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What Serverless Computing
Is and Should Become:

The Next Phase of
Cloud Computing

IN 2010, SOME of us co-authored a Communications
article that helped explain the relatively new
phenomenon of cloud computing.! We said that
cloud computing provided the illusion of infinitely
scalable remote servers without charging a premium
for scale, as renting 1,000 servers for one hour costs
the same as renting one server for 1,000 hours, and
that economies of scale for the cloud provider allowed
it to be surprisingly inexpensive. We listed challenges
to cloud computing, and then predicted that most
would be overcome so the industry would increasingly
shift from computing inside local data centers to “the
cloud,” which has indeed happened. Today two-thirds
of enterprise information technology spending for
infrastructure and software is based in the cloud.®
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We are revisiting cloud computing a
decade later to explain its emerging
second phase, which we believe will
further accelerate the shift to the cloud.
The first phase mainly simplified sys-
tem administration by making it easier
to configure and manage computing
infrastructure, primarily through the
use of virtual servers and networks
carved out from massive multi-tenant
data centers. This second phase hides
the servers by providing programming
abstractions for application builders
that simplify cloud development, mak-
ing cloud software easier to write. Stat-
ed briefly, the target of the first phase
was system administrators and the sec-
ond is programmers. This change re-
quires cloud providers to take over
many of the operational responsibili-
ties needed to run applications well.

To emphasize the change of focus
from servers to applications, this new
phase has become known as serverless
computing, although remote servers are
still the invisible bedrock that powers
it. In this article, we call the traditional
first phase serverful computing.

Figure 1 shows an analogy. To at-
tend a remote conference, you either
rent a car or hail a taxicab to get from
the airport to your hotel. Car rental is
like serverful computing, where you
must wait in line, sign a contract, re-
serve the car for your whole stay no

key insights

B The cloud originally revolutionized system
administration. This second phase of cloud
computing simplifies cloud programming.

m Serverless computing encompasses
much more than cloud functions, or
Function-as-a-Service (FaaS)—other
cloud programming abstractions such as
object storage also hide the complexity of
servers, and more are on the way.

m Serverless today works well in limited
applications, so cloud providers will create
new application-specific and general-
purpose serverless products to enable
more use cases.

m This next phase of cloud computing will
change the way programmers work as
dramatically as the first phase changed
how operators work.
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matter how much you use it, drive the
car yourself, navigate to the hotel, pay
for parking, and fill it with fuel before
returning it. The taxi is like serverless
computing, where you simply need to
give the hotel name and pay for the
ride; the taxi service provides a trained
driver who navigates, charges for the
ride, and fills the gas tank. Taxis sim-
plify transportation, as you don’t need
to know how to operate a car to get to
the hotel. Moreover, taxis get higher
utilization than rental cars, which
lowers costs for the taxi company. De-
pending on the length of the confer-
ence, the cost of car rental, the cost of
parking, the cost of gas, and so on,
taxis are not only easier, they might
even be cheaper.

In serverless computing, program-
mers create applications using high-
level abstractions offered by the cloud
provider. For example, they can define

cloud functions® using functional-style
“stateless” programming in the lan-
guage of their choice, often JavaScript
or Python, then specify how the func-
tions should run, whether in response
to Web requests or to triggering
events. They may also use serverless
object storage, message queues, key-
value store databases, mobile client
data sync, and so on, a group of ser-
vices offerings known collectively as
Backend-as-a-Service (BaaS). Managed
cloud function services are also called
Function-as-a-Service (FaaS) and col-
lectively Serverless Cloud Computing

a Different cloud platforms have different
names for their offerings: Azure Functions for
Microsoft Azure, Cloud Functions for Alibaba
Cloud, AWS Lambda for Amazon Web Services
(AWS), Google Cloud Functions and Google
Cloud Run for Google Cloud Platform (GCP),
IBM Cloud Functions for IBM Cloud, and Ora-
cle Functions for Oracle Cloud.
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today = FaaS + BaaS (see Figure 2).

The main innovation of serverless
is hiding servers, which have an inher-
ently complex programming and oper-
ating model. Server users must create
redundancy for reliability, adjust ca-
pacity in response to changes in load,
upgrade systems for security, and so
on." This often requires difficult rea-
soning about failure modes and per-
formance in distributed systems.
Tools can help, for example, by adjust-
ing capacity heuristically, a form of au-
toscaling, but these too require de-
tailed configuration and ongoing
monitoring. By contrast, serverless
hands these and other responsibilities
to the cloud provider.

Three essential qualities of server-
less computing are:

1. Providing an abstraction that
hides the servers and the complexity of
programming and operating them.

COMMUNICATIONS OF THE ACM 77



contributed articles

2. Offering a pay-as-you-go cost
model instead of a reservation-based
model, so there is no charge for idle re-
sources (see Figure 3).

3. Automatic, rapid, and unlimited
scaling resources up and down to
match demand closely, from zero to
practically infinite.

The cloud-based synthesis of all of
these properties is substantially more

transformative than previous environ-
ments that came close to providing
them.®!” Returning to our analogy, a
taxi service (serverless computing)
must provide a cab with a licensed driv-
er (hide operation), charge only when
giving a ride (pay as you go), and sched-
ule enough cabs to minimize customer
wait time (autoscaling). If taxis don’t
reliably provide all three, then custom-

Figure 1. Cloud computing approaches compared to rides from an airport: Serverful as

renting a car and serverless as taking a taxi ride.
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Figure 2. Serverless vs. Serverful cloud computing: serverless provides an abstraction
between applications and the underlying servers.
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ers may instead rent and operate cars
(serverful computing).

A recent Communications article
gave an excellent introduction to the
current state of serverless computing,
how it differs from Infrastructure-as-a-
Service (IaaS) and Platform-as-a-Ser-
vice (PaaS), its market share, example
use cases, and its limitations.® In this
article, we share our views on the evolu-
tion that serverless computing repre-
sents, the economic forces that shape
it, why it could fail, and how it might
evolve to fulfill its potential.

We project that the majority of data
center computing will be dominated
by serverless computing but we also
believe that serverless computing will
depart substantially from the server-
less offerings of today. In particular, we
believe that new general-purpose
serverless abstractions will emerge,
adding sophisticated state manage-
ment and automatic optimization to
enable many more use cases. Server-
less now depends upon homogeneous
CPUs, but in the future serverless will
simplify use of hardware accelerators
such as Graphical Processing Units
(GPUs) or Tensor Processing Units
(TPUs)" that support specific work-
loads—they offer the most likely path
to higher performance as Moore’s Law
slows.'* While there are concerns today
about serverless security, we believe
that a careful design could in fact make
it easier for application developers to
secure their software against external
attackers.

As in 2010, we once again predict
that these challenges will be overcome
and this second phase will become the
dominant form of cloud computing,
accelerating its popularity by putting
the power of the cloud in the hands of
all application developers.

Understanding What
Serverless Is Today
Cloud functions® capture much of the
mindshare in serverless computing,
but they are one of many services in
the serverless cloud. The excitement
around FaaS is well justified because
it offers a glimpse of what general-
purpose serverless computing might
look like, yet BaasS services comprise a
much larger, and older, set of server-
less services.

For example, AWS initially offered



their S3 object storage as a remote
backup and archival service, years be-
fore announcing EC2 virtual machine
rental. You can think of S3 as a precur-
sor to serverless computing that of-
fered “diskless storage,” that is, provid-
ing storage but hiding the disks. Over
time, cloud providers offered addition-
al BaaS$ services to help serverful com-
puting. Message queues (for example,
AWS SQS, Google Cloud Pub/Sub) were
another early service. Later came key-
value databases (for example, Google
Cloud Datastore, AWS DynamoDB,
Azure CosmosDB) and SQL-based big
data query engines (for example, AWS
Athena, Google BigQuery).

When AWS Lambda launched in
2015 it was the first cloud functions
product and offered something unique
and compelling: the ability to execute
nearly any code that runs on a server. It
included support for several program-
ming languages and for arbitrary li-
braries, all on a pay-as-you-go basis,
operating securely and at any scale.
However, it imposed certain limita-
tions on the programming model that
even today restrict it to certain applica-
tions. These include a maximum exe-
cution time, the lack of persistent
state, and restricted networking."?

Today, several serverless environ-
ments can run arbitrary code, each ca-
tering to a particular use case. For ex-
ample, Google Cloud Dataflow and
AWS Glue allow programmers to exe-
cute arbitrary code as a stage in a data
processing pipeline, while Google App
Engine can be thought of as a server-
less environment for building Web ap-
plications.

These many serverless offerings
have in common the three essential
qualities of serverless computing: an
abstraction that hides the servers, a
pay-as-you-go cost model, and excel-
lent autoscaling. Taken together they
offer a set of alternatives that may be
combined to meet an ever-growing
range of applications.

Serverless Cloud Economics

Today’s cloud has been shaped as
much by business considerations as by
technical progress, and its future will
be as well. Cloud customers choose
serverless computing because it allows
them to stay focused on solving prob-
lems that are unique to their domain or
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The Cost of Serverless

If you compare the per-minute cost of running an AWS Lambda cloud function with

the cost of an AWS t3.nano VM with the equivalent 0.5 GB memory, it might look like

serverless computing is 7.5x as expensive. Such a comparison is misleading, however.
The beauty of serverless computing is that it provides much more than servers, yet

results in cloud bills that are often much lower. Included in the price is redundancy

for availability, monitoring, logging, and automated scaling, all of which need to

be provided separately in a serverful context. Cost comparisons must also factor in

expected utilization, since serverless users pay only while their code executes. The users

of the t3.nano VM must pay for the resources reserved, whether their code is running or

not. Cloud providers claim that in practice customers see cost savings of 4x-10x when

moving applications to serverless.*

While serverless often saves money, for some organizations the pay-as-you-go
model is at odds with the way they manage their budgets. These may be fixed in
advance, often annually. Planning to use a fixed amount of server capacity may seem
easier, but managing to budget is challenging in practice, especially when many teams
deploy cloud VMs, or when business needs are difficult to anticipate. We believe that
as organizations use serverless more, they will be able to predict their costs based on
history, similar to the way they do for other pay-as-you-go services, like electricity.

Figure 3. Serverless vs Serverful cloud computing: serverless users pay only for

resources consumed, not for idle reserved capacity.
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business, rather than on problems in
server administration or distributed
systems.® The strength of this custom-
er value proposition is a primary cause
for optimism about the future adop-
tion of serverless computing.

While serverless computing may
appear more expensive since the unit
prices of resources are higher (see
sidebar “The Cost of Serverless”), cus-
tomers only pay for resources that
they are using, while the cloud provid-
er bears the cost of idle resources. In
practice, customers realize substan-
tial cost savings when porting applica-
tions to serverless.*® While this cost
reduction could threaten cloud pro-
vider revenues, the Jevons Paradox®

suggests that low prices can spark
consumption growth that more than
offsets the reduction in unit costs,
leading to revenue growth. Cloud pro-
viders also gain a profit opportunity by
helping customers meet variable and
unpredictable resource needs, some-
thing they can do more efficiently
from a shared resource pool than cus-
tomers can do using their own dedi-
cated resources.'® This opportunity
also exists in serverful computing but
grows as resources are shared on a
more fine-grained basis. Serverless
computing also offers cloud providers
opportunities to improve their mar-
gins because Baa$S products often rep-
resent product categories traditional-
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Table 1. Alternative abstraction approaches.

Cloud functions might appear to offer a general-purpose abstraction since they run arbitrary
code, however due to their limitations they work only in some applications. More sophisticated
derivatives might achieve the goal of general-purpose serverless computation.

Serverless Abstraction Approach Big Data Example
Application-specific Tool or component AWS Athena
Application framework Cloud Dataflow
General-purpose Hints to implementation Affinity hints
Automatic optimization Communication-minimizing placement

ly served by high-margin software
products such as databases.

The serverless pay-as-you-go model
has an important positive implication
for the cloud providers’ incentive to in-
novate. Before serverless, autoscaling
cloud services would automatically
provision VMs, that is, reserve resourc-
es, but the customer would then pay for
this capacity even if it remained idle.
With serverless, the cloud provider
pays for idle resources, which creates
“skin in the game” on autoscaling, and
provides incentives to ensure efficient
resource allocation. Similarly, as the
cloud provider assumes direct control
over more of the application stack, in-
cluding the operating system and lan-
guage runtime, the serverless model
encourages investments in efficiency
at every level.

More productive programmers,
lower costs for customers, greater
profits for providers, and improved in-
novation all create favorable condi-
tions for serverless adoption. Howev-
er, some cloud customers have raised
concerns about vendor lock-in, fearing
reduced bargaining power when nego-
tiating prices with cloud providers.*®
The serverful VM abstraction is stan-
dardized—mostly on account of the
Linux operating system and the x86 in-
struction set—but each provider’s
serverless cloud functions and BaaS
APIs differ in both readily apparent
and subtle ways. The resulting switch-
ing costs benefit the largest and most
established cloud providers, and give
them an incentive to promote complex
proprietary APIs that are resistant to
de facto standardization. Simple and
standardized abstractions, perhaps in-
troduced by smaller cloud providers,
open source communities, or academ-
ics, would remove the most prominent
remaining economic hurdle to server-
less adoption.
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The Next Phase

of Cloud Computing

Perhaps the best way to understand the
shift that serverless computing repre-
sents is to focus on the first of the es-
sential qualities (as noted previously):
providing an abstraction that hides
servers and thus simplifies the pro-
gramming and operating model. From
the outset, cloud computing provided
a simplified operating model, but sim-
plified programming comes from hid-
ing servers. The future evolution of
serverless computing, and in our view
of cloud computing, will be guided by
efforts to provide abstractions that
simplify cloud programming.

It is striking how little cloud com-
puting has changed how programmers
work to date, especially when com-
pared to the impact it has had on oper-
ators. Much of the software that runs in
the cloud is the exact same software
that runs in a traditional data center.
Compare the programming skills most
in demand today against those needed
10 years ago and you will notice that
the core skill set has changed very lit-
tle, even as specific technologies come
and go. By contrast, the operator’s job
has changed tremendously. Installing
and maintaining servers, storage, and
networks are largely things of the past,
replaced by a focus on managing virtu-
alized infrastructure through cloud
provider APIs, and by the DevOps
movement, which emphasizes the
technical and organizational aspects
of change management.

What makes programming the
cloud hard? While it is possible to use
the cloud with just one server, this of-
fers neither fault tolerance nor scal-
ability nor pay-as-you-go, so most cloud
programming quickly becomes dis-
tributed systems programming. When
writing distributed systems, program-
mers must reason about the data cen-
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ter’s spatial extent, its various partial
failure modes, and all of its security
threats. In the language of Fred P.
Brooks, these concerns represent “ac-
cidental complexity,” which arises
from the implementation environ-
ment and stands in contrast to “essen-
tial complexity,” which is inherent in
the functionality that the application
provides.” At the time of Brooks’s writ-
ing, high-level languages were displac-
ing assembly language, freeing pro-
grammers from reasoning about
complex machine details such as regis-
ter allocation or data layout in memory.
Just as high-level languages hide many
details of how a CPU operates, server-
less computing hides many details of
what it takes to build a reliable, scal-
able, and secure distributed system.

We next consider alternative ap-
proaches to serverless abstraction, in-
cluding ones that exist today and ones
that we imagine. These vie to answer
the question, “if not servers, then
what?” We group these alternative ab-
straction approaches into application-
specific and general-purpose categories
(see Table 1). Application-specific ab-
stractions solve a particular use case,
and several of them exist in products
today. General-purpose abstractions
must work well in a broad variety of
uses and remain a research challenge.

Let us examine an illustrative exam-
ple from big data processing. Consider
a simple query that might arise in an e-
commerce setting: computing an aver-
age over 10 billion records using
weights derived from one million cate-
gories. This workload has the potential
for a lot of parallelism, so it benefits
from the serverless illusion of infinite
resources.

We present two application-specific
serverless offerings that cater to this ex-
ample and illustrate how the category
affords multiple approaches. One could
use the AWS Athena big data query en-
gine, a tool programmed using SQL
(Structured Query Language), to execute
queries against data in object storage.
SQL is particularly well suited to analyt-
ics and can express this computation
with a single statement. Alternatively,
one could use a framework such as that
which Google Cloud Dataflow provides.
Doing so requires writing a simple Ma-
pReduce-style'! program, for example,
using Java or Python, with two func-



tions: one that computes a weighted av-
erage for some chunk of data, and an-
other that combines weighted averages
for separate chunks into one for their
union. The framework takes care of pip-
ing data in and out of these functions,
as well as autoscaling, reliability, and
other distributed systems concerns. In
contrast to the SQL-based tool, this ab-
straction can run arbitrary code, which
can make it suitable to a wider range of
analytics problems.

General-purpose serverless abstrac-
tions that offer a performant solution
to our big data example do not yet exist.
Cloud functions might appear to pro-
vide a solution since they allow users to
write arbitrary code, and for some
workloads they do,? but due to limita-
tions they sometimes perform much
worse than alternatives.'*"” Figure 4 il-
lustrates how network traffic could be
much higher if we implement our ex-
ample using cloud functions, rather
than wusing an application-specific
framework such as Cloud Dataflow.
With cloud functions, the provider dis-
tributes work across various VM in-
stances without regard to the applica-
tion’s communication patterns, which
simplifies autoscaling but increases
network traffic.

We suggest two paths to enhancing
cloud functions so that they work well
in a broader range of applications, po-
tentially turning them into general-
purpose serverless abstractions. First,
we imagine that hints provided by the
programmer might indicate how to
achieve better performance. Hints
might describe application communi-
cation patterns (for example, broad-
cast or all-reduce), or suggest task
placement affinity.” Such an approach
has precedent in compilers (for exam-
ple, branch prediction, alignment, and
prefetching hints).

Second, and more compellingly, we
envision inefficiencies being removed
by automatic optimization. In our ex-
ample the cloud provider might prom-
ise to infer locality optimizations from
observed communication patterns. In
some cases, such inferences might also
be made statically, based on an analy-
sis of the program. In the single-ma-
chine context this hasample precedent
in what modern compilers and lan-
guage runtimes do, and one might
think of this form of serverless com-

puting as extending language support
to distributed systems.

Figure 5 illustrates the difference
between application-specific and gen-
eral-purpose serverless abstractions.
In the general-purpose case the cloud
provider exposes a few basic building
blocks, for example, an enhanced ver-
sion of cloud functions and serverless
storage of some sort. A variety of appli-
cation-specific use cases can be built
on top of these foundations. With ap-
plication-specific serverless, cloud pro-
viders instead offer a proliferation of
BaaS to meet the needs of an ever-
greater number of applications.
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Today, serverless computing re-
mains entirely of the application-spe-
cific variety. Even cloud functions,
which can execute arbitrary code, are
popular mainly for stateless API serv-
ing and event-driven data processing.?’
We expect application-specific server-
less computing to grow, but we are
most excited about the potential emer-
gence of general-purpose serverless ab-
stractions, which could host software
ecosystems catering to every need. In
our view, only the general-purpose ap-
proach can ultimately displace servers
to become the default form of cloud
programming. However, general-pur-

Figure 4. Increased communication for aggregation and broadcast patterns.

Application-specific serverless frameworks (for example, Cloud Dataflow) can be implemented
with serverful communication patterns. In this case (a) the fewer arrows indicate less network
communication than in (b) the general-purpose serverless option. By packing K tasks per VM
instance, an application-specific serverless solution, like a serverful solution, is able to achieve
a communication complexity of O(N/K) for a job with N tasks, as opposed to O(N) for the cloud
function based alternative which can not influence task placement. Typical values for K range
from 10 to 100, leading to an overall difference of one to two orders of magnitude.
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Figure 5. Potential future directions for serverless.

(a) General-purpose serverless abstractions support a wide range of needs, with application-
specific functionality provided by software above the cloud provider interface, (b) application-
specific serverless abstractions with many Baa$S point-solutions.
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General-purpose serverless
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pose serverless technology does not ex-
ist today, and developing it presents
research challenges.

Research Challenges

Serverless computing is evolving rap-
idly and offers various research chal-
lenges, many of them common to both
application-specific and general-pur-
pose serverless.

State management. Distributed
cloud applications often need to ex-
change short-lived or ephemeral state
between their component tasks. Exam-
ples include application-wide caches,
indexes, and other lookup tables, or in-
termediate results of big data analyt-
ics. Cloud functions today allow appli-
cations to store ephemeral state locally
at each function, which is useful for
caching and as working memory for
the program. Serverless shared state
may be saved in object storage or key-
value stores, but these do not simulta-
neously provide low latency, low cost,
high throughput, and fine-grained ac-
cess, as is possible with servers.” Ap-
proaches to addressing these challeng-
es include temporary data storage for
analytics® as well as stateful cloud
functions that integrate caching and
provide consistency guarantees.?

Networking. Cloud functions trans-
fer the responsibility of scheduling
work from the user to the cloud provid-
er, which has several interesting conse-
quences. Since users cede control over
when functions run, passing state be-
tween cloud functions requires a trip
through shared storage; direct network
communication makes little sense and
cloud providers block it. Accessing
shared storage adds significant latency,
sometimes hundreds of milliseconds.
Users also cede control over where func-

tions run, thus precluding optimiza-
tions common with servers, including
sharing common inputs between tasks
and combining outputs before sending
them over the network (see Figure 4 and
previous discussion). Attempts to over-
come these challenges will highlight
the tension between giving program-
mers more control and allowing the
cloud provider to make optimizations
automatically.

Predictable performance. Both
FaaS and BaaS can exhibit variable
performance which precludes their
use in applications that must meet
strict guarantees. Part of the reason
for this is fundamental: serverless
providers rely on statistical multiplex-
ing to create the illusion of infinite re-
sources, while denying users control
over resource oversubscription. There
is always some chance that unfortu-
nate timing will create queuing de-
lays. There is also a latency cost to re-
assigning  resources from one
customer to another, which in the
cloud function context is known as a
“cold start.” Cold start latency has sev-
eral components,”” and significant
among them is the time it takes to ini-
tialize the software environment of
the function. There has already been
progress in this area. Cloud function
environments such as Google gVisor
and AWS Firecracker' can now start in
about 100 ms, whereas traditional
VMs take tens of seconds to boot. It is
also possible to accelerate applica-
tion-level initialization such as load-
ing libraries.?® There is probably still
much room for improvement in these
areas, though there is also evidence
that performance optimization and
isolation for security are fundamen-
tally at odds.** Customers of AWS

Serverless and Security

Today, serverless computing merely shifts some security responsibilities from the
cloud customer to the cloud provider, just as it shifts other system administration
responsibilities. With cloud functions, security updates to operating systems,
language runtimes, and standard software packages are applied without customer
involvement, usually quickly and reliably. For Baas services, the cloud provider
assumes responsibility for securing everything behind an API. This path may prove
to be an important advantage because it allows developers to reason about security
at a higher abstraction level. They do not need to implement lower-level security
mechanisms, which could lead to fewer security mistakes. While this benefit must
be weighed against the exposure to attacks through shared hardware, we believe that
improved abstractions may eventually make application security easier to achieve with

serverless computing.

82 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL.64 | NO.5

Lambda can also avoid cold start la-
tencies by purchasing “provisioned
concurrency,” which controversially
reintroduces a form of resource reser-
vation to the serverless model. We
hope to also see pricing based on sta-
tistical guarantees, or Service Level
Objectives (SLOs), which are absent in
serverless today.

Security. Serverless computing
leads to fine-grained resource sharing
and so increases the exposure to side-
channel attacks, whereby attackers ex-
ploit subtle behaviors of real hardware
that differ from either specifications or
programmer assumptions (see sidebar
“Serverless and Security”). Threats
range from Rowhammer attacks on
DRAM?® to those exploiting microat-
chitectural vulnerabilities.”> In addi-
tion to adopting mitigations developed
for serverful computing, serverless
might employ randomized scheduling
to make it more difficult for an attack-
er to target a specific victim. Serverless
computing also can incur greater in-
formation leakage through network
communication because of the fine-
grained decomposition of an applica-
tion and physical distribution of its
pieces. An attacker observing the size
and timing of network traffic, even if it
is encrypted, might make inferences
about private data. Addressing these
risks may be possible through oblivi-
ous computing.'?

Programming languages. Simpli-
fied distributed systems programming
is a core benefit of serverless comput-
ing,'® and while much previous work in
this area is relevant, the serverless set-
ting calls for a new perspective and
adds urgency. Traditional challenges
include fault tolerance, consistency,
concurrency, and the performance and
efficiency that comes from locality.
New challenges include first-class sup-
port for autoscaling, pay-as-you-go,
and fine-grained multiplexing.

Fault tolerance concerns are elevat-
ed by attempts to extend serverless
computing beyond stateless cloud
functions. Azure Durable Functions
uses C# language features to provide
transparent checkpointing, which
makes it easier to write stateful and re-
sumable serverless tasks. Microsoft Or-
leans,” which implements an actor
model,” similarly hides fault tolerance
concerns from programmers. Actors



also provide a notion of locality, and
could be a counterpart to cloud func-
tions for stateful serverless computing.
Ray* embodies elements of both. Ap-
proaches to consistency include lan-
guage-integrated transactions, pio-
neered by Argus.”® However,
transactions are fraught with perfor-
mance and scalability challenges,
which an autoscaling serverless envi-
ronment may exacerbate. An alterna-
tive approach lies in languages like
Bloom,* which allows automated anal-
ysis to determine which parts of a pro-
gram can run independently, without
coordination, and thus scalably. Pay-
as-you-go should encourage language
developers to rethink resource man-
agement, for example, automated gar-
bage collection might be adapted to
metered memory pricing. Language
approaches to cloud programming,’
which address the complexity of dis-
tributed systems programming head-
on, may represent the most direct and
ambitious approach to simplifying
cloud programming.

Machine learning. We believe that
automatic optimization with machine
learning will play an important role in
all of the areas discussed above. It may
help decide where to run code, where
to keep state, when to start up a new
execution environment, and how to
keep utilization high and costs low
while meeting performance objec-
tives. It may also aid in identifying ma-
licious activity that threatens security,
or in automatically cutting up large
programs into pieces that can execute
in separate cloud functions. Machine
learning can help optimize serverful
computing too," but serverless ab-
stractions give cloud providers more
control over the relevant knobs, as
well as the visibility across many cus-
tomers required to train robust and ef-
fective models.

Hardware. Current trends in hard-
ware may be complementary to server-
less computing. The x86 microproces-
sors that dominate the cloud are barely
improving in performance; in 2017,
program latency improved only 3%, a
trend that if continued implies that
performance won’t double for 20 years.
Similarly, the ending of Moore’s Law is
slowing the growth of per-chip DRAM
capacity. The industry response has
been the introduction of Domain Spe-

Itis striking

how little cloud
computing has
changed how
programmers work
to date, especially
when compared to
the impactit has
had on operators.

contributed articles

cific Architectures (DSAs), which are
tailored to a specific type of problem,
offering significant performance and
efficiency gains, but performing poorly
for other applications." GPUs have
long been used to accelerate graphics,
and we are starting to see DSAs for ML
such as TPUs. GPUs and TPUs can out-
perform CPUs for narrow tasks by fac-
tors of 30x.” These examples are the
first of many, as general-purpose pro-
cessors enhanced with DSAs will likely
become the norm.

We believe serverless computing
may provide a useful programming
model for integrating diverse architec-
tures, say with separate cloud func-
tions running on separate accelerators.
It also helps create room for innova-
tion by raising the level of abstraction,
for example, by allowing a cloud pro-
vider to substitute a DSA for a CPU
when recognizing a workload that
could benefit.

Why Serverless Computing
Might Still Fail
While we believe serverless comput-
ing can grow to become the cloud
programming default, we can also
imagine several scenarios in which
serverful computing retains its domi-
nance. First, serverful computing is
a moving target, one that improves
relentlessly, if slowly. Cloud VMs that
once were billed by the hour now
have a minimum billing increment
of one minute, and charge by the sec-
ond thereafter. Container and VM
orchestration tools (for example, Ku-
bernetes, Terraform) help streamline
complex deployments, and increas-
ingly automate administrative tasks
such as taking backups. Programmers
can rely on mature software ecosys-
tems and strong legacy compatibil-
ity when building applications, while
companies already have teams skilled
in serverful cloud deployments. Server
hardware also keeps getting bigger
and more powerful, bringing CPU,
memory, and accelerator power to-
gether in a closely coupled environ-
ment, a benefit for some applications.
Second, today’s successful server-
less products fall into the application-
specific category and are narrowly tar-
geted, whereas  general-purpose
serverless abstractions have a better
chance of displacing serverful comput-
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ing (which is also general-purpose).
However general-purpose serverless
computing faces hurdles: the technol-
ogy that we envision does not exist yet,
and it may be a less lucrative business
for cloud providers.

Finally, even if our vision plays out,
the brand of “serverless computing”
might not survive. The temptation to
label older products as the next new
thing is strong and can create confu-
sion in the marketplace. We have been
happy to see products such as Google
App Engine pick up the serverless
moniker, and along with it features
such as scaling to zero. However, if the
term becomes diluted by half-hearted
efforts, then perhaps general-purpose
serverless computing will emerge un-
der another name.

Conclusion and Predictions

Cloud computing is both flourishing
and evolving. It has overcome the chal-
lenges that faced it in 2010, as we pro-
jected.” Offering lower costs and sim-
plified system administration, the
business is growing up to 50% annually
and proving highly profitable for cloud
providers. Cloud computing is now en-
tering a second phase in which its con-
tinued growth will be driven by a new
value proposition: simplified cloud
programming.

Analogous to how hailing a taxi sim-
plifies transportation over renting a car
(see Figure 1), serverless computing re-
lieves programmers from thinking
about servers and everything compli-
cated that goes along with them. Fol-
lowing the same naming convention,
you could classify a taxi service as car-
less transportation in that the passen-
ger need not know how to operate a car
to get a ride. Serverless raises the level
of abstraction of the cloud, adopts pay-
as-you-go pricing, and rapidly auto-
scales down to zero and up to practi-
cally infinite resources.

Serverless computing is still evolv-
ing, and many open questions remain,
both in defining its abstractions and in
implementing them. We (boldly) con-
clude this paper with five predictions
for serverless computing in the next
decade:

1. Today’s FaaS and BaaS categories
will give way to a broader range of ab-
stractions, which we categorize as either
general-purpose serverless computing or
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application-specific serverless computing.
While serverful cloud computing won’t
disappear, its relative use in the cloud
will decline as serverless computing
overcomes its current limitations.

2. We expect new general-purpose
serverless abstractions to support just
about any use case. They will support
state management, as well as optimiza-
tions—either user-suggested or auto-
matically inferred—to achieve efficien-
cies comparable or maybe better than
those of serverful computing.

3. We see no fundamental reason
for the cost of serverless computing to
exceed that of serverful computing. We
predict that as severless evolves and in-
creases in popularity almost any appli-
cation, be it tiny or massive-scale, costs
no more—and perhaps a lot less—with
serverless computing

4. Machine learning will play a criti-
cal role in serverless implementations,
allowing cloud providers to optimize
execution of large-scale distributed
systems while providing a simple pro-
gramming interface.

5. Computer hardware for serverless
computing will be much more hetero-
geneous than the conventional x86
servers that powers it today.

If these predictions hold, serverless
computing will become the default
computing paradigm of the Cloud Era,
largely replacing serverful computing
and thereby closing the Client-Server
Era, just as the smartphone brought
the end of the PC Era.
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