
From Cloud Computing to Sky Computing

Ion Stoica and Scott Shenker
UC Berkeley

Abstract

We consider the future of cloud computing and ask how we

might guide it towards a more coherent service we call sky

computing. The barriers are more economic than technical,

and we propose reciprocal peering as a key enabling step.

ACM Reference Format:

Ion Stoica and Scott Shenker. 2021. From Cloud Computing to Sky

Computing. InWorkshop on Hot Topics in Operating Systems (HotOS

’21), May 31-June 2, 2021, Ann Arbor, MI, USA. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3458336.346530

1 Introduction

In 1961, John McCarthy outlined what he saw as the future

of computing (we regretfully note the gendered language):

“computationmay someday be organized as a pub-

lic utility, just as the telephone system is a public

utility. We can envisage computer service compa-

nies whose subscribers are connected to them [...].

Each subscriber needs to pay only for the capac-

ity that he actually uses, but he has access to all

programming languages characteristic of a very

large system.”

As a prediction about technology, McCarthy’s vision was

remarkably prescient. His short description accurately de-

picts what we now call cloud computing, where users have

access to massive amounts of computation and storage and

are charged only for the resources they use. On the contrary,

his prediction about economics was far off the mark; today,

in the United States even telephone service is no longer a

public utility but delivered instead through a competing set

of providers. However, while not a utility, phone service is

largely a commodity, providing a uniform user experience:

i.e., no matter what provider you use, you can reach anyone,

and switching providers is relatively easy; you can even keep

your number when switching.

Returning to McCarthy’s prediction, what concerns us

here is not that there is no single public computing utility,

but that cloud computing is not an undifferentiated commod-

ity. In contrast to telephony, the cloud computing market has

evolved away from commoditization, with cloud providers

striving to differentiate themselves through proprietary ser-

vices. In this paper we suggest steps we can take to overcome

this differentiation and help create a more commoditized ver-

sion of cloud computing, which we call the Sky computing.

Before doing so, we briefly summarize the history of cloud

computing to provide context for the rest of the paper.

2 Historical Context

The NSF high performance computing (HPC) initiative in

the 1980s provided an early glimpse of the utility computing

vision, though limited to the HPC community. However, the

advent of personal computers delayed this vision by putting

the focus on smaller-scale computing available to all, rather

than high-performance computing for a smaller community.

The personal computer industry was started by hobbyists

who wanted their own machines to tinker with, and was

fuelled by Moore’s Law that enabled personal computers to

keep up rapidly increasing user demands.

The emergence of the Internet led quickly to several pop-

ular services being accessible worldwide, including e-mail,

bulletin board systems, and games. The advent of the World

Wide Web ignited an explosion of new services such as

search, on-line retail, and eventually social media. To cope

with the resulting scale, these services had to build data-

centers and design their own complex distributed systems.

This path was followed by many companies – such as Ya-

hoo!, Google, eBay, and Amazon – but the onus of creating

large-scale service-specific infrastructures became a barrier

to entry in the Internet services market because these steps

required huge investments which most could not afford.

This changed in 2006 when Amazon launched S3 and EC2,

kicking off the age of cloud computing by democratizing ac-

cess to compute/storage and promoting the “pay-as-you-go”

business model. This, together with the end of Moore’s Law

(which made it quite expensive to build and scale services in

on-premise clusters), led to a renewed push towards build-

ing what could have become utility computing. However,

commercial trends have pushed us in a different direction.

26

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Ion Stoica and Scott Shenker

In the early years when Amazon was dominant in the

cloud, they set the de facto standard for cloud computing.

However, in the past decade several competitors have emerged

in this market. According to a recent report [6], AWS now

owns just 32% of the market, followed by Microsoft with 19%,

Google with 7%, Alibaba with 6%, and the other clouds (such

as IBM and Oracle) splitting the rest of the remaining 37% of

the cloudmarket (due to roundoff errors this adds up to 101%).

This competition has led to lower prices and an increasing

array of products and services. For instance, AWS alone of-

fers more than 175 products and services [8]. However, many

of these services are proprietary, and these proprietary ser-

vices are one of the main ways cloud providers differentiate

themselves. For example, each cloud has its own APIs for

managing clusters, its own version of object store, its own

version of a data warehouse, its own serverless offering, and

so on. Applications developed on one cloud often do not

work on a different cloud without substantial changes, the

same way an application written for Microsoft Windows

requires substantial changes to work on Mac OS. Thus, com-

petition in the cloud market has led us away from the vision

of utility computing.

Of course there have been many calls for standardizing

cloud computing [28, 39], but these have had little impact on

the increasing drive towards cloud differentiation. The busi-

ness models of current cloud providers are built around at-

tracting, and then retaining, customers, and this goes against

offering a purely commoditized service. The question we

address, then, is how do we make progress towards the goal

of utility computing?

Our proposal is called Sky computing, to connote that we

are trying to look beyond individual clouds. However, we are

not the first to use the term "Sky computing”. Starting in 2009,

several papers have proposed designs with this name [30,

34, 35]. However, these papers focus on particular technical

solutions, such as running middleware (e.g., Nimbus) on a

cross-cloud Infrastructure-as-a-Service platform, and target

specific workloads such as high-performance computing

(HPC). This paper takes a broader view of Sky computing,

proposing it as the universal software platform for future

applications and considering how technical trends and the

market forces can play a critical role in the emergence of

Sky computing.

3 Lessons from the Internet

Despite the fact that cloud computing and the Internet differ

along many dimensions, we think the Internet provides a use-

ful set of historical lessons. In the early 1960s several groups

were developing packet switching technology. These early

networks worked well, but were incompatible with each

other. The community faced a choice: should it standardize

on a single networking technology, or could it find a way to

accommodate diversity? In 1972 Robert Kahn proposed open-

architecture networking [32], which advocated a universal

interoperability layer that could allow any two networks to

interconnect. This became the Internetworking Protocol (IP).

IP and the protocols above it were all that was needed in the

ARPAnet, which was a single coherent network. However, as

the ARPAnet grew into the Internet, and the Internet grew

to include separate Autonomous Systems (ASes, which are

independently run networks), the Internet needed some way

for packets in one network to reach another. This was not

about low-level compatibility in network technologies, this

was a question of routing: how can the network successfully

direct packets over a set of independently run networks.

The Border Gateway Protocol (BGP) was invented to solve

this problem, and is now the “glue” that makes the set of inde-

pendently run networks appear as a coherent whole to users.

This was a technical solution, but an economic problem re-

mained: when networks interconnect, does money change

hands, and if so, who pays whom? A set of business prac-

tices have emerged for these “peering” or interconnection

agreements. For instance, customers pay providers, but two

networks of similar size and capability might do payment-

free peering. These peering arrangements are technically

straightforward, but bring up thorny policy questions such

as: can provider A charge Internet service B for carrying

B’s traffic, even if B is not directly connected to A. Thus,

issues of unfair competition arise in these agreements (and

are related to questions of network neutrality).

Thus, there were three key design decisions that allowed

the Internet to provide a uniform interface to a huge in-

frastructure made out of heterogeneous technologies (from

Ethernet to ATM to wireless) and competing companies. The

first is a “compatibility” layer that masks technological het-

erogeneity. The second is interdomain routing that glues the

Internet together, making it appear as one network to end

users. The third is a set of economic agreements, forming

what we will call a “peering” layer, that allow competing

networks to collaborate in creating a uniform network.

What lessons does this teach us about the cloud? To fulfil

the vision of utility computing, applications should be able to

run on any cloud provider (i.e., write-once, run-anywhere).

Moreover, users should not have to manage the deployments

on individual clouds, or face significant impediments mov-

ing from one cloud to another. In short, it should be as easy

for a developer to build a multi-cloud application, as it is to

build an application running on a single cloud. We call this

Sky computing. We use this term because utility computing

implies that the infrastructure is a public utility, whereas Sky

computing refers to building the illusion of utility comput-

ing on an infrastructure consisting of multiple and heteroge-

neous competing commercial cloud providers.

27

From Cloud Computing to Sky Computing HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

We contend that the three design issues the Internet had to

address are exactly the pieces needed to create Sky comput-

ing out of our current set of clouds. We need a compatibility

layer to mask low-level technical differences, an intercloud

layer to route jobs to the right cloud, and a peering layer that

allows clouds to have agreements with each other about how

to exchange services. In the next three sections we describe

these layers in more detail. We then conclude by speculating

about the future.

Table 1 illustrates the similarity between the proposed Sky

architecture and the Internet: routers are similar to servers,

ASes are similar to availability zones, and ISPs are similar to

cloud providers. Like in the Internet where IP is oblivious to

routing packets between routers in the same ISP or across

ISPs, an application built on the intercloud layer should be

oblivious of the cloud it is running on.

Internet Sky

Router Server

Autonomous System Datacenter / Availability Zone

Internet Service Provider Cloud Provider

Enterprise Network Private Cloud

Internet Protocol Compatibility Layer

BGP Intercloud Layer

Table 1: Analogy between the Internet and Sky com-

puting.

4 Compatibility Layer

The first step towards achieving the Sky computing vision

is to provide a cloud compatibility layer; i.e., a layer that

abstracts away the services provided by a cloud and allows an

application developed on top of this layer to run on different

clouds without change. In short, the compatibility layer is

a set of interfaces or APIs that applications can be built on;

this compatibility layer can then be ported to each cloud

using the cloud’s set of (perhaps proprietary) interfaces.

In our Internet analogy, this is similar to the IP layer that

enables routers using different underlying (L2) communi-

cation technologies to handle IP packets. However, unlike

IP which is a narrow waist, the cloud compatibility layer is

significantly broader and less well defined since clouds ex-

pose a rich (and growing) set of services to the applications,

including computation, storage, data transfers, and much

more. Thus, the cloud compatibility layer is more similar in

spirit to an operating system (e.g., Linux) that manages the

computer’s resources and exposes an API to applications.

How do we build such a cloud compatibility layer? While

every cloud offers a set of proprietary low-level interfaces,

most users today interact mostly with higher level manage-

ment and service interfaces. Some of these are proprietary,

but a growing number of them are supported by open source

software (OSS).

These OSS projects exist all levels of the software stack, in-

cluding operating systems (Linux), cluster resourcemanagers

(Kubernetes [12], Apache Mesos [31]), application packaging

(Docker [10]), databases (MySQL [15], Postgres [17]), big data

execution engines (Apache Spark [42], Apache Hadoop [41]),

streaming engines (Apache Flink [26], Apache Spark [42],

Apache Kafka [5]), distributed query engines and databases

(Cassandra [4], MongoDB [14], Presto [18], SparkSQL [22],

Redis [19]), machine learning libraries (PyTorch [37], Ten-

sorflow [24], MXNet [27], MLFlow [13], Horovod [40], Ray

RLlib [33]), and general distributed frameworks (Ray [36],

Erlang [25], Akka [1]).

Furthermore, a plethora of companies founded by OSS

creators have emerged to provide hosted services on mul-

tiple clouds. Example are Cloudera (Apache Hadoop), Con-

fluent (Apache Kafka), MongoDB, Redis Labs, HashiCorp

(Terraform, Consul), Datastax (Cassandra), and Databricks

(Apache Spark, MLFlow, and Delta). These developments

make it relatively easy for enterprises to switch from one

cloud to another if their applications are using one of these

multi-cloud OSS-based offerings.

The compatibility layer could be constructed out of some

set of these OSS solutions. Indeed, there are already efforts

underway to consolidate different OSS components in a sin-

gle coherent platform. One example is Cloud Foundry [9], an

open source multi-cloud application platform that supports

all major cloud providers, as well as on-premise clusters.

Another example is RedHat’s OpenShift [16], a kubernetes-

based platform for multi-cloud and on-premise deployments.

While OSS provides solutions at most layers in the soft-

ware stack, the one glaring gap is the storage layer. Every

cloud provider has its own version of proprietary highly-

scalable storage. Examples are AWS’ S3 [2],Microsoft’s Azure

Blob Storage [7] and Google’s Cloud Storage [11]. This be-

ing said, there are already several solutions providing S3

compatibility APIs for Azure’s Blob Storage and Google’s

Cloud Storage, such as S3Proxy [20] and Scality [21]. Some

cloud providers offer their own S3 compatibility APIs to help

customers transition from AWS to their own cloud. In what

follows, we assume that the storage API provided by the

compatibility layer allows reading data across clouds.

Thus, we think achieving a widely usable compatibility

layer is, on purely technical grounds, easily achievable. The

problem is whether the market will support such an effort

because, while the compatibility layer has clear benefits for

users, it naturally leads to the commoditization of the cloud

providers, which may not be in their interests. We will dis-

cuss the incentives issues in Section 7.

28

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Ion Stoica and Scott Shenker

5 Intercloud Layer

The compatibility layer is just the first step in realising the

Sky vision. Even though the compatibility layer allows a user

to run an application on different clouds without change,

the user still needs to decide on which cloud to run the

application. Thus, users are still responsible for making the

performance/cost tradeoffs across different clouds. This is

akin to requiring an Internet user to explicitly select the AS

paths for its interdomain traffic, which would be an onerous

task.

To address this problem, the Internet employs BGP to

make AS-level routing decisions, decisions that are trans-

parent to the user. Similarly, the Sky architecture should

implement an intercloud layer that abstracts away cloud

providers from users; that is, users should not be aware of

which cloud an application is running on (unless they explic-

itly want to know). The intercloud layer is implemented on

top of the compatibility layer, as seen in Figure 1.

The intercloud layer must allow users to specify policies

about where their jobs should run, but not require users to

make low-level decisions about job placement (but would

allow users to do so if they desired). These policies would

allow a user to express their preferences about the tradeoff

between performance, availability, and cost. In addition, a

user might want to avoid their application running on a

datacenter operated by a competitor, or stay within certain

countries to obey relevant privacy regulations. To make this

more precise, a user might specify that this is a Tensorflow

job, it involves data that cannot leave Germany, and must be

finished within the next two hours for under a certain cost.

The intercloud layer might also enable more available and

secure applications. Indeed, since it is very unlikely that dif-

ferent clouds experience outages at the same time [23], an

application can leverage multiple clouds to mask a single

major cloud outage. Furthermore, several recent proposals

treat different clouds as distinct trust domains to provide

more efficient security solutions for a variety of applica-

tions [29, 38, 43].

We believe there are no fundamental technical limitations

in implementing the intercloud layer on top of the cloud

compatibility layer. This is simply because, from a perfor-

mance perspective, moving jobs across clouds is very similar

to moving jobs within the same cloud across datacenters.

Once an application has been designed to run across mul-

tiple datacenters, the remaining cross-cloud issues can be

addressed by the following three functionalities:

(1) A uniform naming scheme for OSS services.

(2) A directory service which allows cloud providers to

register their services, and applications to select a ser-

vice based on their preferences.

(3) An accounting and charging mechanism across clouds.

We now discuss each of these functionalities in turn.

Service Naming Scheme In order to identify a service

instance running on a particular cloud we need a naming

scheme to identify that instance. There are many possible

schemes, and it is not our goal here to advocate for any par-

ticular one, though a natural possibility would be to leverage

DNS for naming these service instances. In addition, we need

to associate metadata with each such service instance. Such

metadata should contain how the service should be invoked,

the name of the cloud provider, location, software or API ver-

sion, hardware type, etc. Furthermore, we might also want to

add dynamic information like pricing, load, and availability.

Directory service An application that requires a partic-

ular service must find a service instance that satisfies its

requirements and preferences. This calls for a directory ser-

vice. Each cloud provider will publish its services to this

directory by providing its name and metadata information.

Furthermore, each cloud provider should periodically update

their dynamic metadata, such as the load and spot pricing.

In turn, applications should request a particular service ex-

pressing its preferences and requirements. Upon receiving

such request, the directory service would return an instance

satisfying these requirements and preferences. The detailed

request schema and the resolution algorithms are outside

the scope of this paper, and will require ongoing evolution

as user requirements become more expressive.

Accounting and charging With Sky computing, a user’s

application can run on one of many clouds or even on several

clouds at the same time, and each cloud must account for

the resources used. If the charging was done by each cloud,

each user would need to have accounts on every cloud. We

propose an alternative where each user signs up with a third-

party broker (which might be one of the cloud providers)

who has an account on all the clouds, and accumulates the

charges and then distributes payments from each of their

users back to the various clouds.

While many details remain to be worked out, there do

not appear to be any insurmountable technical barriers to

achieving a reasonably effective intercloud layer. As with

the compatibility layer, the issue is whether the market will

produce one.

6 Peering Between Clouds

The intercloud layer is designed to run jobs on the cloud

(or clouds) that best meets their needs. If the job involves

large data-sets, as many of the common cloud workloads

do, this will require moving the data to the cloud where

the computation will occur. Today, most clouds have pricing

policies wheremoving data into a cloud is much cheaper than

moving it out. For instance, ingesting data into AWS is free

29

From Cloud Computing to Sky Computing HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

while transferring data out of AWS can cost between 0.05-

0.09$/GB, the cost of storing a GB of data for several months1!

This is significantly more than the cost of streaming data

from some leading CDNs, which ranges form 0.009-0.02$/GB

for 150TB/month or more.

We will call this form of pricing “data gravity” pricing, and

it creates a strong incentive for users to process data in the

same cloud in which it currently resides. Still, moving data

from one cloud to another can still be the most cost-effective

option, especially for jobs where the computation resources

are much more expensive than the data transfer costs. For

example, consider ImageNet training which involve a 150GB

dataset. It costs about $13 to transfer it out of AWS, but,

according to the DAWNBench2, it costs over $40 to train

ResNet50 on ImageNet on AWS compared to about $20 to

train the same model on Azure. Given these numbers, it

would be cheaper to move the data from AWS and perform

training on Azure, instead of performing the training in

AWS where the data is. Thus, while data gravity pricing

does inhibit moving jobs, in some cases moving jobs is still

worthwhile.

In addition, the incentives against job movement are most

acute if the data is dynamic (i.e., is updated as a result of the

computation). If the data is static (e.g., training data), then the

user could use an archival store on one cloud (such as AWS’s

Glacier), which is significantly cheaper than blob stores, and

then import the data they want to process to the blob store

of any other cloud where they want the computation to run.

To our knowledge, current pricing policies for exporting

data are independent of the cloud the data might be going to.

One alternative that we have not seen explored to date is for

clouds to enter into reciprocal data peering arrangements,

where they agree to allow free exporting of data to each

other, and to connect with high-speed links (presumably at

PoPs where they both have a presence). This would make

data transfers both fast and free, lowering the data gravity

between two peering clouds and enabling greater freedom

in job movement. As we argue below, this may solve some

of the underlying incentive problems inherent in creating

the compatibility and intercloud layers.

7 Speculations About The Future

As noted above, while there are few technical barriers to

the compatibility layer, it would make cloud computing re-

semble a commodity. As such, we expect incumbent cloud

providers would strongly resist the emergence of a compati-

bility layer. However, unlike some other arenas (e.g., packet

formats in networking) where standardization requires uni-

versal agreement, the software for a compatibility layer can

1See S3 prices at https://aws.amazon.com/s3/pricing/.
2See the entries for February 2019 and April 2019, respectively, at https:

//dawn.cs.stanford.edu/benchmark/ImageNet/train.html

Datacenter (DC1)

Compatibility
Layer

Cloud
Provider A

Intercloud Layer
(Service Directory, Accounting, Charging)

Intercloud
Layer (Naming)

Datacenter (DC3)

Compatibility
Layer

Intercloud
Layer (Naming)

Datacenter (DC2)

Compatibility
Layer

Intercloud
Layer (Naming)

Datacenter (DC4)

Compatibility
Layer

Intercloud
Layer (Naming)

Datacenter (DC5)

Compatibility
Layer

Intercloud
Layer (Naming)

Cloud
Provider BPeer

agreement

Figure 1: Possible Sky computing architecture.

be ported to any cloud, even if the cloud does not wish to

officially support it. Thus, users of a large incumbent cloud

provider which does not officially support the compatibility

layer might opt to use the compatibility interface rather than

the cloud provider’s lower-level interfaces just to preserve

portability.

In addition, while large incumbents might not be happy

about a compatibility layer, we expect smaller cloud providers

will embrace such a layer. For smaller cloud providers, offer-

ing proprietary interfaces may not be preferable to adopting

a more widely supported standard. By doing so, these smaller

providers would have access to a larger market share (i.e.,

users who have adopted the compatibility layer as their set

of APIs) and could compete on price, performance, or various

forms of customer service. We are already seeing this in the

market, where Google has recently released Anthos [3], an

application management platform based on Kubernetes [12]

that supports “write once, run anywhere” with a consistent

development and operations experience for cloud and on-

premise applications. Anthos is already running on Google

Compute Cloud (GCP) andAWS,with Azure to follow shortly.

Thus, smaller cloud providers may be better off supporting

Anthos rather than competing with it with their own propri-

etary (and presumably less well-known) interfaces.

Once a compatibility layer has gained traction, an inter-

cloud layer can be developed. The question is: who would

benefit from its development? Here we must speculate, since

we are far from having these two layers in place.

We think that once a compatibility layer and an intercloud

layer are in place, cloud providers will fall into two cate-

gories. There will be stand-alone cloud providers who try

to lock customers in with proprietary interfaces and data

export fees. These providers will typically be large enough

so that they have the resources to offer a variety of pro-

prietary services. However, in contrast to today, we think

there will also be commodity cloud providers who directly

support the compatibility layer and agree to reciprocal data

30

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Ion Stoica and Scott Shenker

peering with other commodity cloud providers. These com-

modity providers, taken together as a whole, form the Sky,

which offers a unified interface to a set of heterogeneous and

competing cloud providers.

Why do we believe the Sky will happen? It rests on the

nature of innovation in the two classes of providers. In a

competitive market, the stand-alone providers compete with

each other, and with the Sky. The commodity providers also

compete with each other within the Sky, and collectively

compete with the stand-alone providers. In terms of tradeoffs,

the stand-alone providers have higher margins (because their

customers have exit barriers) but must innovate across the

board to retain advantages for their proprietary interfaces.

In contrast, the commodity providers have lower mar-

gins, but can innovate more narrowly. That is, a commodity

provider might specialize in supporting one or more services;

jobs in the Sky that could benefit from these specialized ser-

vices would migrate there. For example, Oracle could provide

a database-optimized cloud, while a company like EMC can

provide a storage-optimized cloud. In addition, hardware

manufacturers could directly participate in the cloud econ-

omy. For example, Samsung might be able to provide the best

price-performance cloud storage, while Nvidia can provide

hardware-assisted ML services. More excitingly, a company

like Cerebras Systems, which builds a wafer-scale accelerator

for AI workloads, can offer a service based on its chips. To

do so it just needs to host its machines in one or more colo-

cation datacenters like Equinix and port popular ML frame-

works like TensorFlow [24], PyTorch [37], MXNet [27] — thus

providing a compatibility layer — onto Cerebras-powered

servers. Cerebras only needs to provide processing service;

all the other services required by customers (such as data

storage) can run in existing cloud providers. In contrast, to-

day, a company like Cerebras has only two choices: get one

of the big cloud providers like AWS, Azure, or GCP to deploy

its hardware, or build its own fully-featured cloud. Both are

daunting propositions.

However, such a dynamic will only be effective if the in-

tercloud layer can find these accelerated services, since most

individual users won’t be up-to-date on the relative perfor-

mance of various services on the Sky. Thus, to make Sky

computing work, we need all three layers to be effective: the

compatibility layer to hide any differences in implementation

between clouds; the intercloud layer to automatically find

the best price/performance/properties for various services;

and reciprocal peering to make data movements free and

fast.

To be clear, we are not predicting the demise of proprietary

clouds; we think that in the long-term we will continue to

have both kinds of providers. The stand-alone providers

will cater to those customers who need more assistance and

where price and performance are not the critical factors. This

might mean servicing the needs of smaller users who have

less expertise in managing the cloud. However, we think

the bulk of computation-intense workloads, particularly for

sophisticated users, will migrate to the Sky, because of the

greater access to innovation.

One might doubt that the commodity providers would

provide more innovation than the stand-alone providers, but

the PC market offers such an example. In 1981, IBM released

its Personal Computer which pushed the computing industry

in overdrive. The IBM PC was based on an open architec-

ture. The only proprietary component was the BIOS (Basic

Input/Output System) firmware. However, one year later, the

BIOS was reverse engineered and this opened the floodgates

for PC clones. As expected, this led to much lower prices;

however, it also led to more innovation. The clone manufac-

turers like Compaq, not IBM, were responsible for creating

the first portable PC, and for leading the adoption of the new

Intel processors (e.g., Intel’s x386). Furthermore, this open

architecture led to an industry of add-ons such as hardware

accelerators and storage devices. By 1986, IBM PC compati-

ble computers reached half of the entire PC market with the

PC clones outselling IBM PCs by significant numbers.

Our line of reasoning is, of course, purely speculative.

However, the lack of adoption of a compatibility layer in

even the smaller cloud providers is because they do not yet

see such a layer increasing their revenues (because they

are each competing individually against the larger clouds).

However, if such providers simultaneously agree on recip-

rocal peering, then collectively the Sky becomes a viable

competitive counterbalance to the large proprietary clouds,

and allows the commodity clouds to focus their innovation

efforts more narrowly.

8 Conclusion

In this short paper we have described some challenges that

must be overcome before cloud computing can transform

into Sky computing, which would move us closer to Mc-

Carthy’s notion of utility computing. Some of these chal-

lenges are purely technical, and are likely achievable. How-

ever, to make the economic incentives work, Sky computing

requires a group of cloud providers to adopt reciprocal data

peering so that jobs can easily migrate within this large and

heterogeneous collection of commodity clouds. Our purpose

in writing this paper was to identify this as a crucial step

in how the cloud market could be organized, and hopefully

create momentum towards the vision of a Sky full of compu-

tation, rather than isolated clouds.

References

[1] Akka. https://akka.io/.
[2] Amazon S3. https://aws.amazon.com/s3/.

[3] Anthos. https://cloud.google.com/anthos.

[4] Apache Cassandra. https://cassandra.apache.org/.

31

From Cloud Computing to Sky Computing HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

[5] Apache Kafka. https://kafka.apache.org/.
[6] AWS vs Azure vs Google Cloud Market Share 2020: What the Latest

Data Shows. https://www.parkmycloud.com/blog/aws-vs-azure-vs-

google-cloud-market-share/.

[7] Azure Blob Storage. https://azure.microsoft.com/en-us/services/

storage/blobs/.

[8] Cloud Computing with AWS. https://aws.amazon.com/what-is-aws/.

[9] Cloud Foundry. https://www.cloudfoundry.org/.
[10] Docker. https://github.com/docker.

[11] Google Cloud Storage. https://cloud.google.com/storage.

[12] Kubernetes. https://github.com/kubernetes/kubernetes.

[13] MLFlow. https://mlflow.org/.
[14] MongoDB. https://github.com/mongodb/mongo.

[15] MySQL. https://www.mysql.com/.

[16] OpenShift. https://www.redhat.com/en/technologies/cloud-

computing/openshift.

[17] PostgreSQL. https://www.postgresql.org/.
[18] Presto. https://github.com/prestodb/presto.

[19] Redis. https://github.com/redis/redis.

[20] S3Proxy. https://github.com/gaul/s3proxy.

[21] Scality. https://www.scality.com/.

[22] SparkSQL. https://spark.apache.org/sql/.
[23] The 10 Biggest Cloud Outages Of 2020. https://www.crn.com/slide-

shows/cloud/the-10-biggest-cloud-outages-of-2020.

[24] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. TensorFlow: A system for large-scale machine

learning. In Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). Savannah, Georgia, USA,

2016.

[25] Joe Armstrong. Making reliable distributed systems in the presence of

software errors. PhD thesis, Mikroelektronik och informationsteknik,

2003.

[26] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter,

and Kostas Tzoumas. State management in Apache Flink: Consistent

stateful distributed stream processing. Proc. VLDB Endow., 10(12):1718–

1729, August 2017.

[27] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:

A flexible and efficient machine learning library for heterogeneous

distributed systems. In NIPS Workshop on Machine Learning Systems

(LearningSys’16), 2016.

[28] LLC. Cloud Strategy Partners. Ieee cloud standardization.

[29] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Sto-

ica. DORY: An encrypted search system with distributed trust. In 14th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), pages 1101–1119. USENIX Association, November 2020.

[30] José A.B. Fortes. Sky computing: When multiple clouds become one.

In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and

Grid Computing, pages 4–4, 2010.

[31] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:

A platform for fine-grained resource sharing in the data center. In

Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, NSDI’11, pages 295–308, Berkeley, CA, USA, 2011.

USENIX Association.

[32] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,

Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and

Stephen Wolff. A brief history of the internet. SIGCOMM Comput.

Commun. Rev., 39(5):22–31, October 2009.

[33] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,

Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Sto-

ica. RLlib: Abstractions for distributed reinforcement learning. In

International Conference on Machine Learning (ICML), 2018.

[34] A. Matsunaga, J. Fortes, K. Keahey, and M. Tsugawa. Sky computing.

IEEE Internet Computing, 13(05):43–51, sep 2009.

[35] André Monteiro, Joaquim S. Pinto, Cláudio J. V. Teixeira, and Tiago

Batista. Sky computing: Exploring the aggregated cloud resources -

part i. In Conference: Information Systems and Technologies (CISTI),

2021.

[36] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,

Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for

emerging AI applications. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), Carlsbad, CA, 2018.

USENIX Association.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. Automatic differentiation in PyTorch. 2017.

[38] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada

Popa, and Joseph M. Hellerstein. Senate: A maliciously-secure MPC

platform for collaborative analytics. In 30th USENIX Security Sympo-

sium (USENIX Security 21). USENIX Association, August 2021.

[39] Hiroshi Sakai. Standardization activities for cloud computing.

[40] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-

tributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799,

2018.

[41] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and

Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation, pages

2–2. USENIX Association, 2012.

[43] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit

Panda, and Ion Stoica. Cerebro: A platform for multi-party crypto-

graphic collaborative learning. In 30th USENIX Security Symposium

(USENIX Security 21). USENIX Association, August 2021.

32

