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Abstract: Intent recognition in lower-limb assistive devices typically relies on neuromechanical
sensing of an affected limb acquired through embedded device sensors. It remains unknown whether
signals from more widespread sources such as the contralateral leg and torso positively influence
intent recognition, and how specific locomotor tasks that place high demands on the neuromuscular
system, such as changes of direction, contribute to intent recognition. In this study, we evaluated the
performances of signals from varying mechanical modalities (accelerographic, gyroscopic, and joint
angles) and locations (the trailing leg, leading leg and torso) during straight walking, changes of
direction (cuts), and cuts to stair ascent with varying task anticipation. Biomechanical information
from the torso demonstrated poor performance across all conditions. Unilateral (the trailing or leading
leg) joint angle data provided the highest accuracy. Surprisingly, neither the fusion of unilateral and
torso data nor the combination of multiple signal modalities improved recognition. For these fused
modality data, similar trends but with diminished accuracy rates were reported during unanticipated
conditions. Finally, for datasets that achieved a relatively accurate (≥90%) recognition of unanticipated
tasks, these levels of recognition were achieved after the mid-swing of the trailing/transitioning leg,
prior to a subsequent heel strike. These findings suggest that mechanical sensing of the legs and
torso for the recognition of straight-line and transient locomotion can be implemented in a relatively
flexible manner (i.e., signal modality, and from the leading or trailing legs) and, importantly, suggest
that more widespread sensing is not always optimal.

Keywords: locomotion; biomechanics; task anticipation; mechanical sensing; changes of direction
and intent recognition

1. Introduction

Locomotion is a sequential movement comprising the complex activity of muscular, nervous,
and skeletal systems [1]. Neurodegenerative diseases such as stroke and spinal cord injury as well
as limb amputation are underlying causes of impaired locomotion, leading to restricted functional
independence in the community and reduced quality of life [2–4]. Advanced wearable assistive
devices (i.e., lower-limb prostheses, orthoses/exoskeletons) have been impressively developed over
the last decade to restore or enhance motor function of the affected limbs [5–7]. To enable an effective
human–device interaction, intent recognition strategies have been successfully developed to infer user
intention for the control system and to actuate the device accordingly [7–9]. The accurate and timely
prediction of user locomotion mode can be necessary to maximize the benefits of these devices and to
ensure user safety. However, the performance of the recognition system is highly dependent on the
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sensor information that is used as an input for the device control. In nearly all commercially available
assistive devices and those used in research settings, mechanical sensors are typically embedded
in the device. For instance, in the Vanderbilt powered prosthesis, data recorded through built-in
potentiometers, encoders, six-axis inertial measurement units (IMU), and load cells on the shank
were used to control the prosthesis according to the wearer’s intentions to move [10]. In the Hybrid
Assistive Limb, the hip and knee joint angles were used as input commands to control the device [11].
Commercialized devices such as C-Leg knee prosthesis and C-Brace orthosis are also controlled using
signals from embedded mechanical sensors [12,13]. In the users of these devices, the unaffected or
less affected portions of the body (e.g., contralateral leg, upper body) remain functional and could
serve as beneficial sources of sensing information. However, little information exists on potentially
using biomechanical data from the intact limb for detecting an individual’s intended motion, and it
remains unknown whether this information would be dependable for intent recognition frameworks.
The answer to this question could provide insight into determining reliable, simple, and flexible sources
of information for the intuitive operation of assistive devices.

Complementary limb motion estimation (CLME) is the idea that an assistive device motion can be
estimated based on the motion of the intact leg using the concept of inter-joint coupling. CLME was first
implemented in rehabilitation robots to generate reference trajectories [14], then to control prosthetic
legs [15] where missing limb trajectories were determined by measuring contralateral leg joint angles
and angular velocities. However, this method has only been implemented for joint actuation and
position control, and there has not been much information on whether signals from the intact limb(s)
could provide timely and accurate recognition of upcoming locomotion mode or lower-limb activities.
Furthermore, intent recognition of human locomotion has been primarily limited to the detection of
basic steady-state ambulation such as straight level-ground walking, ramp and stair ascent/descent,
and transitions between level and uneven terrain (e.g., ramp/stair to level ground and vice versa) [7–9].

The recognition of non-steady (i.e., transient) changes of direction, such as turns and cuts, occurring
frequently in community ambulation and many recreational activities has not been demonstrated.
For example, sidestep and crossover cuts are the most frequently performed cutting styles and defined by
when the torso moves toward the opposite or same direction as the stance leg, respectively. During cuts,
excessive stress is placed on the joints to coordinate body segments and muscles and maintain
stability [16]. Hence, compared to the tasks performed in primarily one plane of progression, the risks of
fall and injury are higher during cuts due to relatively high levels of neuromotor demand [17]. A more
complex, combined cut and stair ascent transition requires both horizontal and vertical alterations
placing even higher demands on the neuromuscular control system. The control of dynamic stability and
balance was shown to further deteriorate when such maneuvers were performed under unanticipated
conditions [18,19]. Anticipatory neuromotor control is dependent on sensory inputs and is significantly
influenced by an individual’s knowledge of upcoming motion, and their ability to integrate sensory
information. During anticipated locomotor tasks, individuals perform preparatory adaptations such
as altering their step size and joint moments [20,21]. In contrast, in unanticipated tasks, studies
suggest reflexes are required to prevent falls, such as following an unexpected perturbation [16,20].
The biomechanical challenges of these tasks and other transient lower-limb tasks, especially when
performed by individuals with sensory/cognitive impairments, further emphasize the need to identify
informative yet flexible data sources to seed controllers of lower-limb assistive technologies.

In this study, we conducted an offline analysis to comprehensively compare the performance of
altering mechanical sensing modality (accelerographic, gyroscopic, joint angles, and their combinations)
and location (the trailing leg, leading leg, torso and their fusion) to recognize multiple forms of straight-line
and transient locomotion that are performed under varying levels of task anticipation. Specifically,
we continuously classified five categories of locomotion, including straight walking, 45◦ sidestep and
crossover cuts, and cuts to stair ascent transitions performed under anticipated and unanticipated states.
We tested the hypothesis that signal fusion from different modality and body location would lead to
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improved accuracy compared to signals from isolated locations and/or modality. We further hypothesized
that the performance of a given signal would diminish when unanticipated tasks were performed.

2. Materials and Methods

2.1. Subjects and Data Collection

Non-disabled, healthy subjects (4 females, 1 male, average age: 27.7± 3.8 years, mass: 52.6 ± 2.8 kg,
height: 1.68 ± 0.06 m) participated in the study. Subjects did not have a history of neuromuscular
disorders or injuries. The experimental procedures used for this study were reviewed and approved
by an Institutional Review Board, and informed consents were obtained from the subjects before
participating in the experiments. The tasks selected for this study included straight walking at
comfortable speed (W), crossover (CO) and sidestep (SS) cuts, crossover to stair ascent (COS),
and sidestep to stair ascent (SSS). All locomotor transitions were performed under anticipated (A) and
unanticipated (UA) conditions. The lab setup consisted of a level straight walkway, a level 45◦ walkway
to the right for sidestep and crossover cuts, and a portable staircase at 45◦ to the left for the task
with stair-ascent transitions (Figure 1A). Each subject completed five straight-walking trials, followed
by five trials of each anticipated cut and cut-to-stairs transition. Similar to anticipated conditions,
unanticipated conditions were comprised of five trials of unanticipated walking and five trials for each
locomotor transition. Unanticipated trials were recorded when a randomized auditory cue for “walk”,
“cut” and “stair” was given at the beginning of the trailing leg swing phase and half a step prior to the
marked transition point on the terrain (Figure 1). The position of each leg when the cue was given was
used to define the trailing and leading legs. Each trial was initiated with the first trailing leg heel strike
(THS1); subjects executed cut transitions with the first trailing leg toe off (TTO1) and ended with the
second trailing leg heel strike (THS2). In cut-to-stairs transitions, stair ascent was initiated with the
second leading leg toe off and ended with the third trailing leg heel strike. Forty-two reflective markers
were placed on the subject’s bilateral foot, shank, thigh, as well as trunk and pelvis. Gait kinematics
in three dimensions were captured using a ten-camera motion capture system (Motion Lab Systems,
Baton Rouge, LA, USA) operating at 120 Hz.
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transition ended with the second trailing leg heel strike. Unanticipated trials were recorded when a 
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Figure 1. Experimental setup for the locomotor tasks. (A) Lab setup for straight walking, sidestep and
crossover cuts, and cuts to stair ascent performed under varying task anticipation. (B) The transition
point and path for cut transitions were shown on the walkway. Each trial was initiated with the
first trailing leg heel strike. Subjects entered a locomotor transition at the first trailing leg toe off,
and transition ended with the second trailing leg heel strike. Unanticipated trials were recorded when
a randomized cue was given half a step prior to the marked transition point on the terrain. Different
signal locations, including the trailing leg, leading leg, and trunk-pelvis were indicated with green,
yellow and blue, respectively.
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2.2. Signal Processing and Recognition Performance

Kinematic signals, including joint angles and segments linear acceleration and angular velocity,
were recorded from the trailing leg, leading leg and torso. Data were processed using Visual3D
(C-Motion, Germantown, MD, USA) and exported to MATLAB (Mathworks, Natick, MA, USA)
for further analysis. An offline study was conducted to determine the benefit of different input
signal modalities and locations for predicting intent. Signals were divided into seven modality
groups, including linear acceleration (LA), angular velocity (AV), joint angle (ANG), combinations
of two kinematic signals (LA+AV, LA+ANG, AV+ANG), and combination of all three signals (ALL).
Signals were also divided into four location groups (Figure 1B) comprising the trailing leg, leading leg,
trunk–pelvis, and all combined (fusion). The trailing/leading leg signals included linear acceleration
and angular velocity of the foot, shank, and thigh, as well as ankle and knee angles (sagittal plane
only). The trunk–pelvis signals were comprised of linear acceleration and angular velocity of the trunk
and pelvis, and trunk angle (sagittal plane only).

Linear Discriminant analysis classifier (LDA) was used to continuously classify the previously
introduced locomotion modes. LDA has been the benchmark for intent recognition in lower-limb
prostheses control [9,22] and has shown to be a good compromise between classification accuracy and
computational efficiency. All signals were divided into sliding and overlapping analysis windows.
Windows of 100–600 ms with a 25 ms overlap were tested to find the optimal window size for this
study. Our statistical analysis did not report significant main effects related to window size for the
selected tasks (p = 0.83–0.92). Nonetheless, a greater window length would increase the time delays in
recognizing the locomotion mode, which should be taken into account in intent recognition frameworks,
where such delays could compromise real-time analysis. Smaller window sizes are a more suitable
option for quick movements such as the tasks presented in this study. Therefore, the nominal window of
200 ms was used in this study. Subsequently, six time domain features, including minimum, maximum,
mean, standard deviation and first and last sample of the window were extracted from each individual
window. These features are computationally inexpensive and have functioned relatively well in
real-time control of lower-limb assistive device [7,10,22,23]. For classifying anticipated locomotor
tasks, the classifier was trained with only anticipated data. For unanticipated tasks, it was trained
with all anticipated and unanticipated trials [24]. Leave-one-out cross validation was applied to each
subject’s data. At each validation step, one trial of a given transition was excluded from the training
set and was used to test the classifier. This was repeated to test all trials of each transition. The results
were then averaged across the subjects. The influence of signal location and modality on classification
performance was studied by analyzing the classification accuracy as well as error patterns over time.
To calculate classification accuracy, the number of correctly identified windows starting at TTO1 was
divided by the total number of windows during TTO1 and the end of the locomotion, and it was
reported as a percentage (1). TTO1 is when the subjects entered a locomotor transition.

Accuracy =
number o f correctly classi f ied windows begining toe o f f

total number o f windows
× 100 (1)

Error patterns versus time were plotted by allocating either zero (correctly classified) or one
hundred (incorrectly classified) to every single analysis window starting at THS1. The corresponding
windows of the trials were then averaged.

The Shapiro-Wilk test was used to check the normality assumption of these data. Then, two-way
ANOVA was performed with the accuracy rate as the response variable, and signal modality and
location as fixed factors. If the ANOVA revealed a significant result, post-hoc testing using pairwise
comparison with Bonferroni correction was performed. The alpha level was set to 0.05 for all tests.
Cohen’s effect size (ES) was calculated to assess the magnitude of the difference [25]. Generally,
the larger the effect size, the greater the difference between the two groups is. A value of at least 0.8 is
considered to be a large (positive) effect, 0.5 is medium, and 0.2 is small. Furthermore, power analyses
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were performed for statistically significant combinations of signal modalities and locations. At an
alpha of 0.05, the null hypothesis (i.e., there is no true difference) was rejected when statistical power
exceeded 80%.

3. Results

3.1. Classification of Anticipated Locomotor Tasks

There was a significant interaction effect between modality and location (p < 0.001). During cuts
and cut-to-stairs transitions, the maximum classification accuracy of a given signal modality was
achieved when the data were captured from the trailing or leading leg (Figure 2, Table 1). Signals from
the leading and trailing legs resulted in relatively identical accuracy rates (p = 0.25–0.95, ES = 0.2–0.7).
Fusion of unilateral (the trailing/leading leg) and trunk–pelvis data appeared to provide either lower
(p = 0–0.03, ES = 1.1–2.8) or statistically similar (p = 0.17–0.96, ES = 0.3–0.5) outcomes relative to
using only unilateral signals. Trunk–pelvis signals showed inferior performance to unilateral signals
(p < 0.001, ES = 1.6–7.8). Only in anticipated straight walking (A-W) did signals captured from the
trunk–pelvis provide similar outcomes to those of unilateral information (p = 0.06–0.8, ES = 0–0.2).

Within the trailing and leading legs, using linear acceleration (LA) and angular velocity (AV)
data showed the lowest performance in all locomotor tasks (Figure 2, Table 1). All combinations
of two modalities (LA+AV, LA+ANG, AV+ANG) as well as combination of three modalities (ALL)
outperformed LA and AV (p < 0.001, ES = 0.9–5.8). LA and AV from the leading leg provided overall
accuracies of 63.8% and 75.5%, respectively, and accuracies of 68.4% and 81.1% were reported when
the signals were captured from the trailing leg. Using unilateral joint angles (ANG), significantly
improved the overall accuracy to 95.5% and 92.7% for the leading and trailing leg signals, respectively.
A maximum overall accuracy of 97% was achieved using combination of all three signal modalities
(ALL). However, statistical analysis did not reveal any significant differences when ANG, ALL,
and any combinations of two modalities (LA+AV, LA+ANG, AV+ANG) were compared (p = 0.33–0.94,
ES = 0–0.7).

To compare the error rates of signals from different locations over time, ALL data captured
from the leading leg, trailing leg, trunk–pelvis, and their fusion were plotted versus time (Figure 3).
Decreasing error trends were observed as the locomotion was initiated (i.e., THS1) using the leading leg,
trailing leg, and fusion signals. In cuts and cut-to-stairs modes, the error trends reached their minimum
and leveled off approximately 300–400 ms prior to entering a locomotor transition (i.e., TTO1). As the
transition continued, overall error values remained between 1 and 5% for the unilateral signals and
5–10% for the signal fusion. Highly overlapping trends were obtained, especially using the trailing and
leading leg data. Trunk-pelvis showed the highest levels of error and fluctuation during all anticipated
tasks, except in A-W, where errors remained between 0 and 3% over time, and all error patterns
appeared to be highly overlapping.
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Table 1. Classification accuracy of anticipated locomotion modes (A-CO, A-COS, A-SS, A-SSS, A-W),
as well as overall accuracy across transitions using signals of varying modalities and locations.
Values represent the mean (standard deviation).

Signal Location LA AV ANG LA+AV LA+ANG AV+ANG ALL

Overall

Leading Leg 63.8 (3.5) 75.9 (6.3) 95.5 (2.8) 93.6 (2.4) 97.2 (2.3) 97.6 (2.05) 97.8 (2.3)
Trailing Leg 68.4 (4.6) 81.1 (6.1) 92.7 (6.1) 93.5 (4.7) 96.2 (3.1) 96.7 (2.8) 97.5 (2.2)
Trunk-Pelvis 48.8 (5) 60.2 (4.5) 54.8 (4.9) 69.4 (2.5) 63.4 (6.1) 63.9 (6.2) 76.4 (2.5)

Fusion 70.4 (3.2) 79.4 (4.4) 87.8 (3.4) 86.3 (1.9) 90.8 (2.6) 91.3 (2.3) 92 (2.4)

A-CO

Leading Leg 58.2 (9) 71.1 (11.9) 94.5 (3.5) 86.2 (7.6) 96.7 (2.6) 97 (3.2) 97.5 (2.8)
Trailing Leg 57.7 (9) 70.5 (14.6) 88.3 (8.8) 83.1 (12.1) 91 (9) 93.5 (5.6) 95.2 (5)
Trunk-Pelvis 43.3 (6.7) 52.3 (8) 42.4 (7.5) 61.1 (5) 53 (5) 54.1 (4.5) 64 (6.2)

Fusion 60.4 (4) 67.7 (9.5) 84.4 (6.3) 74.8 (7.8) 86.2 (4.8) 86.2 (5.6) 87.2 (8.4)

A-COS

Leading Leg 70.5 (6.2) 79.8 (11.2) 98.7 (1.8) 96.5 (3) 99.3 (0.4) 98.8 (0.9) 99.1 (1.3)
Trailing Leg 69.6 (6) 84.9 (7.2) 96.5 (4.1) 97.7 (3.5) 99.2 (1) 99.6 (0.7) 99.7 (0.4)
Trunk-Pelvis 41.3 (9) 53.7 (9.3) 49.1 (14) 66.6 (6.2) 56.5 (10) 57.8 (10.5) 78.1 (5.4)

Fusion 72.9 (6.7) 84.1 (7.1) 89.8 (7) 91.1 (5.2) 94.6 (4) 94.3 (2.8) 95.8 (3.1)

A-SS

Leading Leg 71.4 (6.8) 76.4 (9.4) 98.7 (0.7) 98.3 (1.6) 99.4 (0.8) 99.4 (0.4) 99.7 (0.5)
Trailing Leg 69.8 (3.4) 84.4 (5.9) 95.5 (3.6) 97.4 (2.7) 98.1 (1.2) 97.9 (2.6) 99.4 (0.7)
Trunk-Pelvis 45.9 (7.4) 52.7 (5.4) 45.9 (17) 59.7 (9.5) 56.5 (11) 56.2 (11) 64.9 (6.2)

Fusion 57.7 (8.5) 72.04 (7.5) 78 (4.2) 77.3 (8.6) 83.6 (5.1) 86.2 (4.1) 86.9 (6.5)

A-SSS

Leading Leg 62.5 (5.6) 72.1 (7.7) 91 (9.6) 94.4 (5.3) 93.9 (10.9) 94.7 (9) 94.6 (10)
Trailing Leg 73.16(11) 79.16 (12) 89.8 (10) 95.7 (5.7) 96.2 (6.1) 95.2 (7.8) 96.2 (5.6)
Trunk-Pelvis 45.7 (9.1) 58.6 (3.5) 65.2 (7.7) 65.5 (5.8) 65.5 (9) 65.7 (9) 77.6 (10)

Fusion 74 (3.9) 78.9 (7.8) 89.2 (11) 90 (3) 91.3 (11) 91.5 (12) 91.7 (11)

A-W

Leading Leg 56.2 (16) 80.2 (9.4) 94.8 (5.3) 92.6 (4.8) 97 (3.6) 98 (2.7) 98 (3.4)
Trailing Leg 72.6 (11) 88.3 (5.2) 93.2 (6.2) 93.7 (5.7) 96.4 (6.4) 97.3 (4.7) 97.1 (5.7)
Trunk-Pelvis 68 (15) 83.5 (4.2) 71.4 (10) 94 (2.7) 85.7 (11) 85.7 (11) 97.3 (2.3)

Fusion 86.8 (9) 94.5 (2.6) 97.4 (4.8) 98.15 (1.6) 98.4 (3.5) 98.5 (3.2) 98.5 (3)
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Figure 3. Classification error over time for anticipated locomotor transitions (A-CO, A-COS, A-SS,
A-SSS, and A-W) as well as overall error across transitions using biomechanical signals from the trailing
leg, leading leg, trunk-pelvis and their fusion. Each trial was initiated with the first trailing leg heel
strike (THS1). Subjects entered a locomotor transition at (TTO1), and transition ended with the second
trailing leg heel strike (THS2).

3.2. Classification of Unanticipated Locomotor Tasks

There was a significant interaction effect between modality and location (p < 0.001) in unanticipated
transitions. Similar to anticipated tasks, using signals from the trailing/leading leg (unilateral) led to
higher accuracies than trunk–pelvis (p < 0.001, ES = 1.6–7.8) (Figure 4, Table 2). Signal fusion provided
either statistically similar (p = 0.26–0.96, ES = 0.3–0.5) or lower accuracy rates relative to unilateral
signals. The trailing and leading leg information led to relatively identical outcomes (p = 0.58–0.95,
ES = 0.2–0.7). In addition, the trunk–pelvis data appeared to have the most inferior performance in all
locomotion modes except in UA-W, where they provided statistically similar outcomes to those of
unilateral and fusion data (p = 0.26–0.94, ES = 0–0.4).

Within the trailing/leading leg, LA and AV provided the most inferior performance in different
locomotor tasks (p < 0.001, ES = 0.7–8.8). LA and AV showed lower accuracy relative to all combinations
of two (LA+AV, LA+ANG, AV+ANG) and three (ALL) modalities (p < 0.001, ES = 0.7–8.8). Only in
UA-W unilateral LA and AV showed comparable outcomes to other modalities (p = 0.05–0.94, ES = 0–0.6).
Statistically similar performances of ANG, combinations of two signal modalities (LA+AV, LA+ANG,
AV+ANG) and ALL were observed in all the tasks (p=0.05–0.96, ES= 0–0.7). Finally, lower accuracy
rates were reported for unanticipated tasks relative to anticipated. For instance, using ALL data from
the leading and trailing leg led to overall accuracies of 83.3% and 85.5%, respectively, which were
significantly lower compared to those of anticipated modes (97.8%, 97.5%). Similar outcomes were
observed when the accuracies of other signal modalities were compared across anticipated and
unanticipated states.
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Figure 4. Classification accuracy of unanticipated straight walking (UA-W), crossover and sidestep cuts
(UA-CO, UA-SS), cuts to stair ascent (UA-COS, UA-SSS), as well as overall accuracy across transitions
using signals of varying modalities (LA, AV, ANG, LA+AV, LA+ANG, AV+ANG, ALL) and locations
(the leading leg, trailing leg, trunk–pelvis, and fusion across locations). Asterisks denote modalities
that were statistically different from signal combinations (alpha = 0.05).

Table 2. Classification accuracy of unanticipated locomotion modes (UA-CO, UA-COS, UA-SS, UA-SSS,
UA-W), as well as overall accuracy across transitions using signals of varying modalities and locations.
Values represent the mean (standard deviation).

Signal Location LA AV ANG LA+AV LA+ANG AV+ANG ALL

Overall

Leading Leg 54.1 (4.5) 61.2 (3.7) 79.4 (6.1) 73.7 (4.7) 79.6 (5.1) 81.9 (5.1) 83.3 (3.6)
Trailing Leg 50.8 (3.5) 63.8 (3.1) 63.8 (3.1) 80.7 (4.8) 83.3 (5.7) 84.6 (4.7) 85.5 (4.7)
Trunk-Pelvis 36.1 (1.6) 52.6 (5.2) 55.8 (5.1) 59.8 (4.5) 59.1 (6) 63 (9.1) 67.2 (7.2)

Fusion 57.4 (4.3) 72.4 (4.6) 75.3 (7.4) 73.8 (4.8) 77.7 (5.8) 77.6 (4.6) 77.7 (4.4)

UA-CO

Leading Leg 47.2 (16) 64.1 (3.8) 75 (11.5) 64.9 (15.7) 75.2 (12.3) 78 (10.1) 80.7 (8.2)
Trailing Leg 46.4 (5) 51.4 (8.8) 83 (3.5) 76.5 (8.7) 84 (3.5) 84.1 (3.6) 83.6 (3.1)
Trunk-Pelvis 29.1 (7.8) 33.9 (8.3) 37.4 (15) 44.3 (6.8) 44.3 (15) 47 (18) 49.8 (21)

Fusion 52.4 (12) 57.9 (9.5) 75.4 (12) 60.9 (13) 75.5 (12) 75.4 (12) 75.2 (7)

UA-COS

Leading Leg 59.6 (9.2) 57.8 (4.6) 85.8 (9.5) 81.3 (8.7) 87 (10.3) 88.6 (10.6) 89.8 (9.1)
Trailing Leg 55.9 (8) 59.2 (8.2) 83.7 (5.8) 80.4 (9.3) 86.7 (9.5) 88.1 (8.9) 88.1 (11)
Trunk-Pelvis 33.3 (9) 48.1 (12) 54.6 (11) 58.3 (14) 59.7 (10) 64.5 (16) 69.2 (14)

Fusion 70 (11) 79.9 (13) 81.3 (15) 81.6 (10) 85.3 (11) 84.4 (12) 83.7 (11)

UA-SS

Leading Leg 60.5 (12) 62.16 (11) 93.6 (1.7) 77.5 (4.3) 92 (2.3) 93.6 (2.3) 94.1 (0.8)
Trailing Leg 56.7 (5.3) 72.7 (9.3) 89.2 (3.8) 87.4 (2) 91.7 (3.7) 91 (3.1) 91.5 (2)
Trunk-Pelvis 38.2 (16) 52.2 (13) 61 (9.5) 59.7 (10) 63.2 (13) 59.5 (13) 65.3 (11)

Fusion 49.1 (11) 61.9 (9.5) 72.2 (8.6) 66.9 (12) 71 (8.8) 68.8 (7.7) 68.6 (9.5)

UA-SSS

Leading Leg 51.9 (9.7) 57.2 (2) 84.1 (7.5) 76.3 (8.1) 86.9 (5.5) 87.4 (4.4) 87.7 (4)
Trailing Leg 49 (7) 63.8 (7.7) 82.2 (3.2) 81.3 (2.5) 85.6 (3.4) 86.5 (4.4) 89 (4.6)
Trunk-Pelvis 34.1 (9.9) 57.8 (5.6) 71.1 (7.9) 64.2 (6.6) 73 (6.3) 75.6 (6.9) 79.8 (5.9)

Fusion 63.1 (9) 84.1 (5.8) 84.7 (9.3) 83.58 (6.3) 88.15 (7.9) 88.2 (7.1) 85.2 (7.5)

UA-W

Leading Leg 51.2 (10) 64.5 (12) 58.4 (17) 68.3 (11) 57.3 (17) 62.1 (11) 64.2 (10)
Trailing Leg 46.2 (12) 71.7 (9) 70.3 (23) 77.8 (11) 68.2 (17) 74.5 (15) 75.3 (13)
Trunk-Pelvis 45.7 (17) 70.8 (12) 54.7 (9.7) 72.4 (15.5) 55.1 (9.7) 68.1(12.8) 72.2 (11.8)

Fusion 52.5 (20) 78 (13) 63.1 (20) 76 (15) 68.7 (15) 71.2 (12) 75.8 (9)

Error patterns of unanticipated modes versus time remarkably differed from those of anticipated
tasks (Figure 5). Error levels were relatively high at the beginning of the locomotion and before
TTO1 (25–95%). Downward trends were observed only after entering a locomotor transition (TTO1).
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Overall error patterns reached their minimum around 200 ms prior to the subsequent heel strike (THS2)
and remained in the range of 2–14%, 10–20% and 17–30% for unilateral, fusion, and trunk–pelvis data,
respectively. Nonetheless, different patterns were observed during UA-W; the trends appeared to be
highly fluctuating across time in this mode, implying the fact that UA-W could be the hardest task
to classify.
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Figure 5. Classification error over time for unanticipated locomotor transitions (UA-CO, UA-COS,
UA-SS, UA-SSS, and UA-W) as well as overall error across transitions using biomechanical signals
from the trailing leg, leading leg, trunk-pelvis and their fusion. Each trial was initiated with the first
trailing leg heel strike (THS1). Subjects entered a locomotor transition at (TTO1), and transition ended
with the second trailing leg heel strike (THS2).

4. Discussion

Determining the modality and location of mechanical sensing, which provide strong discrimination
of straight-line and transient locomotion, performed in anticipated and unanticipated states is needed to
guide the control of assistive technologies. Sensing that is flexible and reliable is important, in particular,
during challenging forms of locomotion that increase the biomechanical demand and pose significant
fall risks. The purpose of this study was to comprehensively compare the performance of altering
mechanical sensing modality (accelerographic, gyroscopic, joint angles and their combinations) and
location (the trailing leg, leading leg, torso and their fusion) to recognize multiple forms of straight-line
and transient locomotion that are performed under varying levels of task anticipation.

Our first hypothesis regarding improved outcomes using the fusion of signals across different
locations/modalities was not supported. The fusion of the unilateral (the trailing/leading leg) and torso
data resulted in either similar or lower accuracy compared to only unilateral signals. Within unilateral
information, even though signal combinations outperformed accelerographic and gyroscopic data alone
in most cases, they appeared to provide comparable accuracy to joint angles. The results suggest that
when use of a single-modality data is desired, joint angles would be a better choice than gyroscopic and
accelerographic information for discriminating between the selected maneuvers. The combination of
gyroscopic and accelerographic information provided statistically similar accuracy to the combination
of each of these signals with joint angles. Chung et al. [26] confirmed similar outcomes in a set of daily



Sensors 2020, 20, 5390 10 of 13

activities, where different combinations of two sensor modalities showed comparable task recognition
accuracy. These findings could provide flexibility in selecting appropriate combinations of input
signals depending on hardware availability and/or patient convenience in assistive device applications.
Furthermore, the performance of a single-modality signal could differ depending on the characteristics
of the activity. Thus, using such combinations could help in compensating the imprecision associated
with each modality, leading to improved generalizability of the outcome to varying target tasks [27].

According to these findings, neither the combination of all three modalities nor the fusion of
torso and lower-body data appeared to be advantageous. This is consistent with the results of [28],
where adding extraneous sensors was shown to deteriorate task recognition. These findings may
suggest that, in assistive device control, recognition accuracy may not increase as more sensors are
added. We expect these trends to be due to overfitting which occurs when the number of input signals
increases. In such scenarios, classification models learn the details in the training data which negatively
impacts the model’s ability to generalize to new data [29]. From a practical perspective, optimizing the
number of input signals and identifying sources capturing less important or redundant information
would avoid attaching additional sensors on the subject, reduce system complexity, make the design
less encumbering for the wearer, and improve the efficiency of the design for its eventual clinical use.
Furthermore, the trailing and leading leg data appeared to have a similar performance, suggesting
that, regardless of whether an assistive device is on the leading or training leg, contralateral signals
could be sufficient to provide an accurate recognition. Hu et al. [28] reported similar outcomes
using wearable sensors where ipsilateral and contralateral leg sensor sets demonstrated comparable
performances. Previous studies have demonstrated that using upper-body data (e.g., waist-mounted
or pelvic sensor) would reduce the likelihood of data loss without restricting the user’s mobility or
their daily activities [30,31]. However, according to our findings, signals from the trunk–pelvis had
poor task generalization. This could be due to the significantly smaller degrees of torso movement and
decreased ranges of motion compared to lower-limb segments (e.g., ankle, knee) [32]. A small amount
of trunk/pelvis movement presents low inter-class variability, posing a more difficult classification
problem [33]. Hence, for cuts and cut-to-stairs transitions, recording biomechanical data from the
contralateral side (the trailing/leading leg) could be a tradeoff for better accuracy, which may be more
desirable for some subjects.

Our second hypothesis was supported. Regardless of the types of input signals, improved
performance (~15–25%) was observed in anticipated relative to unanticipated tasks (Table 1 vs. Table 2).
Anticipatory biomechanics modifications to the upcoming locomotor task occur as early as three strides
in advance of a transition [20,21]. Kinematic adaptations such as changes in step width during the
preparatory phase were shown to significantly improve stability during anticipated maneuvers [34,35].
In contrast, in unanticipated locomotor tasks, a lack of preparatory adaptations does not allow
individuals to plan and organize their gait modifications in the most optimal way. A reduced stability
margin in such maneuvers has been shown to be associated with substantial kinematic variability.
This leads to high intra-class variation, posing a difficult classification problem [33], which could justify
reduced accuracy rates in unanticipated locomotion. Early biomechanical adaptations could also
explain relatively low error rates even prior to entering a locomotor transition (i.e., trailing leg toe off,
TTO1) in anticipated tasks (Figure 3). From a practical standpoint, early detection of the locomotion
mode would provide adequate time for the assistive device control system to adjust its parameters in a
smooth manner to accommodate the upcoming heel strike. However, in unanticipated tasks, a lack
of preparatory locomotor adaptations prior to executing transitions resulted in relatively high error
rates (≥25%) until the mid-swing of the transitioning leg. Nonetheless, if the user wore the device on
the transitioning leg, we expect there could be sufficient time to switch the device modes during the
subsequent second half of swing, and prepare for weight bearing, which is encouraging.

We acknowledge some specific limitations of this study. For instance, in order to detect
unanticipated tasks, substantial amount of unanticipated information (i.e., five bouts) were included in
the training data. We expect that accuracy rates for unanticipated locomotion modes would diminish
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using training data with reduced number of target task repetitions [24]. Thus, the potential impact of
training data on the outcomes should be taken into consideration when selecting optimal signal sources.
In this study biomechanical data were extracted using a camera-based motion capture system, and we
have not explored these relationships using physical sensors. Nonetheless, motion capture data are
not noise-free and suffer from many of the same issues as mechanical sensors such as high-frequency
motion artifacts and determining consistent and accurate sensor placement. Moreover, previous
work has shown that kinematics measurements from body-worn sensors are comparable to those
captured using motion capture [36]. Input signal locations providing the optimal outcomes were
also reported to be the same in both methods [37]. Thus, we expect that the trends observed in this
study will have many important implications. However, issues associated with the actual wearable
sensors such as difficulties with aligning goniometers and their crosstalk [38], and inherent bias and
drift errors in actual IMUs and gyroscopes [39], may affect system performance, and should be taken
into consideration in future studies. Finally, this study included data from able-bodied individuals.
Future studies investigating sensor data from subjects with mobility impairments (e.g., lower-limb
amputees) would shed further light on these relationships between sensing modality, sensing location
and locomotor task.

5. Conclusions

For both anticipated and unanticipated conditions, joint angle information showed a better
performance than gyroscopic and accelerographic information (20–60% higher accuracy) for
discriminating the widely varying locomotor tasks. While only joint angle data from the trailing
or leading leg appeared to be sufficient for an accurate recognition (accuracy = 80–98.7%),
biomechanical information from the torso demonstrated poor task generalization. Lastly, signal
fusion across multiple locations and modalities did not lead to improved task discrimination.
These findings provide fundamental insights that are relevant for multiple applications of assistive
and activity-monitoring technologies.
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