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Abstract 8 

Populations within species often exhibit variation in traits that reflect local adaptation and further 9 

shape existing adaptive potential for species to respond to climate change. However, our mechanistic 10 

understanding of how the environment shapes trait variation remains poor. Here, we used common garden 11 

experiments to quantify thermal performance in eight populations of the marine snail Urosalpinx cinerea 12 

across thermal gradients on the Atlantic and the Pacific coasts of North America. We then evaluated the 13 

relationship between thermal performance and environmental metrics derived from time-series data. Our 14 

results reveal a novel pattern of “mixed” trait performance adaptation, where thermal optima was 15 

positively correlated with spawning temperature (cogradient variation), while maximum trait performance 16 

was negatively correlated with season length (countergradient variation). This counterintuitive pattern 17 

likely arises because of phenological shifts in the spawning season, whereby “cold” populations delay 18 

spawning until later in the year when temperatures are warmer compared to “warm” populations that 19 

spawn earlier in the year when temperatures are cooler. Our results show that variation in thermal 20 

performance can be shaped by multiple facets of the environment and are linked to organismal phenology 21 

and natural history. Understanding the impacts of climate change on organisms therefore requires the 22 

knowledge of how climate change will alter different aspects of the thermal environment.   23 
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Introduction 27 

Understanding the potential for organisms to evolve in response to rapidly changing 28 

environmental conditions is a key challenge to forecasting species vulnerability to climate change [1,2]. 29 

One method for uncovering evolutionary responses to climate change is to quantify genetic and 30 

phenotypic adaptive change using experimental evolution [3,4]. However, such an approach is typically 31 

used with model organisms possessing rapid generation times (e.g. Drosophila spp.) and may not be well 32 

suited for understanding climate change effects that arise via altered conditions over longer time scales 33 

(such as prolonged season length) because they experience only small temporal slices of the environment 34 

per generation [1,5–8]. Our expectations of what aspects of the environment that selection and plasticity 35 

are reacting to are thus influenced by generational and environmental time scales. Examining organismal 36 

traits across populations within non-model ectothermic species whose life histories encompass 37 

multiannual variation can reveal insights into spatial adaptation to varying seasonal conditions [9] and can 38 

contribute to our understanding of how species may respond to ongoing and future climate change 39 

(“space for time substitution”, [10,11]). Adaptive divergence may arise in the presence of intraspecific 40 

variation [12], wherein populations distributed along environmental gradients display local adaptation 41 

[13,14]. Investigating the potential for such divergence is important because the assumption that 42 

populations are homogenous (“niche conservatism”, [15]) can lead to over- or underestimated impacts of 43 

climate change [11,16,17]. Understanding patterns and mechanisms generating intraspecific variation in 44 

physiological traits is therefore critical for revealing species’ potential to adapt to climate change. 45 

 Growth rate should experience balancing selection to reduce trade-offs with growth and other 46 

traits and result in high fitness in locally adapted populations [18,19]. For ectothermic species distributed 47 

across broad temperature gradients, one might expect populations in warm locations to have higher rates 48 

of growth as compared to cool habitats because of the positive relationship between temperature and 49 

metabolic processes [20]. However, locally adapted species may exhibit ‘latitudinal compensation,’ 50 
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wherein high-latitude populations express elevated physiological rates as compared to low-latitude 51 

populations at a given temperature [21]. Latitudinal compensation can arise via four different models of 52 

spatial adaptation (three described previously and one proposed here). The first is cogradient variation 53 

(CoGV) or ‘thermal adaptation’, wherein performance is highest at the mean temperature a given 54 

population experiences. In this case, a “cool” population exhibits a lower thermal optima (Topt) than a 55 

“warm” population, generating greater physiological rates at low temperatures (figure 1a & 1e,  [22,23], 56 

e.g. [24]). In contrast, warm populations perform best at higher temperatures, but have lower performance 57 

than cool populations at cooler temperatures [23]. The second model is countergradient variation (CnGV), 58 

a pattern in which cool populations express higher maximum trait performance (MTP) than warm 59 

populations, but at the same Topt (figure 1b and 1f, [22,23,25], e.g. [26]). CnGV is hypothesized to be 60 

adaptive for cool populations in high latitudes where growing temperatures occur over much shorter 61 

seasonal windows than warm, low latitude populations [6,23,27]. The third and fourth models incorporate 62 

elements of both CoGV and CnGV and are described as “mixed” models. Under Mixed Model 1, cool 63 

populations express higher MTP as in CnGV but lower Topt than warm populations as in CoGV (figure 1c 64 

and 1g, e.g. [23,28]). Finally, we propose in this paper the existence of Mixed Model 2, wherein MTP 65 

increases in cool populations as in CnGV, but in contrast Topt increases in cool populations (figure 1d & 66 

1h). One example of how this unintuitive result can arise is seen with European frogs at high latitudes that 67 

develop and hatch later in the season than low latitude populations. Temperature during early 68 

development periods was higher at high latitudes because of more rapid warming in the late high latitude 69 

spring compared to early low latitude spring, which resulted in northern frogs that expressed higher 70 

growth rates at relatively higher thermal optima [18,29], but see [30]. This is significant because mean 71 

temperature during spawning is not correlated with the environmental aspects that are commonly used to 72 

differentiate thermal performance along gradients, such as latitude or mean annual temperature (e.g., 73 

[31]). Therefore, identifying the environmental parameters most strongly driving selection is necessary 74 

for predicting patterns of phenotypic variation, as different mechanistic parameters can drive divergent 75 

spatial patterns of trait performance. In a climate change context, differentiating between Mixed Model 1 76 
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and 2 is important because they suggest opposing responses to climate warming. Mixed Model 1 suggests 77 

that warming of mean temperatures should drive an increase in thermal optima whereas Mixed Model 2 78 

suggests a decrease. Thus, differentiating between these models is an important step in forecasting species 79 

potential for adapting to change. 80 

While there is broad support for spatial patterns of CnGV, there is uncertainty in the 81 

environmental mechanisms that give rise to these patterns of intraspecific performance [18,25,28]. CnGV 82 

is generally interpreted as a response to altered season length across populations, selecting for individuals 83 

with greater growth and developmental rates in habitats with short growing seasons [25,28,32]. However, 84 

experiments have also revealed CnGV arising in fish populations that experience no difference in 85 

seasonality but range across a latitudinal temperature gradient, which suggests a role for mean 86 

temperature in driving spatial patterns of divergence [26]. Distinguishing between these environmental 87 

drivers of spatial adaptation is critical to our ability to forecast how species and populations will respond 88 

to rapid climate change, as an erroneous understanding of these environmental drivers may result in 89 

inaccurate predictions of organismal response to climate change [33].    90 

To address this gap in knowledge, we examined environmental drivers of adaptive divergence in 91 

the growth rate of an ecologically important marine gastropod. We used common garden experiments to 92 

quantify growth rates of lab reared Atlantic oyster drills (Urosalpinx cinerea; hereafter Urosalpinx) 93 

produced from populations across the Atlantic and Pacific coasts of North America. We then constructed 94 

models to evaluate the relationship between physical conditions derived from in situ environmental data 95 

loggers and metrics of thermal performance (Topt and MTP). Thus, our goals were to 1) quantify patterns 96 

of trait performance in latitudinally separated populations of Urosalpinx, and 2) identify which 97 

environmental correlates best explain spatial patterns of adaptive divergence. We hypothesized that 98 

Urosalpinx trait performance would manifest as a countergradient variation that was largely driven by 99 

differences in season length across populations. Through our experiments and analysis, we sought to 100 
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highlight the importance of phenology and environmental conditions on determining patterns of trait 101 

divergence across populations.  102 

Materials and Methods 103 

(a) Natural History and Environmental Context 104 

Urosalpinx is a predatory snail that is native from Florida to Nova Scotia and was introduced to 105 

the Pacific coast of North America in the late 1800s via American oyster (Crassostrea virginica) culture 106 

[34,35]. We quantified patterns of thermal performance from populations sampled across both the native 107 

and introduced coasts because they experience radically different thermal regimes. For example, while 108 

mean temperature and growing season length both decrease strongly from south to north along the 109 

Atlantic coast of North America, the gradient is much weaker and cooler on the Pacific coast [26,36]. 110 

Non-native species, such as Urosalpinx, provide an opportunity to compare intraspecific trait performance 111 

across different environmental gradients [37]. Although demographic history and founder effects have the 112 

potential to alter population responses to environmental regime and can confound interpretation of 113 

physiological trait data [38,39], the introduction of Urosalpinx to the west coast largely ended by the 114 

1900s when transcontinental oyster imports ceased [40,41], allowing for 120 years of potential adaptation 115 

to the non-native climate regime. Further, in San Francisco Bay alone, 1.7 million kg of eastern oysters 116 

(Crassostrea virginica) were transplanted. Due to unregulated collection and transport processes at the 117 

time, large amounts of Urosalpinx were probably also introduced [41], which would greatly decrease the 118 

likelihood of a strong genetic bottleneck with drastic reduction of genetic diversity compared to source 119 

populations. Further, because this species undergoes direct development (i.e. there is no planktonic larval 120 

stage), dispersal and gene flow are likely limited among populations, suggesting a high potential for local 121 

adaptation [13,42]. 122 

(b) Broodstock Field Collection and Common Garden Experiment 123 

We examined physiological performance of lab-reared offspring from broodstock mothers 124 

sourced from eight populations of Urosalpinx to evaluate the effects of environmental drivers on local 125 
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adaptation. Experiments were conducted on juveniles that experienced controlled environmental 126 

conditions for their entire embryonic and juvenile life until cessation of experiments described below. To 127 

produce juvenile Urosalpinx, we collected broodstock adult Urosalpinx from eight sites, six from the 128 

Atlantic and two from the Pacific from March 15-June 9, 2019 (figure 2, table S1, [42]). See 129 

Supplementary Text S1 for further details on broodstock collection.  130 

To construct Urosalpinx thermal performance curves, we conducted a common garden 131 

experiment. We exposed hatchlings from the 8 populations to 6 chronic experimental temperatures (16, 132 

20, 24, 26, 28, and 30°C) chosen to capture Topt based on past experiments [43]. These temperatures are 133 

also realistic when compared to habitat temperature across populations (min-max: 2–37.5°C). Growth rate 134 

was measured using snail shell height, which is correlated with body mass [42]. First, juvenile snails were 135 

measured for an initial shell height and then randomly assigned into common garden temperature 136 

treatments. Snails were less than 24 hours of age (post-hatch) when they entered the common garden 137 

experiment that lasted for 24 days. On the last day, we measured shell height and calculated growth rate 138 

as the difference between initial and final size. We counted snails that died over the duration of the 139 

experiment to quantify survivorship in the common garden experiment, but these data points were 140 

excluded from growth analyses. See Supplementary Material S1 for further details about common garden 141 

experimental design and measurement of Urosalpinx growth rate. 142 

(c) Environmental Predictors 143 

In order to quantify environmental drivers of variation in growth rates in Urosalpinx, we derived 144 

nine metrics from four years of temperature data sourced from environmental loggers co-located within 145 

14 km of the collection site for each population. One exception was the Georgia data logger, which was 146 

located 70 km away from the collection location but was highly correlated with local temperature logger 147 

that had a shorter record (Supplementary Material S1). We selected four years of temperature data from 148 

2012-2019 based on the completeness of the record and to maximize temporal overlap among sites (table 149 

S1 , Supplementary Material S1). From this data, we calculated: 1) latitude, 2) summer mean temperature 150 
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(June 1 – Sept 30), 3) upper 25th temperature percentile of the summer period, 4) upper 10th temperature 151 

percentile of the summer period, 5) maximum recorded temperature, 6) season length (number of days) 152 

where daily mean exceeded 10°C, 7) season length where daily mean exceeded 12.5°C, 8) the mean 153 

temperature for the first month of spawning, and finally 9) the mean temperature for the maximum period 154 

of spawning (table S2). We included length of season as a predictor because theory predicts organisms 155 

exposed to shorter growing seasons (i.e. high latitudes) are selected for faster growth [5,6,27]. We 156 

selected two likely lower temperature limits to calculate season length for Urosalpinx, 10°C and 12.5°C, 157 

based on reported absolute lower limit for feeding [44,45] and a breakpoint in oxygen consumption rates 158 

[46], respectively. We included mean temperature during spawning, as one of our hypotheses of Topt 159 

behavior with environment is that high latitude populations experience warmer spawning periods than do 160 

low latitude populations [18]. We determined initial and maximum spawning periods as reported by [34] 161 

from the Atlantic and observations from the Pacific [47]; where no records of spawning periods could be 162 

found for a site, we used the closest neighbor site (table S4). We selected this broad range of variables as 163 

we did not necessarily know a priori which were relevant, and because the grouping of correlated 164 

predictors in AIC tables indicate what aspects of the environment best explain trait adaptation (i.e. season 165 

length generally, as opposed to season length above a specific threshold). 166 

(d) Statistical Analysis 167 

We used a two-step analysis framework to determine the environmental mechanisms driving 168 

growth rates in Urosalpinx populations in R [48]. First, we constructed and fit  nonlinear regression 169 

models to thermal performance curves with initial snail size as a random effect (contributing 2.4% 170 

variance, means ranging from 1.44 ± 0.180 to 1.69 ± 0.204 mm among populations) using the rTPC and 171 

nls.multstart packages for each population to quantify thermal performance curve attributes (Topt and 172 

MTP, temperature at which maximum growth occurs and the maximum growth rate, respectively) for 173 

each population across the six common garden temperatures using the Rezende equation [49,50].  For 174 

each of the eight populations we fit three models based on the three replicate bins across the six common 175 
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garden temperatures where populations were randomly assigned (figure S1). To produce 95% confidence 176 

intervals about each model prediction, we used non-parametric case resample bootstrapping on each 177 

population-bin model using rTPC and  (table S5, [49]). Once  models were fit to the data, we extracted 178 

the thermal optima (Topt) and maximum trait performance (MTP) of each thermal performance curve 179 

(table S5, figure S3). We then modeled the Topt and MTP for each population against a suite of 180 

environmental metric predictors (table S2) in a model-selection framework using generalized linear mixed 181 

models with gaussian error distribution and with population as a random effect using glmmTMB [51]. 182 

Each environmental predictor was used only once per model to identify which predictor best describes 183 

patterns in trait performance and to avoid  the issue of multicollinearity in models with multiple correlated 184 

predictors (i.e. where VIF > 4; table S3). We used Akaike’s Information Criterion (AICc) to select the 185 

greatest supported model, with a cutoff of ΔAICc < 2 [52]. For MTP, multiple predictors fell within the 186 

model selection criterion, and so we performed model averaging. To evaluate the possibility that analyses 187 

were influenced by invasive populations from the Pacific, we conducted a sensitivity analysis by 188 

constructing identical models with Pacific populations excluded. Our analyses were not sensitive to the 189 

removal of Pacific sites from analysis; both the best-supported environmental parameters and the 190 

significance level (p < 0.05) were maintained for the MTP and Topt analyses. We therefore present the full 191 

analysis of Atlantic and Pacific sites in the results. For survival, we used type II ANOVA from the car 192 

package [53] on generalized linear models with a binomial error distribution and logit link to analyze if 193 

population, common garden temperature, or the interactive effects of population and temperature affected 194 

Urosalpinx survival in the common garden experiment. 195 

Results  196 

We found strong evidence of variation in growth rate across our common garden temperatures 197 

that depended largely on population origin (figure 3). Populations from the high-latitude Atlantic tended 198 

to express higher maximum growth rates (larger MTP) at a higher optimal temperature (larger Topt) 199 

compared to populations from the low-latitude Atlantic and the Pacific. Thus, these high latitude TPCs 200 
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are shifted “up and to the right” compared to other TPCs. Great Bay, NH, the site with the greatest MTP 201 

and Topt, grew 134% faster than the slowest population (Humboldt, CA) and exhibited a Topt 3.52°C 202 

higher than the population with the coldest Topt (Folly Beach, SC). Season length 10°C and 12.5°C 203 

(number of days Temperature > 10°C and 12.5°C, respectively) were the best predictors of MTP, whereas 204 

mean temperature during the initial spawning period was the best supported predictor of Topt (figure 4, 205 

table S6). Initial spring spawning mean was well-supported under AIC for MTP as well as season length, 206 

but its 95% confidence intervals did not deviate from zero and thus was not considered a strong predictor 207 

of MTP (table S6). The maximum trait performance for shell growth decreased significantly with 208 

increasing season length (table S7, generalized linear mixed-effects model, conditional R2GLMM = 209 

0.825/0.825, p = 0.0138/0.0361 for model averaged season length T > 10°C and T > 12.5°C, 210 

respectively), indicating that cold-origin populations grew faster than their warm-origin counterparts 211 

(figure 4a), which is consistent with countergradient variation. For thermal optima, growth was 212 

significantly correlated with the mean temperature during the first month of spawning (table S6 and S7, 213 

generalized linear mixed-effects model, conditional R2GLMM = 0.172, p = 0.0288), where increasing 214 

thermal optima was correlated with increasing spawning temperature (figure 4b). In other words, sites 215 

which had higher spawning temperatures had the highest thermal optima, which is consistent with 216 

cogradient variation. Taken together, these thermal performance metrics provide evidence for Mixed 217 

Model 2 (figure 1d & 1h), a mixture of countergradient and cogradient variation, between populations of 218 

Urosalpinx.  219 

Of the initial 432 juvenile Urosalpinx that entered the common garden experiment, 394 (91.2%) 220 

snails survived. Survivorship in the common garden experiment was not affected by source population (χ2 221 

= 7.52, df = 7, p = 0.377) nor the interaction between population and common garden temperature (χ 2 = 222 

3.47, df = 7, p = 0.839). However, survival increased with temperature (χ 2 = 7.61, df = 1, p = 0.00581, 223 

figure S4). At 16°C, 84% of snails survived, while survivorship was maximized at 30°C, where 95% of 224 

snails survived.  225 
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Discussion 226 

 Our mechanistic understanding of how environmental drivers influence spatial patterns of local 227 

adaptation is limited. Here, we report a novel form of mixed cogradient and countergradient variation in 228 

growth rate (figure 1d & 1h) that was driven by multiple aspects of the physical environment. In oyster 229 

drills, MTP was greatest in populations exposed to short growing seasons. In contrast, Topt was greatest in 230 

populations with warm spawning periods due to a phenological delay in spawning. While other important 231 

work has hypothesized the respective environmental drivers of MTP and Topt in isolation among different 232 

species [6,18,23,29], our work identifies the role of different physical drivers in shaping thermal 233 

performance, which was only apparent once we considered the potential for natural history (reproductive 234 

phenology) and multiple environmental metrics that influence organismal fitness.  235 

(a) Demonstration of a novel mixed model of trait performance 236 

Our data supports a mixed model of spatial adaptation in growth rate (figure 1d & 1h), marked by 237 

countergradient variation in MTP and cogradient variation in Topt. This pattern indicates countergradient 238 

variation (figure 1b & 1f), wherein environment and genotype are opposed to one another [23]. In contrast 239 

to CnGV, sites where the mean temperature during spawning was greatest yielded the highest thermal 240 

optima (Topt). In this context, Topt exhibits cogradient variation – the genotype and environment are 241 

aligned. Northern native range populations tended to express higher this higher Topt, followed by southern 242 

native range and invasive range populations. Interestingly, the Massachusetts population (Woods Hole) 243 

expressed lower MTP and Topt than what would be predicted by the site’s season length and spawning 244 

temperature. This may be due to a warmer thermal history than indicated by temperature data from the 245 

nearby NOAA buoy, as the population was sampled from the mouth of an estuary warmer than the 246 

surrounding ocean. It should be noted that our spawning metric was based on observations by multiple 247 

sources using different observation methods and frequencies [34,47], and future work may benefit from a 248 

standardized methodology to validate our findings of increasing Topt with spawning temperature. 249 

Altogether, this provides support for Mixed Model 2 (figure 1d & 1h), a novel pattern we describe in this 250 
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paper. This pattern may arise because different aspects of the environment can be selective drivers and 251 

thus differently shape our expectations of phenotypic responses in different traits. Previous research of 252 

trait performance between populations of two silverside species from the Atlantic (Menidia menidia) and 253 

the Pacific (Atherinops affinis) found that growth rate was correlated with mean temperature (A. affinis) 254 

and season length (M. menidia), yielding a pattern of countergradient variation [26]. In contrast, we found 255 

season length to decrease with increasing latitude across our two Pacific sites, lending support to the 256 

observation that season length may be a stronger driver of CnGV than mean temperature, even in the low-257 

seasonality Pacific. The phenology of important life histories like spawning and development may 258 

therefore have a significant impact on trait performance adaptation by regulating the type of 259 

environmental exposure among populations [18,30,54]. While we uncovered this novel mixed model of 260 

trait performance in Urosalpinx, it is entirely possible that other fitness-linked traits not examined in this 261 

paper may demonstrate other patterns of trait performance (including Mixed Model 2). Thus, we 262 

encourage future research to consider the potential for multiple traits responding to different 263 

environmental signals and what the cumulative interactions of these different trait performance models 264 

mean for organismal fitness in a changing climate.  265 

We note that the data from the non-native populations must be interpreted with caution, as we 266 

cannot fully discount the possibility of effects from demographic history such as bottleneck events that 267 

could have influenced adaptive potential and phenotypic constraints. Such effects may arise via reduced 268 

genetic diversity of source populations that can confound our assumption that patterns of growth were 269 

driven solely by environment. However, we point out that Urosalpinx were introduced with eastern 270 

oysters (C. virginica) that were indiscriminately dredged and transferred in massive quantities over 271 

several decades [40], suggesting high propagule pressure and a large inoculating population. Recent 272 

molecular work in other gastropods introduced via the same vector in some of the same estuaries that we 273 

sampled reveals no evidence of a founder effect [55]. Finally, our sensitivity analysis demonstrated that 274 

removing invasive Pacific populations from the analysis did not change the overall results. This evidence 275 
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contributes to the notion that founder effects are often not observed in aquatic invasions under high 276 

propagule pressure scenarios [56]. Our ongoing molecular studies will clarify if this idea is supported by 277 

our study system as well and inform our broader understanding of how such patterns may contribute to 278 

adaptive potential.  279 

(b) Environmental correlates of spatial adaptation 280 

 We found that different environmental metrics drive different aspects of Urosalpinx thermal 281 

performance. Our results agree with previous work hypothesizing season length and mean spawning 282 

temperatures as important environmental mechanisms behind adaptive growth patterns [6,18,57,58]. This 283 

suggests that Urosalpinx in high latitude environments are selected for rapid growth rates to compensate 284 

for a shorter seasonal growth window to achieve greater body size, and thus higher survival, over winter 285 

months [59]. In contrast, low latitude populations may be selected for lower growth rates to counteract 286 

potential energetic trade-offs with sustained rapid growth, shifting energy to reproductive effort or 287 

resistance to disease [25,26]. High thermal optima in high latitude populations with warm spawning 288 

periods may also enable these populations to optimize growth during the short seasonal growing window 289 

(above 10°C) [30]. Conversely, lower thermal optima in low latitude populations may allow snails to 290 

complete multiple spawning events throughout the year [60,61]. This suggests that Urosalpinx at high 291 

latitudes have evolved to commence spawning in warmer water than low latitude populations. Because 292 

mean temperature during spawning period is not correlated with latitude (figure S6; ρ = -0.290), our 293 

results call attention to the importance of testing multiple environmental metrics that can drive variation 294 

in thermal performance [5,30,62]. This highlights the importance of integrating organismal natural 295 

history, in context with local environment, as critical considerations for accurately predicting organismal 296 

response to climate change.  297 

(c) Implications for climate change 298 
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 Species that range across environmental gradients provide an excellent opportunity to examine 299 

the potential for trait evolution in response to climate change [11]. Using this “space for time” approach, 300 

we can look to populations adapted to warm environments to build insight into the potential evolutionary 301 

trajectory of trait adaptation in cool environments [10]. Climate change studies sometimes assume that 302 

greater habitat temperatures will yield greater growth rates (e.g., [63,64]), which would be consistent with 303 

cogradient variation. By contrast, countergradient variation suggests that growth rates could actually 304 

decline under climate warming because this response is expected for warming across both space and time 305 

[26]. Thus, our findings of mixed cogradient and countergradient variation suggest that high latitude 306 

populations that experience a warmer climate could exhibit two responses. First, a longer growing season 307 

that is expected under climate warming may result in decreased growth rates [65]. Second, if warming 308 

results in an advance in spawning phenology at high latitude populations, this could result in adaptation to 309 

decreased thermal optima, as observed in low latitude populations [34]. Given that reduced body size is 310 

one well-documented result of climate change [66–68], our results of the adaptive growth rate patterns in 311 

Urosalpinx highlight the potential for evolutionary forces to drive slower growth rates which may 312 

contribute to patterns of diminished body size. Indeed, we observe smaller body sizes in low latitude 313 

populations of Urosalpinx within the native range [69]. As the environment in low latitude populations 314 

continues to warm, growth rates may be further reduced and extreme temperatures may even exceed 315 

thermal tolerances, potentially driving increased mortality. These populations also have diminished 316 

phenotypic plasticity in thermal tolerance, suggesting that extreme climate warming could drive local 317 

extinction of low latitude populations of Urosalpinx, resulting in range contraction [42]. A final 318 

observation is that latitudinal gradients in temperature across the Pacific and Atlantic coasts of North 319 

America are weakening, indicating that these populations may display convergent growth performance 320 

under climate change [36]. Uncovering the aspects of the environment that act as the strongest selective 321 

drivers therefore presents a challenge to ecologists, as assumptions of one parameter over others (i.e. one 322 

informed by phenology as we show here) may produce divergent expectations of physiological response 323 

to climate change. 324 
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(d) Conclusion 325 

To accurately predict the effects of climate change on species, there is a clear need to quantify 326 

multiple environmental mechanisms driving organismal physiology [62,70]. If different environmental 327 

aspects influence unique components of thermal performance, then knowing the impacts of climate 328 

change on organisms requires investigating how physiologically relevant environmental parameters such 329 

as season length and spawning temperature will influence organismal physiology and evolution. This is 330 

an important consideration as TPCs are increasingly integrated into predictions of species distributions 331 

under climate change, an important step towards predicting species response to a rapidly changing 332 

environment [33,71,72]. Some species distribution and performance models accomplish this through 333 

applying trait performance to predictions of mean annual temperature and seasonal variability under 334 

different emissions scenarios [71–73]. While species-distribution approaches are increasingly informed 335 

by environmental mechanism (e.g. [73,74]), they generally do so among species without accounting for 336 

intraspecific variation, thus ignoring the potential for local adaptation [11]. In all cases, TPC-based 337 

prediction is only as good as our understanding of how climate links to organismal physiology [75]. 338 

Therefore, such models can be further improved by carefully considering the environmental mechanisms 339 

behind trait adaptation. Our work supports the need for the full consideration of phenology, natural 340 

history, physiology, and climate to provide a framework for increasing the accuracy of forecasts of 341 

organismal response to climate change.  342 
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Figure Captions 569 

Figure 1. Conceptual models of spatial patterns of thermal reaction norms, illustrated using thermal 570 
performance curves (TPCs, (a) – (d)) and TPC components ((e) – (h)). Under CoGV ((a) and (e)), thermal 571 
optima (Topt) increases with environmental temperature whereas maximum trait performance (MTP) is 572 
equal. Under CnGV ((b) and (f)), Topt is  equal between populations, while the cool population has higher 573 
MTP than the warm population. Under Mixed Model 1 ((c) and (g)), Topt increases with environmental 574 
temperature, while MTP is highest in the cool population. Under Mixed Model 2 ((d) and (h)), both MTP 575 
and Topt are greater in cool populations. 576 

Figure 2. Urosalpinx collection sites on the Atlantic and Pacific seaboards of the United States. Mean sea 577 
surface temperature is an annual composite of 2018 5 km grid data (data source: NOAA/NESDIS Geo-578 
Polar [77]. 579 

Figure 3. Thermal performance (growth rate) of Urosalpinx from eight populations as a function of six 580 
common garden temperatures. For each population, three curves were produced for each of the three 581 
replicate ‘bins’ in the common garden experiment. Colored ribbons represent the confidence intervals 582 
(95%) around thermal performance curves, three for each population (one for each replicate).  583 

Figure 4. Relationship between thermal performance metrics and environmental correlates. (a) Scatterplot 584 
of maximum growth rate (MTP) and season length (days above 10°C).  (b) Scatterplot of thermal optima 585 
and mean temperature during the maximum spawning period. Black lines in both plots represent linear 586 
model estimate based on best performing model, although season length above 12.5°C was also a well-587 
supported predictor for MTP. Shaded ribbon represents the standard error about the mean of each linear 588 
regression. Each population has three data points from the three thermal performance curves constructed 589 
for each population. USA state codes are given above each plot in order of ascending environmental 590 
parameter (x axis).  591 
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