
Elastic Hyperparameter Tuning on the Cloud
Lisa Dunlap

UC Berkeley

lisabdunlap@berkeley.edu

Kirthevasan Kandasamy

UC Berkeley

kandasamy@berkeley.edu

Ujval Misra

UC Berkeley

ujval@berkeley.edu

Richard Liaw

UC Berkeley

rliaw@berkeley.edu

Michael Jordan

UC Berkeley

jordan@cs.berkeley.edu

Ion Stoica

UC Berkeley

istoica@berkeley.edu

Joseph E. Gonzalez

UC Berkeley

jegonzal@berkeley.edu

ABSTRACT

Hyperparameter tuning is a necessary step in training and

deploying machine learning models. Most prior work on

hyperparameter tuning has studied methods for maximizing

model accuracy under a time constraint, assuming a fixed
cluster size. While this is appropriate in data center environ-

ments, the increased deployment of machine learning work-

loads in cloud settings necessitates studying hyperparameter

tuning with an elastic cluster size and time and monetary

budgets.While recent work has leveraged the elasticity of the

cloud to minimize the execution cost of a pre-determined hy-

perparameter tuning job originally designed for fixed-cluster

sizes, they do not aim to maximize accuracy.

In this work, we aim tomaximize accuracy given time and
cost constraints. We introduce SEER—Sequential Elimination

with Elastic Resources, an algorithm that tests different hy-

perparameter values in the beginning and maintains varying

degrees of parallelism among the promising configurations

to ensure that they are trained sufficiently before the dead-

line. Unlike fixed cluster size methods, it is able to exploit

the flexibility in resource allocation the elastic setting has

to offer in order to avoid undesirable effects of sublinear

scaling. Furthermore, SEER can be easily integrated into ex-

isting systems and makes minimal assumptions about the

workload. On a suite of benchmarks, we demonstrate that

SoCC ’21, November 1–5, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3486989

SEER outperforms both existing methods for hyperparame-

ter tuning on a fixed cluster as well as naive extensions of

these algorithms to the cloud setting.

ACM Reference Format:

Lisa Dunlap, Kirthevasan Kandasamy, Ujval Misra, Richard Liaw,

Michael Jordan, Ion Stoica, and Joseph E. Gonzalez. 2021. Elas-

tic Hyperparameter Tuning on the Cloud. In ACM Symposium on
Cloud Computing (SoCC ’21), November 1–5, 2021, Seattle, WA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3472883.

3486989

1 INTRODUCTION

The performance of deep learning models depends crucially

on the choice of training hyperparameters. These hyperpa-

rameters affect the runtime and convergence properties of

the entire training process. Hyperparameter tuning refers to

the task of choosing and evaluating several such hyperparam-

eter configurations in order to find a good set of values for the

given learning task. Hyperparameter tuning is computation-

ally intensive and typically requires exhaustive enumeration

and evaluation of hundreds of candidate hyperparameter

configurations. To evaluate each configuration, the corre-

sponding model must be at least partially trained, which can

take hours or even days to complete using multiple parallel

accelerators.

Many of the widely used hyperparameter tuning meth-

ods [20, 21] are based on a single core idea — sequential

elimination. Typically, these methods partially train models

with several configurations, eliminate the poor performing

candidates and continue training the more promising con-

figurations. The freed resources from the early rounds of

elimination can be used to evaluate other candidate con-

figurations or accelerate training of the better performing

configurations. The more configurations that are evaluated,

the better chance we have of evaluating the optimal config-

uration. However, by applying more resources to the most

33

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3472883.3486989
https://doi.org/10.1145/3472883.3486989
https://doi.org/10.1145/3472883.3486989
https://creativecommons.org/licenses/by/4.0/

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

GPU 8

Time (mins)00:00 10:00

(a) ASHA

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

GPU 8

Time (mins)00:00 10:00

(b) HyperSched

High accuracy

More GPUs

Fewer GPUs

GPU 1

GPU 2

GPU 5

GPU 6

GPU 7

GPU 8

GPU 9

GPU 10

GPU 11

GPU 12

GPU 13

GPU 14

GPU 15

GPU 16

Time (mins)00:00 10:00

GPU 3

GPU 4

B
racket 2

B
racket 1

Low accuracy

SH Round 1 Round 2 Round 3

(c) SEER

Figure 1: Resource allocation of (a) ASHA [21], (b) Hyper-

sched [22], and (c) SEER (our method) on a 10 minute exper-

iment with a budget of 80 GPU-minutes. Each color repre-

sents a distinct promising configuration while grey repre-

sents configurations that were eliminated in a short time.

The shaded area, which indicates total GPU minutes, is the

same for all methods.

promising configurations, we increase the accuracy of the

final model even if it is not the optimal configuration.

The hyperparameter tuning process is often time con-

strained. For example, in settings like click through rate

(CTR) prediction where accuracy is critical and data is con-

stantly changing, machine learning engineers wish to ensure

that accurate, well-tuned models are released weekly, daily,

or even hourly. Similarly, achieving state-of-the-art results

in AI research requires rapid iteration of model development

and consequently hyperparameter tuning.

Fortunately, hyperparameter tuning exposes multiple de-

grees of parallelism. Early work in hyperparameter tuning

leveraged parallelism (e.g. Fig. 1a) to run multiple concurrent

configurations. However, since parallelism is not applied to

individual configurations, this approach may not adequately

train the best configuration within the allotted time bud-

get. Recent systems work by Liaw et al. [22] explored how

to allocate parallelism between different parallel training

runs (Fig. 1b) to balance the need to explore different hyper-

parameter values and adequately train the best identified

configuration to maximize accuracy within a deadline. Un-

fortunately, the degree to which parallelism can be efficiently

exploited varies throughout the hyperparameter tuning pro-

cess. The exploration of multiple concurrent hyperparameter

configurations enjoys perfect scaling while the accelerated

training of any single configuration often has relatively poor

parallel scaling (see Fig. 2). This is usually the result of two

factors: first, synchronizing gradient updates at the end of an

iteration can lead to bottlenecks which decrease the through-

put of the combined workers; second, convergence is faster

if gradient updates are performed sequentially (when the

loss is computed using the updated model) than if they are

done in parallel. This variation in scaling efficiency results in

poor utilization of fixed-sized clusters and presents a unique

opportunity for cloud computing.

As the majority of machine learning workloads move to

the cloud, we are no longer constrained by the assumption of

a fixed pool of resources for hyperparameter tuning. More-

over, rather than operating under the constraint of a fixed

pool of resources, hyperparameter tuning in the cloud is

constrained by a monetary budget that can be spent at a

varying rate throughout the hyperparameter tuning process.

The elasticity available in the cloud offers a unique opportu-

nity to both reduce the cost of hyperparameter tuning and

increase accuracy under a fixed time budget.

The elastic setting, when compared to the fixed cluster

setting, allows flexibility in the allocation of resources and

consequently allows us to minimize the effects of nonlinear

scaling. Since the amount of resources can be scaled up or

down, any number of configurations in an initial exploration

phase can be executed simultaneously; while this takes the

same resource-time as the fixed resource setting, it finishes

much sooner. This allows us to allocate more resource-time

to the promising configurations without having to parallelize

unnecessarily.

In an attempt to adapt fixed-cluster methods to the cloud

setting, Misra et al. [24] proposed Rubberband, a system

that minimizes the execution cost of a fixed-cluster hyper-
parameter tuning policy (e.g., Successive Halving[14]) while

finishing before a given deadline. Rubberband leverages pro-

filing information about the model and cloud environment to

simulate the cost and execution time of a given hyperparam-

eter tuning job under different resource allocations, greedily

searching for an allocation with the cheapest cost that fin-

ishes before a given deadline. While Rubberband enables

these methods to be more cost effective, it heavily relies on

simulation and does not directly derive a policy for elastic

hyperparameter search.

In this paper, we reformulate the hyperparameter tuning

problem in terms of time and cost (resource-time) constraints.

Rather than elastically scaling the execution of a fixed-cluster

policy to reduce cost (i.e., Rubberband), we instead focus on

the design of an elastic policy that given a time deadline and
a cost budget, determines the optimal resource-time allocation
to maximize accuracy.

34

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1–5, 2021, Seattle, WA, USA

1.0 2.0 4.0 8.0
Number of GPUs

0.0

2.0

4.0

6.0

8.0
Th

ro
ug

hp
ut

 S
ca

lin
g

1.049x
1.552x

2.761x

1.684x

3.107x

5.735x

VGG16
ResNet50

Figure 2: Model throughput of VGG16 and ResNet50

models trained on SVHN VS the number of GPUs

per model. While using more GPUs does speed up

training, this speed up is non-ideal due to decreased

throughput and the non-iterative nature of gradient

updates. The dashed green line depicts linear scaling.

We introduce a simple, yet principled, new policy for se-

quential elimination with elastic resources (SEER) which

optimizes the final model accuracy under fixed cost and time

budgets. Taking inspiration from prior works, SEER is able to

balance exploration and exploitation by executing brackets

which run hyperparameter configuration candidates (dubbed

trials) with different levels of model or data parallelism, en-

abling SEER to explore a large amount of configurations in

the beginning, with the more promising trials getting more

resources as the experiment progresses.

We theoretically analyze this new policy and show that

it enjoys guarantees similar to those in the fixed-cluster

setting [20]. Importantly, unlike previous work [20], we are

able to model the sublinear scaling characteristics of a single

training job, and prove that SEER is able to do well even

without knowledge of the scaling characteristics.

We extend Rubberband [24] with the new SEER policy.

This approach leverages the elastic job scaling executor in

Rubberband while eliminating the dependence on the sim-

ulation and search heuristics needed to adapt prior fixed-

resource policies to the elastic setting.

Our contributions are as follows. First, we formalize the

setting of identifying and maximally training the best hyper-

parameter configuration with elastic resources and a fixed

budget. Second we develop a new algorithm, SEER, for this

setting and explain how SEER can be easily incorporated into

the existing Rubberband framework. Third, we evaluate our

method on a suite of benchmarks for classification, image

segmentation, and natural language processing.

To the best of our knowledge, this is the first work to

develop new machine learning methods with the explicit

goal of exploiting the flexibility the cloud has to offer in

allocating resources.

2 RELATEDWORK

Historically, hyperparameter tuning has been viewed as a

global optimization problem in the machine learning com-

munity. Some examples of such approaches include random

search [2], branch-and-bound methods [3, 15], and Bayesian

optimization [1, 8, 12, 16, 30].

One popular line of work in hyperparameter tuning algo-

rithms are built on successive halving (SH) [14, 17], which

eliminates potential configurations in stages, running con-

figurations for a small number of evaluations and allowing

the highest performing configurations advance to the next

stage. Li et al. [20] designed Hyperband which is based

on SH. However, the best configuration may not perform

well in the early stages, and hence Hyperband runs multiple

instances of SH, with each training its configurations to dif-

ferent lengths before elimination. Asynchronous successive

halving (ASHA) (Fig. 1a), which adapts Hyperband to multi-

ple workers, executes successive halving asynchronously on

multiple parallel workers. Finally, Falkner et al. [7] present

a Bayesian version of Hyperband (BOHB) which assumes

a prior on the accuracy over all hyperparameter values and

chooses its recommendation based on the posterior.

However, none of the above works explicitly consider how

to allocate resources when training the candidates chosen,

instead training the chosen models using a single worker for

a desired duration. This can be undesirable, especially when

operating under tight deadlines, since combining workers

can lead to faster training. While it is possible to define a

worker to have multiple resources, e.g. by defining multiple

GPUs to be one worker , this is a rather blunt tool; all models,

including those that are not promising, will be trained using

multiple resources, leading to sub-optimal performance.

To our knowledge, the only works which explicitly studies

resource allocation for hyperparameter tuning are Hyper-

Sched [22] (Fig. 1b) and Rubberband [24]. HyperSched’s

algorithm is similar to ASHA; however, as the deadline ap-

proaches it avoids testing new configurations and allocates

more resources to the promising ones using some simple, yet

intuitive, heuristics. While it performs well for the intended

setting, as we will show, it can suffer from sublinear scaling

and perform poorly when compared to elastic methods. Rub-

berband [24] is a recent hyperparameter tuning system that

aims to minimize the cost of a given hyperparameter tuning

job (e.g. a successive halving run) via profiling models and

greedily searching for the best allocation of resources. While

this work operates in the same setting as ours, Rubberband

assumes that the practitioner wants to execute an existing

hyperparameter tuning job, while our work aims to design a

hyperparameter tuning job that satisfies the time and cost

constraints while maximizing accuracy of the final model.

That is, Rubberband requires a practitioner to design the job

35

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

in the form of training plans, which might require domain

expertise. On the other hand, our policy only requires the

time and budget constraints as input.

Along with HyperSched and Rubberband, there are

multiple frameworks for hyperparameter tuning. Google

Vizier [10], Determined AI [21], and Kitlab [9] target hy-

perparameter tuning in distributed setting. In comparison

to our system, Google Vizier and Katlib do not incorporate

time and cost constraints, which are key characteristics of

our problem. Determined AI supports executing ASHA on

pre-emptible instances but their algorithm does not account

for resource elasticity. Our framework is built on Tune [23],

which is in turn built on Ray [25]; we can therefore leverage

the autoscaling features of Ray to rescale a cluster, run dis-

tributed hyperparameter tuning experiments, and complete

the task within the confines of a given cost and deadline.

Lastly, a new line of work Pollux [27] aims to tune the

batch size and learning rate of a model, allocating resources

considering cluster-wide performance and fairness. While

this system does leverage the ability to provision and de-

provision resources in order to optimize for job performance,

Pollux does not claim to be a general hyperparameter tuning

framework as it focuses solely on optimizing the number of

GPUs, batch size, and learning rate.

3 METHOD

In order to address the above issues and take advantage of

the elastic setting, we develop SEER (Sequential Elimination

with Elastic Resources). SEER is built on the same intuitions

as Hyperband, and manages the exploration and exploitation

trade-offs by varying the amounts of parallelism; we will

explain these connections in depth at the end of this section.

3.1 Overview

The goal of SEER is to find a final model with high accu-

racy. This requires managing the given resources to search

for good hyperparameter configurations, and then training

them long enough to ensure that the final model is trained

to convergence. To achieve this, SEER leverages the intu-

ition that models with different hyperparameters converge

at different rates and moreover can converge to different

final accuracies (see Fig 3). Therefore, if a trial (a model with

a certain set of hyperparameters) converges quickly, many

trials should be launched and eliminated after few evalu-

ations, and if the trial converges slowly, few trials should

be launched and run for more evaluations. As we make no

assumptions about the convergence rate beforehand, SEER

generates multiple brackets, where each bracket has a differ-
ent number trials and a different number of resources per trials
(Fig 1c). This allows for both cases to be taken care of: if a

trial converges quickly, then the low-performing trials can

0 25 50 75 100 125 150 175
Epochs

0.2

0.4

0.6

0.8

M
ax

 A
cc

ur
ac

y

Figure 3: Accuracy curves of running grid search us-

ing ResNet18 trained on CIFAR10. Each line represents a

model with unique hyperparameters. It is clear that dif-

ferent hyperparameters converge to different accuracies,

and some hyperparameters (green line) converge very

quickly while other hyperparameters (yellow and blue

line) take longer to converge. Thus, SEER reasons that as

evaluations come in, more resources should be dedicated

to the yellow and blue lines while less resources should

be dedicated to the green line.

be quickly eliminated and the high performing trials can be

moved to a bracket with more resources per trial. If a trial

converges slowly, then the brackets with more resources will

train fewer trials for longer, giving them the time to converge

before they are eliminated.

The SEER algorithm is outlined in Algorithm 1. Bold-

face upper case letters denote lists (indexing starting at

1). SEER takes in 7 arguments, although only the first 2

are required: a search deadline 𝑇 (units in minutes), bud-

get 𝐵 (units in resource-minutes), and optional parameters

𝑝max, 𝑝min, 𝑡min, 𝜂, and 𝜈 which we will discuss further in

Sec 3.2. There are no restrictions on the amount of resources

we can acquire at a given time, but we should pay for the

duration we use a resource. Furthermore, resources are inte-

gral (e.g. fractional GPUs cannot be assigned to a task), but

time and cost are continuous.

At a high level, SEER executes multiple brackets, where it

is instructive to think of each bracket as one instantiation

of SH. It is important to note that the start and end time of

each elimination round (stage) of SH is the same among all

brackets. Thus, each bracket finishes in time 𝑇 , but allocates

a different number of resources per trial resulting in varying

degrees of parallelism.

To formalize SEER’s use of brackets and successive halv-

ing, letX denote the space of hyperparameters. These can be

continuous, discrete, ordinal, or a combination of the above.

We assume that we can draw random samples from X. Each
bracket assigns an amount 𝑝 resources to each of the trials

36

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1–5, 2021, Seattle, WA, USA

Algorithm 1 SEER

Require: deadline 𝑇 , cost budget 𝐵, 𝜂, 𝜈, 𝑝min, 𝑝max, 𝑡min (defaults 𝜂 = 4, 𝜈 = 2, 𝑝min = 1, 𝑝max = ∞, 𝑡min = 1).

1: 𝐾, 𝑡1,N, P← compute-bracket-parameters(𝑇, 𝐵, 𝜂, 𝑝max, 𝑡min).
2: 𝑆1 ← randomly sample

∑
len(P)
𝑖=1

N[𝑖] trials from X. Order them arbitrarily.

3: for 𝑘 = 1, 2, . . . , 𝐾 do

4: 𝑠 = 1 # Starting index for current bracket.

5: for 𝑖 = 1, 2, . . . , len(P) do concurrently in parallel # Each round here takes time 𝑡1𝜂
𝑘−1

.

6: 𝑆𝑖
𝑘
← the 𝑠 th to (𝑠 + ⌊N[𝑖]/𝜂𝑘−1⌋)th trials in 𝑆𝑘 . # Trials in the 𝑖 th bracket at round 𝑘 .

7: 𝑠 ← ⌊N[𝑖]/𝜂𝑘−1⌋
8: Train all trials in 𝑆𝑖

𝑘
concurrently in parallel for time 𝑡1𝜂

𝑘−1
with P[𝑖] resources each, then evaluate.

9: Remove the lowest ⌊N[𝑖]/𝜂𝑘⌋ performing trials of 𝑆𝑖
𝑘
from 𝑆𝑘 # SH elimination.

10: end for # Better trials to be moved to a bracket with more resources.

11: 𝑆𝑘+1 ← Order the trials in 𝑆𝑘 in descending order of loss.

12: end for

13: return The last element in 𝑆𝐾+1.

Algorithm 2 Compute number of SH rounds (𝐾), time (𝑡1), number of trials (N), and number of resources per trial (P)

1: procedure compute-bracket-parameters(𝑇 , 𝐵, 𝜂, 𝜈 , 𝑝min, 𝑝max, 𝑡min)

2: Let 𝑅★ be the largest 𝑅 > 0 which satisfies the following two conditions,

𝑅𝜂

(𝜂−1)

(
1 − 𝜂−⌈log𝜂 𝑅⌉

)
≤ 𝑇

𝑡min

, 𝑝min𝑅⌈log𝜂 𝑅⌉ ≤ 𝐵
𝑡min

. # This can be done using binary search

3: 𝐾 ← ⌈log𝜂 𝑅★⌉ #Number of SHA rounds per bracket

4: 𝑡1 ← 𝑡min𝑅★𝜂
−(𝐾−1)

#Duration of the first round

5: 𝐵0 ← 𝑝min𝑡min𝑅★⌈log𝜂 𝑅★⌉. # Budget of the first round

6: B, P← compute-bracket-budgets(𝐵, 𝐵0, 𝜈, 𝑝min, 𝑝max). # Budget, resources-per-trial per bracket.

7: for 𝑖 = 1, 2, . . . , len(P) do
8: N[𝑖] ← ⌊ B[𝑖]

𝐾𝑡1P[𝑖] ⌋. #Number of trials launched in the 𝑖 th bracket.

9: end for

10: return 𝐾, 𝑡1,N, P
11: end procedure

Algorithm 3 Compute bracket budget (B) and bracket parallelism (P)

1: procedure compute-bracket-budgets(𝐵, 𝐵0, 𝜈 , 𝑝min, 𝑝max)

2: Let 𝑞★ be the largest positive integer 𝑞 > 0 satisfying 𝑞𝜈𝑞−1 ≤ 𝐵/𝐵0. #𝑞★ = number of brackets

3: if 𝑝min𝜈
𝑞★−1 < 𝑝max then # The max number of resources-per-trial is less than 𝑝max

4: P = [𝑝min, 𝑝min𝜈, 𝑝min𝜈
2, . . . , 𝑝min𝜈

𝑞★−1, min(𝑝max, 𝑝min𝜈
𝑞★)].

5: B[𝑖] ← 𝐵0𝜈
𝑞★−1

for 𝑖 ≤ 𝑞★, B[𝑞★ + 1] ← (𝐵 − 𝐵0𝑞★𝜈𝑞★−1)
6: else # The max number of resources-per-trial is more than 𝑝max, so remove brackets and add trials

7: Let 𝑞′★ be the largest integer 𝑞 ≥ 0 satisfying 𝑝min𝜈
𝑞 < 𝑝max. #𝑞′★ = neq number of brackets

8: P← [𝑝min, 𝑝min𝜈, 𝑝min𝜈
2, . . . , 𝑝min𝜈

𝑞′★, 𝑝max], B← (𝐵/len(P)) ∗ 1len(P) .
9: end if

10: return B, P
11: end procedure

in that bracket for some time 𝑡 , at which point they will be

evaluated and a subset of them will be eliminated before

moving to the next stage of successive halving. In the case

of a typical machine learning setting, when 𝑝 resources are

assigned to a hyperparameter 𝑥 ∈ X for time 𝑡 , a trial initi-

ated with hyperparameters 𝑥 is trained for 𝑡 timesteps using

𝑝 resources, at which point it is evaluated (e.g. evaluate the

trial on the validation set). For our experiments, we interpret

training a trial with 𝑝 resources as training this model in a

37

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

data-parallel fashion over 𝑝 GPUs, but one could instead use

pipeline-parallelism or a different parallelization strategy.

Similarly, while our experiments use validation accuracy as

our evaluation metric, one could pick any metric they want

to minimize or maximize (e.g. minimizing loss).

The parameters for each bracket is computed using the

compute-bracket-parameters (Algorithm 2) subroutine,

which returns 𝐾, 𝑡1,N, P. The algorithm proceeds in 𝐾 stages

and trials can be transferred from one bracket to another

at the end of a stage depending on how well it performs.

For this, it maintains an ordered set of trials in 𝑆𝑘 , for 𝑘 =

1, . . . , 𝐾+1. First, 𝑆1 is sampled randomly fromX and ordered

arbitrarily. In the 𝑘 th
stage, we evaluate the trials in 𝑆𝑘 in

different brackets. At the end of the stage, we order the trials

according to their loss values to produce 𝑆𝑘+1. In order to

prioritize the promising trials, in the next stage, the number

of trials evaluated per bracket is reduced to 1/𝜂 of its value

in the previous stage, and moreover trials that yields a lower

loss value are assigned to brackets with higher parallelism

(line 3). This also ensures that only (1/𝜂) fraction of the trials
are carried forward from one stage to another.

Since trials are trained for more epochs in brackets with

more resources, a natural question that arises is whether the

trials in the bracket with less resources will ever outperform

trials in the bracket with more resources. While the trials

in the highest bracket will get more evaluations, since we

sample more trials in lower brackets (see Fig1(c)), we are

more likely to sample a good trial which can quickly yield

high accuracy. Such trials will bemoved to a higher bracket in

the next stage. In our experiments, we found that the optimal

trial was equally likely to have been initially sampled from

low or high brackets.

3.2 Optional Arguments

Along with the required inputs of deadline 𝑇 and budget 𝐵,

SEER takes in 5 other optional parameters 𝜂, 𝑝max, 𝑝min, 𝑡min,

and 𝜈 which can be set if the user has additional knowledge

of their workload. Unless otherwise stated, we use the default

parameters in our experiments.

The parameter 𝜂 (> 1) is a standard parameter in succes-

sive halving algorithms that dictate how aggressively we

eliminate poorly performing parameters and 𝜈 (≥ 1) dic-
tates how aggressively we increase the number of parallel

resources assigned to a trial. When 𝜂 is large, we eliminate

parameters more aggressively, whereas when 𝜈 is small we

increase the degree of parallelism aggressively.

Next, 𝑝min and 𝑝max are hard constraints on the minimum

and maximum number of resources that can be assigned

to a configuration. A case in which a user may want to set

𝑝𝑚𝑖𝑛 > 1 would be if training a trial for one epoch (aka one

evaluation) on one machine takes a very long time, so the

user would set 𝑝𝑚𝑖𝑛 higher to shorten the experiment time.

On the flip side, a user may want to set 𝑝𝑚𝑎𝑥 < ∞ if they

knew that a trial’s throughput does not increase when given

more than a certain number of machines [13], so allocating

any more would simply be wasting resource-time.

Lastly, 𝑡𝑚𝑖𝑛 specifies the minimum training time before we

choose to eliminate a configuration. In practice, this should

be set to roughly how long it takes to train a trial for 1-

2 epochs, unless the user has more information as to the

convergence rate of their trials (if all trials are slower to

converge, this may want to be set higher). We do note that

often it is not known how long it takes to train a trial for 1-2

epochs, but this can be easily profiled and we have observed

in our experiments that this parameter can be set slightly

more or less than the actual training time with minimal

effects on the results.

3.3 Computing Bracket Parameters

The computation of the bracket parameters 𝐾, 𝑡1,N, P as out-

lined in Algorithm 2 leverages some of the intuitions regard-

ing non-ideal scaling alluded to in Section 1. To illustrate this,

assume, for now, that the deadline 𝑇 is small, but the budget

𝐵 is large; more concretely, when computing 𝑅★ in line 2, the

first inequality is tight, but 𝑝min𝑅★⌈log𝜂 𝑅★⌉ < 𝑀 . Loosely

speaking, in this case, the algorithm has a large budget, and

it must decide if it should train a small number of trials (𝑁)

using more resources per configuration (𝑝) or if it should

train a large number of trials using fewer resources per trial.

If the problem is such that training each trial can take a long

time to converge, then we should prefer the former. On the

other hand, if convergence is fast, then we should prefer the

latter. In the absence of any prior knowledge, there is no way

to say a prioriwhat the optimal trade-off would be. Therefore

SEER hedges its bets by dividing up its total cost budget and

executing different brackets with different (𝑁, 𝑝) values.
When determining the appropriate 𝑝 values as stated

above, it starts with small values of 𝑝 . This accounts for

the fact that, like most parallel systems, model training ex-

hibits diminishing returns when more resources are used

in parallel. By starting with small 𝑝 and stretching out the

cost for as long as possible, we ensure that the cost was

spent as efficiently as possible. However, parallelism can

speed up training, and hence SEER increases the amount

of parallelism with the cost budget 𝐵. Specifically, we start

new brackets with successively higher amount of parallelism

when 𝐵 increases to certain thresholds dependent on 𝜈 .

Finally, suppose that the specified budget is “too small” for

the given deadline; i.e. in line 2, the second inequality is tight,

but
𝑅𝜂

(𝜂−1)

(
1 − 𝜂−⌈log𝜂 𝑅⌉

)
< 𝑇 . Then, the algorithm creates a

single bracket with P[1] = 𝑝min and N[1] = 𝐵/(𝐾𝑡1𝑝min),
which exhausts the budget and finishes sooner than the

38

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1–5, 2021, Seattle, WA, USA

deadline. Alternatively, had we attempted to ‘stretch out’

the budget to fill up the deadline, it could result in worse

performance, as we may have to reduce the number of trial

sampled to stay within the budget. In the previous case, when

the inequality for 𝑇 was tight, increasing the budget could

indeed result in better performance since the additional bud-

get is used to both increase the amount of resources spent

on existing brackets and create new brackets with more re-

sources per-trial. However, in this case, the budget creates a

bottleneck and increasing the deadline further does not alter

the behavior or output of the algorithm.

3.4 Example

To better illustrate this method, let’s consider the plan pro-

duced by SEER for a𝑇 = 10minute experiment with a budget

of 𝑇 = 80 GPU-minutes and 𝜂 = 2 as shown in Fig 1c.

Here, we obtain 𝑅∗ = 5.714, 𝐾 = 3, 𝑡1 = 1.42, and 𝐵0 =

17.142, meaning that there will be 3 elimination rounds, with

the first round taking 1.42 minutes and requiring 17.142

GPU-minutes. Then, using Algorithm 3 we obtain the num-

ber of brackets 𝑞∗ = 2, the total budget per bracket (B =

[17.142, 34.283, 11.432]), and the parallelism of each bracket

(P = [1, 2]).
From here we can Algorithm 2 to obtain the number of

trials initialized for each bracket N = [8, 4]. Now we have

everything we need to run SEER: first, 12 hyperparameter

configurations will be randomly selected from a predefined

search space. For round 1 of SH (from 𝑡 = 0 to 𝑡 = 𝑡𝑚𝑖𝑛 =

1.42 minutes), 8 trials will be trained with 1 GPU each in

bracket 1 and the remaining 4 trials will be trained with

2 GPUs in bracket 2. At the end of round 1, the 4 lowest

performing trials in bracket 1 will be eliminated and the 2

lowest performing trials from bracket 2 will be eliminated.

At the start of round 2, the top 2 performing trials will be

assigned to bracket 2 and the rest will be assigned to bracket

1. From time 𝑡 = 𝑡𝑚𝑖𝑛 = 1.42 to 𝑡 = 𝑡𝑚𝑖𝑛𝜂
𝑘−1 = 2.84 minutes,

4 trials will be trained with 1 GPU and 2 trials will be trained

with 2 GPUs. After elimination, the highest performing trial

at the beginning of round 3 will be trained with 2 GPUs and

the 2nd and 3rd highest performing trials will be trained

with 1 GPU from time 𝑡 = 4.26 to 𝑡 = 9.94 minutes. Lastly,

the highest performing trial after round 3 will be returned

by SEER. This is visually represented by Fig 1c.

3.5 Comparison with Prior work

SEER uses similar intuitions to SH, Hyperband, ASHA, and

Hypersched. However, SEER is catered to our elastic and

deadline-aware setting. For instance, SEER’s strategy of run-

ning multiple brackets with different amounts of parallelism

is similar in spirit to Hyperband’s stratgy of running multiple

SH instances where each hyperparameter configuration is

trained for different lengthts of time (or iterations). However,

while the latter strategy works for any time algorithms, it

may not be suitable when there is a deadline. Additionally,

in SEER, trials are transferred from one bracket to another

depending on how well they perform, whereas in Hyper-

band, each SH instance is run independently. We design a

naive elastic variant of Hyperband and show that it performs

worse than SEER.

Furthermore, the generation of a hyperparameter tuning

job is an important distinction from Rubberband [24], which

also takes into account time and cost budgets. Unlike the

other previous works, Rubberband assumes that the user

already has an experiment they want to run, say a succes-

sive halving experiment, and the way in which compute

resources are allocated to execute said plan will not affect

the final accuracy. Thus, Rubberband does not aim to maxi-

mize accuracy but rather to minimize cost of a job with a set

accuracy. In contrast, our work aims to replace the profiling

and simulation step of Rubberband that converts a fixed clus-

ter policy to the elastic setting, and run the job generated by

SEER on Rubberband’s executor.

4 THEORETICAL ANALYSIS

We now present our theoretical analysis. Our proofs are

given in Appendix A, with some technical lemmas skipped

due to space constraints. Our first result simply verifies that

SEER does not exceed the time and cost budgets.

Fact 1. Algorithm 3 completes in time at most 𝑇 and ex-
pends resource-time at most 𝐵.

Our main theoretical results bound the difference between

the configuration returned by SEER and the optimal configu-

ration in X. Intuitively, we show that SEER does well using

varying levels of parallelism. For this, we will begin with

some assumptions on the problem.

Let ℓ : X × R+ → [0, 1] denote the loss functions de-

fined over X, where, for example, ℓ (𝑥, 𝑡) denotes the val-

idation loss when we train the model with hyperparame-

ter 𝑥 ∈ X for time 𝑡 ∈ R+ using a single resource. Let

ℓ∞ : X → [0, 1] denote the terminal losses over X. That
is, ℓ∞ (𝑥) = lim𝑡→∞ ℓ (𝑥, 𝑡) is the final loss when we train

the model to completion with hyperparameter 𝑥 . We will

assume that this limit exists for all 𝑥 ∈ X, and therefore ℓ∞

is well defined. Let ℓ★ = inf𝑥 ∈X ℓ∞ (𝑥) be the optimal loss

value in the given spaceX. Next, we will define 𝛾 : R+ → R+
to be the pointwise smallest monotonically decreasing func-

tion satisfying sup𝑥 ∈X |ℓ (𝑥, 𝑡) − ℓ∞ (𝑥) | ≤ 𝛾 (𝑡). Intuitively,
if 𝛾 is small it means all configurations in X converge to

their terminal values fast. We will denote the inverse of 𝛾 by

𝛾−1 (𝑦) = inf{𝑡 ∈ R+;𝛾 (𝑡) ≤ 𝑦}. Note that both 𝛾 and 𝛾−1 are
decreasing functions.

39

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

Next, recall that each instance of SH in SEER randomly

samples initial hyperparameter configurations from some

distribution 𝑃 , with supp (𝑃) = X. Let 𝐹 denote the induced

CDF of terminal losses when configurations are sampled

from 𝑃 , i.e. 𝐹 (𝑦) = P𝑋∼𝑃 (ℓ∞ (𝑋) ≤ 𝑦). Clearly, supp (𝐹) ⊂
[ℓ★, 1). We will denote the inverse of 𝐹 by 𝐹−1 (𝑧) = inf{𝑦 :

𝐹 (𝑦) ≤ 𝑧}. The assumptions above are consistent with simi-

lar assumptions on this problem in previous work (e.g. [14,

20]), except we state all our quantities in terms of (continu-

ous) time, instead of epochs.

However, in a departure from prior work, we will model

the scaling effects of using multiple resources for evaluating

a single model via the function 𝜆 : N+ → R, which has the

following interpretation: the loss after training 𝑥 ∈ X for

time 𝑡 is ℓ (𝑥, 𝜆(𝑝)𝑡). Clearly 𝜆(1) = 1 as per our definition

of ℓ above. 𝜆 is an increasing function, which captures the

fact that more resources can help you train faster. The sub-

linear scaling of using multiple resources for the same job

can be modeled via the assumption that 𝜆(𝑝)/𝑝 is decreasing

with 𝑝; i.e. the per resource efficiency decreases with more

resources. For instance, this implies that 𝜆(𝑝) ≤ 𝑝 , mean-

ing that training for time 𝑡 with 𝑝 resources is worse than

training for time 𝑝𝑡 with a single resource.

Observe that many of the above assumptions are stated

in abstract terms. Moreover, the algorithm is agnostic to

quantities such as the loss functions ℓ , the convergence rate

𝛾 , and the scaling characteristics 𝜆; this is by design—in

practice, it is usually not possible to know them ahead of time

for an arbitrary hyperparameter tuning job. Therefore, while

sequential elimination strategies such as SH are known to

be optimal for stochastic best arm identification [4], our goal

here is less ambitious. We simply wish to (i) demonstrate

that the algorithm will behave reasonably under suitable

assumptions on the problem, and (ii) understand the effects

of the deadline, budget, and parallelism in the elastic setting.

To simplify the exposition we will assume that 𝑝min = 1

and 𝑝max = ∞. Suppose that the configuration returned

by the algorithm is 𝑥 and that this was trained using 𝑝

resources. Denote the final loss after training for time 𝑇

by ℓ̂ = ℓ (𝑥,𝑇𝜆(𝑝)). We are interested in bounding the er-

ror ℓ̂ − ℓ★. We will state our theorem in the case where

𝑇 =
𝑅𝜂

(𝜂−1)

(
1 − 𝜂−⌈log𝜂 𝑅⌉

)
. That is, the deadline constraint

for 𝑅★ in line 2 is tight. Let 𝑞★ be as defined in line 2. Under

this, we see that 𝑅★ is an increasing function of 𝑇 and 𝑞★ is

an increasing function of 𝐵. Our main result, stated in terms

of 𝑅★ and 𝑞★ demonstrates that as both 𝑇 and 𝐵 increases,

the loss of the returned model is close to the optimal value

ℓ★ with high probability.

Theorem 2. Consider an execution of Algorithm 3 with
parameters 𝜂 and 𝜈 . Moreover, let 𝑅★ and 𝑞★ be as defined in
lines 2 and 2. For 𝛿 > 0, define 𝑢★(𝛿) = log(2𝑞★/𝛿)/𝑅★. Let

𝛿 ∈ (0, 1) be such that the following holds,

min

𝑗≤𝑞★

(
2𝜂

𝜆(𝜈𝑞★−𝑗)

∫
1

𝑢★ (𝛿)
𝛾−1

(
𝐹−1 (𝑡) − ℓ★

4

)
d𝑡 + (1)

20𝜂2

3𝑅★𝜈
𝑞★−𝑗𝜆(𝜈 𝑗)

log

(
2𝑞★

𝛿

)
𝛾−1

(
𝐹−1 (𝑢★(𝛿)) − ℓ★

4

))
≤ 1.

Let ℓ̂ be the trained loss of the best model returned by the
algorithm. Then with probability at least 1−𝛿 , we have ℓ̂−ℓ★ ≤
4(𝐹−1 (𝑢★(𝛿)) − ℓ★).

We first observe that there always exists some 𝛿 ′ ∈ (0, 1)
such that for all 𝛿 > 𝛿 ′, the given condition in the theorem

is satisfied, However 𝛿 ′ may be large if, intuitively speaking,

either 𝐹 is a heavy-tailed distribution (i.e. an optimum is

hard to find via randomly sampling from the space) or 𝛾

converges slowly to 0 (i.e. the model class converges slowly).

In contrast, when 𝐹 and𝛾 have smaller tails, then we can also

find small 𝛿 such that the condition is true, and consequently,

we will have a small bound on the error 4(𝐹−1 (𝑢★(𝛿) − ℓ★) .
To illustrate this, observe that as 𝑢★ has just log depen-

dence on 𝑞∗/𝛿 . Moreover, as it decreases with 𝑅★, it also does

so with𝑇 . Therefore, the bound 4(𝐹−1 (𝑢★(𝛿) − ℓ★) decreases
with the deadline𝑇 . Next, fix the deadline𝑇 , and assume that

we increase 𝐵. Then, 𝑞★ increases and therefore both terms

in the LHS of (1) decrease; this follows from the fact that

𝜆 is an increasing function. Hence, for a given 𝑗 ≤ 𝑞★, the
expression in the LHS becomes smaller with large 𝐵, which

means it is likely to be smaller than 1 for small 𝛿 values.

This improves the probability that the final bound will hold.

Additionally, when 𝑞★ increases there will be more terms to

account for in the minimisation, which increases the chances

that one of them will be smaller than 1. This reflects the fact

that when the budget increases, it is used to both, increase

the number of configurations in existing SH instantiations

and create more instantiations with higher parallelism.

On the flip side, when 𝑅★ is large, 𝑢★ is small which in-

creases the value of both terms in the LHS. However, pro-

vided that 𝛾 is decaying fast enough, the effect of these terms

can be negligible–see Section 5.3.2 in Li et al. [20]. Moreover,

while large 𝑞★ does affect the expression (1) and the final

bound negatively, it only does so by log factors.

Next, let us turn to the effects of parallelism on the result,

for which we will fix 𝑞★ and 𝑅★. Since 𝜆 is an increasing

function of the number of resources, the first term in the

LHS of (1) decreases with a large number of resources. How-

ever, in the second term, since 𝜆(𝑝)/𝑝 is decreasing due to

sublinear scaling, the coefficient 1/(𝜈𝑞★−𝑗𝜆(𝜈 𝑗)) is small for

instances 𝑗 with fewer resources. The optimal 𝑗 will depend

on 𝛾 and 𝐹−1. This captures the fact that the optimal level of

parallelism depends on the problem: if training converges

slowly, it might be better to sample few trials and train them

for long, and vice versa if training converges fast.

40

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1–5, 2021, Seattle, WA, USA

It must be stated that an algorithm which accounts for

many of the problem specific quantities such as 𝛾 , 𝐹 , and 𝜆

will able to achieve better guarantees and better quantify the

dependence of the error ℓ̂ − ℓ★ in terms of these quantities.

That said, it is worth noting that even though SEER is agnos-

tic to these quantities, the above theorem demonstrates that

it behaves sensibly: as 𝐵 and 𝑇 increases so do the chances

of the returned model being close to the optimal.

5 SYSTEM DESIGN & IMPLEMENTATION

As stated previously, we employ Rubberband’s executor to

handle the placement of trials and scaling of the cluster. The

executor contains three main components: the trial sched-

uler, placement controller, and cluster manager. Each com-

ponent leverages Tune [23], an open source framework for

distributed hyperparameter tuning and model training, as

well as the distributed framework Ray [25], which is able to

launch training jobs in parallel as well as scale a cluster up

or down.

If the current cluster needs to change or resources need

to be reallocated (e.g. at the end of a stage), the scheduler

requests the cluster manager to provision new nodes or de-

provision existing ones. To reallocate workers, the placement

controller will convert the resource quantity allocated to

each trial into physical resource assignments for its workers.

Parallel workers of a trial should be either colocated on a

single machine or packed onto a minimal set of nodes. By

colocating workers, the distributed training algorithm will

avoid incurring unnecessary network overheads.

We modify Rubberband’s existing scheduler to take in

plans generated by SEER (along with all baselines in Sec-

tion 6) and use Rubberband’s cluster manager and placement

controller for execution.

Rubberband’s current scheduler takes in an allocation pol-
icy, which defines the hyperparameter tuning job to execute.

This allocation policy is comprised of stages, which specify

how many trials to run and how many epochs/evaluations

to run them for. This allocation policy is then used by the

simulator to determine the allocation of resources to each

trial within a stage, with all resources being shared equally.

In contrast, SEER needs an allocation policy which already

specifies how to allocate resources and which allows trials

within each stage to be given a different number of resources.

Thus our allocation plan is a series of skewed stages, each
with start and stop time, a list of trials, and their respective

number of resources. At the end of a stage 𝑘 , the top 1/𝜂
fraction of trials are chosen to continue onto stage 𝑘 + 1.
As indicated in Algorithm 3, the best performing trials get

the most resources. When proceeding from one stage to the

next, the configurations that do not progress to the next stage

are eliminated. The cluster manager will determine which

(if any) instances need to be terminated and the placement

controller will re-allocate the remaining resources to the

surviving trials such that worker colocation is maximized.

Finally, we mention that while prior systems for hyperpa-

rameter tuning [21, 23] use the number of epochs to define

a stage in their design, we use wall clock time because in-

stances charge by the amount of time used, and estimating

the time it takes for a single epoch can be difficult, especially

in the case of stragglers. While our approach avoids wasting

time waiting for stragglers, it is also possible that the time for

a stage may run out before any configurations has finished

a single epoch. In this case, the user can specify a minimum

amount of time per stage via the parameter 𝑡min to ensure all

configurations have finished at least one epoch before they

are eliminated or promoted.

6 EXPERIMENTS

We present our experimental evaluation in this Section.

6.1 Setup

All experiments are run on AWS p3.8xlarge instances, each

of which provides 4 NVIDIA Tesla V100 GPUs. We utilize

a single r5.8xlarge instance to coordinate experiments and

host model checkpoints. In practice, the price of the CPU

instance is negligible in comparison to that of GPU instances,

and is therefore ignored for the purposes of this evaluation.

To ensure a fair comparison across all benchmarks, we also

provide results only for experiments where there were no

node failures.

Unless otherwise stated, we use a fixed batch size of 2048

throughout the entire experiment. Since scaling up the batch

size with the number of GPUs has been shown to have un-

predictable performance, we set a large batch size and use

gradient accumulation to ensure that the batch size does not

change during learning.

6.2 Search Spaces

Our search space is taken from previous works [20–22]. Tab.

1 depicts the search space for standard image classification

benchmarks used for the image classification benchmarks in

Sec. 6. For the segmentation benchmarks, the search space is

the same except all the learning rate parameters are divided

by 10. For the text classification task, all the learning rate

parameters are multiplied by 3 and we add in a parameter

for the embedding size with choices of 8, 16, 32, 64, and 128.

6.3 Baselines

We do not compare against Rubberband’s simulator as Rub-

berband does not have the objective of maximizing accuracy,

and instead convert some fixed-cluster algorithms into elastic

algorithms to fairly compare how to SEER.We compare SEER

41

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

Hyperparameter Space

Learning Rate 1e-4, 5e-4, 1e-3, 5e-3,

0.01, 0.05, 0.1, 0.5, 1

Weight Decay 0.0001, 0.0005, 0.001, 0.005

Momentum 0.9, 0.95, 0.99, 0.997

Table 1: Standard search space for vision models

to 4 fixed-cluster algorithms: Random, ASHA, HyperSched,

and BOHB; as well as 2 elastic algorithms: Elastic Hyper-

band (E-Hyperband) and Elastic grid searc (E-Grid Search).

Random: This chooses a random configuration in the search

space and trains it for the entire duration using a fixed cluster

size so that the resource-time is equal to the given budget.

This is a natural baseline which indicates whether or not

hyperparameter tuning is necessary for a problem.

ASHA, HyperSched, BOHB: These are methods from

prior work which are based on successive halving. We use

the same parameter 𝜂 for these methods as we did for SEER

and E-Hyperband. They also require specifying a minimum

and maximum resource allocation (which in this case is

number of epochs) as specified in Section 3. We set them

on a per-experiment basis using the guidelines provided in

the respective papers. Additionally, HyperSched requires

specifying a scaling function which maps the number

of resources to throughput. For the vision benchmarks,

we use the functions given in their paper, and for the

NLP and segmentation tasks, we use the default in their

implementation.

It is worth mentioning, that the above methods cannot be

naturally executed in an elastic environment as their policies

explicitly depend on the number of workers available.

E-Hyperband: This adapts Hyperband–which is tradition-

ally run sequentially–to the elastic setting by running all

brackets in parallel, and calculating its input to produce a

plan that satisfies the time and monetary constraints pro-

vided. Hyperband defines its brackets in terms of 𝑅, the max-

imum amount of resources to give to a single configuration.

Since the concept of a resource is generic, we could define

𝑅 as the largest 𝑟 which is less than the deadline but also so

that the cost is less than the given budget.

E-Grid Search: This is a simple search technique with a

set exploration and exploitation phase: given a deadline 𝑇

(minutes), budget 𝐵 (GPU-minutes), andmax/min parallelism

𝑝min/𝑝max, 𝑇 /2 minutes are allocated for exploitation of the

top trial using 𝑝max resources, and𝑇 /2minutes are allocated

for exploration, with each trial getting 𝑝min resources and

the number of trials chosen based on 𝐵. Unless otherwise

stated, we set 𝑝min = 1, 𝑝max = 4 for both the elastic grid

search baseline and SEER.

6.4 Benchmarks

We evaluate the above methods on five datasets on three

tasks, image classification, image segmentation, and text

classification.

Image Classification: We evaluate 3 different image

classification models/datasets: VGG16 [29] on SVHN [26],

ResNet18 [11] on CIFAR10 [18], and (3) ResNet50 [11] on

TinyImagenet [19]. For our TinyImagenet experiments, we

begin with a model pretrained on ImageNet. We use an SGD

optmizer and a plateau learning rate scheduler, where the

learning rate halves after the model has trained for 5 epochs

without any accuracy increase.

Image Segmentation: We evaluate FCN ResNet50 [28] on

the PASCAL VOC2012 [6] segmentation dataset. Since this

is a fairly large dataset, for E-Hyperband, E-Grid Seach, and

SEER, we set 𝑝max = 8 and change 𝑡min to 5 minutes. We

use an SGD optimizer with a ploy learning rate scheduler as

described above, and a batch size of 4.

Text Classification We evaluate BERT [5] on the Muli-

Genre Natural Language Inferene corpus (MNLI) dataset

from the General Language Understanding Evaluation

(GLUE) benchmark [31]. Given a premise sentence and

a hypothesis sentence, the task is to predict whether the

premise entails the hypothesis (entail- ment), contradicts

the hypothesis (contradiction), or neither (neutral). We

evaluate on both the matched (in-domain) and mismatched

(cross-domain) sections. We use a model pretrained on

lowercase english text from the Huggingface repository [32].

For Hyperband, E-Grid Seach, and SEER, we set 𝑝𝑚𝑎𝑥 = 8

and changed 𝑡𝑚𝑖𝑛 from 1 minute to 10 minutes.

Results. As shown in Tables 2, 4, and 3, SEER outper-

forms the other methods on all benchmarks. One interesting

observation is that the naive E-Grid Search baseline often

outperforms other sophisticated fixed-cluster baselines. As

mentioned before, this suggests that the effects of non-ideal

scaling can be significant in practice and highlights the ben-

efits of cloud-specific algorithms. ASHA performs poorly

since it spends too much time exploring configurations even

close to the deadline, indicating that carefully designed re-

source allocation strategies canmake a difference in deadline-

aware settings.

6.5 Different Budgets and Deadlines

Figure 4 shows the performance of SEER and other methods

when we vary the deadline for a fixed budget and when we

vary the budget for a fixed deadline. SEER generally outper-

forms other methods, with the largest performance gains

coming from the short deadline, high budget settings. This

is because HyperSched is able to sufficiently explore trials

in a larger deadline. Figure 4b shows that when the budget

is fixed GPU minutes, SEER outperforms the baselines, but

42

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1–5, 2021, Seattle, WA, USA

Method Model Dataset Deadline GPU minutes Accuracy Std-Error

Random VGG16 SVHN 15 4 × 15 0.19 0.028

ASHA VGG16 SVHN 15 4 × 15 0.819 0.053

HyperSched VGG16 SVHN 15 4 × 15 0.927 0.021

BOHB VGG16 SVHN 15 4 × 15 0.458 0.086

E-Hyperband VGG16 SVHN 15 4 × 15 0.921 0.015

E-Grid Search VGG16 SVHN 15 4 × 15 0.944 0.010

SEER VGG16 SVHN 15 4 × 15 0.956 0.005

Random ResNet18 CIFAR10 60 16 × 60 0.226 0.101

ASHA ResNet18 CIFAR10 60 16 × 60 0.896 0.006

HyperSched ResNet18 CIFAR10 60 16 × 60 0.932 0.005

BOHB ResNet18 CIFAR10 60 16 × 60 0.864 0.000

E-Hyperband ResNet18 CIFAR10 60 16 × 60 0.914 0.005

E-Grid Search ResNet18 CIFAR10 60 16 × 60 0.904 0.001

SEER ResNet18 CIFAR10 60 16 × 60 0.935 0.001

Random ResNet50 TinyImagenet 60 16 × 60 0.091 0.064

ASHA ResNet50 TinyImagenet 60 16 × 60 0.212 0.068

HyperSched ResNet50 TinyImagenet 60 16 × 60 0.581 0.019

BOHB ResNet50 TinyImagenet 60 16 × 60 0.110 0.055

E-Hyperband ResNet50 TinyImagenet 60 16 × 60 0.630 0.003

E-Grid Search ResNet50 TinyImagenet 60 16 × 60 0.632 0.049

SEER ResNet50 TinyImagenet 60 16 × 60 0.675 0.001

Table 2: Results from training various models and datasets for image classification. Accuracy is averaged across

3 runs. We have separated the elastic and inelastic methods with a dashed line. If the deadline is 𝑡 and the budget

is 𝑛 × 𝑡 GPU-minutes, it means an inelastic algorithm would have used 𝑛 resources for the entire duration of 𝑡

minutes.

Method M/MM Accuracy Std-Error

Random 0.651 / 0.657 0.078 / 0.098

ASHA 0.837 / 0.831 0.002 / 0.001

HyperSched 0.834 / 0.837 0.001 / 0.001

BOHB 0.814 / 0.817 0.001 / 0.000

E-Hyperband 0.836 / 0.831 0.002 / 0.001

E-Grid Search 0.833 / 0.815 0.001 / 0.002

SEER 0.839 / 0.840 0.001 / 0.002

Table 3: Results from fine-tuning BERT on MNLI

dataset with a deadline of 120minutes and a budget

of 16 × 120 GPU-minutes. Accuracy is recorded for

both the matched and mismatched sections.

Method Mean-IOU Std-Error

Random 0.413 0.078

ASHA 0.519 0.005

HyperSched 0.524 0.061

BOHB 0.474 0.078

E-Hyperband 0.503 0.003

E-Grid Search 0.524 0.006

SEER 0.541 0.008

Table 4: Results from training FCNResNet50 on the

Pascal VOC2012 segmentation dataset with a dead-

line of 180 minutes and a budget of 16 × 180 GPU-

minutes.

HyperSched outperforms SEER and ASHA on the smallest

budget 8 × 30, because SEER only evaluates 13 trials and is

less likely to find an optimal configuration than HyperSched

which evaluates more trials.

7 CONCLUSION

Limitations: In this section we list the potential limitations

of our work. Similar to HyperSched with a similar problem

formulation, ASHA will outperform SEER given a very large

deadline since it tests more configurations and has enough

time to train them to convergence. Furthermore, HyperSched

will match or outperform SEER given a small budget, because

SEER tests much fewer configurations and the wasted re-

sources due to sub-linear model scaling is minimized. As

mentioned in Sec. 6.4 and 6.5, SEER may also perform poorly

when the the deadline is very small (∼10-15 minutes) because

of cluster resizing overheads.

43

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

15 30 60
Deadline (mins)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

0.774

0.818

0.896
0.878

0.906

0.932

0.824

0.886

0.914
0.899

0.913
0.9040.898

0.918
0.935

ASHA
HyperSched

E-Hyperband
E-Grid Search

SEER

(a) CIFAR10 Different Deadlines

8 16 32
Budget (GPU-mins)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

0.815 0.818

0.844

0.912 0.906
0.918

0.885 0.886 0.8940.900
0.913 0.9190.911 0.918 0.926

ASHA
HyperSched

E-Hyperband
E-Grid Search

SEER

(b) CIFAR10 Different Budgets

Figure 4: Results of tuning ResNet18 onCIFAR10with (a) a fixed budget of 16×deadlineGPU-minutes for deadlines

of 15, 30, and 60 minutes and (b) a fixed deadline of 30 minutes and budgets of 8 × 30, 16 × 30, and 32 × 30 GPU-

minutes. HyperSched outperforms SEER on a budget of 8 × 30 GPU-minutes because SEER evaluates very few

trials and the effects of sublinear scaling are minimized.

Summary: In this work, we formalize the problem of elas-

tic hyperparameter tuning in terms of time and cost con-

straints to find a model with high accuracy. We introduce

SEER, which produces a resource allocation plan to evalu-

ate several hyperparameters, and train the promising one to

completion based on the stipulated time and cost budgets.

It leverages elasticity to sufficiently explore configurations

while maintaining different levels of parallelism to identify

the best trade-off for the problem. The proposed method out-

performs fixed-cluster methods and naive elastic heuristics

on a variety of deep learning benchmarks.

The cloud introduces new opportunities and challenges for

machine learning. While the existing literature has focused

on system design for the cloud, this work demonstrates that

more algorithmic work is needed to fully realize the benefits

of the cloud for emerging machine learning workloads.

A PROOFS OF THEORETICAL RESULTS

In order to prove Theorem 2, we will require two intermedi-

ate results. The first of these is a technical result taken from Li

et al. [20] which shows that if we draw many samples from

X, the small terminal losses of the samples should be close to

the optimal loss in X. Its proof is similar to the above paper,

and therefore we skip it due to space constraints.. Recall the

definitions of 𝑃 , 𝐹 and 𝛾 from Section 4.

Lemma 3 (Adapted from Lemma 2, Li et al. [20]).

Let 𝛿 ∈ (0, 1). Suppose we draw 𝑁 = 𝑀𝑁 ′ i.i.d. samples
𝑥1, . . . , 𝑥𝑁 from 𝑃 such that, 𝑀, 𝑁 ≥ 1 are integers and
ℓ∞ (𝑥1) ≤ ℓ∞ (𝑥2) ≤ · · · ≤ ℓ∞ (𝑥𝑁). Denote 𝑢𝑁 ′ = log(2𝑀/𝛿)

𝑁 ′ .

Define,

H(𝑁, 𝛿) = 2𝑁

∫
1

𝑢𝑁 ′
𝛾−1

(
𝐹−1 (𝑡) − ℓ★

4

)
d𝑡

+ 10

3

log

(
2

𝛿

)
𝛾−1

(
𝐹−1 (𝑞𝑁) − ℓ★

4

)
.

Then, with probability at least 1 − 𝛿 ℓ∞ (𝑥𝑀) ≤ 𝐹−1 (𝑢𝑁 ′), and

𝑁∑
𝑖=1

𝛾−1
(
max

{
𝐹−1 (𝑢𝑁 ′) − ℓ★,

ℓ∞ (𝑥𝑖) − ℓ∞ (𝑥𝑀)
4

})
≤ H(𝑁, 𝛿) .

Our next result states that a SH procedure can achieve low

loss if enough resource time is allocated to it.

Lemma 4. Consider a set of𝑁 configurations {𝑥1, 𝑥2, . . . , 𝑥𝑁 }
such that ℓ (𝑥1) ≤ ℓ (𝑥2) ≤ . . . ℓ (𝑥𝑁). Assume that we executed
successive halving with parameter 𝜂 for 𝐾 (≤ log𝜂 (𝑁)) stages
using 𝑝 workers for each configuration. Let 𝑀 = ⌈𝑁 /𝜂𝐾 ⌉.
Define 𝐵SH as follows,

𝐵SH (𝜖) =
𝐾𝜂𝑝

𝜆(𝑝)𝛾
−1

(
max

{
𝜖

4

,
ℓ∞ (𝑥𝑖) − ℓ∞ (𝑥1)

4

})
Let ℓ̂ denote the smallest observed loss among all surviving
configurations at the end of the 𝐾 th stage. If 𝐵 ≥ 𝐵SH, then
ℓ̂ ≤ ℓ𝑀 + 3𝜖/4.

Proof. For brevity, denote ℓ∞(𝑥 𝑗) = ℓ𝑗 and ℓ (𝑥 𝑗 , 𝑡) =

ℓ𝑗,𝑡 . Denote the time taken for round 𝑘 by 𝑡𝑘 , and let 𝑡𝑘 =∑
𝑘′≤𝑘 𝑡𝑘′ . Let the arms surviving at the end of round 𝑘 by 𝑆𝑘 .

Let 𝑆𝐾+1 denote the arms surviving after the 𝐾 th
stage. Recall,

that SH chooses the best arm at the end of the 𝐾 th
stage.

44

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1–5, 2021, Seattle, WA, USA

First, consider the time taken for the 𝑘 th
round,

𝑡𝑘 =
𝐵/𝐾
𝑝 |𝑆𝑘 |

≥ 𝜂

|𝑆𝑘 |𝜆(𝑝)

𝑁∑
𝑗=1

𝛾−1
(
max

{
𝜖

4

,
ℓ𝑗 − ℓ𝑀

4

})
≥ 𝜂

|𝑆𝑘 |𝜆(𝑝)
max

𝑖=1,...,𝑁
𝑖𝛾−1

(
max

{
𝜖

4

,
ℓ𝑗 − ℓ∞ (𝑥𝑀)

4

})
≥ 1

𝜆(𝑝)𝛾
−1

(
max

{
𝜖

4

,
ℓ⌈𝑁 /𝜂𝑘 ⌉ − ℓ𝑀

4

})
(2)

First, assume that at least one of the first 𝑀 arms, say 𝑥𝑚 ,

survived after 𝐾 stages. By (2), we have 𝑡𝑘 ≥ 𝛾−1 (𝜖/4)/𝜆(𝑝),
and therefore, |ℓ𝑚,𝜆 (𝑝)𝑡𝐾 − ℓ𝑚 | ≤ 𝛾 (𝑡𝑘𝜆(𝑝)) ≤ 𝜖/4. For the
model with the best loss we therefore have,

ℓ̂ − ℓ𝑀 ≤ ℓ𝑚,𝑡𝐾 − ℓ𝑚 + ℓ𝑚 − ℓ𝑀 ≤ 𝜖/4.

Here, we have used the fact that ℓ̂ ≤ ℓ𝑚,𝑡𝐾 and that ℓ𝑚 ≤ ℓ𝑀 .
This proves the result if one of the first𝑀 arms survives the

𝐾 rounds. In the remainder of the proof we will prove the

result assuming that none of them do.

First define 𝜏 𝑗 = 1

𝜆 (𝑝)𝛾
−1

(
ℓ𝑗−ℓ𝑀

2

)
. If 𝑡 > 𝜏 𝑗 , for any 𝑖 =

1, . . . , 𝑁 after time 𝑡 of training with 𝑝 workers, we have

|ℓ𝑖,𝑡𝜆 (𝑝) − ℓ𝑖 | ≤ 𝛾 (𝑡𝜆(𝑝)) ≤ (ℓ𝑖 − ℓ𝑀)/2. Applying this to 𝑀

and 𝑗 we have, ℓ𝑗,𝑡𝜆 (𝑝) − ℓ𝑀,𝑡𝜆 (𝑝) = ℓ𝑗,𝑡𝜆 (𝑝) − ℓ𝑗 + ℓ𝑗 − ℓ𝑀 + ℓ𝑀 −
ℓ𝑀,𝑡𝜆 (𝑝) = (ℓ𝑗,𝑡𝜆 (𝑝) − ℓ𝑗) + (ℓ𝑀 − ℓ𝑀,𝑡𝜆 (𝑝)) + ℓ𝑗 − ℓ𝑀 ≥ 0. In

particular, this implies that if ℓ𝑗,𝑡𝜆 (𝑝) < ℓ𝑀,𝑡𝜆 (𝑝) , then 𝑡 < 𝜏 𝑗 .
If none of the first 𝑀 arms survived the 𝐾 rounds, this

means there must exist 𝑘 ≤ 𝐾 and𝑚 ≤ 𝑀 such that 𝑥𝑚 ∈ 𝑆𝑘 ,
but 𝑥𝑚 ∉ 𝑆𝑘+1. Therefore,

𝑥𝑚 ∈ 𝑆𝑘 ∧ 𝑥𝑚 ∈ 𝑆𝑘+1 =⇒
∑
𝑗 ∈𝑆𝑘

1(ℓ𝑗,𝑡𝑘𝜆 (𝑝) < ℓ𝑀,𝑡𝑘𝜆 (𝑝)) ≥
⌊
𝑁

𝜂𝑘

⌋
=⇒

∑
𝑗 ∈𝑆𝑘

1(𝑡𝑘 < 𝜏 𝑗) ≥
⌊
𝑁

𝜂𝑘

⌋
=⇒ 𝑡𝑘 < 𝜏 ⌈𝑁 /𝜂𝑘 ⌉ .

Combining the above result with (2), we have, for𝑘 as defined

above, the following two conclusions.

𝜖

4

>
ℓ⌈𝑁 /𝜂𝑘 ⌉ − ℓ𝑀

2

, 𝑡𝑘 >
1

𝜆(𝑝)𝛾
−1 (𝜖/4).

Let 𝑞 = min{ 𝑗 ∈ [𝑁]; (ℓ𝑗 − ℓ𝑀)/2 ≥ 𝜖/4}. The first of the
above two conclusions implies that 𝑞 ≥ ⌈𝑁 /𝜂𝑘⌉. Addition-
ally, the second conclusion implies that for all 𝑗 ≥ 𝑞,

𝜏 𝑗 =
1

𝜆(𝑝)𝛾
−1

(
ℓ𝑗 − ℓ𝑀

2

)
≤ 1

𝜆(𝑝)𝛾
−1 (𝜖/4) = 𝑡𝑘 .

as 𝛾−1 is decreasing. Therefore, for all 𝑗 ≥ 𝑞, we have

ℓ𝑖,𝑡𝑘𝜆 (𝑝) > ℓ𝑀,𝑡𝑘𝜆 (𝑝) > ℓ𝑚,𝑡𝑘𝜆 (𝑝) . This means that all arms

𝑖 ≥ 𝑞 will have been eliminated before or at the same time

as𝑚. And hence, for all remaining arms, by the definition

of 𝑞, we have ℓ𝑖 − ℓ𝑀 ≤ 𝜖/2. Since this is true for all

configurations surviving at stage 𝑘 + 1, it is also true for

configurations at the very end, including, in particular, 𝑥 .

Finally, we note that since 𝑡𝐾 ≥ 𝑡𝐾 ≥ 𝛾−1 (𝜖/4), we have,

ℓ̂ − ℓ𝑀 ≤ ℓ̂ − ℓ∞ (𝑥) + ℓ∞ (𝑥) − ℓ𝑀 ≤ 𝜖/4 + 𝜖/2 ≤ 3𝜖/4. □

The next result combines the above two results to provide

a guarantee on a given SH instance in Algorithm 3.

Lemma 5. Consider a SH instance in Algorithm 3 with pa-
rameter 𝜂, 𝑁 = 𝑀𝜂𝐾−1 arms, and 𝑝 workers for each configu-
ration, which has been executed for 𝐾 stages with the time for
first stage 𝑡1. Let 𝑢 = log(2𝑀/𝛿)/𝜂𝐾−1. If,

1 ≥ 2𝜂

𝜆(𝑝)

∫
1

𝑢

𝛾−1
(
𝐹−1 (𝑡) − ℓ★

4

)
d𝑡+

20

3𝑁𝜆(𝑝) log
(
2

𝛿

)
𝛾−1

(
𝐹−1 (𝑢) − ℓ★

4

,

)
,

Then, ℓ̂ − ℓ★ ≤ 4(𝐹−1 (𝑢) − ℓ★) with probability at least 1 − 𝛿 .

Proof. Assume that the two events specified in Lemma 3

hold, which they do with probability ≥ 1 − 𝛿 . By starting

with given condition we can show (steps skipped due to

space constraints), 𝑁𝐾𝑡1𝑝 ≥ 𝐵SH (4(𝐹−1 (𝑢) − ℓ★)). We can

now apply Lemma 4 to obtain ℓ̂ − ℓ∞ (𝑥𝑀) ≤ 3(𝐹−1 (𝑢) − ℓ★),
where 𝑥𝑀 is the𝑀 th

configurationwhen the𝑁 configurations

are ordered according to their terminal losses. Applying the

first event of Lemma 3, we have ℓ̂ − ℓ★ ≤ ℓ̂ − ℓ∞ (𝑥𝑀) +
ℓ∞ (𝑥𝑀) − ℓ★ ≤ 4(𝐹−1 (𝑢) − ℓ★). □

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that Algorithm 3 executes

at least 𝑞★ instantiations where 𝑞★ is as defined in line 2.

Here, the 𝑖 th stage will have N[𝑖] = 𝜂𝐾−1𝜈𝑞★−𝑖 configurations
and use P[𝑖] = 𝜈𝑖 workers per configuration.
We will now apply Lemma 5 with 𝛿 ← 𝛿/𝑞★ for each

of 𝑞★ instances. Now assume that the condition stated in

the theorem holds for a given 𝛿 ∈ (0, 1). This means, for

some 𝑗 ≤ 𝑞★ the expression inside the minimum is smaller

than 1. Let 𝑢★ = log(2/𝛿)/𝑅★ and 𝑢 = log(2𝑀𝑞★/𝛿)/𝜂𝐾−1.
By noting that 𝑢★ ≥ 𝑢 and that 𝛾−1 is a decreasing function,

we can show (steps skipped due to space constraints),

1 ≥ 2𝜂

𝜆(P[𝑖])

∫
1

𝑢

𝛾−1
(
𝐹−1 (𝑡) − ℓ★

4

)
d𝑡+

20

3N[𝑖]𝜆(P[𝑖]) log
(
2𝑞★

𝛿

)
𝛾−1

(
𝐹−1 (𝑢) − ℓ★

4

,

)
.

That is, the condition in Lemma 5 holds for 𝑗 . Applying its

conclusion yields, ℓ̂ − ℓ★ ≤ 4(𝐹−1 (log(2𝑞★/𝛿)/𝑅★) − ℓ★). □

45

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Dunlap et al.

REFERENCES

[1] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton,

Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2019.

Botorch: Programmable bayesian optimization in pytorch. arXiv
preprint arXiv:1910.06403 (2019).

[2] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.

2011. Algorithms for Hyper-Parameter Optimization. In Advances in
Neural Information Processing Systems.

[3] Sébastien Bubeck and Nicolò Cesa-Bianchi. 2012. Regret Analysis of

Stochastic and Nonstochastic Multi-armed Bandit Problems. Founda-
tions and Trends in Machine Learning (2012).

[4] Alexandra Carpentier and Andrea Locatelli. 2016. Tight (lower) bounds

for the fixed budget best arm identification bandit problem. In Confer-
ence on Learning Theory. 590–604.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805 (2018).
[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman. 2010. The Pascal Visual Object Classes (VOC) Challenge.

International Journal of Computer Vision 88, 2 (June 2010), 303–338.

[7] Stefan Falkner, Aaron Klein, and FrankHutter. 2018. BOHB: Robust and

Efficient Hyperparameter Optimization at Scale. CoRR abs/1807.01774

(2018). arXiv:1807.01774 http://arxiv.org/abs/1807.01774

[8] Matthias Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,

and F. Hutter. 2015. Efficient and robust automated machine learning.

Advances in Neural Information Processing Systems 28 (01 2015), 2944–
2952.

[9] Johnu George, Ce Gao, Richard Liu, Hou Gang Liu, Yuan Tang, Ram-

doot Pydipaty, and Amit Kumar Saha. 2020. A Scalable and Cloud-

Native Hyperparameter Tuning System. arXiv:2006.02085 [cs.DC]

[10] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,

John Karro, and D Sculley. 2017. Google vizier: A service for black-box

optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and DataMining. ACM, 1487–1495.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[12] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequen-

tial Model-based Optimization for General Algorithm Configuration.

In LION.
[13] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and

KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed Deep

Learning. In USENIX Symposium on Network Design and Implementa-
tion (NDSI 21). USENIX Association.

[14] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm

identification and hyperparameter optimization. In Artificial Intelli-
gence and Statistics. 240–248.

[15] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. 1993. Lipschitzian

Optimization Without the Lipschitz Constant. J. Optim. Theory Appl.
(1993).

[16] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger,

Biswajit Paria, Christopher R Collins, Jeff Schneider, Barnabas Poczos,

and Eric P Xing. 2020. Tuning hyperparameters without grad students:

Scalable and robust bayesian optimisation with dragonfly. Journal of
Machine Learning Research 21, 81 (2020), 1–27.

[17] Zohar Karnin, Tomer Koren, and Oren Somekh. 2013. Almost optimal

exploration in multi-armed bandits. In International Conference on
Machine Learning. 1238–1246.

[18] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Technical Report.

[19] Ya Le and Xuan Yang. 2015. Tiny ImageNet Visual Recognition Chal-

lenge.

[20] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and

Ameet Talwalkar. 2017. Hyperband: A novel bandit-based approach

to hyperparameter optimization. The Journal of Machine Learning
Research 18, 1 (2017), 6765–6816.

[21] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,

Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2018. Massively

Parallel Hyperparameter Tuning. In Proceedings of Workshop on ML
Systems in The Thirty-second Annual Conference on Neural Information
Processing Systems (NIPS).

[22] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E.

Gonzalez, Ion Stoica, and Alexey Tumanov. 2019. HyperSched: Dy-

namic Resource Reallocation for Model Development on a Dead-

line. In Proceedings of the ACM Symposium on Cloud Computing
(Santa Cruz, CA, USA) (SoCC ’19). ACM, New York, NY, USA, 61–73.

https://doi.org/10.1145/3357223.3362719

[23] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E

Gonzalez, and Ion Stoica. 2018. Tune: A Research Platform for Dis-

tributed Model Selection and Training. arXiv preprint arXiv:1807.05118
(2018).

[24] Richard Liaw, Ujval Misra, Lisa Dunlap, Romil Bhardwaj, Alexey Tu-

manov, Joey E. Gonzalez, and Ion Stoica. 2021. Rubberband: Cloud

Based Hyperparameter Tuning. EuroSys (2021).
[25] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,

Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-

ing {AI} applications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 561–577.

[26] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,

and Andrew Y. Ng. 2011. Reading Digits in Natural Images with

Unsupervised Feature Learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning.

[27] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie

Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.

Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-

Optimized Deep Learning. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,

1–18. https://www.usenix.org/conference/osdi21/presentation/qiao

[28] Bing Shuai, Ting Liu, and Gang Wang. 2016. Improving Fully Con-

volution Network for Semantic Segmentation. CoRR abs/1611.08986

(2016). arXiv:1611.08986 http://arxiv.org/abs/1611.08986

[29] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-

tional Networks for Large-Scale Image Recognition.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical

Bayesian Optimization of Machine Learning Algorithms. In Advances
in Neural Information Processing Systems.

[31] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,

and Samuel R. Bowman. 2018. GLUE: A Multi-Task Benchmark and

Analysis Platform for Natural Language Understanding. (2018). arXiv

preprint 1804.07461.

[32] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,

Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi

Louf, Morgan Funtowicz, and Jamie Brew. 2019. HuggingFace’s

Transformers: State-of-the-art Natural Language Processing. CoRR
abs/1910.03771 (2019). arXiv:1910.03771 http://arxiv.org/abs/1910.

03771

46

https://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1807.01774
https://arxiv.org/abs/2006.02085
https://doi.org/10.1145/3357223.3362719
https://www.usenix.org/conference/osdi21/presentation/qiao
https://arxiv.org/abs/1611.08986
http://arxiv.org/abs/1611.08986
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Optional Arguments
	3.3 Computing Bracket Parameters
	3.4 Example
	3.5 Comparison with Prior work

	4 Theoretical Analysis
	5 System Design & Implementation
	6 Experiments
	6.1 Setup
	6.2 Search Spaces
	6.3 Baselines
	6.4 Benchmarks
	6.5 Different Budgets and Deadlines

	7 Conclusion
	A Proofs of Theoretical Results
	References

