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IN  2 010,  SOME of us co-authored a Communications 
article that helped explain the relatively new 
phenomenon of cloud computing.4 We said that 
cloud computing provided the illusion of infinitely 
scalable remote servers without charging a premium 
for scale, as renting 1,000 servers for one hour costs 
the same as renting one server for 1,000 hours, and 
that economies of scale for the cloud provider allowed 
it to be surprisingly inexpensive. We listed challenges 
to cloud computing, and then predicted that most 
would be overcome so the industry would increasingly 
shift from computing inside local data centers to “the 
cloud,” which has indeed happened. Today two-thirds 
of enterprise information technology spending for 
infrastructure and software is based in the cloud.8

We are revisiting cloud computing a 
decade later to explain its emerging 
second phase, which we believe will 
further accelerate the shift to the cloud. 
The first phase mainly simplified sys-
tem administration by making it easier 
to configure and manage computing 
infrastructure, primarily through the 
use of virtual servers and networks 
carved out from massive multi-tenant 
data centers. This second phase hides 
the servers by providing programming 
abstractions for application builders 
that simplify cloud development, mak-
ing cloud software easier to write. Stat-
ed briefly, the target of the first phase 
was system administrators and the sec-
ond is programmers. This change re-
quires cloud providers to take over 
many of the operational responsibili-
ties needed to run applications well.

To emphasize the change of focus 
from servers to applications, this new 
phase has become known as serverless 
computing, although remote servers are 
still the invisible bedrock that powers 
it. In this article, we call the traditional 
first phase serverful computing.

Figure 1 shows an analogy. To at-
tend a remote conference, you either 
rent a car or hail a taxicab to get from 
the airport to your hotel. Car rental is 
like serverful computing, where you 
must wait in line, sign a contract, re-
serve the car for your whole stay no 
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 key insights
	˽ The cloud originally revolutionized system 

administration. This second phase of cloud 
computing simplifies cloud programming.

	˽ Serverless computing encompasses 
much more than cloud functions, or 
Function-as-a-Service (FaaS)—other 
cloud programming abstractions such as 
object storage also hide the complexity of 
servers, and more are on the way.

	˽ Serverless today works well in limited 
applications, so cloud providers will create 
new application-specific and general-
purpose serverless products to enable 
more use cases.

	˽ This next phase of cloud computing will 
change the way programmers work as 
dramatically as the first phase changed 
how operators work.
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matter how much you use it, drive the 
car yourself, navigate to the hotel, pay 
for parking, and fill it with fuel before 
returning it. The taxi is like serverless 
computing, where you simply need to 
give the hotel name and pay for the 
ride; the taxi service provides a trained 
driver who navigates, charges for the 
ride, and fills the gas tank. Taxis sim-
plify transportation, as you don’t need 
to know how to operate a car to get to 
the hotel. Moreover, taxis get higher 
utilization than rental cars, which 
lowers costs for the taxi company. De-
pending on the length of the confer-
ence, the cost of car rental, the cost of 
parking, the cost of gas, and so on, 
taxis are not only easier, they might 
even be cheaper.

In serverless computing, program-
mers create applications using high-
level abstractions offered by the cloud 
provider. For example, they can define 

cloud functionsa using functional-style 
“stateless” programming in the lan-
guage of their choice, often JavaScript 
or Python, then specify how the func-
tions should run, whether in response 
to Web requests or to triggering 
events. They may also use serverless 
object storage, message queues, key-
value store databases, mobile client 
data sync, and so on, a group of ser-
vices offerings known collectively as 
Backend-as-a-Service (BaaS). Managed 
cloud function services are also called 
Function-as-a-Service (FaaS) and col-
lectively Serverless Cloud Computing 

a	 Different cloud platforms have different 
names for their offerings: Azure Functions for 
Microsoft Azure, Cloud Functions for Alibaba 
Cloud, AWS Lambda for Amazon Web Services 
(AWS), Google Cloud Functions and Google 
Cloud Run for Google Cloud Platform (GCP), 
IBM Cloud Functions for IBM Cloud, and Ora-
cle Functions for Oracle Cloud.

today = FaaS + BaaS (see Figure 2).
The main innovation of serverless 

is hiding servers, which have an inher-
ently complex programming and oper-
ating model. Server users must create 
redundancy for reliability, adjust ca-
pacity in response to changes in load, 
upgrade systems for security, and so 
on.17 This often requires difficult rea-
soning about failure modes and per-
formance in distributed systems. 
Tools can help, for example, by adjust-
ing capacity heuristically, a form of au-
toscaling, but these too require de-
tailed configuration and ongoing 
monitoring. By contrast, serverless 
hands these and other responsibilities 
to the cloud provider.

Three essential qualities of server-
less computing are:

1.	 Providing an abstraction that 
hides the servers and the complexity of 
programming and operating them.
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ers may instead rent and operate cars 
(serverful computing).

A recent Communications article 
gave an excellent introduction to the 
current state of serverless computing, 
how it differs from Infrastructure-as-a-
Service (IaaS) and Platform-as-a-Ser-
vice (PaaS), its market share, example 
use cases, and its limitations.8 In this 
article, we share our views on the evolu-
tion that serverless computing repre-
sents, the economic forces that shape 
it, why it could fail, and how it might 
evolve to fulfill its potential.

We project that the majority of data 
center computing will be dominated 
by serverless computing but we also 
believe that serverless computing will 
depart substantially from the server-
less offerings of today. In particular, we 
believe that new general-purpose 
serverless abstractions will emerge, 
adding sophisticated state manage-
ment and automatic optimization to 
enable many more use cases. Server-
less now depends upon homogeneous 
CPUs, but in the future serverless will 
simplify use of hardware accelerators 
such as Graphical Processing Units 
(GPUs) or Tensor Processing Units 
(TPUs)19 that support specific work-
loads—they offer the most likely path 
to higher performance as Moore’s Law 
slows.14 While there are concerns today 
about serverless security, we believe 
that a careful design could in fact make 
it easier for application developers to 
secure their software against external 
attackers.

As in 2010, we once again predict 
that these challenges will be overcome 
and this second phase will become the 
dominant form of cloud computing, 
accelerating its popularity by putting 
the power of the cloud in the hands of 
all application developers.

Understanding What 
Serverless Is Today
Cloud functions8 capture much of the 
mindshare in serverless computing, 
but they are one of many services in 
the serverless cloud. The excitement 
around FaaS is well justified because 
it offers a glimpse of what general-
purpose serverless computing might 
look like, yet BaaS services comprise a 
much larger, and older, set of server-
less services.

For example, AWS initially offered 

transformative than previous environ-
ments that came close to providing 
them.8,17 Returning to our analogy, a 
taxi service (serverless computing) 
must provide a cab with a licensed driv-
er (hide operation), charge only when 
giving a ride (pay as you go), and sched-
ule enough cabs to minimize customer 
wait time (autoscaling). If taxis don’t 
reliably provide all three, then custom-

2.	 Offering a pay-as-you-go cost 
model instead of a reservation-based 
model, so there is no charge for idle re-
sources (see Figure 3).

3.	 Automatic, rapid, and unlimited 
scaling resources up and down to 
match demand closely, from zero to 
practically infinite.

The cloud-based synthesis of all of 
these properties is substantially more 

Figure 1. Cloud computing approaches compared to rides from an airport: Serverful as 
renting a car and serverless as taking a taxi ride.
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their S3 object storage as a remote 
backup and archival service, years be-
fore announcing EC2 virtual machine 
rental. You can think of S3 as a precur-
sor to serverless computing that of-
fered “diskless storage,” that is, provid-
ing storage but hiding the disks. Over 
time, cloud providers offered addition-
al BaaS services to help serverful com-
puting. Message queues (for example, 
AWS SQS, Google Cloud Pub/Sub) were 
another early service. Later came key-
value databases (for example, Google 
Cloud Datastore, AWS DynamoDB, 
Azure CosmosDB) and SQL-based big 
data query engines (for example, AWS 
Athena, Google BigQuery).

When AWS Lambda launched in 
2015 it was the first cloud functions 
product and offered something unique 
and compelling: the ability to execute 
nearly any code that runs on a server. It 
included support for several program-
ming languages and for arbitrary li-
braries, all on a pay-as-you-go basis, 
operating securely and at any scale. 
However, it imposed certain limita-
tions on the programming model that 
even today restrict it to certain applica-
tions. These include a maximum exe-
cution time, the lack of persistent 
state, and restricted networking.13

Today, several serverless environ-
ments can run arbitrary code, each ca-
tering to a particular use case. For ex-
ample, Google Cloud Dataflow and 
AWS Glue allow programmers to exe-
cute arbitrary code as a stage in a data 
processing pipeline, while Google App 
Engine can be thought of as a server-
less environment for building Web ap-
plications.

These many serverless offerings 
have in common the three essential 
qualities of serverless computing: an 
abstraction that hides the servers, a 
pay-as-you-go cost model, and excel-
lent autoscaling. Taken together they 
offer a set of alternatives that may be 
combined to meet an ever-growing 
range of applications.

Serverless Cloud Economics
Today’s cloud has been shaped as 
much by business considerations as by 
technical progress, and its future will 
be as well. Cloud customers choose 
serverless computing because it allows 
them to stay focused on solving prob-
lems that are unique to their domain or 

suggests that low prices can spark 
consumption growth that more than 
offsets the reduction in unit costs, 
leading to revenue growth. Cloud pro-
viders also gain a profit opportunity by 
helping customers meet variable and 
unpredictable resource needs, some-
thing they can do more efficiently 
from a shared resource pool than cus-
tomers can do using their own dedi-
cated resources.16 This opportunity 
also exists in serverful computing but 
grows as resources are shared on a 
more fine-grained basis. Serverless 
computing also offers cloud providers 
opportunities to improve their mar-
gins because BaaS products often rep-
resent product categories traditional-

business, rather than on problems in 
server administration or distributed 
systems.6 The strength of this custom-
er value proposition is a primary cause 
for optimism about the future adop-
tion of serverless computing.

While serverless computing may 
appear more expensive since the unit 
prices of resources are higher (see 
sidebar “The Cost of Serverless”), cus-
tomers only pay for resources that 
they are using, while the cloud provid-
er bears the cost of idle resources. In 
practice, customers realize substan-
tial cost savings when porting applica-
tions to serverless.30 While this cost 
reduction could threaten cloud pro-
vider revenues, the Jevons Paradox2 

Figure 3. Serverless vs Serverful cloud computing: serverless users pay only for 
resources consumed, not for idle reserved capacity.
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If you compare the per-minute cost of running an AWS Lambda cloud function with 
the cost of an AWS t3.nano VM with the equivalent 0.5 GB memory, it might look like 
serverless computing is 7.5x as expensive. Such a comparison is misleading, however.

The beauty of serverless computing is that it provides much more than servers, yet 
results in cloud bills that are often much lower. Included in the price is redundancy 
for availability, monitoring, logging, and automated scaling, all of which need to 
be provided separately in a serverful context. Cost comparisons must also factor in 
expected utilization, since serverless users pay only while their code executes. The users 
of the t3.nano VM must pay for the resources reserved, whether their code is running or 
not. Cloud providers claim that in practice customers see cost savings of 4x-10x when 
moving applications to serverless.30

While serverless often saves money, for some organizations the pay-as-you-go 
model is at odds with the way they manage their budgets. These may be fixed in 
advance, often annually. Planning to use a fixed amount of server capacity may seem 
easier, but managing to budget is challenging in practice, especially when many teams 
deploy cloud VMs, or when business needs are difficult to anticipate. We believe that 
as organizations use serverless more, they will be able to predict their costs based on 
history, similar to the way they do for other pay-as-you-go services, like electricity.

The Cost of Serverless
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The Next Phase  
of Cloud Computing
Perhaps the best way to understand the 
shift that serverless computing repre-
sents is to focus on the first of the es-
sential qualities (as noted previously): 
providing an abstraction that hides 
servers and thus simplifies the pro-
gramming and operating model. From 
the outset, cloud computing provided 
a simplified operating model, but sim-
plified programming comes from hid-
ing servers. The future evolution of 
serverless computing, and in our view 
of cloud computing, will be guided by 
efforts to provide abstractions that 
simplify cloud programming.

It is striking how little cloud com-
puting has changed how programmers 
work to date, especially when com-
pared to the impact it has had on oper-
ators. Much of the software that runs in 
the cloud is the exact same software 
that runs in a traditional data center. 
Compare the programming skills most 
in demand today against those needed 
10 years ago and you will notice that 
the core skill set has changed very lit-
tle, even as specific technologies come 
and go. By contrast, the operator’s job 
has changed tremendously. Installing 
and maintaining servers, storage, and 
networks are largely things of the past, 
replaced by a focus on managing virtu-
alized infrastructure through cloud 
provider APIs, and by the DevOps 
movement, which emphasizes the 
technical and organizational aspects 
of change management.

What makes programming the 
cloud hard? While it is possible to use 
the cloud with just one server, this of-
fers neither fault tolerance nor scal-
ability nor pay-as-you-go, so most cloud 
programming quickly becomes dis-
tributed systems programming. When 
writing distributed systems, program-
mers must reason about the data cen-

ter’s spatial extent, its various partial 
failure modes, and all of its security 
threats. In the language of Fred P. 
Brooks, these concerns represent “ac-
cidental complexity,” which arises 
from the implementation environ-
ment and stands in contrast to “essen-
tial complexity,” which is inherent in 
the functionality that the application 
provides.7 At the time of Brooks’s writ-
ing, high-level languages were displac-
ing assembly language, freeing pro-
grammers from reasoning about 
complex machine details such as regis-
ter allocation or data layout in memory. 
Just as high-level languages hide many 
details of how a CPU operates, server-
less computing hides many details of 
what it takes to build a reliable, scal-
able, and secure distributed system.

We next consider alternative ap-
proaches to serverless abstraction, in-
cluding ones that exist today and ones 
that we imagine. These vie to answer 
the question, “if not servers, then 
what?” We group these alternative ab-
straction approaches into application-
specific and general-purpose categories 
(see Table 1). Application-specific ab-
stractions solve a particular use case, 
and several of them exist in products 
today. General-purpose abstractions 
must work well in a broad variety of 
uses and remain a research challenge.

Let us examine an illustrative exam-
ple from big data processing. Consider 
a simple query that might arise in an e-
commerce setting: computing an aver-
age over 10 billion records using 
weights derived from one million cate-
gories. This workload has the potential 
for a lot of parallelism, so it benefits 
from the serverless illusion of infinite 
resources.

We present two application-specific 
serverless offerings that cater to this ex-
ample and illustrate how the category 
affords multiple approaches. One could 
use the AWS Athena big data query en-
gine, a tool programmed using SQL 
(Structured Query Language), to execute 
queries against data in object storage. 
SQL is particularly well suited to analyt-
ics and can express this computation 
with a single statement. Alternatively, 
one could use a framework such as that 
which Google Cloud Dataflow provides. 
Doing so requires writing a simple Ma-
pReduce-style11 program, for example, 
using Java or Python, with two func-

ly served by high-margin software 
products such as databases.

The serverless pay-as-you-go model 
has an important positive implication 
for the cloud providers’ incentive to in-
novate. Before serverless, autoscaling 
cloud services would automatically 
provision VMs, that is, reserve resourc-
es, but the customer would then pay for 
this capacity even if it remained idle. 
With serverless, the cloud provider 
pays for idle resources, which creates 
“skin in the game” on autoscaling, and 
provides incentives to ensure efficient 
resource allocation. Similarly, as the 
cloud provider assumes direct control 
over more of the application stack, in-
cluding the operating system and lan-
guage runtime, the serverless model 
encourages investments in efficiency 
at every level.

More productive programmers, 
lower costs for customers, greater 
profits for providers, and improved in-
novation all create favorable condi-
tions for serverless adoption. Howev-
er, some cloud customers have raised 
concerns about vendor lock-in, fearing 
reduced bargaining power when nego-
tiating prices with cloud providers.16 
The serverful VM abstraction is stan-
dardized—mostly on account of the 
Linux operating system and the x86 in-
struction set—but each provider’s 
serverless cloud functions and BaaS 
APIs differ in both readily apparent 
and subtle ways. The resulting switch-
ing costs benefit the largest and most 
established cloud providers, and give 
them an incentive to promote complex 
proprietary APIs that are resistant to 
de facto standardization. Simple and 
standardized abstractions, perhaps in-
troduced by smaller cloud providers, 
open source communities, or academ-
ics, would remove the most prominent 
remaining economic hurdle to server-
less adoption.

Table 1. Alternative abstraction approaches. 

Serverless Abstraction Approach Big Data Example

Application-specific Tool or component AWS Athena

Application framework Cloud Dataflow

General-purpose Hints to implementation Affinity hints

Automatic optimization Communication-minimizing placement

Cloud functions might appear to offer a general-purpose abstraction since they run arbitrary 
code, however due to their limitations they work only in some applications. More sophisticated 
derivatives might achieve the goal of general-purpose serverless computation.
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Today, serverless computing re-
mains entirely of the application-spe-
cific variety. Even cloud functions, 
which can execute arbitrary code, are 
popular mainly for stateless API serv-
ing and event-driven data processing.27 
We expect application-specific server-
less computing to grow, but we are 
most excited about the potential emer-
gence of general-purpose serverless ab-
stractions, which could host software 
ecosystems catering to every need. In 
our view, only the general-purpose ap-
proach can ultimately displace servers 
to become the default form of cloud 
programming. However, general-pur-

tions: one that computes a weighted av-
erage for some chunk of data, and an-
other that combines weighted averages 
for separate chunks into one for their 
union. The framework takes care of pip-
ing data in and out of these functions, 
as well as autoscaling, reliability, and 
other distributed systems concerns. In 
contrast to the SQL-based tool, this ab-
straction can run arbitrary code, which 
can make it suitable to a wider range of 
analytics problems.

General-purpose serverless abstrac-
tions that offer a performant solution 
to our big data example do not yet exist. 
Cloud functions might appear to pro-
vide a solution since they allow users to 
write arbitrary code, and for some 
workloads they do,28 but due to limita-
tions they sometimes perform much 
worse than alternatives.13,17 Figure 4 il-
lustrates how network traffic could be 
much higher if we implement our ex-
ample using cloud functions, rather 
than using an application-specific 
framework such as Cloud Dataflow. 
With cloud functions, the provider dis-
tributes work across various VM in-
stances without regard to the applica-
tion’s communication patterns, which 
simplifies autoscaling but increases 
network traffic.

We suggest two paths to enhancing 
cloud functions so that they work well 
in a broader range of applications, po-
tentially turning them into general-
purpose serverless abstractions. First, 
we imagine that hints provided by the 
programmer might indicate how to 
achieve better performance. Hints 
might describe application communi-
cation patterns (for example, broad-
cast or all-reduce), or suggest task 
placement affinity.25 Such an approach 
has precedent in compilers (for exam-
ple, branch prediction, alignment, and 
prefetching hints).

Second, and more compellingly, we 
envision inefficiencies being removed 
by automatic optimization. In our ex-
ample the cloud provider might prom-
ise to infer locality optimizations from 
observed communication patterns. In 
some cases, such inferences might also 
be made statically, based on an analy-
sis of the program. In the single-ma-
chine context this has ample precedent 
in what modern compilers and lan-
guage runtimes do, and one might 
think of this form of serverless com-

puting as extending language support 
to distributed systems.

Figure 5 illustrates the difference 
between application-specific and gen-
eral-purpose serverless abstractions. 
In the general-purpose case the cloud 
provider exposes a few basic building 
blocks, for example, an enhanced ver-
sion of cloud functions and serverless 
storage of some sort. A variety of appli-
cation-specific use cases can be built 
on top of these foundations. With ap-
plication-specific serverless, cloud pro-
viders instead offer a proliferation of 
BaaS to meet the needs of an ever-
greater number of applications.

Figure 4. Increased communication for aggregation and broadcast patterns. 

Application-specific serverless frameworks (for example, Cloud Dataflow) can be implemented 
with serverful communication patterns. In this case (a) the fewer arrows indicate less network 
communication than in (b) the general-purpose serverless option. By packing K tasks per VM 
instance, an application-specific serverless solution, like a serverful solution, is able to achieve 
a communication complexity of O(N/K) for a job with N tasks, as opposed to O(N) for the cloud 
function based alternative which can not influence task placement. Typical values for K range 
from 10 to 100, leading to an overall difference of one to two orders of magnitude.
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Figure 5. Potential future directions for serverless.

(a) General-purpose serverless abstractions support a wide range of needs, with application-
specific functionality provided by software above the cloud provider interface, (b) application-
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tions run, thus precluding optimiza-
tions common with servers, including 
sharing common inputs between tasks 
and combining outputs before sending 
them over the network (see Figure 4 and 
previous discussion). Attempts to over-
come these challenges will highlight 
the tension between giving program-
mers more control and allowing the 
cloud provider to make optimizations 
automatically.

Predictable performance. Both 
FaaS and BaaS can exhibit variable 
performance which precludes their 
use in applications that must meet 
strict guarantees. Part of the reason 
for this is fundamental: serverless 
providers rely on statistical multiplex-
ing to create the illusion of infinite re-
sources, while denying users control 
over resource oversubscription. There 
is always some chance that unfortu-
nate timing will create queuing de-
lays. There is also a latency cost to re-
assigning resources from one 
customer to another, which in the 
cloud function context is known as a 
“cold start.” Cold start latency has sev-
eral components,17 and significant 
among them is the time it takes to ini-
tialize the software environment of 
the function. There has already been 
progress in this area. Cloud function 
environments such as Google gVisor 
and AWS Firecracker1 can now start in 
about 100 ms, whereas traditional 
VMs take tens of seconds to boot. It is 
also possible to accelerate applica-
tion-level initialization such as load-
ing libraries.26 There is probably still 
much room for improvement in these 
areas, though there is also evidence 
that performance optimization and 
isolation for security are fundamen-
tally at odds.24 Customers of AWS 

Lambda can also avoid cold start la-
tencies by purchasing “provisioned 
concurrency,” which controversially 
reintroduces a form of resource reser-
vation to the serverless model. We 
hope to also see pricing based on sta-
tistical guarantees, or Service Level 
Objectives (SLOs), which are absent in 
serverless today.

Security. Serverless computing 
leads to fine-grained resource sharing 
and so increases the exposure to side-
channel attacks, whereby attackers ex-
ploit subtle behaviors of real hardware 
that differ from either specifications or 
programmer assumptions (see sidebar 
“Serverless and Security”). Threats 
range from Rowhammer attacks on 
DRAM20 to those exploiting microar-
chitectural vulnerabilities.22 In addi-
tion to adopting mitigations developed 
for serverful computing, serverless 
might employ randomized scheduling 
to make it more difficult for an attack-
er to target a specific victim. Serverless 
computing also can incur greater in-
formation leakage through network 
communication because of the fine-
grained decomposition of an applica-
tion and physical distribution of its 
pieces. An attacker observing the size 
and timing of network traffic, even if it 
is encrypted, might make inferences 
about private data. Addressing these 
risks may be possible through oblivi-
ous computing.12

Programming languages. Simpli-
fied distributed systems programming 
is a core benefit of serverless comput-
ing,18 and while much previous work in 
this area is relevant, the serverless set-
ting calls for a new perspective and 
adds urgency. Traditional challenges 
include fault tolerance, consistency, 
concurrency, and the performance and 
efficiency that comes from locality. 
New challenges include first-class sup-
port for autoscaling, pay-as-you-go, 
and fine-grained multiplexing.

Fault tolerance concerns are elevat-
ed by attempts to extend serverless 
computing beyond stateless cloud 
functions. Azure Durable Functions 
uses C# language features to provide 
transparent checkpointing, which 
makes it easier to write stateful and re-
sumable serverless tasks. Microsoft Or-
leans,5 which implements an actor 
model,15 similarly hides fault tolerance 
concerns from programmers. Actors 

pose serverless technology does not ex-
ist today, and developing it presents 
research challenges.

Research Challenges
Serverless computing is evolving rap-
idly and offers various research chal-
lenges, many of them common to both 
application-specific and general-pur-
pose serverless.

State management. Distributed 
cloud applications often need to ex-
change short-lived or ephemeral state 
between their component tasks. Exam-
ples include application-wide caches, 
indexes, and other lookup tables, or in-
termediate results of big data analyt-
ics. Cloud functions today allow appli-
cations to store ephemeral state locally 
at each function, which is useful for 
caching and as working memory for 
the program. Serverless shared state 
may be saved in object storage or key-
value stores, but these do not simulta-
neously provide low latency, low cost, 
high throughput, and fine-grained ac-
cess, as is possible with servers.17 Ap-
proaches to addressing these challeng-
es include temporary data storage for 
analytics21 as well as stateful cloud 
functions that integrate caching and 
provide consistency guarantees.29

Networking. Cloud functions trans-
fer the responsibility of scheduling 
work from the user to the cloud provid-
er, which has several interesting conse-
quences. Since users cede control over 
when functions run, passing state be-
tween cloud functions requires a trip 
through shared storage; direct network 
communication makes little sense and 
cloud providers block it. Accessing 
shared storage adds significant latency, 
sometimes hundreds of milliseconds. 
Users also cede control over where func-

Today, serverless computing merely shifts some security responsibilities from the 
cloud customer to the cloud provider, just as it shifts other system administration 
responsibilities. With cloud functions, security updates to operating systems, 
language runtimes, and standard software packages are applied without customer 
involvement, usually quickly and reliably. For BaaS services, the cloud provider 
assumes responsibility for securing everything behind an API. This path may prove 
to be an important advantage because it allows developers to reason about security 
at a higher abstraction level. They do not need to implement lower-level security 
mechanisms, which could lead to fewer security mistakes. While this benefit must 
be weighed against the exposure to attacks through shared hardware, we believe that 
improved abstractions may eventually make application security easier to achieve with 
serverless computing.

Serverless and Security
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cific Architectures (DSAs), which are 
tailored to a specific type of problem, 
offering significant performance and 
efficiency gains, but performing poorly 
for other applications.14 GPUs have 
long been used to accelerate graphics, 
and we are starting to see DSAs for ML 
such as TPUs. GPUs and TPUs can out-
perform CPUs for narrow tasks by fac-
tors of 30x.19 These examples are the 
first of many, as general-purpose pro-
cessors enhanced with DSAs will likely 
become the norm.

We believe serverless computing 
may provide a useful programming 
model for integrating diverse architec-
tures, say with separate cloud func-
tions running on separate accelerators. 
It also helps create room for innova-
tion by raising the level of abstraction, 
for example, by allowing a cloud pro-
vider to substitute a DSA for a CPU 
when recognizing a workload that 
could benefit.

Why Serverless Computing 
Might Still Fail
While we believe serverless comput-
ing can grow to become the cloud 
programming default, we can also 
imagine several scenarios in which 
serverful computing retains its domi-
nance. First, serverful computing is 
a moving target, one that improves 
relentlessly, if slowly. Cloud VMs that 
once were billed by the hour now 
have a minimum billing increment 
of one minute, and charge by the sec-
ond thereafter. Container and VM 
orchestration tools (for example, Ku-
bernetes, Terraform) help streamline 
complex deployments, and increas-
ingly automate administrative tasks 
such as taking backups. Programmers 
can rely on mature software ecosys-
tems and strong legacy compatibil-
ity when building applications, while 
companies already have teams skilled 
in serverful cloud deployments. Server 
hardware also keeps getting bigger 
and more powerful, bringing CPU, 
memory, and accelerator power to-
gether in a closely coupled environ-
ment, a benefit for some applications.

Second, today’s successful server-
less products fall into the application-
specific category and are narrowly tar-
geted, whereas general-purpose 
serverless abstractions have a better 
chance of displacing serverful comput-

also provide a notion of locality, and 
could be a counterpart to cloud func-
tions for stateful serverless computing. 
Ray25 embodies elements of both. Ap-
proaches to consistency include lan-
guage-integrated transactions, pio-
neered by Argus.23 However, 
transactions are fraught with perfor-
mance and scalability challenges, 
which an autoscaling serverless envi-
ronment may exacerbate. An alterna-
tive approach lies in languages like 
Bloom,3 which allows automated anal-
ysis to determine which parts of a pro-
gram can run independently, without 
coordination, and thus scalably. Pay-
as-you-go should encourage language 
developers to rethink resource man-
agement, for example, automated gar-
bage collection might be adapted to 
metered memory pricing. Language 
approaches to cloud programming,9 
which address the complexity of dis-
tributed systems programming head-
on, may represent the most direct and 
ambitious approach to simplifying 
cloud programming.

Machine learning. We believe that 
automatic optimization with machine 
learning will play an important role in 
all of the areas discussed above. It may 
help decide where to run code, where 
to keep state, when to start up a new 
execution environment, and how to 
keep utilization high and costs low 
while meeting performance objec-
tives. It may also aid in identifying ma-
licious activity that threatens security, 
or in automatically cutting up large 
programs into pieces that can execute 
in separate cloud functions. Machine 
learning can help optimize serverful 
computing too,10 but serverless ab-
stractions give cloud providers more 
control over the relevant knobs, as 
well as the visibility across many cus-
tomers required to train robust and ef-
fective models.

Hardware. Current trends in hard-
ware may be complementary to server-
less computing. The x86 microproces-
sors that dominate the cloud are barely 
improving in performance; in 2017, 
program latency improved only 3%,14 a 
trend that if continued implies that 
performance won’t double for 20 years. 
Similarly, the ending of Moore’s Law is 
slowing the growth of per-chip DRAM 
capacity. The industry response has 
been the introduction of Domain Spe-

It is striking 
how little cloud 
computing has 
changed how 
programmers work 
to date, especially 
when compared to 
the impact it has 
had on operators.
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application-specific serverless computing. 
While serverful cloud computing won’t 
disappear, its relative use in the cloud 
will decline as serverless computing 
overcomes its current limitations.

2.	 We expect new general-purpose 
serverless abstractions to support just 
about any use case. They will support 
state management, as well as optimiza-
tions—either user-suggested or auto-
matically inferred—to achieve efficien-
cies comparable or maybe better than 
those of serverful computing.

3.	 We see no fundamental reason 
for the cost of serverless computing to 
exceed that of serverful computing. We 
predict that as severless evolves and in-
creases in popularity almost any appli-
cation, be it tiny or massive-scale, costs 
no more—and perhaps a lot less—with 
serverless computing

4.	 Machine learning will play a criti-
cal role in serverless implementations, 
allowing cloud providers to optimize 
execution of large-scale distributed 
systems while providing a simple pro-
gramming interface.

5.	 Computer hardware for serverless 
computing will be much more hetero-
geneous than the conventional x86 
servers that powers it today.

If these predictions hold, serverless 
computing will become the default 
computing paradigm of the Cloud Era, 
largely replacing serverful computing 
and thereby closing the Client-Server 
Era, just as the smartphone brought 
the end of the PC Era.

Acknowledgments. We thank the re-
viewers for their thoughtful comments, 
as well as the many friends who gave 
feedback on early drafts. This work was 
conducted at UC Berkeley RISELab and 
it was supported by a National Science 
Foundation Expedition Project, Aliba-
ba Group, Amazon Web Services, Ant 
Financial, Ericsson, Facebook, Future-
wei, Google, Intel, Microsoft, Scotia-
bank, Splunk, and VMware.	

References
1.	 Agache, A., et al. Firecracker: Lightweight virtualization 

for serverless applications. In Proceedings of the 
17th USENIX Sym. Networked Systems Design and 
Implementation (2020), 419–434.

2.	 Alcott, B. Jevons’ paradox. Ecological Economics 54, 
1 (2005), 9–21.

3.	 Alvaro, P., et al. Consistency analysis in Bloom:  
A CALM and collected approach. CIDR, 249–260.

4.	 Armbrust, M., et al. A view of cloud computing. 
Commun. ACM 53, 4 (Apr. 2010) 50–58.

5.	 Bernstein, P., et al. Orleans: Distributed virtual 
actors for programmability and scalability. MSR-
TR-2014–41, 2014.

6.	 Brazeal, F. The business case for serverless, 2018; 

https://www.trek10.com/blog/business-case-for-
serverless

7.	 Brooks, F. No silver bullet: essence and accidents of 
software engineering. In Information Processing. 
IEEE, 1986.

8.	 Castro, P., et al. The rise of serverless computing. 
Commun. ACM 66, 12 (Dec. 2019), 44–54.

9.	 Cheung, A., Crooks, N., Milano, M., and Hellerstein, J. 
New directions in cloud programming. CIDR, 2021.

10.	 Dean, J. Machine learning for systems and systems 
for machine learning. In Proceedings of the 2017 Conf. 
Neural Info. Processing System.

11.	 Dean, J. and Ghemawat, S. MapReduce: simplified 
data processing on large clusters. Commun. ACM 51, 
1 (Jan. 2008), 107–113.

12.	 Goldreich, O. Towards a theory of software protection 
and simulation by oblivious RAMs. In Proceedings 
of the 19th Annual ACM Symposium on Theory of 
Computing, (1987) 182–194.

13.	 Hellerstein, J., et al. Serverless computing: One step 
forward, two steps back. CIDR, 2019.

14.	 Hennessy, J. and Patterson, D. A new golden age for 
computer architecture. Commun. ACM 62, 2 (Feb. 
2019), 48–60.

15.	 Hewitt, C., Bishop, P., and Steiger, R. A universal 
modular actor formalism for artificial intelligence. 
In Proceedings of the 3rd Intern. JoinConf. Artificial 
Intelligence. (1973), 235–245. Morgan Kaufmann 
Publishers Inc.

16.	 Irwin, D. and Urgaonkar, B. Research Challenges at 
the Intersection of Cloud Computing and Economics. 
National Science Foundation, 2018.

17.	 Jonas, E. et al. Cloud programming simplified: A 
Berkeley view on serverless computing. Tech. Rep. No. 
UCB/EECS-2019-3, 2019.

18.	 Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., and 
Recht, B. Occupy the cloud: Distributed computing for 
the 99%. In Proceedings of the ACM SoCC, 2017.

19.	 Jouppi, N. et al. In-datacenter performance analysis 
of a tensor processing unit. In Proceedings of the 
44th Annual Intern. Symp. Computer Architecture. 
(2017), 1–12.

20.	 Kim, Y., et al. Flipping bits in memory without 
accessing them: An experimental study of DRAM 
disturbance errors. In Proceeding of the 42nd ISCA. 
IEEE Press, 2014, 361–372.

21.	 Klimovic, A., et al. Pocket: Elastic ephemeral storage 
for serverless analytics. In Proceedings of the 13th 
USENIX Symp. Operating Systems Design and 
Implementation (2018), 427–444.

22.	 Kocher, P., et al. Spectre attacks: Exploiting 
speculative execution. Commun. ACM 63, 7 (July 
2020), 93–101.

23.	 Liskov, B. Distributed programming in Argus. Commun. 
ACM 31, 3 (Mar. 1988), 300–312.

24.	 McIlroy, R., Sevcik, J., Tebbi, T., Titzer, B., and 
Verwaest, T. Spectre is here to stay: An analysis 
of side-channels and speculative execution. 2019; 
arXiv:1902.05178.

25.	 Moritz, P., et al. Ray: A distributed framework for 
emerging AI applications. In Proceedings of the 
13th USENIX Symp. Operating Systems Design and 
Implementation (2018), 561–577.

26.	 Oakes, E., et al. SOCK: Rapid task provisioning with 
serverless-optimized containers. In 2018 USENIX 
Annual Technical Conf. (2018), 57–70.

27.	 Passwater, A. 2018 serverless community survey: 
Huge growth in serverless usage; https://serverless.
com/blog/2018-serverless-community-survey-huge-
growth-usage/

28.	 Perron, M., Fernandez, R., DeWitt, D., and Madden, S. 
Starling: A scalable query engine on cloud functions. 
In Proceedings of the 2020 ACM SIGMOD Intern. 
Conf. Management of Data (2020), 131–141.

29.	 Sreekanti, V., et al. Cloudburst: Stateful functions-as-
a-service. Proc. VLDB 13, 11 (2020), 2438–2452.

30.	 Wagner, T. Debunking serverless myths, 2018; https://
www.slideshare.net/TimWagner/serverlessconf-2018-
keynote-debunking-serverless-myths

Johann Schleier-Smith, Vikram Sreekanti, Anurag 
Khandelwal, Joao Carreira, Neeraja J. Yadwadkar, 
Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and 
David A. Patterson.

The authors are associated with the UC Berkeley RISELab 
(Real-Time Intelligence Secure Explainable Systems Lab).

Copyright held by authors/owners.

ing (which is also general-purpose). 
However general-purpose serverless 
computing faces hurdles: the technol-
ogy that we envision does not exist yet, 
and it may be a less lucrative business 
for cloud providers.

Finally, even if our vision plays out, 
the brand of “serverless computing” 
might not survive. The temptation to 
label older products as the next new 
thing is strong and can create confu-
sion in the marketplace. We have been 
happy to see products such as Google 
App Engine pick up the serverless 
moniker, and along with it features 
such as scaling to zero. However, if the 
term becomes diluted by half-hearted 
efforts, then perhaps general-purpose 
serverless computing will emerge un-
der another name.

Conclusion and Predictions
Cloud computing is both flourishing 
and evolving. It has overcome the chal-
lenges that faced it in 2010, as we pro-
jected.4 Offering lower costs and sim-
plified system administration, the 
business is growing up to 50% annually 
and proving highly profitable for cloud 
providers. Cloud computing is now en-
tering a second phase in which its con-
tinued growth will be driven by a new 
value proposition: simplified cloud 
programming.

Analogous to how hailing a taxi sim-
plifies transportation over renting a car 
(see Figure 1), serverless computing re-
lieves programmers from thinking 
about servers and everything compli-
cated that goes along with them. Fol-
lowing the same naming convention, 
you could classify a taxi service as car-
less transportation in that the passen-
ger need not know how to operate a car 
to get a ride. Serverless raises the level 
of abstraction of the cloud, adopts pay-
as-you-go pricing, and rapidly auto-
scales down to zero and up to practi-
cally infinite resources.

Serverless computing is still evolv-
ing, and many open questions remain, 
both in defining its abstractions and in 
implementing them. We (boldly) con-
clude this paper with five predictions 
for serverless computing in the next 
decade:

1.	 Today’s FaaS and BaaS categories 
will give way to a broader range of ab-
stractions, which we categorize as either 
general-purpose serverless computing or 




