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Abstract—Seamless integration of lower-limb assistive de-
vices with the human body requires an intuitive human-
machine interface, which would benefit from predicting the
intent of individuals in advance of the upcoming motion.
Ultrasound imaging was recently introduced as an intuitive
sensing interface. The objective of the present study was to
investigate the predictability of joint kinematics using ultra-
sound features of the rectus femoris muscle during a non-
weight-bearing knee extension/flexion. Motion prediction
accuracy was evaluated in 67 ms increments, up to 600 ms in
time. Statistical analysis was used to evaluate the feasibility
of motion prediction, and the linear mixed-effects model was
used to determine a prediction time window where the joint
angle prediction error is barely perceivable by the sample
population, hence clinically reliable. Surprisingly, statistical
tests revealed that the prediction accuracy of the joint angle
was more sensitive to temporal shifts than the accuracy of the
joint angular velocity prediction. Overall, predictability of
the upcoming joint kinematics using ultrasound features of
skeletal muscle was confirmed, and a time window for a
statistically and clinically reliable prediction was found
between 133 and 142 ms. A reliable prediction of user intent
may provide the time needed for processing, control plan-
ning, and actuation of the assistive devices at critical points
during ambulation, contributing to the intuitive behavior of
lower-limb assistive devices.

Keywords—Ultrasound imaging, Skeletal muscle, Motion
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INTRODUCTION

Approximately 11.4% of the world population—an
estimated 877 million people—face moderate to ex-
treme difficulty with their daily mobility.”® Lower-limb
assistive devices hold the promise to enhance activity
and community involvement of this population.®*?
However, effective human-device integration is still
limited by the lack of a reliable interface between the
user and the device.!>** For instance, 30-40% of the
individuals who use lower-limb prostheses expressed
difficulty in controlling their device.'”** To address
this issue, assistive devices need to accurately infer and
adapt to the intent of the user and demonstrate an
intuitive behavior.

Ultrasound imaging was recently introduced as a
sensing interface to serve as a means for the users to
intuitively convey their intention to the assistive device.
Ultrasound is a noninvasive sensing modality that
measures the deformation of deep and superficial
muscle tissue in real-time.'® The high spatiotemporal
resolution and specificity that are inherent to the
ultrasound measurements of muscle deformation'®*
have enabled researchers to infer fine volitional motor
tasks such as finger movements and dexterous control
of robotic hands.>®?%°! Ultrasound technology has
further been used to estimate and predict the non-
weight-bearing volitional motion of the knee and ankle
joints, as well as identify the phases during a gait
cycle. 2 26:36:33 Most recently, Rabe et al. used trans-
verse ultrasound images of lower-limb skeletal muscles
for continuous estimation of knee angular velocity as
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well as estimation of the hip, knee, and ankle moments
during varying modes of ambulation.?”-*®

The real-time control responsiveness, which calls for
a minimal amount of controller delay, is essential for
the effective functioning of an assistive device. Ampli-
tude-based controllers for myoelectric upper-limb
prostheses can tolerate control delays smaller than
100 ms.'* Smith er al. investigated the effect of con-
troller delay and window length for a pattern recog-
nition-based myoelectric controller operating a virtual
upper-limb prosthesis and determined an optimal
window length between 150 and 250 ms where the
users have better control over the virtual prosthesis.*?
For the lower-limb prostheses that utilize a pattern-
recognition control scheme, a safe time window has
been shown to exist that can be used to switch between
ambulation modes without compromising the stability
of the user.’> More recently, Simon e7 al. demonstrated
that delaying ambulation mode transition decisions by
90 ms contributes to improved control of a powered
transfemoral prosthesis.*'

While it appears that assistive devices can tolerate a
certain amount of delay, an assistive device that is
actuated as a result of physiological signals of the user
must provide a quick response to the neuromuscular
signals while maintaining performance. Intuitive
interfaces (e.g. surface electromyography (SEMG),
ultrasound, etc.) can recognize the neuromuscular
signals before the initiation of motion,>”* therefore
they are expected to precede the motion. Ultrasound
imaging is capable of accessing kinematic and kinetic
features of the skeletal muscle.'®*° For instance,
ultrasound echogenicity is a kinetic feature of the
muscle that reflects the ongoing formation of cross-
bridges during motor unit recruitment and before the
production of muscle force.”'%** Kinematic features of
the muscle that are visualized by ultrasound signals
(e.g. muscle thickness, pennation angle, etc.) undergo a
change during sarcomere shortening, when the muscle
force overcomes the muscle segment inertial forces,
and before the initiation of the joint motion.”*° While
kinetic and kinematic ultrasound features of the mus-
cle exhibit their change at various stages during muscle
excitation-contraction, they all precede the joint mo-
tion. Hence, ultrasound features of the skeletal muscle
may be used to predict the upcoming joint motion,
toward enhancing the real-time control responsiveness
of assistive devices.

The objective of the present study was twofold: (1)
to investigate the feasibility for a reliable prediction of
the kinematics of upcoming joint motion, using the
ultrasound features of lower-limb skeletal muscle, and
(2) to characterize the amount of time that the ultra-

sound features of muscle precede the joint motion
during non-weight-bearing knee extension/flexion
experiment. We hypothesize that ultrasound features of
the proximal skeletal muscle precede the distal joint
movements, and therefore, can provide a reliable
source of information to predict the upcoming joint
motion.

MATERIALS AND METHODS

Subjects and Experiment

Nine able-bodied subjects (5 males and 4 females
with a mean age of 26.2 + 12.6 years) completed a
non-weight-bearing knee extension/flexion experiment.
Subjects were recruited without bias of race or gender.
Subjects with significant arthritis or other joint prob-
lems, neuromuscular disorders, cognitive deficits or
visual impairments that would impair their ability to
follow simple instructions during the experiments, and
co-morbidity that interferes with the study (e.g.,
stroke, pacemaker placement, severe ischemia, cardiac
disease, etc.) were excluded during the recruitment.

While seated, participants were instructed to fully
extend their knee joint and flex it back to the rest
position at a self-selected pace. The movement was
repeated three times for each leg with 30 s of rest
between repetitions. Participants were equipped with a
custom 3D printed ultrasound transducer holder
placed approximately 60% of the distance from the
anterior superior iliac spine to the proximal base of the
patella. The ultrasound transducer was securely placed
longitudinally over the rectus femoris (RF) muscle and
images were captured using a handheld and wearable
ultrasound scanner (mSonic, Lonshine Technologies
Inc, Beijing, China). This system was modified by the
manufacturer to support an extended ultrasound
image acquisition (1024 frames). Traditional grayscale
(i.e. brightness-modulated, B-mode) ultrasound images
were collected in real-time using a transmit frequency
of 7.5 MHz and a dynamic range of 50 dB. A PS-2137
wireless electrogoniometer (Pasco, CA, USA) with an
accuracy of £1° and a resolution of 0.1° was used to
measure the knee angle during the movement. Data
from the electrogoniometer was recorded wirelessly on
a smartphone in real-time. The experimental setup is
shown in Fig. 1. The International Conference on
Harmonisation of Good Clinical Practice (ICH-GCP)
guidelines were followed for the experiment.'! The
experiment protocol was approved by the Institutional
Review Board (IRB) at the University of Texas at
Dallas and all the participants provided informed
written consent.
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FIGURE 1. (a) Experimental setup on a human subject and, (b) the handheld ultrasound system used for muscle imaging.

Methods

A multiscale ridge filter along with a random sample
and consensus (RANSAC) model ** were used to
automatically segment five ultrasound image-derived
features of the RF muscle during motion including (1)
muscle thickness, (2) angle between aponeuroses, (3)
pennation angle, (4) fascicle length, and (5)
echogenicity. Each ultrasound image sequence was
processed using the feature segmentation method to
produce a time-series for each of the five features. To
estimate the knee joint angle, a regression-based ma-
chine learning approach was utilized to generate con-
tinuous motion estimation data. Ultrasound features
were used as predictors and Gaussian process regres-
sion (GPR) models with quadratic kernels were trained
to estimate knee joint angle and angular velocity as the
response.®’ A nested cross-validation scheme was uti-
lized for feature selection and validation of the
regression machine learning models. Motion estima-
tion error was calculated during the validation process
by the root mean square error (RMSE) between the
estimated motion time-series J;, and the measured
time-series y; by the electrogoniometer on the knee
joint.

A series of temporal shifts (7)) was introduced to
evaluate the feasibility of predicting the kinematics of
upcoming lower-limb motion. The instantaneous values
of ultrasound features at a certain point in time ¢ were
used to train the GPR models to predict the kinematics
of joint motion at a future time point ¢t + 7 based on a
temporal shift 7. The temporal shifts ranged from
T, = 0 ms to Ty = 600 ms with a temporal step size of
67 ms, where 75 = 0 ms corresponds to the original
motion estimation (i.e. no prediction, Fig. 2a). The
process of predicting motion in time using the ultra-
sound features of a certain time point is illustrated in
Fig. 2b, where the solid lines indicate a 75 = 0 ms and
dashed linesa Ty, = 600 ms, i.e. prediction of the motion
profile 600 ms ahead of time.
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Statistical Analysis and Evaluation

The accuracy of motion predictions was evaluated
by calculating the RMSEs of the predicted time-series
of knee joint kinematics y..7, with reference to the
joint motion time-series recorded by the electrogo-
niometer yi.7,. To assess the effect of the temporal
shifts on the quality of motion prediction, the RMSEs
of the motion predictions were analyzed using a re-
peated-measures analysis of variance (ANOVA) test.*
It was anticipated that the motion prediction accuracy
loses its reliability at some point in time. Therefore,
multiple posthoc comparisons of the RMSEs were
performed to compare the RSMEs of motion predic-
tions to the RMSE of motion estimation and find out
whether there was a significant change in motion pre-
diction error compared to motion estimation error.
The p-values were adjusted using a Bonferonni cor-
rection for multiple comparisons.

To further examine the effect of the temporal shifts
on the prediction of the joint kinematics at each point
throughout the motion, Statistical Parametric Map-
ping (SPM) was used. SPM is an expansion of the
conventional statistical tests that enables the statistical
comparison of an entire 1D (e.g. trajectories) or 2D
(e.g. images) dataset rather than specific features ex-
tracted from the data.***> Therefore, SPM can be
employed to analyze an entire trajectory of joint mo-
tion rather than single features of it such as RMSE,
while simultaneously controlling for multiple compar-
isons and the dependency between the adjacent time
points. In the present study, we used the temporal
shifts as the fixed effect and SPM ANOVA was used to
analyze whether there are certain points during the
motion where the prediction accuracy is significantly
affected by increasing the temporal shifts. The analysis
was done separately for the predicted joint angle and
angular velocity trajectories and the p-values were
adjusted using a Bonferonni correction for pairwise
comparison of the predicted trajectories.



Ultrasound Features of Muscle Can Predict Upcoming Motion

(a)

Ultrasound
Features

Segmentation

" nnaching )
Machine

Motion |
Prediction | Learning

=
3
)
L e, )
2.
i
I
Knee Angle (deg)

. J

825

Temporal Shift

(b)

0.4 T T T T

Echogenicity

801

60

40

| 18
1N |
ol |k | ]
°‘.,“"fl - \

Time (s)

| |
\ -

FIGURE 2. Overview of the motion prediction framework while introducing the temporal shifts between the ultrasound features of
muscle and the joint motion. Panel (a) shows the original motion estimation and panel (b) illustrates the process of introducing the
temporal shifts where the dashed lines show a temporal shift of 600 ms that results in the prediction of upcoming motion

compared to the solid lines that produce the original estimation.

The linear mixed-effects model was used to find a
model that best explains the motion prediction RMSE
data and to identify the amount of temporal shift that
can produce a clinically meaningful difference (CMD)
in the prediction accuracy. It has been reported that
the sensitivity of able-bodied humans to the external
passive changes in their knee joint position, which is
measured by the Threshold to Detection of Passive
Motion (TDPM) test, ranges between 1.07° and 2.7°
with a mean sensitivity of 1.76°.*!%2°%0 The mean
sensitivity value of 1.76° was used as a CMD along
with the linear mixed-effects model to find out the
maximum amount of temporal shift that can cause a
change in the motion prediction accuracy that is still
not perceivable by the user.

The relationship between the RMSEs of motion
prediction and the temporal shifts was determined
using a linear mixed-effects model which is expressed
as

y=XB+Zu+e (1)

where y is a vector of outcome variables, X is the
matrix of the fixed-effects, f is a vector of fixed-effects
regression coefficients, Z is the design matrix for the
random-effects that account for inter-subject variabil-
ities, u is the vector of the random-effects parameters,
and ¢ is a vector of residual errors.*? The prediction
RMSEs were the outcome variables, the temporal shift
values were the fixed-effect variables, and the subject
was defined as the random-effect variable. A maximum
likelihood method was used to find the best fit for the
motion prediction RMSE data based on the temporal
shifts and the subject variabilities. The null hypothesis

was that 5 (i.e. the regression coefficient for temporal
shifts) and u (i.e. the random-effect parameter) were
zero. The RMSE of ultrasound-based prediction was
used as y for each temporal shift  in (1) to calculate
the coefficients X and Z. Then, the model that was fit
to the ultrasound data was used along with the value of
the knee joint TDPM test that was replaced as a new y.
The new y in Eq. (1) was then used to identify a value
for f that is an amount of temporal shift that can cause
a clinically meaningful (i.e. perceivable) change in
prediction accuracy of the upcoming joint motion
compared to the estimation accuracy.

RESULTS

Prediction of the Upcoming Motion

Nine able-bodied subjects performed a knee exten-
sion/flexion movement at a self-selected speed while
seated in a chair. The mean (SD) time frame for each
part of the motion is as follows, knee extension: 2.06
(0.56) s, knee flexion: 2.57 (0.71) s, and the total length
of knee extension/flexion: 4.63 (1.02) s. Figure 3 shows
the time course of the recorded knee angle and angular
velocity for a sample subject along with the predicted
trajectories for the 200 ms and 600 ms temporal shifts.
The average RMSE of the predicted trajectories for the
knee joint angle and angular velocity with reference to
the recorded motion kinematics are presented in Ta-
bles 1 and 2, respectively. The RMSE values of the
predicted trajectories were further normalized with
respect to the RMSE of the original estimation (i.e. the
0 ms temporal shift) to highlight the change in the
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FIGURE 3. Time course of the recorded joint kinematics (dashed black lines) for a sample subject. The predicted trajectories of
(a) the knee angle and (b) the knee angular velocity are shown for two representative temporal shifts of 200 ms (solid blue line) and
600 ms (solid orange line) as a function of time. The marks shown in (a) represent the maximum knee extension points and the time

precedence of the predicted trajectories.

TABLE 1. RMS error for knee joint angle prediction averaged across subjects (N = 9).

Temporal shift (ms) 0 67 133 200 267 334 400 467 533 600
Mean RMSE (deg) 7.39 7.91 8.59 8.98 9.47 10.19 10.08 10.42 10.87 11.34
SD RMSE (deg) 2.91 3.02 3.09 3.12 3.36 3.45 3.43 3.49 3.36 3.92

TABLE 2. RMS error for knee angular velocity prediction averaged across subjects (N = 9).

Temporal shift (ms) 0 67 133 200

267 334 400 467 533 600

Mean RMSE (rad/s) 0.258 0.254 0.249 0.240
SD RMSE (rad/s) 0.053 0.057 0.052 0.053

0.237 0.241 0.248 0.250 0.254 0.257
0.062 0.065 0.070 0.086 0.093 0.105

accuracy of the motion prediction that is caused by the
temporal shift. The mean and the 95% confidence
interval (CI) of the normalized changes in prediction
errors are shown in Figs. 4a and 4b for the prediction
of joint angle and angular velocity, respectively. The
prediction accuracy of the joint angle was affected by
the amount of temporal shift where a linearly
increasing trend (R° = 0.97) was observed for the
change of the prediction error as the temporal shift
increases (Fig. 4a; Table 1). On the other hand, the
prediction of the joint angular velocity was trending
toward a 2nd-order polynomial (R> = 0.83) where the
prediction error decreases up to a certain point and
then starts to increase as the temporal shift increases.
The time length of the knee extension/flexion move-
ment did not show any significant effect on the accu-
racy of predictions or the rate of change of the
prediction accuracy with respect to the temporal shifts.

BIOMEDICAL
ENGINEERING
SOCIETY

The result of a repeated-measures ANOVA test
supports the increasing trend that the temporal shifts
had a significant effect on the knee angle prediction
(» < 0.001). However, multiple comparisons of the
joint angle prediction errors revealed that the predic-
tion errors did not change significantly between the
estimation and the temporal shifts smaller than 200 ms
(p > 0.05, Table 3). Statistical analysis of the joint
angular velocity predictions exhibited that the tempo-
ral shifts did not have a significant main effect on the
velocity predictions (p = 0.60). Furthermore, the
posthoc comparisons unveiled that a temporal shift of
133 ms produced a significant decrease in the predic-
tion error of the angular velocity (p = 0.03), Table 4.
All statistically-significant findings were observed with
an effect size of > 0.62 (CI 0.52—1.31), which covers
the range of a medium to very large effect size. Based
on these results, the joint angle was predictable up to
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FIGURE 4. The normalized change (%) of the prediction error compared to the estimation error that is caused by the temporal
shift, for the prediction of (a) knee joint angle, and (b) knee joint angular velocity. The p-values are the result of pairwise
comparisons performed after ANOVA tests. Note that the ordinate scales differ between (a) and (b).

TABLE 3. The p-values for the pairwise comparison of the
knee angle predictions.

67 133 200 267 333 400 467 533 600

0 1.00 0.06 0.05 0.04 0.03 0.03 0.01 0.01 0.03

67 0.59 0.16 0.10 0.03 0.05 0.03 0.05 0.05
133 0.80 0.19 0.06 0.03 0.04 0.07 0.20
200 0.29 0.03 0.03 0.03 0.07 0.28
267 0.27 0.15 0.31 0.30 0.96
333 1.00 1.00 1.00 1.00
400 1.00 1.00 1.00
467 1.00 1.00
533 1.00

Bold value indicates statistical significance (p < 0.05).

TABLE 4. The p-values for the pairwise comparison of the
knee velocity predictions.

67 133 200 267 333 400 467 533 600

0 0.58 0.03 0.36 0.44 0.58 0.84 0.93 0.99 1.00

67 0.74 0.52 0.62 096 1.00 1.00 1.00 1.00
133 0.84 0.85 0.99 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00
267 1.00 098 1.00 1.00 1.00
333 0.97 1.00 1.00 1.00
400 1.00 1.00 1.00
467 0.97 1.00
533 1.00

Bold value indicates statistical significance (p < 0.05).

200 ms in time with no significant degradation of the
prediction accuracy, and predicting the joint angular
velocity with a time precedence of 133 ms exhibited a
significantly higher accuracy. These findings suggest
that there is an optimal time window between 133 and
200 ms for predicting the kinematic parameters of the

upcoming knee joint motion based on ultrasound
features of the skeletal muscle.

Analysis of the Predicted Motion Trajectories

SPM is a method that provides a detailed statistical
analysis of 1-D trajectories. Here it was used to extend
the results of the ANOVA tests and find out whether
the effect of temporal shifts on the predicted motion
trajectories was limited to certain points during the
motion or if it has a broad impact on the entire tra-
jectory of motion. Figure 5 displays the SPM statistics
that highlight the regions of the trajectories during the
motion progression that are significantly affected by
increasing the temporal shifts. Since time-normalized
trajectories were used to produce the SPM results, 0—
50% of the motion progression in Fig. 5 represents the
knee extension and 50-100% represents the knee flex-
ion. There were three distinct peaks in the SPM
statistics for the joint angle prediction that show the
points during motion where the prediction accuracy
was significantly affected by the temporal shift (28—
30% of the motion progression, p = 0.04; 45-57% of
the motion progression, p < 0.001; 98-100% of the
motion progression, p = 0.03), Fig. 5a. The highest
peak existed when the joint was changing direction
from extension to flexion (45-57% of the motion
progression, p < 0.001), revealing that the temporal
shifts had the highest impact on the prediction of the
joint angle when the joint was changing direction,
Fig. 5a. The SPM analysis of the predicted trajectories
of the angular velocity showed less sensitivity to the
temporal shifts and resulted in identifying two regions
in the motion trajectory where the accuracy of the
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FIGURE 5. SPM ANOVA results for the (a) knee angle and, (b) knee angular velocity prediction showing the points during the knee
extension/flexion movement where the prediction is significantly affected by the temporal shift. The SPM F-statistics is shown as a
function of the motion progression. 50% motion progression refers to full extension.

prediction significantly changed with increasing the
temporal shift (53-56% of the motion progression, p
= 0.01; 61-63% of the motion progression, p = 0.04),
Fig. 5b. Noteworthy, the highest peak was again lo-
cated right after the joint changed direction (53-56%
of the motion progression, p = 0.011), showing that
the most sensitive point to increasing the temporal
shifts was when the joint was changing direction dur-
ing the motion, regardless of the kinematic parameter
that was being predicted, Fig. 5b. Since switching
between the swing and stance phases of the gait is
where the direction of the joint motion changes, this
observation could potentially be very meaningful for
device implementation of an ultrasound-based predic-
tive approach when translated to weight-bearing tasks
such as walking.

The representative trajectories of the predicted joint
motion are shown in Fig. 6 for the original motion
estimation (temporal shift = 0 ms), the 200 ms, and
the 600 ms conditions along with the recorded trajec-
tories by the electrogoniometer on the knee joint. As
informed by the ANOVA and SPM tests, both 200 ms
and 600 ms trajectories for joint angle prediction pre-
sented a less accurate fit with respect to the recorded
motion trajectory than the original estimation trajec-
tory, Figs. 6a—c. It is visually apparent that the 600 ms
trajectory did not provide an acceptable fit to the
recorded trajectory, whereas the 200 ms condition
seemed to have a better fit, Figs. 6b—c. In contrast,
Figs. 6d—f highlight that the 200 ms trajectory had a
better fit to the recorded trajectory of the joint angular
velocity compared to both the estimation (i.e 0 ms) and
the 600 ms trajectories.

Linear Mixed-Effects Model

In addition to the previous results that measured the
presence of a statistical difference in the motion pre-
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diction accuracy with respect to temporal shifts, a
linear mixed-effects model was constructed to deter-
mine the presence of a clinically significant change in
motion prediction accuracy as the temporal shift
increases.

The results of the linear mixed-effects model for the
angle prediction indicated that both temporal shift (f
= 0.0066, p < 0.001) and inter-subject variability (p <
0.05) had a significant effect on the motion prediction
error. The model coefficients allowed us to calculate
that a 1.76° (i.e. the value of the knee joint TDPM test)
change in prediction error will be obtained with a mean
temporal shift of 248 ms. Since the 248 ms was the
mean value obtained from the model, it represents the
amount of temporal shift required to cause a change in
prediction error that is “barely perceivable” for 50%
of the subjects. A more conservative estimate of the
temporal shift was obtained such that it would produce
a change in prediction error not perceivable to 90% of
the population (mean + 1.645 SD). This conservative
estimate showed that a temporal shift of 142 ms would
generate a change in prediction error that would not
reach the 1.76° and, therefore, would not be perceiv-
able for 90% of the population. These findings narrow
the time window to between 133 and 142 ms for a
statistically and clinically reliable prediction of the
upcoming joint kinematics based on ultrasound fea-
tures of the muscle.

DISCUSSION

Ultrasound features of the skeletal muscle are neu-
romuscular signals, derived from muscle activation
and contraction,” and are expected to precede the joint
movement. In the present study, we assessed the
hypothesis that ultrasound features of the skeletal
muscle precede the joint motion, and therefore, are
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FIGURE 6. The trajectories of the joint kinematics as a function of motion progression for three representative temporal shifts
including (a, d) 0 ms, i.e. original estimation, (b, €) 200 ms, (c, f) 600 ms. The dashed black lines show the recorded trajectories and
the solid colored lines show the predicted trajectories. The trajectories are averaged across all subjects and the shaded areas
represent mean = 1 SD.

useful to predict the kinematics of upcoming lower- The findings of the present study demonstrate the
limb movements. Further, the temporal precedence of feasibility of predicting the kinematics of upcoming
the ultrasound features to the motion was character- lower-limb joint motion using ultrasound features of
ized and a time window was found for reliable pre- skeletal muscle. While the prediction of joint angle was
diction of the upcoming joint motion during non- statistically reliable up to 200 ms, the prediction of
weight-bearing knee extension/flexion. joint angular velocity showed higher robustness to the
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temporal shift with a statistically significant enhance-
ment in the prediction accuracy for the 133 ms con-
dition. Inspecting each row of Table 3 shows that the
joint angle prediction accuracy did not differ between
the conditions with temporal shifts larger than 200 ms.
This indicates that the variability increased between
subjects and the prediction was not reliable. The only
temporal shift with a significant difference compared
to the original estimation was the 133 ms (see Table 4),
showing that enhanced prediction accuracy may not be
achieved beyond 133 ms. SPM statistics revealed that
the temporal shift only had a significant effect on the
prediction of the joint angular velocity around 50% of
motion progression. However, increasing the temporal
shift seems to also impact the quality of fit of the
predicted trajectories to the recorded trajectory around
the 20% and 80% points during motion progression
(Figs. 6d—f). This observation can be explained with
the reduced sensitivity of SPM as a result of increased
variability in the dataset.

Higher predictability of the joint angular velocity
indicates that the joint angle has temporal precedence
to the joint angular velocity in relation to the ultra-
sound features. This is a surprising observation and
suggests that different driving factors might dominate
the intramuscular mechanisms producing the two
kinematic parameters of movement. The joint angle is
not only a function of active motion but also a func-
tion of posture. The tonic muscles that are responsible
for maintaining posture have a higher density of slow-
twitch fibers.*’ These fibers have a lower activation
threshold 2! and activate earlier than fast-twitch fibers,
which likely is revealed in ultrasound image patterns.
Conversely, producing angular velocity requires active
motion, which needs the contribution of the fast-twitch
muscle fibers with a higher activation threshold.?’*
Due to the late activation of fast-twitch fibers, alter-
ation of the ultrasound signal caused by the produc-
tion of the joint velocity would lag the change in the
ultrasound signal that is caused by the generation of
the joint angle. From a mechanical perspective, it
makes intuitive sense as the generation of active mo-
tion would require the active muscle force to first
overcome the inertia of muscle-tendon units,***® which
introduces a time delay.

Our results indicate that a reliable prediction of the
joint motion is possible within a time window of 133—
142 ms, which agrees well with the results of similar
studies performed on myoelectric prosthetic hands.'**
Koch et al. used the sSEMG signals of the forearm
muscles for the early prediction of hand movements
using a recurrent neural network. Their work demon-
strated the predictability of hand movements up to
200 ms, as well as the contribution of incorporating
the time history of the SEMG signals.”® Farmer er al.
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successfully used a nonlinear autoregressive model for
continuous prediction of prosthetic ankle angle in
three transtibial amputees using within-socket myo-
electric recordings, up to 150 ms."?

While sEMG signals are believed to reflect muscle
excitation which precedes muscle contraction, our re-
sults tightly match the sEMG-based studies. This
agreement can be explained by the penetration depth
of ultrasound in muscle tissue, which can take advan-
tage of the onset of motor unit recruitment. Ultra-
sound image intensity is a feature that has been
suggested to reflect an intramuscular process”'’ shown
by the rapid change of hyperechoic and hypoechoic
interfaces which is associated with muscle excitation.'”
Furthermore, due to the larger portion of low-thresh-
old slow-twitch muscle fibers in the deeper regions of
muscle,'>?” the activation of deep muscle tissue pre-
cedes the activation of superficial muscle tissue.””!
Considering that sSEMG lacks access to deep muscle
tissue signals, the high-resolution penetration that
ultrasound provides to deep tissue structures (e.g. the
field of view in ultrasound images used in the present
study was 6-7 cm) is likely a significant contributing
factor to achieve comparable estimates with sSEMG.
Begovic et al. reported that the electromechanical de-
lay (i.e. the time delay between onset of muscle fiber
motion and the force production) detected by ultra-
sound is 49.7 £ 7.0 ms during voluntary contraction of
quadriceps femoris muscles.” Given the anticipated
delay between the onset of force production and the
joint movement, 133-142 ms seems like a realistic
estimate of a reliable time window for motion predic-
tion.

Statistical analysis of the prediction errors showed
whether there was a difference between the prediction
accuracies for different temporal shifts. However, it did
not inform whether the difference was of any practical
importance. The sensitivity of humans in perceiving
the position of their limb (i.e. kinesthesia), has been
studied in psychophysiology and neuroscience
research. Among different tests developed to examine
knee kinesthesia, TDPM is the most established and
reliable test that attempts to find the sensitivity of
humans to passive joint motion."'® Different studies
report the knee joint TDPM to range between 1.52 and
2.700.%18:2990 We defined the average reported value
for the knee joint TDPM (i.e. 1.76°) as a CMD in the
prediction accuracy that can be perceived by the user.
We used the linear mixed-effects model to determine
an amount of temporal shift that can produce a change
in joint angle prediction error that is equivalent to the
knee joint TDPM (i.e. 142 ms), hence barely perceiv-
able by 90% of the sample population. It would have
been interesting to perform this type of analysis for the
angular velocity prediction. There are no CMD data
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for angular velocity in the literature to be used with the
linecar mixed-effects model, therefore, more investiga-
tions are needed to incorporate user perception of joint
angular velocity.

It has been shown that it takes around 90 ms after
an ambulation mode transition event for discriminat-
ing patterns to emerge in the mechanical signals
recorded by the sensors on a powered transfemoral
prosthesis.*' Since the mechanical signals are a result
of the movement, they are always delayed compared to
the motion. Our results demonstrate that ultrasound
features of the muscle allow for reliable prediction of
the motion up to 142 ms in advance. This will provide
a time window for processing, control planning, and
actuation, hence improving the safety and volitional
behavior of the device. For instance, the timing of knee
flexion and knee-lock during gait is essential to ensure
the safety of the user.*” From a practical standpoint, a
reliable prediction might play an important role in a
real-world situation where the device needs to adapt to
a continuously varying terrain, and a late knee-lock or
an early knee flexion might lead to a knee collapse
which might result in a fall.

SsEMG has been used as a noninvasive intuitive
interface for human motion estimation "7 and assis-
tive device control.**** However, ultrasound imaging
has several advantages that might prove useful for
volitional control of assistive devices, including higher
dimensionality and resolution of ultrasound data,
higher penetration depth that provides access to deep
muscle tissue, and the specificity of ultrasound signals.
Moreover, the present work showed promising results
demonstrating the predictive capability of instanta-
neous values of ultrasound features during a volitional
movement. Recent efforts toward miniaturization of
ultrasound technology have led to several designs for
low-profile wearable transducers that include minia-
turized sensors as flexible substrates.>'” The combi-
nation of miniaturization of ultrasound sensing and
the predictive capability for continuous prediction of
volitional movements demonstrates the potential for
ultrasound as a viable intuitive interface for human
motion prediction and assistive device control.

Limitations and Future Work

The focus of the present work was to study the
timing of the ultrasound features and investigate the
predictability of joint motion. However, our current
results are limited to a non-weight-bearing motion
which is performed relatively slowly compared to daily
activities. The model allowed for a prediction window
that covers around 10% of the time frame of the
flexion or extension movements. However, the predic-
tion time frame would have to adapt to ambulatory

activities that usually happen at a faster pace for
practical use in lower-limb assistive devices. Since the
rate of motor unit recruitment during muscle activa-
tion depends on the locomotion task,”>* it would not
be surprising to find a different time window for
optimal prediction of motion during different dynamic
tasks. Therefore, characterizing the model prediction
time frame within the time frame of each activity
would be an interesting direction for future work.
Specifically, it would be very interesting to study the
feasibility of predicting the upcoming transition points
between different modes when ambulating on a con-
tinuously varying surface. Although it will be chal-
lenging to predict those events, it will likely have a
great impact on the intuitiveness of assistive devices for
better adaptation to the user’s intent and the envi-
ronment. To that end, the time history of ultrasound
features coupled with predictive models (such as
RNNSs or autoregressive models that have been used to
predict human motion '*?*) may be used to encode the
temporal sequence of muscle features and enable the
prediction of transition points between ambulation
modes.

Proximal neuromuscular disorders or dystrophy
may accompany distal joint disabilities, and prediction
accuracy may reduce for amputee subjects due to their
decreased ability to contract the muscles in the residual
limb. However, it has been reported that the pre-
dictability of gait initiation is mostly consistent
between the amputee and able-bodied subjects.*’
Extending the results of the present work to amputee
subjects may be possible through simulating bilateral
knee extension/flexion by contracting the muscles in
both thighs at the same time. In the present study, the
predictability of movement was only evaluated using
ultrasound features of the RF muscle. There have been
some reports that other muscles in the upper leg (e.g.
tensor fasciae latae muscle) may have greater time
precedence to gait initiation.*® Therefore, it would be
meaningful to study the time-precedence of ultrasound
features measured from additional muscles.

In conclusion, the feasibility of using ultrasound
features of RF muscle to predict the kinematics of
upcoming knee motion was demonstrated in the pre-
sent study. Statistical analysis revealed that there was a
time window between 133 and 142 ms, where a statis-
tically and clinically reliable prediction of joint motion
can be achieved. The results motivate the future work
toward implementing an ultrasound-based sensing
interface for the control of lower-limb assistive devices.
Future research to investigate the predictability of the
joint motion during dynamic tasks could unveil the
feasibility of predicting the critical points during
ambulation, such as the transition between ambulation
modes. Reliable prediction of the joint motion will not
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only improve the control outcomes of assistive devices
but also contributes to an intuitive and seamless inte-
gration of these devices with the human body and the
environment, restoring the natural function of indi-
viduals.
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