.
During time period k ∈ [1, 2], the water level of Tank 8 is
below the safety water level 838 ft, so the relative speed
of Pump 9 is set to the highest speed s = 1 by GP-MPC
controller. Consequently, Pump 9 starts to deliver water into
the network and more water begins to flow into the tank. At
k = 3, the target setpoint is reached and the pump slows down
to a relative speed of s = 0.7566 according to MPC algorithm.
Notice that the demand at k = 7 increases dramatically as
shown in Fig. 1, and as a result the pump speed increases to
the maximum speed at k = 4 to prepare for this situation in
advance. During time period k ∈ [7, 13], the demand changes

Fig. 2. Relative speed of Pump 9, controlled water level of Tank 8, and flows
through a pipe and Pump 9.

Fig. 3. Convergence of the Iteration error and relative speed from Algorithm 1.

slightly, and the relative speed is stabilized around s = 0.8. At
k = 14, the water level decreases to 838 ft, which leads to an
increase in the pump speed to maintain the desired, safe water
level. During time period k ∈ [18, 24], the increase in demand
justifies the higher pump speed which is then followed by a
decrease in the speed for the last stretch of the day. Fig. 3
shows the convergence of Algorithm 1—the GP method for
a single optimization window when t0 = 23. We can see
the iteration error keeps decreasing which implies the final
solution is reached slowly. For the first 7 iterations, the ups and
downs of error is caused by whether the objective function (22)
is activated, because the solved x from Algorithm 1 is not
accurate and varies. When the solved x becomes stable, the

objective function (22) does not change, and Algorithm 1
converges to the final solution. It is noteworthy to mention that
the flow q12(k) through Pump 9 is always in one direction,
while the flow direction of q78(k) through the pipe connected
to Tank 8 changes 5 times during the simulation in Fig. 2. This
justifies the use of the flow direction-unaware GP component
in the MPC. Future work will experiment with larger networks
and investigate the impact of demand uncertainty on the WDN
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