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While input-output examples are a natural form of specification for program synthesis engines, they can be
imprecise for domains such as table transformations. In this paper, we investigate how extracting readily-
available information about the user intent behind these input-output examples helps speed up synthesis and
reduce overfitting. We present GAuss, a synthesis algorithm for table transformations that accepts partial
input-output examples, along with user intent graphs. GAuss includes a novel conflict-resolution reasoning
algorithm over graphs that enables it to learn from mistakes made during the search and use that knowledge
to explore the space of programs even faster. It also ensures the final program is consistent with the user intent
specification, reducing overfitting. We implement Gauss for the domain of table transformations (supporting
Pandas and R), and compare it to three state-of-the-art synthesizers accepting only input-output examples.
We find that it is able to reduce the search space by 56X, 73x and 664X on average, resulting in 7X, 26X and
7% speedups in synthesis times on average, respectively.
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1 INTRODUCTION

In a programming-by-example system, users provide input-output examples as specification, and
the program synthesis engine finds a program that is able to transform the given input into the
given output. The appeal of input-output examples as specification is clear: users likely already
have some inputs for the program they want to synthesize, and can then simply craft the desired
output. So, users need not learn a new specification language in order to use the synthesis engine.

After the success of Flashfill [Gulwani 2011], many works have explored the use of input-output
specifications for increasingly complex input domains [Balog et al. 2016; Le and Gulwani 2014;
Polozov and Gulwani 2015; Wang et al. 2019], including table transformations [Bavishi et al. 2019a;
Feng et al. 2018, 2017]. Unfortunately, in the case of table transformations, as the input-output
tables get more complex, so does the user effort in creating the input-output examples. Wang et al.
[2019] allow users to provide a partial output table instead to reduce this effort.
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Fig. 1. Input-output examples alone discards user intent information that was present while creating the
output. In this example, it is not immediately clear that 102.5 is the mean of 50, 70, 100, and 190.

However, in addition to the extra user effort that goes into creating these input-output tables,
there is also something lost: a clear demonstration of user intent. Figure 1 illustrates this loss of
user intent. The source of the number 102.5 in the first cell of the output is not immediately clear
from the input-output example alone. However, the user who created this example knows exactly
how they derived this number. It is simply the mean of all the numerical cells in rows labeled
“Pants”: 50, 70, 100, and 190. The user could have easily demonstrated their intent given a suitable
user-interface (UI). A clearer representation of the intent could not only help speed up synthesis,
but prevent overfitted programs that are inconsistent with the intent.

In this paper, we present GAuss, a synthesis algorithm for table transformations that accepts
partial input-output tables along with user intent annotations. Our key insight is that user intent is
fundamentally a set of relations between elements of the input and elements of the output. Thus, we
represent these user intent annotations as graphs. These graphs can be transparently constructed
by, for example, the Ul the user is using to produce the output. As a proof-of-concept, we created a
Jupyter notebook extension which creates such a graph under the hood.

We focus on table transformations as they—compared to e.g. data structure transformations—are
used widely across areas with non-traditional programmers, such as machine learning, data science,
and business analytics. This is exemplified by the tremendous surge! in popularity of languages
and APIs such as R and Pandas. Synthesis for table transformations has also been studied in several
prior works on input-output example and natural language-based program synthesis [Bavishi et al.
2019a; Feng et al. 2018, 2017; Wang et al. 2019; Yu et al. 2018].

Gauss is an enumerative synthesis algorithm. It employs a novel reasoning procedure over
graphs that helps it quickly prune away large classes of infeasible programs. At a high-level,
Gauss adopts a divide-and-conquer approach: it breaks down the user intent graph into smaller
subgraph specifications, and uses these as a measure of progress while enumerating the search
space. Whenever it finds that a class of similar programs do not satisfy these specifications, it
detects a core subgraph that explains the failure of these programs in satisfying the specification.
The algorithm then learns from this failure by performing inductive reasoning against a knowledge
base of example program invocations, to rule out other programs in the search space. This algorithm
presents an extension to the use of conflict-driven synthesis strategies in the realm of first-order
logic [Feng et al. 2018]. In addition, Gauss reduces the likelihood of returning over-fitted solutions
by ensuring that they are consistent with the user intent graph.

Gauss has multiple synthesis backends for different table transformation APL It has a backend
for the Python pandas API supporting 33 functions as well as one for the R tidyr/dplyr API
supporting the 10 tidyr/dplyr functions from the DSLs of Feng et al. [2017] and Wang et al. [2019].
These include popular reshaping and summarization operations on input tables. In addition, we
built a prototype UI for table manipulations that transparently builds user intent graphs. So, users
need only create input-output examples with our Ul in order to reap the rewards of our algorithm.

https://insights.stackoverflow.com/trends?tags=r%2Cpandas%2Cdplyr%2Ctidyr
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Fig. 2. An input (i), partial output (0) example, as well as a graph abstraction of user intent (Gyger)-
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Fig. 3. A user interaction with the Ul that builds the graph abstraction of user intent from Figure 2.

We evaluate GAuss on two main fronts. First: do richer graph specifications enable significant
pruning compared to synthesis techniques that only leverage input-output examples? We find that
GAuss explores 56X, 73X and 664x fewer candidates than the state-of-the-art systems MORPHEUS
[Feng et al. 2017], VISER [Wang et al. 2019], and NEo[Feng et al. 2018] on their respective benchmarks
because of the additional graph specification. Second: can graph specifications allow the user to
provide partial information, such as a partial output, as opposed to needing to construct a full
input-output examples? We evaluate Gauss on benchmarks used in VIser and find that output size
can be reduced by 33x on average while getting the correct answer just as quickly.

To summarize, our contributions are as follows:

o A synthesis algorithm for table transformation programs, taking partial input-output examples
with graph intent annotations as specification.

o A conflict-driven pruning strategy for synthesis in the domain of graphs.

o Gauss, which implements this algorithm for the domain of table transformations, along with
a Ul that allows users to use it without ever writing graph specifications themselves. Both are

released as open-source?.

2 OVERVIEW

We begin with a high-level overview of Gauss’s algorithm for synthesizing table transformations.
Figure 1 shows input and output tables describing a table transformation that involves a two-
dimensional aggregation — the average of all Low and High values having the same Type category.

Zhttps://github.com/rbavishi/gauss-oopsla-2021
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t, = gather(i, “Low”, “High”, -“Type”)
0 = group_by(t;, by=“Type”, Avg=mean(“Value))
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(a) First, gather melts the input table into a “long” (b) The final graph abstraction of the solution program.
format, where High and Low are row values rather Note that nodes corresponding to intermediate table
columns, producing t;. Then, group_by can then av-cells do not appear; instead, the abstraction captures
erage all values for each item type, producing o. the direct relationship between input and output.

Fig. 4. The solution program for the synthesis problem in Figure 2, its intermediate and final output, and its
graph abstraction.

Figure 2 shows a synthesis specification that a user might supply to Gauss to synthesize code
for this transformation. The specification consists of an input i, a partial output o and a graph
abstraction of user intent G,. The partial output in Figure 2 only contains the cell value 102.5,
rather than the full output in Figure 1. G- captures the core semantics of the transformation: the
value 102.5 in the output is the mean of all the numbers in the Low and High columns with Pants in
the Type column. Note that G is not provided directly by the user. We provide a user-interface
(UI) that observes user interaction and automatically creates the graph G-

Figure 3 shows a series of interactions that create the user intent graph on the right hand side of
Figure 2. First in Figure 3a, the user loads the input dataframe into the UL Then in Figure 3b, the user
selects the quadrant of cells with values 50, 70, 100, and 1990, and right clicks the selection. This
brings up a menu of options, and the user selects the aggregation operation “MEAN”: after clicking
this operation, the mean of the selected values is copied to the clipboard. Finally in Figure 3c, the
user pastes the value to a cell in the output section of the UL At this point, note that the input-output
example is identical to the partial input-output example given on the left hand side of Figure 2.
Behind the scenes, the UI has constructed the graph G, first constructing the input table part
of the graph on load (Figure 3a), then adding the intermediate computation and output nodes on
paste (Figure 3c), thanks to the information provided by the user in their selection in Figure 3b.

The goal of Gauss is to find a program which, when executed on the input table i, produces an
output table that contains the partial output o provided by the user. Figure 4a shows the program
synthesized by Gauss. It first uses a reshaping operation gather, that “flattens” the Low and High
columns into a single column (indicated by the arguments “Low”, “High”), while keeping the Type
column as its own column (indicated by the -“Type” argument). This call to gather results in the
intermediate output #; in Figure 4a. Then, the program performs a group_by operation, grouping on
the Type column to compute the required averages. This results in the final output o in Figure 4a.

Additionally, G, must be a subgraph of the graph abstraction of the program synthesized by
Gauss when run on the input i. The graph abstraction of a program captures the relationship
between its concrete inputs and output as a graph. For instance, Figure 4b shows the graph
abstraction for the program at the top of Figure 4a (when using i from Figure 2 as input). This
graph abstraction is obtained dynamically by applying a special function on the program and its
inputs; the process is described in Section 4. For the purpose of this section, whenever we say a
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graph abstraction of a program, we assume the inputs to the program are the same as the input
tables of the user-provided specification, i.e., i.

Enforcing that Gy is a subgraph of a solution’s graph abstraction ensures that the program
matches the user’s intent. Given the spec in Figure 2, GAuss returns the program shown in Figure 4.

We will now walk through Figure 5, which shows the steps followed by Gauss to arrive at the
solution in Figure 4. To synthesize this program, Gauss employs enumerative search: it enumerates
programs one-by-one, runs them, and checks their output against the specification. The key to
Gauss’s performance is its ability to prune large parts of the search space of programs without
enumerating them.

For simplicity in our walkthrough, we assume that we have only two table transformation
components, gather and group_by, and that GAuss only explores programs containing a maximum
of two component calls. Note that every program synthesized by Gauss is a linear sequence of
component calls.

2.1 Extracting Query Graphs

To conduct this pruning, GAuss uses query graphs, or simply queries, from G, A query is a
subgraph of G containing at least one input and one output node. Gauss first extracts unit
queries that have exactly one input and one output node. Figure 5a shows the four unit queries
extracted from G, one for each edge between the “input” and “output” parts of G . The numbers
next to nodes indicate the table cell the node corresponds to.

Observe that if G, is a subgraph of the final graph abstraction Gp of a program, the query
graphs from Figure 5a must be subgraphs of Gp as well. This means GAuUss can reason about the
simpler query graphs, rather than the potentially complex Gy, to prune programs.

2.2 Deciding Skeletons for Exploration

First, GAuss prunes out skeletons which can be safely discarded. A skeleton is simply a program with
constant arguments unfilled. Thus, it captures only the components (function calls) of the program.
Again, for simplicity in this example, Gauss is only considering the two components gather and
group_by, so only has six possible skeletons to explore. These six skeletons are enumerated in
Figure 5b as oy, . . ., 0. The symbol £ represents unfilled constant arguments.

First, for every skeleton, GAuss determines all possible decompositions of each query graph. At
a high level, a decomposition of a query graph G, corresponds to a plan that a program P can
follow to make sure that G, is a subgraph of the final graph abstraction of P.

The right-hand-side of Figure 5b shows the decompositions of our query graphs for each skeleton
01, - . ., 0g. Since all the query graphs in Figure 5a are isomorphic, these decompositions are the
same for all of them. Consider, for example, the decomposition of query graphs for skeleton os. It
lays out a plan that specifies that (1) the output table of the call to gather must contain a cell with
the value of the input cell (captured by the edge with label “=”), and (2) the call to group_by should
perform aggregation with this cell, captured via the MEAN edge to c

The queries have two possible decompositions with respect to the skeleton o: either of the
group_by calls perform the aggregation. The skeletons o, and o3 do not have any associated
decompositions. This is because they only call gather, which is a reshaping operation. It cannot
aggregate values, and thus cannot have a MEAN edge in its abstraction.

So, Gauss discards skeletons o, and o3, meaning it will not enumerate any programs with those
underlying skeletons. Gauss then goes through the remaining skeletons one-by-one: for each
skeleton, it enumerates programs by populating the skeleton’s constant arguments.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 134. Publication date: October 2021.
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(d) Gauss proves that no program with skeleton oy is the solution: for a program with skeleton oy to realize
the decomposition of the conflict graph, the input cells 50 and 7@ must be in the same column.
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Fig. 5. Walkthrough of Gauss run on the specification in Figure 2, with components gather and group_by.
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2.3 Learning from Failures

Figure 5c¢ shows Gauss exploring all programs with underlying skeleton o;. Unfortunately, none
of these programs satisfy the specification. This is because they do not follow the “plan”, i.e.
realize the decomposition, for all the query graphs. Figure 5e shows this in detail for the program
P, = group_by(i,by=“Type”,agg=mean(“High”)). Because the graph abstraction for group_by has
the decomposition graphs for ) and @) as subgraphs, we say P, realizes those decompositions.
However, the graph does not have the decomposition graphs for queries (D and (@) as subgraphs.
So, we say that P, satisfies the queries 2) and (3), while (D and (4) are unsatisfied.

Similarly for all the other programs enumerated in Figure 5c, some queries remain unsatisfied. To
zero in on what went wrong, GAuss creates the conflict set. This conflict set is the smallest possible
set of queries such that no program satisfied all the queries in set. As can be seen in Figure 5c, no
program satisfies both query (D and (2. So, in our running example, the conflict set contains the
queries @) and 2).* The graph union of the queries in the conflict set is shown on the far right of
Figure 5c. This union, called the conflict graph, is the subgraph of G ., where the cells containing
50 and 70 are involved in aggregation.

Before exploring another skeleton, GAuss makes sure that the same failure will not occur again.
Suppose the skeleton oy is the next to be explored. As shown in Figure 5d, Gauss first uses the
oracle to get the decomposition of the conflict graph with respect to 4.

Then, Gauss asks the oracle to strengthen this decomposition with respect to the skeleton oy.
During strengthening, the oracle uncovers additional nodes and edges that must be present in any
program with skeleton oy realizing this decomposition. The right-hand-side of Figure 5d shows the
strengthened decomposition of the query graph with respect to oy4. The additional nodes and edges
impose the condition that the cells with values 50 and 70 must be in the same column.

However, this condition is not satisfied in the user example: the cells with value 50 and 70 are
not in the same column in the input i (Figure 2). Hence, GAuss can safely discard the skeleton oy.

2.4 Smart Enumeration

After ruling out the skeleton oy (Figure 5d), GAuss moves on to the skeleton os. This process is
illustrated in Figure 5f. First, Gauss fills in the arguments for gather, resulting in partial program
Py : (t; = gather(i, “Low”, —“Type”); 0 = group_by(t;, Oz)). Before exploring further arguments to
fill into Ci,, GAuss checks whether the program so far is on track to realize the query decompositions.

In particular, GAuss evaluates the call to gather, and computes its graph abstraction. This graph
abstraction is on the left-hand side of Figure 5f. With this set of arguments, gather discards cells
corresponding to the High column.

However, the decompositions for queries ) and (3), shown on the right of Figure 5f, require the
nodes highlighted in red be connected to cells in the intermediate output. This is not the case in the
graph abstraction on the left, because the corresponding cells were discarded by the call to gather!

Thus, the decomposition for queries (2) and (3) cannot be realized, regardless of the arguments
for group_by. That is, any completion of P; will not satisfy the queries (2 and (3, and thus can be
safely pruned by Gauss even before exploring any arguments for group_by.

All these pruning strategies allow Gauss to quickly explore more promising arguments to os,
before arriving at the solution in the bottom right of Figure 5f.

3 PRELIMINARIES AND NOTATION

This section establishes common notation used throughout the formal description of the Gauss
algorithm. The reader may want to refer back to it while reading Sections 4, 5, and 6.

3The set of queries (3) and (@ is another viable alternative for the conflict set, and would result in the same pruning ability.
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3.1 Table Transformation Programs

Gauss synthesizes a linear table transformation program, say P. This program takes in a list of
input table variables v;, and a program P of length k of the form:

(v = C1(ﬁ1,€1);.-~;vk = Ck(ﬁk,c_;c)),
where:

e each C; is a table transformation component (e.g. an API function) with a list of table arguments
p; and a list of constant arguments ¢},

e each v; is a variable representing the table output of C;(p;, ¢;),

e cach plj € p; is either an input table variable in v;, or a table variable from the set {vy,...,v;_1}.

Let D be the domain of all such programs. The set of available components, Components(D),
consists of the standard projection, selection and cross-product relational algebra operators along with
other operations such as gather, group_by, mutate, spread that allow a mix of common reshaping
and summarization operations. The domain of constants, Constants(D), consists of the (countably
infinite) set of column names, cell values, row indices, etc. GAUuss borrows this set of components
from Feng et al. [2017], which the reader can refer to for a more detailed discussion.

The execution trace of a program P on input tables £, is:

((C1, 11, ¢1,01), .. ., (Chs ks Ckr OK))

where for each component C;:

° ?] is the vector of tables passed to C;, and
®0;= Cj(f}, ¢;) is the table produced by the execution of Cj(fj, ;).
We denote such a trace as (P, t;, ). The output of P is the output of the last component: P(t;,) = ox.

A program skeleton, or just skeleton, is obtained by replacing all constant arguments of the
program’s components with holes. Precisely, a skeleton o of length k is of the form:

o= (vi =Ci(p1,01);...; vk = Ci(Pk, Ok)).

Programs(o) is the set of all programs sharing the skeleton ¢ and Skeleton(P) is the skeleton of the
program P. We use the shorthand C; (o) to refer to the i component of o.

A partial program is a partially filled skeleton. That is, a partial program Pp,,; with respect
to some skeleton ¢ maps the first d holes of ¢ to appropriate constant argument vectors, i.e.
o[di = al, ..., 00— ¢yl

The partial execution trace of Py, on input tables £:,, denoted T(Ppart, t), is:

((C1, 11,61,01), .., (Cas ta, €4, 0a))-

3.2 Graphs

A graph G consists of a set of nodes N(G) and edges E(G). Each node n € N(G) has a label
Ibl(n) and an entity entity(n). Entities define groups of nodes, where all n € N(G) with the same
e = entity(n) belong to the same group. We use Entities(G) to denote the set of all entities in G,
{entity(n) | n € N(G)}. We use N(G, x) to refer to the set of nodes in G with entity x.

Our edges are directed; we use src(e) and dst(e) to refer to the source and destination of the edge
e, respectively. The label of an edge e is denoted Ibl(e). We say (ny, nz, ) is an edge in G if there
exists e € E(G) such that src(e) = ny A dst(e) = ny A Ibl(e) = £. As an example, consider the graph
in Figure 4. Node labels are COL, CELL and IDX while edge labels are = and MEAN. The nodes with the
blue color scheme have the same entity i, while those in green have entity o.

We say G is a subgraph of G,, denoted by G; C G, if N(G;) € N(G;) A E(Gy) € E(Gy).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 134. Publication date: October 2021.
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group_by(i, by="“Type”, agg=mean(“High”))
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Fig. 6. Table abstraction for the input
in Figure 2.

Fig. 7. Component abstraction of a call to group_by. The constant
arguments are embedded inside the call.

The subgraph induced in G by a set of nodes Sy contains only the nodes of G present in Sy
and edges with end-points amongst this set of nodes.

The union of two graphs is the graph G = G;UG; such that (N(G) = N(G;)UN(G2))A(E(G) =
E(G1) UE(Gy)).

A graph G is a unit graph if there is exactly one node in G with entity ent for every entity
ent € Entities(G).

A graph G; is isomorphic to G;, denoted by G; =~ G, if there exists a bijection M : N(G;) —
N(G;) such that:

e Vn € N(Gy). Ibl(n) = Ibl(M(n)),
® ¥(n1,nz) € N(Gy). (entity(ny) = entity(ny)) &= (entity (M(n1)) = entity (M(nz))) , and
o (ny,ny,f)isanedgein G; & (M(n1), M(ny),¢) is an edge in G,

That is, there is a mapping between the nodes of G; and G, that preserves the edge structure
along with the edge labels. The mapping also preserves the node labels and groupings. We use
G1 = G, to explicitly specify a mapping M.

A graph G; is subgraph isomorphic to G, denoted by G; C G, if there exists an injective
mapping M : N(Gs) — N(G) and a subgraph G/ of G (G; C G) such that G5 =~ G/.

Throughout the paper, for ease of notation, whenever we use G; =~ G, or G; € G,, we enforce
that the isomorphism mapping M has Yn € N(G;) N N(G;). M(n) = n. That is, M is the identity
mapping for the nodes common to G; and Gy.

MEAN =

The * next to nodes in a sequence of graphs ( @—i@ , @—>0—>@ ), indicate that
the node is shared amongst the graphs. We use %1, *,, etc. to disambiguate multiple shared nodes. In

4 GRAPH ABSTRACTIONS

We now define the concept of the graph abstraction of a program, which was alluded to in Section 2
but not formally defined. This concept is core to the entire Gauss algorithm.

Suppose a program P produces an output table t, when executed on input tables t;,. The graph
abstraction of a program P represents, as a graph, the relationship between (a) the input tables
tin, (b) the constant arguments ¢ embedded in P, and (c) the final output t,. We denote the graph
abstraction as GraphAbstraction(P, tims £o).

There are two main ingredients required to define GraphAbstraction: (1) a table abstraction func-
tion TableAbstraction(t) that represents table t as a graph and (2) a component abstraction function
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Fig.8. Trace Abstraction for Program in Figure 4. The nodes and edges in the blue and orange boxes correspond
to graphs G; and G respectively.

CompAbstraction(C, 1, ¢, 0) that captures the relationship between input tables i and constants ¢
and the output o of a single component C when executed with the inputs as a graph.

Our definition of the table abstraction function TableAbstraction(t) returns a graph G, with
a node with label CELL for every table cell, a node with label COL for every column header and a
node with label IDX for every row index. There is an edge with label COLUMN between the nodes
corresponding to a column and every cell in that column. Similarly, there is an edge with label ROW
between a row node and a cell node for every cell in that row. Thus G, captures the structure of
the table while disregarding the concrete values. Every node in G, has the table ¢ as the associated
entity i.e. Vn € N(G;). entity(n) = t. This captures the fact that nodes belong to the group of
nodes associated with t. Figure 6 illustrates the table abstraction for the input table in Figure 2. The
vertical and horizontal lines with color (=) depict both the COLUMN and ROW edges.

Our definition of the component abstraction function CompAbstraction(C,i,¢,0) returns a
graph G which contains the table abstractions of the inputs and output, i.e.,

(TableAbstraction(o) € G A Vi € i. TableAbstraction(i) € G),

along with nodes and edges that capture the relationship between the inputs and output, i.e. the
semantics of the component. Figure 7 shows the graph for a call to group_by applied on the input
table from Figure 2. Apart from the nodes and edges corresponding to the table abstractions, the
equality edges (labelled “=”) capture the grouping semantics, while the MEAN edges along with the
computation nodes o capture the aggregation. Additional self edges on the column nodes of the
input table capture the interpretation of the constant arguments. As we shall see later in the section,
these edges do not play a role in the final graph abstraction, but significantly speed up program
enumeration during synthesis (Section 6.3).

We implemented these base abstraction procedures— TableAbstraction, and a CompAbstraction for
each of our API components—as imperative Python programs, each 50 LoC long on average. These
procedures are key to defining the abstraction of an execution trace TraceAbstraction(t(P, ti,)).

Given a trace 7(P, t1,) = ((Cy, 11, €1, 01), . . ., (C, i1 Gk, 0k ) ), the trace abstraction is simply the
sequence of component abstractions of its constituents i.e. TraceAbstraction(z(P, t;,)) = (Gy, ..., Gi)
where Vi. G; = CompAbstraction(C;, t;, ¢, 07). Figure 8 shows the trace abstraction (G;, G) of the
motivating example’s solution on the input in Figure 2. The graphs G; and G, are the component
abstractions of the calls to gather and group_by, respectively. Note how G; and G, share certain
nodes and edges: this is because they both contain the table abstraction of gather’s output.

The trace abstraction captures the relationships between the inputs and output for each of the
constituent component invocations of the program. However, the graph of user intent G, captures
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only relationships between the input and output of the entire program. This means that to properly
evaluate containment of Gy, the final graph abstraction for P must capture relationships between
the original input table(s) and final output table directly.

Thus, in the final graph abstraction for a program P, we need to combine the input-output
relationships of the individual components into an overall relationship between the input tables of
the program and the final output. Consider the union Gy, = G; UG, of graphs G; and G, in Figure 8.

The path @—_>@—>@ appears in Gyy. It essentially captures the fact that an input cell’s value
is equal to the value of a particular cell of the intermediate output table of gather, which in turn is
equal to a cell of the final output table. We can use the transitivity of equality to conclude that the
input cell’s value is equal to the value of the final output cell. That is, we can add an edge as in

@—i@ . Similarly we can simplify the path @—i@ﬂ’ip@ in Gy to establish that

the input cell is directly involved in an averaging operation: @MQ:»@ .
We formalize this idea of propagation of relationships as follows:

Definition 4.1 (PropagatedGraph({Gy, ...,Gi),SN)). Let G, = G; U ... U Gi. The propagation
graph of (Gy, ..., Gg) with respect to a set of nodes Sy is a graph G such that
e N(G) = N(G,) — Sy and
o there is an edge e € E(G) with [bl(e) = ¢ if and only if (a) its end-points are not in Sy and (b)
there is a path between src(e) and dst(e) through nodes in Sy with at most one edge labelled
with £ # “=” (only one non-equality edge).

Thus, PropagatedGraph({ @ﬂ")—:'@* , *@Mo—:'@ ) {@}) is the graph

DIv MEAN MEAN

0—>0—=>@ where the path p@ﬂ’:@ leads to the edge @—@.

Now, the graph abstraction of a program is simply the propagated graph of the trace abstraction,
augmented with the full table abstractions of the inputs and output.

Definition 4.2 (GraphAbstraction). Let P be a program with trace ((Cy, t1, ¢1,01), - . ., (C, tes Cles 1))

when run on inputs ¢;, and output t, and a corresponding trace abstraction (Gy, . .., G¢). Then,
GraphAbstraction(P, ti, t,) = PropagatedGraph({G, ..., Gy), Sn) U U TableAbstraction(t)
tefyVi=t,
k-1

where Sy = U N (TableAbstraction(t;)).
i=1

That is, the graph abstraction contains the abstraction of the inputs and output, as well as the
relationships between inputs and output from the propagation graph. The graph abstraction must
not contain any intermediate outputs, though it can contain intermediate computation nodes o
Hence Sy is the set of nodes belonging to the table abstractions of the intermediate output tables.
Figure 4 shows the final graph abstraction of the solution program for the motivating example. Note
how the user graph in Figure 2 is subgraph isomorphic to the graph in Figure 4. This is observation
is the basis of the problem statement.

5 PROBLEM STATEMENT
We first formalize the synthesis problem using graph abstractions.
Definition 5.1 (Synthesis Problem). Assume a user specification consisting of input tables t;,, partial

output table f,,,,, and a graph abstraction of the user intent Gy (captured automatically via UI).
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The table abstractions of f;, and Lopan ATE included in G, i.e. Vi € t7,. TableAbstraction(t) C Gyger
and TableAbstraction(t,,,,) S Guser- The synthesis problem is to find a program P such that:

(to,qr 1s contained in t,) A (Guser & GraphAbstraction(P, fim o)) Where (t, = P(t;,))

The first clause is in line with a standard problem formulation in example-based synthesis: the
output table ¢, of program P when executed on t;,, contains the user-provided partial output table
to,q- The second clause enforces a match with the user’s intent; the graph abstraction of P must be
consistent with the user-provided graph i.e. Gy is subgraph isomorphic to G.

6 SYNTHESIS ALGORITHM

Gauss’s synthesis algorithm is enumerative in nature. That is, it enumerates and checks programs
against the specification one-by-one and stops when it finds a solution or has exhausted all programs.
Clearly, simply enumerating all programs will be prohibitively expensive as the space of possible
programs is very large. The key to GAuss’s performance is how it exploits the user-provided intent
graph to prune large parts of this space without explicit enumeration. Next, we provide the intuition
for, and formalize the key idea behind, Gauss’s pruning: graph decompositions.

6.1 Graph Decompositions

Consider the sequence of graphs s = ( @—:>@ , @ﬂ’io_:,@ ). Its propagated graph

MEAN

(Definition 4.1) with respect to the singleton set {@} isG = @—>O—>@ . We can think
of the sequence s as a decomposition of the resulting graph G. Intuitively, s divides the task of
aggregation into two parts: first preserve the value of the cell in another cell, and then perform
aggregation on it. We formalize this notion of decomposition below.

Definition 6.1 (Graph Decompositions). A sequence of graphs (G, ..., Gx) is a decomposition of a
graph G if there exists a set of nodes Sy € N(G; U ... U Gy) such that:

G = PropagatedGraph({Gy, . .., G}, Sn) U U G[N(G,x)]
x €Entities(G)

The second term is a subgraph of G without any inter-entity edges: in particular, the union of the
subgraphs induced by nodes with the same entity. A decomposition is minimal if no edges or nodes
can be removed from the constituent graphs without violating the above property.

Combining the problem statement (Definition 5.1) and the graph abstraction formulation (Defi-
nition 4.2) leads us to the following observation, which is core to GAUss’s pruning strategies.

OBSERVATION 6.2. If P solves the synthesis problem (t_{n, Eo pares Guser), then for all subgraphs G <
Guser, including Gy itself, there exists a decomposition (Gy, . . ., Gi) of G4 such that:

(Vj € [Lk]. G; € G)) and (Gy,...,Gk) is minimal.
where (G}, ..., Gy) = TraceAbstraction(r(P, ti))

Intuitively, (G, . . ., Gx) can be thought of as a “plan” followed by P to ensure that G, is present in
its overall graph abstraction. This is because each G; is a subgraph of the corresponding component
abstraction G;. We say that this decomposition is realized by a program P if Vj € [1,k]. G; C G}

Definition 6.3 (Realized Decompositions). Let (G, ..., G, ) = TraceAbstraction(z(P, tin)). The pred-
icate Realizes({(Gy, ..., Gy), P, t;,) returns true if Vj € [1,k]. Gj c Gj’. and false otherwise.
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For example, the decomposition s at the beginning of this section—for G = @MP@ ,
a subgraph of G in Figure 2—is realized by the solution program of the motivating example. The
decomposition succinctly captures the plan executed by the program—the gather invocation is in
charge of preserving the value in its reshaping operation, so that the group_by invocation can then
use it in a averaging operation.

How does Observation 6.2 enable pruning? Suppose we want to enumerate and check programs in
Programs(o) against the user specification (tin, Lo part> Guser), where o is a skeleton of length k. Given
a graph G; C Gy, suppose we have access to a set S, of decompositions of G, satisfying the
following property: if there exists a program P, € Programs(c) that solves the synthesis problem
for the given user spec, then there exists a decomposition in S, realized by P,. This immediately
allows us to implement two straightforward pruning strategies:

(1) If S, is empty, there does not exist any solution in Programs(o). Thus we can prune the entire
family of programs with skeleton o at one go.

(2) If S5 is non-empty and there is a partial program Py With the first d constant argument
holes of ¢ filled and the trace abstraction {Gy, ..., Gy), if there is no (G, .. "Gl’<> in S, such
that G; = G] for all i € [1,d], we can prune all programs in Programs(Ppartiar)-

One can think of S, as a pre-determined set of “plans”, one of which any solution program in
Programs(o) must implement. The pruning strategies simply discard programs that clearly diverge
from these “plans”. Strategy (1) was motivated in Section 2.2, and Strategy (2) in Section 2.4.

Before formally developing these pruning strategies, we must first answer two main questions:
(1) Which subgraphs G; C Gys.r should we use for pruning?

(2) Given G, and a skeleton o, how do we construct the set of decompositions S,?

6.1.1 How to pick subgraphs G4 C Gysr? The G, that will help us prune the search space of
programs are ones whose decompositions give us meaningful information. Consider the user graph

Guser in Figure 2. A subgraph G consisting solely of nodes from an input table, like G = @ is not

useful because its decomposition is the trivial one: (G, K, . . ., Ko), where Kj is the empty graph.
MEAN =

However, subgraphs of G, which relate the input and output, like @—'P@ , will
meaningfully decompose, and allow us to conduct the pruning steps described above. We formalize
this intuition by introducing the concept of query graphs:

Definition 6.4 (Query). Given a user specification (7, topans Guser)> @ query graph G is a subgraph
of Gser with at least one node corresponding to every input and the (partial) output, i.e.

Y(tetmVit= tope)- N(Gq) N N(TableAbstraction(t)) # 0

Additionally, a query must contain at least one path from an input node to an output node. This
ensures that queries represent a meaningful fragment of the relationship between input and output.
. . MEAN = . .
A unit query, like @—'0—'@ has exactly one node corresponding to every input and
exactly one node corresponding to output. A compound query is simply a non-unit query.

6.1.2  How to determine possible decompositions of G, given a skeleton o ? In constructing S, the
set of decompositions of G, for a skeleton o, there is a clear tradeoff between the effort spent
building S, and the pruning power it gives Gauss. We could, for instance, simply let S, be the set
of all decompositions for G, regardless of the skeleton o or the user-provided input/partial output.
While this is easy to pre-compute, it would not allow Gauss to do any pruning.

For optimal pruning power, S, should only contain decompositions that are realized by a concrete
P € Programs(o) for the current input and output. However computing those decompositions
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Fig. 9. Constructing decompositions with respect to skeleton (v; = gather(t;,D1); v2 = group_by(vy, J2))

precisely requires enumerating all programs in Programs(o). That is, of course, equivalent to solving
the synthesis problem itself and thus does not help in pruning. Instead of either of these extremes,
we would like to hit the sweet spot: the decompositions in S, are not unrealizable and can be
computed independently of the synthesis problem at hand.

Consider the decomposition ( @M@* , *@—:>0—=>@ ) for 5 0—=>@ It

is a meaningless decomposition as no program in our table transformation domain would ever be
able to realize it. This is because of the way we define and implement our component abstractions:
in them, a computation edge like MEAN will always end at a computation node o So, the first
element of the decomposition can never appear in a component abstraction.

More concretely, a decomposition (Gy, ..., Gy) is unrealizable with respect to a skeleton o if
any graph G; cannot ever occur in the component abstraction of C;(o) (regardless of the input
tables and constant arguments). For now, assume we have an oracle O that offers a function
Witnessed(G, O, C) that checks this property for us:

Definition 6.5 (Witnessed(G, O, C)). Witnessed(G, O, C) returns true if there exist inputs i and
constant arguments ¢ such that o = C(i,¢) and G C CompAbstraction(C, i, ¢, 0), or false otherwise.

This allows us to formalize the notion of a unrealizable decomposition:

Definition 6.6 (Unrealizable Decomposition). We say that a decomposition (Gy, . .., G¢) of graph
G is unrealizable with respect to a skeleton ¢ if there exists j such that = Witnessed(G;, O, C;(0)).

We define the oracle O and the details of this Witnessed function in Section 6.6.

We define the set of possible decompositions of G, given a skeleton o as simply the set of all decom-
positions that are not unrealizable with respect to o. We denote this set as AllDecompositions(Gy, o)
and its construction is described in Algorithm 1.

Algorithm 1 Construction of AllDecompositions(Gy, o) using oracle O. Assume o is of length k.

1: procedure AllDecompositions(Gg, o)

2 if G4 is a unit query then

3: Construct (S, . .., Sk) such that S; = {G | G is a unit graph A Witnessed(G, O, Ci(0)}
4: D « {(Gy,...,Gx) | Vi. G; € S; A(Gy, ..., G) is a decomposition of G, }

5 else

6 D « merge AllDecompositions(G,, o) for unit queries G, within G,

7: return D

Let us step through the algorithm on an example. Say we want to compute all decompositions of
MEAN

the query graph G, = 0—>@ with respect to skeleton o = (v; = gather(t;,0;); v, =
group_by(vy, 03)). Since Gy is a unit query, we first exhaustively enumerate all unit graphs that are
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witnessed by the components of ¢ (Line 3). The unit graphs for gather and group_by are shown
in Figure 9 in the blue and orange boxes respectively. We then do a combinatorial search for all
valid decompositions of G (Line 4) by assembling the unit graphs into a sequence. This results in 7
possible sequences, as shown in Figure 9. This assembly essentially makes sure that the output
nodes of the unit graphs for gather align exactly with the input nodes of group_by. Only one of
these seven is a valid decomposition for G, and is highlighted in Figure 9.

Suppose G, is a compound query, such as the one below:

To obtain decompositions for G, with respect to skeleton o, we first get the decompositions for the
MEAN

constituent unit queries within G;. There is just the unit query @—>0—_>@ . We then search
over all “merges” of these unit query decompositions (Line 6). A merge is essentially component-
wise union of the unit query decompositions, but in which different nodes of the constituent unit
queries can be merged. This results in two possible decompositions that are shown below.

Armed with this concept of decompositions for query graphs, we are now ready to develop the
overall enumerative synthesis algorithm, which uses decompositions extensively for pruning.

6.2 Overall Algorithm

Algorithm 2 outlines the Gauss algorithm. It proceeds as follows. First, GAuss extracts the set of
unit queries from Gy in Q (Line 1). It then prepares a list of skeletons to explore, where each
skeleton o satisfies the property that AllDecompositions(Gg, o) # 0 for all unit-queries G, € Q
(Line 2). This is a direct instantiation of the first pruning strategy discussed in Section 6.1. Then,
the outer loop at Line 3 iterates over the possible skeletons while the inner call to ENUMERATE
(Line 5) searches for a solution program with that skeleton.

Before Gauss enumerates programs with a particular skeleton o, it calls FEasIBLE (line 4) to
perform more checks to determine whether Programs(o) can possibly contain a solution. If not, it
prunes away the part of the search space corresponding to Programs(c).

Finally, if the call to ENUMERATE fails to find a solution with skeleton o, GAuss attempts to
identify a small subset of queries Q, € Q (Line 8) that capture the root cause of this failure. The
graph union of these queries, Gy, is a subgraph of G, not contained in the graph abstraction of
any program in Programs(c). Gauss then keeps track of this subgraph G, to help prune future
skeletons earlier (Line 9). A concrete example of this learning was discussed in Section 2.3.

6.3 Enumeration

Algorithm 3 outlines the ENUMERATE procedure, used by Gauss to populate program arguments.
The loop at Line 2 enumerates partial programs by filling the holes O = (dj, . . ., Ox) one-by-one, via
the FillHoles function. The variable d captures the depth to which the partial program P has been
filled. In Lines 8 and 9, we prune any partial program which does not realize any of the available
decompositions for a query G. This is the second pruning step motivated in Section 6.1; we gave a
concrete example in Section 2.4.
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Algorithm 2 Return a program P satisfying user spec (t_{n, t Guser), or L if no such P exists.

Opart?

SYNTHESIZE(], 0part> Guser)

: Q «— ExtractUnitQueries(Gser)
: § « {0 | length of 0 < MaxLength and VG, € Q. AllDecompositions(Gg, o) # 0}
: for each 0 € S do
if FEAsIBLE(o, Q, 1, 0parts Guser) then

P, G, « ENUMERATE(c, Q, 1, 0part> Guser)

if P # 1 then

return P

else if Gy is not empty then
Q — QU {Gy}

R A A o A

return L

-
<

Algorithm 3 For skeleton o, queries @, and spec (tin, Lo parts Guser), return solution P € Programs(o)
if it exists, else the graph union of the smallest set of queries capturing the conflict.

ENUMERATE(0, Q, ti, topars Guser)
1: k « length(c); P «—o0;d — 1;F «— @
2: whiled > 0 do
3: P’ « FillHoles(P, d)

4: if P’ = 1 then

5: d—d-1

6: Backtrack(P,d — 1)

7: continue

8: Fp — {G4 € Q and P does not realize any decomp. in € AllDecompositions(Gy, o)}

9: if Fp # @ then > Failure to realize decompositions
10: F — F U{Fp}

11: else if d < k then > More holes to fill
12: de—d+1,P P’

13: else if P’ satisfies (f;,, topans Guser) then > Solution found
14: return P/, @

15: else

16: F — F U{o}

17: @, « smallest subset of Q such that Vs € . s N Qf # @ and @ if no such subset exists.
graph
18: return L, |J Gye@. Oq

If no solution is found, ENUMERATE computes the smallest set of queries, @, such that no program
or partial program explored was able to realize an available decomposition for at least one of the
queries (Line 17). ENUMERATE returns the graph union of Q, (Line 18), which essentially captures
the root cause of failure of enumeration. This is the first step of the learning strategy described in
Section 2.3. For the skeleton ¢ = (v; = group_by(t;, 0;); v2 = gather(vy, 0,), this union of conflict
queries corresponds to the following subgraph of G from Figure 2:
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This graph embodies the fact that no programs for this skeleton were able to involve two cells in
the same row (50 and 70) in an aggregation. We use this information in the FEAsIBLE function to
filter out other skeletons suffering from the same mistake.

6.4 The FEAsiBLE Check

Algorithm 4 Given a skeleton o, queries Q, and user-specification (t?n, 0parts Gpart), return false if
Programs(o) is guaranteed to not contain a solution else true.

FEASIBLE(0, Q, t?n, toparp Guser)
1. for each G, € Q do
2: if AllDecompositions(Gy, ) = @ then return false

3 for each d € AllDecompositions(Gy, o) do

4: if Strengthening(d, o) is inconsistent with Gy, then
5: return false

6: return true

Algorithm 4 outlines FEASIBLE, used by GAuss to prune skeletons before enumerating arguments.
The first check at Line 2 checks if decompositions are available for every query derived from the
user spec G- Although a similar check is performed in the main algorithm at Line 2 in Algorithm
2, it is repeated because the set of queries can be updated in the main loop of the algorithm. The
reasoning behind this check is the same as was outlined for the first pruning step of Section 6.1.

The second check in Line 4 of Algorithm 4 uses the strengthening of a decomposition and checks
its consistency against the user graph. The next section formalizes the notion of strengthening
with respect to a skeleton. We motivated it in Section 2.3: the idea of adding additional nodes and
edges to the conflict graph to determine the conditions under which it must occur in the final graph
abstraction. At a high-level, FEASIBLE checks in Line 4 if the nodes and edges introduced in the
strengthening pertaining to the inputs and final output are consistent with the user provided graph.
If they are not, the skeleton can be skipped.

For example, the strengthening of the decomposition with respect to the skeleton o = (v; =
group_by(t;, 0;); v, = gather(vy, 0y) of the conflict graph on the left of Figure 5d, is shown on the
right of Figure 5d. This strengthened decomposition captures the fact that cells being aggregated
by the first component group_by must be in the same column for any program in Programs(o) to
produce the correct aggregation. However, this is inconsistent with the user intent graph Gy, from
Figure 2 because the two cells corresponding to table values 50 and 70 are in different columns.
Thus, FEASIBLE safely concludes that the skeleton cannot contain a solution, and returns false.

6.5 Strengthening Decompositions

We first motivate the idea behind strengthening with a simple example. Consider a skeleton
containing a single component group_by, i.e. ¢ = (v; = group_by(t;, o). Suppose there exists

a program P € Programs(c) which when executed on some input realizes the decomposition

MEAN MEAN =

0—=>@ ) for the query graph @—'%@ . What more can we say about P?
We can, in fact, prove that P must also realize the following decomposition:
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This is because of the properties of tables and the group_by function. Specifically (a) the table
structure guarantees that every cell node must have a corresponding column and row node. And (b)
every group_by operation must have at least one grouping column and the cell in that column in the
same row as the cell being aggregated must be equal in value to an output cell in the same row as
the cell holding the result of aggregation. Additionally, the columns being grouped and aggregated
are designated by self-edges. More formally, we define strengthenings of decompositions as follows:

Definition 6.7 (Strengthening). A strengthening of a decomposition d = (Gy, . . ., G) with respect
to o is defined as the decomposition d’ = (G}, .. ., G,’() such that:

VP € Programs(o) and inputs 1. Realizes(d,P,i) = Realizes(d’, P, i)

The strengthening operation thus captures additional relationships that must be present between
the nodes of the graphs involved in the decomposition. GAUss exploits strengthened decompositions
to more aggressively prune the search space.

Algorithm 5 Fixed-Point Iteration for Strengthening using oracle O.
Assume o expands to (v; = C1(p1,01);. .. ; Vi = Ck(Pr, Ox))

STRENGTHENING({Gy, . .., Gg), 0)
: (G’,...,G,’() «— copy of (Gy,...,Gg)
while 3j. G]’. + Strengthen(G]’., 0,C;) do
Gj’. — Strengthen(Gj’-, 0,Cj)
for each (i, ent) such that G/ shares nodes with entity ent with GJ’. do
Gent < subgraph induced in GJ’. by nodes in GJ’. with entity ent
G} < G; U Gent

7: return (G/, ..., G,’()

EAE AN

Fixed-Point Computation of Strengthening. The computation of Strengthening({Gy,...,Gg), o)
relies again on the concept of an oracle O, which we discussed before.

Definition 6.8 (Strengthen(G, O, C)). Strengthen(G, O, C) returns the largest graph G’ such that
(a) G € G’ (b) for any component abstraction of C for any arbitrary input, for all isomorphisms G
of G in the abstraction, there will be an isomorphism G of G’ in the abstraction such that Gs; € G..

Roughly, the graph result of Strengthen(G, O, C) captures additional nodes and edges that
must be present for any occurrence of G in a component abstraction of C for any input. The

graph in the strengthened decomposition (x) above is in fact the result of applying Strengthen on

MEAN =
0—>@ for the component group_by.

Algorithm 5 gives the algorithm for computing Strengthening({G, ..., Gy), o) for a decomposi-
tion (Gy, . .., Gg) with respect to skeleton 0. We walk through the algorithm with the following
running example. Suppose, given the query graph below on the left, we want to strengthen its decom-
position, on the right, with respect to the skeleton o = (v; = group_by(t;, 0;); vo = gather(vy, Oy)):
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Decomposition
* *
., )

In Lines 2-3, we pick a graph in the decomposition Strengthen. Suppose we pick the first graph
(the one for group_by). We Strengthen and update it to the graph on the left below. It captures the
property that “Aggregated cells should be in the same column. Their group cells must be in the same
row and must be equal”. In Lines 4-6, we update the rest of the graphs in the decomposition with
the newly added nodes and edges, if they originally shared nodes with the same entity. We do the
update for the graph corresponding to gather because the input to gather is the output of group_by.
Hence we add the orange nodes and their edges to obtain the decomposition below on the right:

Query Graph

Update to G{ Gl’ Decomposition after Iteration 1 GZ’

In the second iteration, we pick the second graph and apply Strengthen to obtain the graph on
the left below. This one captures the property that all cells have a row and column. This time, we
do not need to update the first graph as no new nodes have been added for the input to gather.
The algorithm finishes and the final decomposition is shown on the right below:

Q0 - €
e @

Update to Gé

G{ Decomposition after Iteration 2 Gé

Use of Strengthening in ENUMERATE. Although omitted from Algorithm 3 for brevity, the FillHoles
internally utilizes the strengthenings of decompositions to reduce the number of possibilities for

holes. For example, suppose we have the skeleton o = (v; = group_by(t1, by = Oy, col = O,(O3))
MEAN

and the query graph @—>0—_>@ is in Q. The strengthening of the decomposition of the
query graph, shown at the top of this section, contains the self-edges with labels group_col and
agg_col. These self-edges in turn help prune the argument space and by quickly filtering down the
possibilities for the grouping and aggregating columns. Overall, this internal use of strengthening
greatly reduces the number of possibilities explored.

6.6 The Oracle

We now formalize the concept of an oracle, used throughout this section to develop Gauss’s
algorithm using the concept of component examples.

Component Examples. An example for a component C is a tuple (C? ¢,0), where o = C(Z c).
Essentially, an example is a set of arbitrary input tables and constant arguments and the component
output on those inputs. An oracle O is simply a set of examples which contains at least one example
for each component C in our table transformation domain.
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If O contains n examples, i.e. |O| = n, we say it is of size n. We use O to denote the oracle (of
infinite size) containing every possible example. Gauss’s algorithm uses two operations involving
the oracle, namely Witnessed and Strengthen. We slightly modify the original definitions (Definitions
6.5 and 6.8) to use examples explicitly:

Definition 6.9 (Witnessed(G, O, C)). Witnessed(G, O, C) returns true if there exists an example
(C,1, 0) € O such that G C CompAbstraction(C, 1, ¢,0) and false otherwise.

Definition 6.10 (Strengthen(G, O, C)). Strengthen(G, O, C) returns the largest G’ s.t. (a) G € G’
and (b) for all examples (C, Z ¢,0) € O, and isomorphisms G; of G C CompAbstraction(C,Z ¢,0),
there will be an isomorphism G; of G’ in CompAbstraction(C,Z ¢,0) such that G, C G/.

The reader may notice that the results of these functions are sensitive to the number of examples
used. This relates directly with the issues of soundness and completeness in the next section.

6.7 Soundness and Completeness

Gauss’s algorithm is trivially sound as it only returns a program if it satisfies the specification.
Completeness, on the other hand, depends on the soundness of the pruning strategies. That is,
programs pruned must be guaranteed to not solve the specification. The soundness of our pruning
strategies has already been discussed in the previous sections, but that discussion assumes that
the results of the Witnessed and Strengthen operations are correct, i.e., the oracle used is O. But in
practice, our oracle O is finite, containing |O| = n examples.

Fortunately, we can prove that for a finite set of graphs, there exists a finite oracle such that
it is behaviorally equivalent to O« when it comes to the results of the Witnessed and Strengthen
functions. Let us define behavioral equivalence first:

Definition 6.11 (Behavioral Equivalence). We say that O is behaviorally equivalent to O, with
respect to a (possibly infinite) set of graphs Sg, if Witnessed(G, Oy, C) = Witnessed(G, O, C) and
Strengthen(G, O,, C) = Strengthen(G, O, C) for all graphs G € S and for all components C.

THEOREM 6.12. If a set of graphs Sg is finite, there exists O of finite size n € N such that O is
behaviorally equivalent to O for Si.

Proor. Assuming a finite Sg, we can construct such an O as follows. Let us consider the case for
a single component C; we can then repeat this construction procedure for the finite number of
other components. For every graph G in Sg, if Witnessed(G, O, C) is true, there is some example
in Oy witnessing it. So, we add this example to O. Since Sg is finite, say |Sg| = k, this adds
at most k examples to O. Definition 6.10 implies that adding examples to O can only cause a
(monotonic) reduction in the number of nodes and edges added by Strengthen(G, O, C) to G. Suppose
Strengthen(G, O, C) adds n nodes and m edges while Strengthen(G, O, C) adds n” nodes and m’
edges to G respectively. We need to add examples to O to match the behavior; let us pick the
examples that cause a reduction of at least 1 in the number of nodes and edges added by Strengthen.
In the worst case, each example will only remove one node or edge, and we will need to add
(n—n’) + (m —m’) examples to O to get identical behavior on Sg. So, to match Oc,’s behavior, we
have added at most k + (n—n’") + (m —m’) to O for each component; this proves that O is finite. O

In our implementation for the domain of table transformations, the set of possible node and
edge labels is finite, and we set an upper limit of 2 on the number of inputs for each component.
Consequently, the number of possible unit queries is fixed. Further, we only track compound queries
at Line 9 in Algorithm 2 if it is obtained by merging at most 2 unit queries. Thus the set of graphs for
which Witnessed and Strengthen is invoked is finite, and by Theorem 6.12, there exists a finite oracle
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(a) Given the input data frame, the Ul creates the
input part of the graph, with structural edges. Some
rows are omitted from the graph for space.
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(c) The Ul provides a menu of functions that can be
computed on a data selection. After the user clicks
“STR_JOIN”, the Ul copies the resulting concatenated
string to the clipboard.
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(b) After a user directly copy-pastes values (“id1” and
“A” in the first column; “y” and “9” in the third column)
from the input to the output, the Ul adds output nodes

linked to the input.

(d) After pasting the result of a computation to the
output, in addition to adding the output nodes, the
Ul adds an intermediate node, linked to the output
via equality and to the inputs via relation edges.

Fig. 10. Walkthrough of how the Ul creates a graph spec. capturing intent as the user constructs the output.

containing n examples with which we can guarantee completeness. The problem of determining it
still remains however. We determine n empirically by generating random examples till the results
of Witnessed and Strengthen stabilize. We found that 100 random examples for each component
were enough for our domain. One can also use a set of benchmark problems with known solutions
to determine n which allows the algorithm to return the correct solution.

7 USER INTERFACE IMPLEMENTATION

We also provide a UI frontend to Gauss that helps users transparently create the intent graph as
they interact with the UI to construct a partial output. As shown in Figure 3, the user is presented
with interactive widgets for the input tables and an empty, editable space for constructing the
partial output. The user can simply copy-paste values from the input to the output or use any of
the primitive operations exposed by the UL These operations can be accessed via right-clicking on
any arbitrary selection of cells as shown in Figure 3b. Upon selection of the operation, the result is
copied into the clipboard using which the user can paste the value in the partial output. Once the
user is satisfied with the partial output provided, they can click Synthesize to retrieve solutions
from Gauss. If there are multiple solutions, the user can cycle through them in the UL

Note that directly editing the partial output is not permitted by the UL This ensures that values
in the partial output are some function of the input cells or columns. If operations need to be
chained together, such as taking the ratio of two sums, the UI provides a scratch space to store
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intermediate computations before pasting the result into the partial output. The publicly available
demo at https://github.com/rbavishi/gauss-oopsla-2021 contains a walkthrough of a problem that
can be solved using this scratch space feature.

Figure 10 shows how the UI records the intent graph when trying to solve the problem posed in
the StackOverflow post 62280527*. The original dataframe the user provides has two id columns
and two variable columns (see left of Figure 10a). One of the variables, x, depends on both id1 and
1d2, while the second, y, only depends on on id1. The user want to create a wider table, so that all
variables are dependent only on id1—by creating new columns that combine the id2-dependent
variable, x, with the different values of id2. In Figure 10a, the user first loads up the synthesis
engine with their input dataframe. At this stage, the UI adds the table abstraction—which captures
the structure of the input table, ref. Section 4—of the input dataframe to its graph specification.

Then, the user copies over a few values that are identical in the input and the output (Figure 10b).
Specifically, the user copies over: (1) the column header “id1” and the first value “A” of the column
to the first column of the output; and (2) the column header “y” and the first value in that column,
“9”, to the third column of the output. After each paste, the Ul adds nodes for the new output values,
and links these to the input nodes via equality edge. The right-hand side of Figure 10b shows the
graph specification after pasting both (“id1”, “A”) and (“y”, “9”) to the output.

Since the user wants new columns that combine x with different values of id2, they choose
“String Operations » STR_JOIN(_)” to concatenate x with the first value of the id2 column. The UI
copies the result—“x_a”—to the clipboard. When the user pastes the value to the second column
header in the output (Figure 10d), the Ul adds an intermediate node representing the result of the
computation to the graph specification. The Ul links this intermediate node to the input nodes used
in the computation via the JOIN relation edges and to the pasted output node via an equality edge.

At this point, the user could paste more values, but Gauss actually has enough information to
synthesize the transformation below:

out_1 = gather(input, “var”, “val”, “x”)
out_2 = unite(out_1, “newvar”, “var”, “id2”)
out_3 = spread(out_2, “newvar”, “val” )

This program is equivalent to the accepted answer for the StackOverflow post, which happens to
use the newly-added (Sep 2019) pivot_wider API function.

8 EVALUATION

In this section, we present a comprehensive evaluation of Gauss’s algorithm along two dimensions:

What is the upper-limit on the pruning power of graph-based reasoning? Given access to a total
specification i.e. an input/output example and a user intent graph capturing all relationships
between the input and output, how does Gauss compare against state-of-the-art pruning-based
synthesizers for table transformations that accept the example alone? We evaluate this by measuring
the synthesis runtimes and number of program candidates explored by each tool. As Gauss can
exploit the user intent graph, we expect it to take significantly less time to synthesize a solution
and explore far fewer candidates than the baselines.

Can user intent graphs reduce the size of output specifications? We also evaluate whether user
intent graphs can help reduce the burden of specifying a complete output. We minimize the
number of output elements—and related user intent graph nodes—in our specifications (Section
8.1), until GAuss can no longer find a solution. This allow us to measure the achievable reduction
in specification size that user intent graphs enable.

4https://stackoverflow.com/questions/62280527/
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Fig. 11. Comparison to ViSER, MORPHEUS and NEo. Red dots in (b) indicate timeouts. In (b) and (c), dots above
black line indicate that GAuss is better, and dots above teal dotted line indicate that GAuss is 10x better.

8.1 Baselines and Benchmarks and Hardware

We compare GAuss against three synthesizers: MORPHEUS [Feng et al. 2017], Neo [Feng et al. 2017]
and VISEr [Wang et al. 2019]. Our benchmark suite contains the 80 benchmarks used in MORPHEUS
[Feng et al. 2017], 50 benchmarks from NEo and 84 benchmarks from Viser [Wang et al. 2019].
Note that VISER couples the problems of synthesis of table transformation and plotting programs.
So, we extract the table outputs inferred during the first step of their algorithm as the output spec
for our benchmarks. We also discarded Viser benchmarks that were not solvable by Viser due to
the lack of expressiveness of its supported operations. MORPHEUs and NEo benchmarks are harder
than VIiser benchmarks in that their ground-truth solutions use 3-5 API function calls while those
for ViseR benchmarks use 1-2 function calls. The pandas operations GAuss supports are disjoint
from those targeted in AutoPandas [Bavishi et al. 2019a], so we cannot directly compare to it.

Since all three tools support slightly differing sets of operations and thus cannot solve a portion
of each other’s benchmarks, we instantiate and compare Gauss against them individually. All
experiments are performed on a 16-core Intel i9-9900K @ 3.6Ghz machine with 64 GB RAM running
Ubuntu 18.04. We use the publicly available implementations for all three tools.

Obtaining Total Specifications for GAUss. A total specification consists of (1) an example containing
input and full output tables and (2) a user intent graph capturing all relationships between the input
and output. This maps to a scenario where a user uses our Ul to provide a complete output table. For
our experiments, we obtain the user intent graph programmatically by using the graph abstraction
of the ground-truth program. Our graph abstraction does not retain any information about the
functions in the program or their arguments, and is thus suitable for modeling this scenario.
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8.2 Pruning Power

First, we assess the pruning capabilities of graph-based reasoning in Gauss. We measure this by
comparing the synthesis times and number of programs explored by Gauss (specification includes
user intent graphs) and our baselines (specification is only input-output examples). We use a timeout
of 10 minutes for MorPHEUs and NEo benchmarks and 20 minutes for VISER, both twice the number
used in the respective papers. Figure 11 shows the results.

Figure 11a compares the synthesis times of Gauss to each of the baselines. The x-axis shows the
time-budget and the y-axis shows the number of benchmarks that can be solved within that budget.
We see that (a) GAuss is able to solve all 80 MoRPHEUS benchmarks with a 2-minute budget while
MOoRPHEUS solves 78 with a 10-minute budget, (b) GAuss solves 48 out of 50 NEo benchmarks with
a budget of 10 minutes, with 47 in under a minute, while NEo solves 45 with a 10-minute budget
and (c) Gauss solves all 84 VIser benchmarks with a budget of 10 seconds while VISER only solves
81 with a 20-min. budget. Note that we ignore the time VISER spent synthesizing plotting programs.

Figure 11b shows a per-benchmark comparison of synthesis time. Dots above black solid line
on the figure are benchmarks where Gauss is faster than the respective tool, those above the teal
dashed lines are benchmarks indicate at least 10X speedups for Gauss, and those under dotted-
dashed gray line indicate 10x slowdowns by Gauss. Red dots along the horizontal and verical
axes represent timeouts for the baselines and Gauss respectively. We find that Gauss is faster
than MorPHEUs and NEO on most benchmarks (69/80 and 37/50 respectively), and at least 10x
faster on 35/80 and 20/50 benchmarks respectively. This is significant as MORPHEUS is written in
C++ and NEo is written in Java and both parallelize their search by program depth, while Gauss
is a sequential program written entirely in Python. Gauss is also faster than VIser on all but 2
benchmarks, and over 10X faster on 57 benchmarks.

Figure 11c shows a per-benchmark comparison of number of candidates explored. This includes
all partial and complete programs encountered during the search. The results reveal the root cause
of Gauss’s performance improvements: the additional graph specifications enable Gauss to explore
significantly fewer candidate programs than all baselines. For many Viser benchmarks, Gauss only
needs to explore one or two candidates before finding a solution. The effect is more pronounced
for NEo as its set of benchmarks are the hardest in terms of the size of the solution program. On
average across all benchmarks, GAuss prunes 76% of partial programs encountered in ENUMERATE
(Section 6.3) and 15% of skeletons in FEASIBLE (Section 6.4).

Overall, the results show that user intent graphs enable orders-of-magnitude reductions in the
search space compared to methods using only input-output examples as spec.

8.3 Specification Minimization

Now, we assess whether user intent graphs allow for a substantial reduction in the size of I/O
examples provided. In particular, we try to find the smallest output tables (and corresponding user
intent graphs) that still allow Gauss to synthesize the correct programs.

For this experiment, we only consider benchmarks from Viser [Wang et al. 2019] since it was
designed to work on partial input-output examples. For each benchmark, we manually minimized
the output and the user intent graph, while ensuring that Gauss still returns the correct solution.
In particular, we kept only the output elements (cells, column names, and row indices) which were
representative of the transformation. We correspondingly reduced the user intent graph to a graph
that includes the full input, but only the nodes associated with these output elements. This process
enables us to mimic a user inputting only these key output elements in our prototype UL

Figure 12 shows the results with each benchmark as a dot: the x-axis is the number of nodes in the
reduced output and the y-axis is the number of nodes in the full output. Note the log scale on both
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Full Output Size

Reduced Output Size

Fig. 12. Maximal reduction in number of output nodes such that Gauss still synthesizes the correct program.
Dots above the green line and grey line indicate that reduction is more than 10x and 100x respectively.

axes. The dots above the green line and grey line indicate benchmarks with 10X and 100X reductions
in size. We see that Gauss synthesizes the correct program even with orders-of-magnitude less
information about the output. On 87% of benchmarks, it finds the correct solution with 10 or fewer
output nodes; on 19% it finds the solution with only a single output node. The impact on runtime is
negligible: Gauss finds the solution 1.2X faster on average with partial outputs.

Overall, we find that the maximal reduction of output size—while retaining Gauss’s ability to
find the solution—is 33X on average. Although the reduction obtained by users in a real deployment
of our Ul would likely be less, these results suggest that capturing user intent can reduce the burden
of output specification.

9 DISCUSSION

Characterization of Graphs in Gauss. The graph abstractions for programs in GAuss can be
seen as data-flow graphs since they capture relationships between the inputs and outputs. The
algorithm does not place any restriction on edge or node labels, and hence the graphs can model any
relationship between the input and output. While we believe that the core Gauss algorithm could
work with different types of user intent specifications such as different relationships between input
and output tables, or input-output relationships for a new domain, our results are only applicable
to the specific graphs we describe for the domain of table transformations.

Necessity of a User Interface. GAUSs returns a solution program if its abstraction contains the user
intent graph as a subgraph. This inherently places the restriction that the user intent graphs need
to use the same collection of node and edge labels, and capture computation in the same way;, as the
graph abstraction. Our use of a a Ul solves this problem because the Ul translates user interaction
to a user intent graph. It also frees the user from needing to understand the internals of Gauss.

Ease of Use. Although we provide a Ul in this paper, we do not explicitly evaluate its usability.
Thus our empirical results, where we programmatically generate the user intent graph, may not
reflect real-world usage. For example, although our UI supports construction of partial outputs in
cases where chaining multiple computations is required—such as taking the ratio of two sums—,
it may not be easy to use. We feel intelligent UI design that allows users to input formulas for
such cases could help resolve this problem. In a preliminary run-through of the U, we had two
participants solve ten problems each: one was able to solve all 10, while the other participant only
solved eight. The experience is discussed more thoroughly in Appendix A.

Multiple Possible Representations. There may be multiple possible ways to construct the partial
output using our UL For example, a user could explicitly compute average by first taking a sum
and then dividing by the count. Our current implementation does not handle this case. This could
be handled by either implementing rewrite rules for graphs in the UI to represent the operation as
a mean, or incorporating such alternatives into the component abstractions.

Noise in Demonstrations. Finally, like many synthesis systems, GAuss is sensitive to noise in
the user-provided specifications: GAuss assumes that the specification is the ground-truth, and
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tries to find a program that matches the specification. However, in contrast to other input-output
based systems, Gauss assumes the output and user intent specification is constructed by the UL
This may reduce the likelihood of users adding some certain types of noise (e.g. a typo or error
in calculating the mean of some elements). A possible avenue for future work in this space is to
identify potentially noisy specifications—especially when the system fails to find a program—and
re-run the system with repaired versions of these specifications.

10 RELATED WORK

Component-Based Synthesis. In component-based synthesis, a small user-provided set of compo-
nents are combined to synthesize the target program. Similar to Sketch [Solar-Lezama et al. 2006],
Gascon et al. [2017]; Jha et al. [2010] have the end-user place a syntactic bias on the search space
by specifying the set of components needed. Feng et al. [2017] have the developer of the synthesis
engine instantiate the engine with a set of components, similar to GAuss.

Abstractions for Program Synthesis. Program abstractions have long been used to combat the
inherent search space explosion in program synthesis. BLAZE [Wang et al. 2017b] and AtrAs [Wang
et al. 2018] use abstract semantics of the DSL components to construct a compact representation of
all candidate programs to reason about them simultaneously. ATLAs learns these abstract semantics
from a separate training set of I/O examples. SYNQUID [Polikarpova et al. 2016] and MORPHEUS
[Feng et al. 2017] prune invalid programs using refinement-types and first-order logic specifications
respectively. MORPHEUS uses linear relationships between table attributes as specifications for
components. Singh and Solar-Lezama [2011] use I/O examples in the abstract domain of shapes,
termed storyboards, to synthesize low-level data-structure manipulations. The shapes discard
irrelevant details about the data-structure. GAuss combines the story-board and component-level
specifications approach. It accepts input-output examples along with graph-based specifications
of intent, and searches the space of programs efficiently using graph abstractions of components
provided by the developer.

Graphs for Program Synthesis. AutoPandas [Bavishi et al. 2019a] is a synthesis engine based on
deep learning that uses graphs to represent table transformations. These graphs are automatically
inferred from the I/O example, discarding most information about values in the graph except
for equality relationships. Our graph specifications are user-provided, and capture a lot more
information. Additionally AutoPandas relies on a huge training set of examples to train its graph
neural network, Gauss performs well with only 100 examples per function.

Synthesis using Divide-and-Conquer. The divide-and-conquer paradigm forms the basis for a
large body of literature in program synthesis powering a variety of application domains [Bavishi
et al. 2019b; Feser et al. 2015; Gulwani 2011; Polozov and Gulwani 2015]. Gauss falls in this bucket
as well as it decomposes the problem of satisfying the graph specification by dividing it into queries.

Rich Input Modalities and Interaction. A series of works that augment I/O examples with additional
information from the end-user. ScyTHE [Wang et al. 2017a], expects a bag of constants to be used in
the target SQL query. MaRs [Chen et al. 2019] exploits keywords from natural language descriptions
and short snippets from forums such as StackOverflow. Raza et al. [2015] accept natural language
descriptions for the sub-tasks, solutions for which are combined to form the final program. Systems
such as Trifacta [Rattenbury et al. 2017] track interactions of the user with the spreadsheet to
gather more information about their intent. GAuss’s graph abstraction shares the fundamental goal
of capturing extra relationships between the inputs and output.

Recent works also take the orthogonal route of using multiple rounds of interaction with the end-
user. Systems such as Bastani et al. [2019], Peleg et al. [2018] and WREX [Drosos et al. 2020] allow
users to inspect the produced program and refine the specification. Viser [Wang et al. 2019] allows
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users to provide more elements of the target visualization. Recently, Peleg et al. [2019] proposed
a model of interaction using predicate abstraction which formalizes termination conditions for
interactive synthesis. Similar interactions could be modeled with graphs—by adding nodes/edges
to direct the synthesizer to the desired part of the search space.
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A EXPERIENCE WITH REAL USERS

In building our prototype Gauss Ul we did an informal study of the UI with two computer science
graduate students. Both were unaffiliated with the Gauss project. The first student (henceforth
referred to as Participant 1) had some experience using pandas to transform tables while the second
student (henceforth referred to as Participant 2) did not.

We constructed a Jupyter notebook with 10 distinct problems for these participants to solve. Each
problem contained a natural language description of the desired transformation along with one
input-output example to illustrate the transformation. The goal was to find a program performing
this transformation. To enable participants to use GAuss to find the program, we provided a second
input which they could use to build an intent-annotated partial input-output example. We spent 15
minutes going over the basic features of the Gauss UL Then, for the first 5 problems, we asked the
participants to use the Ul exclusively to solve the problems: they had to load the second input and
construct a partial output that matched the specified transformation. For the remaining 5 problems,
we told the participants they could either use the Ul or consult any other resources, such as the
API documentation or a search engine, to come up with the solution. If a participant took more
than 10 minutes to solve a problem, we marked the problem as unsolved by the participant.

Both participants were able to solve the first 5 problems with the Ul alone. In fact, Participant 1
solved all 10 problems with the UI, taking 1-3 minutes for each problem, including interaction with
the U, as well as validating the solution. On all 10 problems, they only provided partial outputs
before coming to the correct solution. On 4 problems, they had to add more cells to the output—the
first partial output they provided did not have enough information for Gauss to find the correct
solution. Overall, though, Participant 1 only provided 24% of the output in their partial output.

Participant 2 timed out on 2 of the last 5 problems—they were unable to solve these problems
with the Ul and were unable to find external resources (i.e., via a search engine) to solve the problem.
On the 8 problems they did solve, they used the UI exclusively, taking 1.5-5.5 minutes for each
problem. Unlike Participant 1, Participant 2 provided full outputs on two of the problems.

There was one problem Participant 2 was unable to solve that could be solved in two different
ways: (a) by adding of three columns, or (b) by subtracting a single column from a column containing
the total of the remaining columns. Participant 1 took approach (b) and was able to solve the problem.
Gauss, surprisingly, was unable to solve the problem when Participant 2 used approach (a). This led
to a number of bug-fixes and currently Gauss synthesizes a correct solution for both the approaches.

Overall, this experience suggested that the UI approach to constructing user intent graphs was
certainly viable. However, there is also evidence that in practice, users may not always provide
sufficiently expressive user intent graphs. An in-depth study of this problem will be key to the
practicality of a Gauss-like approach in a deployment setting.
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