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In brief

Signaling pathways often exhibit discrete

pulses of activity whose sources and

functions remain poorly understood.

Ravindran et al. discovered a network

motif that selectively responds to

signaling pulses, rather than constant

high or low signaling states. They

implemented this motif in a synthetic

gene circuit for the Erk signaling pathway

and characterized pulse detection in

response to spontaneous and externally

applied dynamics.
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SUMMARY
Cells employ intracellular signaling pathways to sense and respond to changes in their external environment.
In recent years, live-cell biosensors have revealed complex pulsatile dynamics inmany pathways, but studies
of these signaling dynamics are limited by the necessity of live-cell imaging at high spatiotemporal resolution.
Here, we describe an approach to infer pulsatile signaling dynamics from a single measurement in fixed cells
using a pulse-detecting gene circuit. We computationally screened for circuits with the capability to selec-
tively detect signaling pulses, revealing an incoherent feedforward topology that robustly performs this
computation. We implemented the motif experimentally for the Erk signaling pathway using a single engi-
neered transcription factor and fluorescent protein reporter. Our ‘‘recorder of Erk activity dynamics’’
(READer) responds sensitively to spontaneous and stimulus-driven Erk pulses. READer circuits open the
door to permanently labeling transient, dynamic cell populations to elucidate the mechanistic underpinnings
and biological consequences of signaling dynamics.
INTRODUCTION

The textbook view of many cell-signaling pathways is that of an

amplifier or an off-to-on switch. A stimulus (e.g., an extracellular

ligand, small-molecule nutrient, or toxic stress) is received by the

cell and stimulates activation of a signaling pathway, which am-

plifies the input to trigger a potent gene-expression response.

However, the recent development of live-cell signaling biosen-

sors has revealed that many signaling pathways implement

more complex functions, including pulses, oscillations, or even

traveling waves of pathway activity. Examples include the

signaling pulses observed from the tumor suppressor p53, the

mitogen-associated protein kinase (MAPK) Erk, and the im-

mune-signaling transcription factor NF-kB (Hoffmann et al.,

2002; Nelson et al., 2004; Purvis et al., 2012; Purvis and Lahav,

2013; Shankaran et al., 2009). Pulses of Erk activity have been

observed in vivo in the early mouse embryo (Pokrass et al.,

2020; Simon et al., 2020) and in tumors (Gerosa et al., 2020),

and self-organize into propagating waves from sites of epithelial

injury in both mouse (Hiratsuka et al., 2015) and zebrafish (De Si-

mone et al., 2021; Mayr et al., 2018). The breadth of biological

systems exhibiting signaling dynamics suggests that they may

play important functional roles, but the molecular underpinnings

and downstream cellular functions of signaling pulses remain

poorly understood.

In nearly every context, dynamics are studied exclusively us-

ing time-lapse microscopy in single living cells. This granularity
Cell System
of measurement is crucial for accurately inferring dynamics.

For example, to determine whether a cell has pulsed, one must

perform at least three measurements to observe a succession

of low-, high-, and low-signaling states. However, the require-

ment for live-cell microscopy also puts severe constraints on

the type and scale of experimental study that can be performed.

Live-cell biosensors must often be imaged at high spatial and

temporal resolution, limiting experimental throughput and pre-

senting an obstacle to large-scale chemical or genetic screens.

Microscopy also restricts study to tissues that are compatible

with single-cell imaging, limiting our ability to determine the func-

tional role of dynamics in vivo. The ability to measure signaling

dynamics without time-lapse imaging could be transformational

for studying both the molecular mechanisms and biological con-

sequences of dynamic signaling (Figure 1A). This capability

would enable workflows whereby dynamic cells could be iso-

lated and subjected to high-throughput analyses (e.g., RNA

sequencing or proteomic studies), or entire tissues could be

fixed and examined for the spatial distribution of dynamically

active cells.

Motivated by these challenges, we set out to develop methods

to infer a cell’s dynamic history from a single fixed measurement.

Our strategy centers on the development of synthetic gene

circuits that selectively respond to signaling pulses, filtering out

constant-high and constant-low states. We first performed a

computational screen for pulse-detecting gene circuits, revealing

an incoherent feedforward loop that robustly performs this
s 13, 1–12, February 16, 2022 ª 2021 Published by Elsevier Inc. 1
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Figure 1. A computational screen for pulse-detecting gene circuits

(A) Workflows for studying signaling dynamics. Currently, signaling dynamics are typically obtained from live imaging of individual cells, limiting throughput. In an

alternative workflow, dynamics could be inferred from a single fluorescencemeasurement, enabling rapid and scalable isolation of dynamic cells for downstream

analyses.

(B) Coherent and incoherent feedforward loop (FFL) topologies screened for pulse detection.

(C) Computational screen workflow: constant-off, constant-on, and pulsed inputs were applied to 10,000 random parameterizations of each network shown in

(B). Circuits exhibiting pulse detection would lie in quadrant 3, where responses to pulsed inputs exceed those of either ON or OFF stimuli.

(D) Responses of all circuits from the computational screen. Each point represents a single parameterization of an FFL circuit colored as in (B, left), or with only

Circuit 7 colored (right).

(E) Representative time course of Circuit 7 simulated with either a constant-on (left) or pulsed input (right), along with the model equations representing Circuit 7.
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computation. We then implemented this motif experimentally for

the Erk signaling pathway using just two components: an engi-

neered transcription factor and a fluorescent protein reporter.

Our ‘‘recorder of Erk activity dynamics’’ (READer) circuit responds

sensitively to both stimulus-driven and spontaneous Erk pulses.

READer circuits thus open the door to permanently labeling tran-

sient, dynamic cell populations to elucidate the mechanistic un-

derpinnings and biological consequences of signaling dynamics.

RESULTS

A computational screen for biochemical circuits that
perform pulse detection
Our first goal was to identify circuit topologies that might serve

as pulse detectors, selectively responding to dynamics while

filtering out and ignoring constant high- or low-signaling states.

We focused our attention on feedforward loops (FFLs), a class

of network topologies that repeatedly arise in the search for

motifs that can generate and process dynamic information

(Alon, 2007; Gerardin et al., 2019; Mangan and Alon, 2003).

The defining feature of FFLs is that two paths link input to output,

with the difference in timescale between these two paths typi-

cally acting as the source of dynamic filtering. Classic studies

on FFL networks have defined variants that can generate pulses,
2 Cell Systems 13, 1–12, February 16, 2022
produce a temporally ordered sequence of outputs, or detect

fold changes in input signals (Basu et al., 2004; Csikász-Nagy

et al., 2009; Goentoro et al., 2009); whether such networks might

also selectively detect an input pulse remains unknown. FFLs

are classified as either coherent or incoherent based on whether

the two paths connecting input and output have the same or

different signs (Figure 1B). We devised a simple, modular two-

equation model to represent all 8 FFLs with AND logic at the

output node (Mangan and Alon, 2003) (Figure S1A; STAR

Methods), and in each case simulated 10,000 random parameter

sets with 3 input conditions: sustained on, sustained off, and a

pulse of activation.

We assessed the performance of each circuit by calculating

integrated output over time in response to all three inputs. We

then plotted the ratio of the pulse-induced response to both

the constant-on and constant-off cases (Figure 1C). By defini-

tion, a pulse-detector circuit should show stronger induction in

response to a pulse than either constant stimulus, leading to

high values of both ratios and enrichment in the upper right

quadrant of such a plot, whereas simple activators (circuits

that induce gene expression in proportion to the quantity of input

signal) would appear in the lower-right quadrant and simple re-

pressors would appear in the upper-left quadrant (Figure 1C).

Analysis of all 8 FFL topologies revealed that only a single
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topology, Circuit 7, could perform pulse detection (Figure 1D,

left). Pulse detection also appeared to be a robust feature of

the Circuit 7 FFL, with 96% of simulations showing a stronger

response to pulsed stimuli than either high or low constant inputs

(Figure 1D, right). We also tested all 8 FFL topologies with OR

logic at the output node (Figure S1B). While none exhibited

pulse-specific activation, one OR-FFL circuit did exhibit pulse-

specific repression and can be understood as the logical inverse

of our pulse-detecting Circuit 7 FFL (Figure S1C; STAR

Methods). These results suggest that pulse detection is yet

another function enabled by FFLs.

Examining simulation trajectories provided further insight into

the operation of the Circuit 7 FFL (Figures 1E andS2). Application

of a stimulus (‘‘input’’) rapidly results in production of an interme-

diate node (x1) but also immediately blocks the ability for x1 to

activate an output node (x2). Only upon removal of the stimulus

is repression quickly relieved, enabling x1 to trigger output. Con-

stant-on inputs are unable to trigger a response because input

permanently blocks output, whereas constant-off inputs fail

because the essential activator x1 is not produced. It is important

to note that this FFL design also places constraints on the time-

scales of the two paths between input and output, in line with

prior studies of FFL dynamics (Alon, 2007; Mangan and Alon,

2003). Repression must be achieved faster than activation, so

that output remains off in response to a constant-on stimulus.

Conversely, repression must be relieved more rapidly than x1 is

degraded, so that output production can be triggered as the

stimulus is switched off. Overall, our simulations reveal an intui-

tive and logical relationship between the Circuit 7 FFL topology

and pulse detection, demonstrating that pulse detection can

arise quite generally out of this FFL architecture.

Experimental implementation of pulse detection for the
mammalian Ras/Erk pathway
We next set out to implement our pulse detector circuit in the

context of a dynamic signaling pathway in mammalian cells: the

Erk MAPK pathway. Erk is a canonical example of a dynamically

regulated signaling protein, exhibiting complex pulses and trav-

eling waves in many cellular contexts (Albeck et al., 2013; Aoki

et al., 2013; DeSimone et al., 2021; Hiratsuka et al., 2015). Our im-

plementation centered around a single synthetic transcription fac-

tor that is regulated by Erk in two opposing ways (Figure 2A). For

the forward activation path (e.g., Erk input activating x1, which

then activates x2), we envisioned a two-step transcriptional

cascade: an Erk-responsive promoter to drive expression of a

synthetic Gal4-VP64 transcription factor, which then induces

GFP expression from aGal4-responsive UAS promoter. Tomatch

the Circuit 7 FFL topology, our synthetic transcription factor must

also be rapidly and reversibly inhibited by Erk (so that the Erk input

also directly inhibits x2 production). We conjectured that fusion

with an Erk ‘‘kinase translocation reporter’’ (ErkKTR) would be

ideal for implementing this stimulus-dependent inhibition of the

engineered transcription factor (Regot et al., 2014). Because the

ErkKTR is exported from the nucleus in response to Erk activity,

an ErkKTR-transcription factor fusion protein would be precluded

from encountering DNA and expressing a target gene if the

pathway remained active.

To realize this design experimentally we expressed a KTR-

Gal4-VP64 synthetic transcription factor (abbreviated throughout
as KGV) downstream of the Erk-responsive FOS promoter (PFOS).

We then used a standard reporter construct, the Gal4-responsive

UAS promoter driving destabilized GFP, to record the circuit’s

output. Only in response to a pulse of Erk would KGV be first

expressed and then shuttled into the nucleus, resulting in GFP

production (Figure 2B). We termed our circuit—comprising a

dynamics-sensitive transcription factor and reporter gene—

READer. We transduced NIH3T3 cells with a lentiviral PUAS-

dGFP reporter and transfected them with a PiggyBAC transpo-

sase-integrable PFOS-KGV Erk-responsive transcription factor,

based on our prior data showing that the PiggyBAC system can

be used to integrate immediate early gene (IEG) promoters that

potently induce gene expression upon Erk activation (Ravindran

et al., 2020). We reasoned that the use of a destabilized GFP

variant could be useful to ‘‘reset’’ cells to a low GFP state prior

to the start of an experiment, eliminating the background signal

resulting from the detection of any Erk dynamics in the hours or

days prior to study.We then sorted clonal cell lines harboring sta-

ble integration of both the KGV and dGFP components (Fig-

ure S3A; see STAR Methods).

We next tested whether cells expressing the READer circuit

were able to discriminate between pulsed and constant signaling

inputs as had been observed in our simulations.We switched be-

tween growth-factor-free (GF-free) and serum-containing media

to deliver dynamic Erk stimuli to cells after confirming that both

serum addition and withdrawal led to rapid changes in ErkKTR

biosensor localization on a similar �10-min timescale (Figures

S3B and S3C). We cultured READer cells overnight in media

lacking growth factors (GF-free media) and monitored GFP in-

duction by time-lapse microscopy in continued GF-free media

(‘‘constant-off’’), addition of 10% serum (‘‘constant-on’’), or a

1-h pulse of serum followed by a return to GF-freemedia (‘‘serum

pulse’’). Performing confocal imaging for GFP induction in each

case revealed that the serum pulse led to strong GFP induction

within the 6 h imaging period, whereas constant-on and con-

stant-off stimuli each led to minimal GFP accumulation (Fig-

ure 2C; Video S1). Varying the serum pulse width revealed similar

GFP induction for pulses of 30-min, 1-h, and 2-h durations, with a

time shift in GFP induction corresponding to the different pulse

durations (Figure S3D). We also noted that small subpopulation

of cells in the constant-off and constant-on conditions displayed

strong GFP induction, potentially suggesting underlying pulsatile

Erk dynamics in a subpopulation of NIH3T3 cells, a prediction

that we tested further below.

A key advantage of a pulse detection circuit is that it can be

used to infer prior signaling dynamics from a single measure-

ment in fixed cells, eliminating the requirement for live-cell imag-

ing. To demonstrate this capability, we again exposed NIH3T3

READer cells to constant-off, constant-on, and pulsed serum in-

puts, fixed cells 4 h after the start of stimulation, and performed

flow cytometry to measure GFP accumulation at a single, final

timepoint (Figure 2D). We found that GFP remained low in

most cells exposed to constant-on and constant-off conditions,

again noting a small ‘‘tail’’ of GFP-high cells that will be dis-

cussed in detail below. In contrast, a pulse of serum induced

GFP accumulation in approximately 50% of cells over the

following 3-12 h (Figures 2E and S4A–S4C). To further ensure

that READer specifically reported on Erk activity, we confirmed

that GFP induction was blocked by 2 h pretreatment with 1 mM
Cell Systems 13, 1–12, February 16, 2022 3
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Figure 2. Experimental implementation of pulse detection for the Erk signaling pathway

(A) Schematic of the recorder of Erk activity dynamics (READer) circuit. An Erk-responsive promoter drives expression of a KTR-Gal4-VP64 (KGV) fusion protein,

which in turn triggers expression of a GFP reporter. Destabilization (PEST) sequences are added to both components to ensure rapid degradation and ‘‘resetting’’

in the absence of stimulus.

(B) Illustration of READer circuit logic. Under constant-off stimuli, KGV and GFP levels remain low. A constant-on stimulus drives KGV expression and nuclear

export, preventing GFP production. In response to an input pulse, KGV is first expressed and then imported into the nucleus, leading to high GFP expression.

(C) Images of NIH3T3 READer cells exposed to constant serum or a 1-h serum pulse. Scale bar: 20 mm.

(D) Flow cytometry histograms of GFP from parental NIH3T3 (gray) or READer cells (green) incubated in growth-factor free media (constant-OFF), 10% serum

(constant-ON) or a 1-h pulse of 10% serum.

(E) Quantification of data from (D) in all three conditions. Data are quantified from 2 wells each for 3 independent replicates. Error bars represent standard

deviation.

(F) Mapping how pulse duration affects READer circuit output. Serum inputs of varying duration were applied to cells, which were fixed 3 h after the end of

the pulse.

(G) GFP histograms obtained by flow cytometry for the experimental workflow in (F).

(H) An extendedmathematical model of the READer circuit incorporating negative feedback on Erk target gene induction. An input u (gold) stimulates intermediate

node x1 (blue), which produces a negative regulator x3 (purple) that inhibits the production of x1.

(I) Quantification of flow cytometry data in (G), showing data from 2 experimental replicates. Inset shows simulated results from themodel from (H), with (green) or

without (gray) negative feedback.
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cobimetinib (MEKi), a small-molecule inhibitor of the Erk-acti-

vating kinase MEK (Figures S4D and S4E). Together, these

data indicate that the READer pulse-detecting circuit can indeed

be used to infer the Erk dynamics triggered by externally sup-

plied mitogenic stimuli.

Wewere intrigued by the fractional response of the READer cir-

cuit, where only a subset of cells expresses GFP in response to

the same pulsatile stimulus. We and others have previously found

that serum and optogenetic stimulation can result in uniform Erk

activation across a cell population (Mackeigan et al., 2005;

Toettcher et al., 2013), yet trigger endogenous IEG expression in

only a subset of these cells (Jena et al., 2021; Mackeigan et al.,

2005).We reasoned that theREADer system’s fractional response

may also reflect a nongenetic cell state, possibly tied to its incor-

poration of an Erk-responsive IEG promoter. We confirmed that

the fractional response was nongenetic in origin by sorting cells

from the GFP-high or GFP-low population and repeating the

pulsed-stimulus experiment one week later on the sorted cells.

Indeed, cells sorted from only the GFP-high or GFP-low popula-

tions generated the same bimodal response upon a second stim-

ulus challenge (Figures S5A and S5B). We next examined DNA

content from the GFP-high and GFP-low subpopulations to test

whether Erk-triggered gene expression might depend on cell-cy-

cle phase. We found similar DNA content distributions regardless

of GFP status, arguing against cell cycle control over READer in-

duction (Figures S5C and S5D). These data confirm that even

isogenic cells exhibit fractional READer responses, reminiscent

of the fractional response observed for endogenous IEGs and

suggesting that READer reports on Erk dynamics in the subset

of cells that are permissive to Erk-dependent gene expression.

The scalability of flow cytometry enabled us to rapidly scan

additional stimulus conditions to characterize the READer cir-

cuit’s response in more detail. We first tested how selective

the circuit was to changes in the pulse duration. Endogenous

Erk pulses are typically observed to be less than 1 h in length,

with sustained responses lasting for multiple hours (Albeck

et al., 2013; Aoki et al., 2013; Bugaj et al., 2018; Gerosa et al.,

2020; Goglia et al., 2020; Santos et al., 2007). We applied pulses

of different durations ranging from 5 min to 12 h, then incubated

cells for an additional 3 h to allow GFP to accumulate prior to fix-

ation (Figure 2F). Pulses from 5 min to 2 h resulted in similar pro-

files of GFP expression, but longer pulses were filtered and

ignored by the circuit (Figure 2G). While this long pulse rejection

was not a prediction from our original ‘‘Circuit 7’’ model, it can be

readily understood based on prior reports that even a sustained

Erk stimulus only drives a transient, 30-min pulse of gene expres-

sion from the PFOS promoter due to multiple sources of negative

regulation (e.g., Erk-induced expression of DUSP phosphatases;

autorepression by Fos protein), after which subsequent expres-

sion is suppressed (Kholodenko et al., 1999; Nakakuki et al.,

2010; Wilson et al., 2017). Even a long input pulse would thus

be expected to only transiently induce KGV synthesis. This tran-

sient pulse of KGV synthesis would be followed by a period in

which Erk remains active but KGV RNA/protein levels drop, leav-

ing little KGVprotein to return to the nucleus to driveGFP expres-

sion when the Erk pulse eventually terminates (Figure 2H). We

verified that our transposase-integrated PFOS promoter indeed

produced a transient pulse of expression, in agreement with

this conceptual model and our prior data on endogenous fos
expression (Figure S6) (Wilson et al., 2017). Moreover, imple-

menting transient PFOS-driven expression in our computational

model was sufficient to match the duration-based filtering that

we observed experimentally (Figure 2I, inset).

Optogenetic stimuli reveal that READer responds to a
wide range of pulsatile Erk signals
To test for READer system function across a broader range of

dynamic Erk inputs, we turned to our OptoSOS optogenetic sys-

tem (Johnson et al., 2017; Toettcher et al., 2013). Light inputs can

be delivered in complex sequences that are cumbersome to

achieve by repeated changes in soluble growth-factor concen-

tration. We first transduced READer cells with a single-vector,

blue light-sensitive OptoSOS system that we previously showed

can potently activate Ras/Erk signaling (Figure 3A) (Goglia et al.,

2020). Next, we validated that our OptoSOSREADer cell line was

able to trigger rapid, potent Erk activity changes in response to

light stimuli (Figure 3B). We then confirmed whether optogenetic

stimulation recapitulated our previous single pulse detection

results. We quantified the fraction of GFP-positive cells in

response to various light pulse durations by fitting a mixture of

Gaussians to the GFP distribution in each case (Figures 3C

and 3D), revealing that a 10–60-min pulse of blue light triggered

maximal GFP expression (Figures 3E and 3F), just as in the case

of serum (Figure 2I). We did notice lower overall GFP-expression

levels when light was used as the stimulus, suggesting that

maximal IEG expression may depend on both Erk and other par-

allel pathways downstream of growth-factor receptors.

We next set out to characterize READer responses to oscil-

lating Erk inputs, dynamics that have been reported for the Erk

pathway (Albeck et al., 2013; Aoki et al., 2013; Goglia et al.,

2020; Shankaran et al., 2009) but that are difficult to implement

by growth-factor washes. We stimulated OptoSOS READer cells

with a blue LED panel in a tissue-culture incubator, using an

Arduino microcontroller to drive programmable time-varying in-

puts. We first compared a train of eight 1 h-on, 1 h-off pulses

to either 16 h of constant illumination or a single light pulse deliv-

ered after 12 h in GF-free media (Figure 3G, left). Similar GFP in-

duction was observed in cells stimulated with the pulse train and

the single pulse, indicating that the READer system is broadly

responsive to both forms of dynamic Erk activity (Figure 3G,

right). We next tested duty cycle matched inputs of varying pe-

riods from 20 to 120 min, each applied for the same 16-h total

duration (Figure 3H, left). We found that the READer did not

detect pulses in the 20-min period condition, likely because

the fast switching timescale led the input was perceived as a

constant-on stimulus, but both slower-varying stimuli led to a

GFP response (Figure 3H, right). Finally, we tested how the

time between pulses affected READer system activation for a

fixed 20-min pulse duration and 16-h total stimulus time (Fig-

ure 3I, left). We found potent GFP induction as the time between

pulses was varied from 1 to 6 h (Figure 3I). Together, these data

indicate that READer is permissive of a wide range of pulsatile in-

puts: both pulse trains and single pulses elicit a GFP response if

cycles are not so rapid that they are misperceived as a constant

stimulus. This broad permissiveness is ideal for studies aiming to

cast a wide net by capturing all cells undergoing a dynamic Erk

response. Nevertheless, future variants of the READer system

should be designed for more selective dynamic filtering, such
Cell Systems 13, 1–12, February 16, 2022 5
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Figure 3. OptoSOS enables characterization of READer dynamic filtering

(A) Diagram of the OptoSOS system and ErkKTR biosensor. Blue light drives heterodimerization between tagRFP-SSPB-SOScat and membrane-localized iLID-

CAAX. Upon recruitment to the membrane, SOScat activates Ras/Erk signaling. Phosphorylation of the ErkKTR-irFP biosensor by Erk leads to its export from the

nucleus.

(B) Single-cell traces showing nuclear ErkKTR-iRFP during cycles of optogenetic stimulation. Blue bars indicate periods of optogenetic illumination. Curves

represent single cells (gray lines, n = 11 cells) and the mean of all cells (black line) from a single experiment.

(C) Data processing pipeline for all READer optogenetic experiments. TheGFP histogram is fit to a sumof twoGaussians (top) and then the area under the curve of

each Gaussian is used to estimate the fraction of GFP-high cells (bottom).

(D) Mapping how optogenetic pulse stimulation affects READer circuit output. Light inputs of varying duration were applied to cells, which were fixed 3 h after the

end of the pulse.

(E) GFP histograms for OptoSOS READer cells subjected to the experimental workflow shown in (D).

(F) Quantification of flow cytometry data in (E) (points) as well as constant-on control (gray dotted line). See Figure 4H for results from an independently derived

clonal cell line.

(G) READer responses to a single pulse versus oscillatory stimulus. Cells were exposed to (1) a single 1 h light pulse followed by 3 h in darkness before fixation, (2)

a pulse train of alternating 1 h on/1 h off periods for 16 h or (3) constant light for 16 h.

(H) READer responses at various oscillation periods. Cells were given pulse trains at various periods T, each at 50% duty cycle, for 12 h: (1) T = 20 min, (2)

T = 60 min, or (3) T = 120 min.

(I) READer responses to various times between pulses. Repeated 20 min pulses were delivered every 60 min (case 1), 180 min (case 2), or 360 min (case 3) for a

total of 12 h, with each leading to comparable GFP responses. For (G–I), data are shown from one of two independent replicates.
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Figure 4. Altering band-pass filtering by tuning READer circuit parameters

(A) Schematic of plots showing band-pass features as parameters are varied. For the mathematical model described in Figure 2H, each parameter was varied

from 100-fold up and down the baseline value. The resulting band-pass curves were then analyzed for three features: band-pass height (maximumGFP response

across all pulse durations), band-pass width (the span of durations achieving half-maximal GFP response) and band-pass position (the pulse duration that results

in maximal GFP).

(legend continued on next page)
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as the ability to discriminate single pulses from pulse trains or to

detect specific windows of on time, off time, or duty cycle.

Defining READer circuits with altered signal-processing
capabilities
What parameters define the signaling dynamics that are trans-

mitted to GFP accumulation in the READer circuit? Answering

this question would enable the design of alternative READer cir-

cuits with shifted band-pass capabilities, enabling researchers to

selectivelydetectpulsedurationsof interest. Toaddress thisques-

tion, we queried our mathematical model for parameter sets with

different band-pass filtering capabilities (STARMethods). We first

defined three features to characterize the band-pass filter (Fig-

ure 4A): the maximum amplitude of GFP accumulation (‘‘height’’),

the pulse length at maximum GFP accumulation (‘‘position’’),

and the difference betweenmaximumandminimumpulse lengths

leading to half-maximal GFP accumulation (‘‘width’’) and

measured each feature as a single parameter was varied (Fig-

ure 4B). We observed that four parameters (k1, b1, b2, and k3)

werecapableof stronglyaffecting the shapeof theband-passfilter

in a graded fashion(Figures 4B and 4C), and tuning three of these

parameters (k1, b2, and k3) in conjunction could shift the model’s

band-pass peak over a broad range (Figures 4D and 4E; see

STAR Methods). These computational results indicate that the

READer circuit, and ‘‘Circuit 7’’ with negative feedback more

broadly, might indeed be capable of tunable dynamic filtering.

We next sought to confirm these computational results exper-

imentally but recognized that simultaneously varying multiple

model parameters in an experimental system can be extremely

challenging. Fortunately, we found that even varying just a single

experimentally addressable parameter (the KGV transcription-

factor stability, k1) resulted in some control over band-pass

filtering (Figure 4F). We thus sought to define alternative READer

circuits in which the KGV transcription factor was destabilized at

either the mRNA or protein level. We replaced the tubulin 30 UTR
with the less-stable FOS 30UTR to tune mRNA stability and iden-

tified a more potent PEST sequence to decrease protein stability

(Li et al., 1998; Shyu et al., 1989) and constructed new optoge-

netic READer cell lines incorporating either change or both

changes together (Figure 4G). Indeed, cells harboring destabi-

lized KGV variants exhibited a narrower band-pass response

(Figures 4H–4J). We found that incorporation of both modifica-

tions led to GFP induction only in response to pulses of 1 h or

less (Figure 4I) as well as the highest fold change in the fraction

of GFP+ cells between constant-off and pulsed conditions

(Figure 4J). Taken together, our simulations and experiments
(B) Example radar chart showing the results of the parameter scan for the relative ch

of the parameter are shown in blue, yellow, and red, respectively. The further away

(C) Radar charts for remaining parameters as displayed in (B).

(D and E) Simultaneously tuning k1, k3, and b2 enables more complete control ov

responses exhibited shifted positions but similar widths and amplitudes (E).

(F) Simulated band-pass curves (GFP output for pulses of different duration) pro

(G) Schematic of altered READer circuits implementing enhanced mRNA or prot

(H) Experimentally measured band-pass responses for all four READer circuit va

(I) Representative GFP histograms for the ‘‘original’’ and ‘‘both destabilized’’ READ

of blue light, indicating that the destabilized circuit rejects the 75 min pulse but r

(J) Quantification of fold change in the GFP+ fraction between unstimulated and

optogenetic pulses of the indicated lengths. Combined mRNA/protein destabili

unstimulated and pulsed conditions.
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converge on an intuitive result: the READer circuit acts as a

band-pass filter whose pulse detection characteristics can be

further tuned by modulating the mRNA/protein stability of the

engineered transcription factor.23

The READer circuit detects endogenous Erk signaling
pulses
We have seen that the READer circuit responds selectively to

externally supplied stimulus pulses; can it also detect sponta-

neous, naturally occurring Erk pulses? We had previously noticed

that a small subpopulation of READer-expressing fibroblasts ex-

pressed high levels of GFP even when cultured in constant GF-

free or growth media (Figure 2D; Video S1), raising the possibility

that this subpopulationmay undergo spontaneous Erk pulses that

are then detected by the READer circuit. To directly confirm

whether such a pulsatile subpopulation exists, we transduced

NIH3T3 fibroblasts with a fluorescent ErkKTR-irFP biosensor

and imaged them for 48 h in continuous growth media or immedi-

ately after the switch to GF-free media. Indeed, we observed that

a subpopulation of cells underwent Erk pulses in growth media

and began to pulse spontaneously after approximately 12 h of cul-

ture in GF-free conditions (see example trajectories in Figure S7A;

Video S2). These datawould be consistentwith the appearance of

a GFP-positive population being driven by spontaneous pulses.

To directly compare endogenous Erk pulses to READer-based

GFP accumulation, we next transduced our READer clonal cell

line with the ErkKTR-mScarlet fluorescent biosensor to monitor

both Erk and READer dynamics in the same live cells (Figure 5A).

We also tested a third variation on long-term culture conditions

for observing spontaneous Erk pulses: overnight incubation in

GF-free media followed by a shift to long-term culture in growth

media, to avoid the cytotoxicity associatedwith long-term imaging

in GF-free conditions. We hypothesized that this protocol would

also elicit spontaneous Erk pulses on a similar timescale as the

switch to GF-free conditions, a phenomenon we had previously

observed in spontaneously pulsing keratinocyte cells (Goglia

et al., 2020). Model simulations confirmed that an acute switch

from GF-free media to growth media would indeed prevent

READer systemactivationduringa phase of high, constant Erk ac-

tivity and elicit a sharp rise in GFP induction upon a

shift to stochasticErk pulses (Figure5B). Subsequent experiments

confirmed this picture: serum stimulation first drove a constant-on

ErkstateandErkKTRnuclearexport,withcells spontaneously initi-

ating Erk activity pulses� 15 h after serum stimulation (Figure 5C;

Video S3). These cells also exhibited a rapid rise inGFP levels that

appeared to be correlated with the shift to a pulsatile state.
anges in all threeband-pass features. The lowest, baseline, andmaximumvalues

from the center, the higher the value a particular simulation has for that feature.

er band-pass filtering. For the altered parameter values shown (D), band-pass

duced for different values of the x1 node’s stability (parameter k1).

ein degradation.

riants after stimulation with light pulses as in Figure 3.

er variants incubated in constant dark conditions, 30 min of blue light or 75min

esponds to the 30 min pulse.

pulse-stimulated conditions for all four READer circuit variants in response to

zation results in narrow band-pass filtering and a high fold change between
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Figure 5. READer detects endogenous Erk pulses

(A) NIH3T3 READer cells transduced with ErkKTR-mScarlet can be used to simultaneously visualize Erk activity dynamics and READer GFP output in single cells.

(B) Simulated READer response during the switch from constant-on to stochastic pulses of Erk activity using the model from Figure 2H.

(C) Images and quantification from a representative READer cell expressing ErkKTR-mScarlet stimulated with serum at time 0 and imaged for 2 days; see

Figure S7 for full trajectories of all cells. Confocal images and quantification of the ErkKTR-mScarlet cytosolic fraction and GFP intensity are shown. Inset shows

the simulated GFP response when the same pulsatile ErkKTR-mScarlet trace is used as a model input (see STAR Methods). Scale bars: 10 mm.

(D) Quantification of all cell trajectories (n = 17 cells from a representative experiment) for the time at which the cytoplasmic ErkKTR fraction first falls below 55%

(yellow points) and whenGFP intensity rises 25% above its initial level (green points). Note that 3 cells fail to cross at least one of these thresholds during the entire

time course and are thus excluded from this plot.

(E) Plot of data from (D) with best line fit, revealing a delay time of � 7.8 h between initiation of Erk pulses and the GFP increase.

(F) Comparison of overall experimental GFP induction to modeled GFP output for each cell; see Figure S7 for all individual experimental and simulated trajec-

tories. The mean GFP induction is shown at each timepoint for all simulated and experimental data; dotted line shows identical values.

(G) Histogram of correlation coefficients between modeled and experimental GFP induction for each cell as in (F).
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We next set out to quantitatively analyze the relationship be-

tween Erk dynamics and GFP responses across cells. We found

that the time of the switch to pulsatile Erk (which we estimated

across all cells as the first time point when the ErkKTR C/N ratio

dropped below 55%) correlated well with the time of GFP induc-

tion (estimated as the first time point where GFP rose 25%above

its initial baseline) (Figure 5D). From these data we calculated the

time delay between the shift to Erk pulsing and the GFP increase,

revealing a � 7.8 h delay (Figure 5E) that was within the 3–12-h

period of GFP accumulation previously observed for serum
pulses (Figures S4A–S4C). Finally, we binarized each cell’s Erk

activity trace (using the 55% C/N ratio as the cutoff between

Erk-OFF and Erk-ON states) and used it as the input for our

mathematical model to predict GFP induction. We found that

modeled and experimental GFP correlated strongly across all

cells (Figures 5F, 5G, and S7B for additional cells and simula-

tions), indicating that our feedforward loop can explain GFP re-

sponses to experimentally observed Erk dynamics. Taken

together, these data demonstrate that the READer circuit can

indeed sense spontaneous, naturally occurring Erk pulses.
Cell Systems 13, 1–12, February 16, 2022 9
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Figure 6. READer provides distinct information from the canonical Erk target gene Fos

(A) Although both READer and the canonical Erk target gene Fos report on the shared Ras/Erk pathway, they may be predicted to respond to distinct (transient

versus sustained) dynamics.

(B) Representative images of NIH3T3 READer cells that were fixed after overnight incubation in growth-factor free media (off), after a 20 min pulse of serum

followed by 180 min of GF-free media (transient), or after 180 min after stimulation with constant 10% serum (sustained). Cells were stained for Fos protein (red)

and imaged for GFP (green). Scale bar: 20 mm.

(C) Quantification of Fos immunofluorescence (left) andGFP fluorescence (right) from cells stimulated as in (B) and incubated for the indicated times in continuous

growth media (sustained) or after a 20-min pulse of 10% serum (transient). Points represent the mean normalized intensity across all cells for sustained (square

points) and transient (circles) stimuli; lines represent overall means across two biological replicates. See Figure S8 for full READer/Fos joint distributions.
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READer provides distinct dynamic information from the
Erk target gene c-Fos
As a final test of the READer biosensor, we set out to compare its

response to staining for classic Erk target genes. To our knowl-

edge, no endogenous Erk target genes that specifically sense

pulsatile stimuli have been identified, but the Fos IEG product

has long been used as a marker to identify cells exhibiting sus-

tained levels of Erk pathway activity (Murphy et al., 2004). Fos

staining has been particularly useful in neuroscience, as it labels

cells that have recently experienced high levels of neuronal

activity (Hunt et al., 1987; Kim et al., 2015). We thus wondered

whether READer and Fos might provide overlapping or distinct

information about the shared Erk pathway by responding to tran-

sient and sustained stimuli, respectively (Figure 6A).

To directly compare Fos and READer activation in response to

different dynamic stimuli, we incubated cells overnight in GF-free

media, and switched them to either sustained growth media or a

20-min pulse of growth media. We then fixed cells at various

timepointspoststimulusandmonitoredFosproteinby immunoflu-

orescence and READer-induced GFP fluorescence in the same

cells. We observed rapid, strong induction of Fos at early time

points regardless of stimulus duration, demonstrating that simply

measuring Fos cannot be used to discriminate pulsatile from sus-

tained signaling. In contrast, theREADer circuit only triggeredGFP

expression in response to a pulse but not to constant stimulation

(Figures 6B, 6C, and S8 for full joint READer/Fos distributions).

These results confirm that the dynamic information using READer

cannotbeobtainedbystaining forclassicErk targetgenes likeFos.

DISCUSSION

Here we report the discovery and characterization of a simple

gene network that can selectively and robustly differentiate be-

tween pulsatile and constant signaling states. Our network is

based on an incoherent feedforward loop with slow activation

and fast repression (Figure 1). Incoherent FFLs have been stud-

ied extensively for their dynamic filtering capabilities, including

pulse generation and temporal ordering (Alon, 2007; Csikász-
10 Cell Systems 13, 1–12, February 16, 2022
Nagy et al., 2009; Mangan and Alon, 2003); our work adds highly

selective pulse detection to this list of capabilities.We also report

a simple, flexible implementation of this network architecture

for mammalian signaling, centered on the pathway-regulated

expression of a transcription factor that is fused to a kinase-

translocation reporter (Figure 2). Although we have focused on

Erk signaling in this work, we believe this report provides the

road map to the development of a suite of new reporters that

capture the previous dynamic history for many dynamic

signaling pathways (i.e., p53, Wnt, NFkB, etc.) (Hoffmann et al.,

2002; Nelson et al., 2004; Purvis et al., 2012; Sonnen et al.,

2018; Tsiairis and Aulehla, 2016). Kinase-translocation reporters

are available for a growing number of proteins and pathways

(Miura et al., 2018; Sampattavanich et al., 2018) and other forms

of fast negative regulation (e.g., signal-induced protein degrada-

tion) would be expected to work with similar efficacy.

While we have developed a single-measurement reporter of

signaling dynamics, there are some important limitations to the

system that should be addressed in future studies. Most impor-

tantly, we built the READer circuit using a combination of syn-

thetic components (e.g., KTR and Gal4) and natural ones (e.g.,

the cell’s transcriptional machinery for transducing Erk activity

to FOS promoter activation). Such a ‘‘hybrid’’ system (Toettcher

et al., 2010) greatly simplified our design, as the FOS promoter

already implements potent and rapid Erk-responsive transcrip-

tion from a low initial state. However, the inclusion of natural

components also raises the possibility of regulation from addi-

tional biological sources. For example, we have seen that the

current READer system only triggers GFP expression in a subset

of cells that receive an Erk pulse (Figures 2 and S5) and responds

more strongly to serum than optogenetic Ras stimulation. These

results match analogous observations from the endogenous

FOS gene (Jena et al., 2021) and are likely related to the under-

lying biology of cellular control over IEG expression. In future

studies it would thus be highly desirable to engineer a fully syn-

thetic READer circuit, bypassing the use of endogenous circuit

elements to avoid potential crosstalk and trigger GFP induction

in all Erk-pulsing cells.
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A second challenge for future synthetic dynamics-detection

circuits is that of recording timescale. The current READer sys-

tem reports only on cells’ recent history, detecting pulses that

occurred during the 3–12 h prior to measurement (Figure S4).

While this is suitable for some scenarios (e.g., performing high-

throughput genetic screens), a longer memory would be useful

for some applications, such as relating signaling dynamics to

cell-fate choices that may occur over days. Such a long-lived

READer system could be achieved by replacing the GFP re-

porter with a genome-modification step (e.g., CRISPR editing

or a recombinase-based reporter).

Finally, while the READer circuit is broadly sensitive to pulsatile

signaling activity (Figure 3), it is ill-suited for distinguishing be-

tween closely related dynamics (e.g., short versus long pulses;

single pulses versus pulse trains). Initial studies suggest that nar-

row, tunable dynamic detection can be achieved by altering spe-

cific circuit parameters (Figure 4), and we look forward to future

variants of the READer design that can perform even more com-

plex filtering.

Overall, biosensors like the READer circuit could be transfor-

mative for mapping signaling dynamics in vivo, for large-scale

genetic screens to identify the biochemical networks that

generate pulses, and for tracing the lineages and eventual fates

of pulsing cells (Benzinger et al., 2021; Lormeau et al., 2021).

Such circuits may shed new light on the roles played by

signaling dynamics in diverse contexts from disease to

development.
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d MATLAB code for simulating the computational model is available on the laboratory GitHub page (https://doi.org/10.5281/

zenodo.5482931). Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line maintenance
All cells (NIH 3T3s and HEK 293Ts) were grown in DMEM plus 10% FBS in Thermo Fischer Nunc Cell Culture Tissue Flasks with filter

caps at 37C and 5% CO2.

METHOD DETAILS

Plasmid construction
We cloned all of our constructs/synthetic gene circuits into the pHR lentiviral expression plasmid (Naldini et al., 1996) or into Piggybac

synthetic immediate early gene (synIEG) plasmid (Ravindran et al., 2020; Yusa et al., 2011). All linear DNA fragments were prepared

by PCR, using GXL polymerase for fragments > 7500 bp and HiFi polymerase (Takara Bio) for shorter fragments. After PCR, Dpn1

digestion was used to remove template DNA. PCR products were cut from agarose gels and purified using the Nucleospin gel pu-

rification kit (Takara Bio). Final plasmids were constructed using Infusion assembly and amplified in Stellar chemically competent

E. coli (Takara Bio). DNA was extracted by miniprep (Qiagen). All plasmid verification was done by restriction enzyme digestion

and Sanger sequencing (Genewiz).

To create the KTR-Gal4-VP64 synthetic transcription factor plasmid, we took the original synIEG plasmid (pFos – destabilized GFP

– Tubulin 3’UTR – pCMV – BFP) and replaced the GFP with KTR-iRFP (Addgene #111510) (Dine et al., 2018), keeping the PEST de-

stabilizing element at the end of the coding region. In a second round of cloning, the iRFP was replaced with a Gal4-VP64 fusion pro-

tein amplified from pHR_pGK_LaG17_synNotch_Gal4VP64 (Addgene number: 79127, a gift from the Lim lab) (Morsut et al., 2016).

For the reporter gene, we started pHR_Gal4UAS_IRES_mC_pGK_tBFP (Addgene #79123) (Morsut et al., 2016). First, the tBFP was

replaced with iRFP (Addgene# 111510) (Dine et al., 2018). In a second round of cloning, we amplified destabilized GFP from the orig-

inal synIEG plasmid and cloned it in place of the IRES-mCherry element.

READer cell line generation
Lentivirus production

Lenti-X 293T cells (Clontech) were plated in a 6 well plate at �40% confluency at least 12 hours before transfection. The cells were

then co-transfected with 1.5 ug of the pHR reporter vector along with 1.33 ug and 0.17 ug of CMV and pMD packaging plasmids,

respectively, using Fugene HD (Promega). Virus was collected after 48 hours post-transfection and filtered through a 0.45 mm filter.

To the �2 mL of viral media, 2 mL of polybrene and 40 mL of 1 M HEPES were added. Cells to be infected were plated at 40% con-

fluency in a 6 well plate at least 12 hours before infection and then 200-500 mL of viral media was added the cells. 24 hours post trans-

duction virus containing media was replaced with fresh media.

PiggyBac Integration

NIH 3T3s that were infected with the reporter construct and were to be integrated with KGV TF PiggyBAC plasmid were plated

24 hours prior to transfection. 2.08ug of the plasmid to be integrated along with 0.41 mg of the PiggyBAC helper plasmid were co-

transfected into the cells using Lipofectamine LTX with Plus reagent. Cells were then selected using FACS for dual BFP/iRFP expres-

sion after 3 days post-transfection. Cells underwent single cell sorting to isolate clonal cell lines.

Variants on cell line

To perform optogenetic experiments, pHR OptoSOS-tgRFP was introduced into clonal cell line generated above. To do

so, lentivirus was generated from pHR SFFVp tgRFP-SSPB-SOScat-P2A-ILID-CAAX as described above. READer clonal

cells were plated at �40% confluency in 6-well plates and infected with virus. To perform simultaneous visualization of Erk

pulsatile activity and READer output, we lentivirally transduced the original READer clonal cell line with pHR SFFVp KTR-

mScarlet.

To develop the versions on the READer circuit with different degradation properties, we first generated a clonal cell line con-

taining the OptoSOS construct as well as the reporter plasmid (both introduced by lentiviral transduction). This line was then

validated to have photoswitchable Erk activation by introducing KTR-iRFP using lentivirus (Goglia et al., 2020) and applying cy-

cles of light. After this, 4 different variants of the READer circuit (combinations of PEST/PESTmut and tubulin/fos 30UTR) were

introduced using PiggyBAC integration method described above, and cells were subjected to another round of clonal cell line

generation.
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Microscopy
Preparation

Cells to be imagedwere plated into InVitro Scientific’s 96well, black-walled, 0.17mmhigh performance glass bottomplates. 10 mg /mL

of fibronectin diluted in PBS was placed on the wells, washed off and then cells were plated in DMEMwith 10% FBS for at least 12 h.

12 h prior to imaging, cells were placed in growth factor free media (DMEM with 0.00476 mg / mL HEPES). 50 mL of mineral oil was

pipetted onto the wells right before placing onto the scope to prevent media from evaporating.

Imaging

Cells were maintained at 37C with 5% CO2 for the duration of all imaging experiments. Confocal microscopy was performed on a

Nikon Eclipse Ti microscope with a Prior linear motorized stage, a YokogawaCSU-X1 spinning disk, an Agilent laser linemodule con-

taining 405, 488, 561 and 650nm lasers, a 60X oil or 20X air objective and an iXon DU897 EMCCD camera.

Preparation of fixed cell samples
Cells to be analyzed via flow cytometry were plated at �60% confluency in 6-well plates. 36 hours post-plating and 12 hours before

the experiment began, cells were switched into growth-factor free media (DMEM with 0.00476mg/mL HEPES). Serum additions (up

to 10%) were then given and removed depending on the stimulus. After stimulation protocol was applied, media on cells was aspi-

rated and cells were washed with PBS. After trypsinizing cells, neutralizing the trypsin with media and spinning cells down, the su-

pernatant was removed, and the cell pellet was resuspended in a 2% PFA solution (50:50 mixture of BD CytoFix solution and PBS).

After leaving the samples at 4 �C for 20minutes, cells were spun down and then resuspended in cold PBS. Sampleswere run on LSRII

Flow cytometer between 24 and 48 hours after fixation. Gating strategy is described below.

Pulse experiments
Simple, single pulse experiment

READer clonal cells were plated into 6 well plates 24 hours before the start of stimulation and placed into growth-factor free media

12 hours prior to stimulation. For the constant off condition, cells were given 200 mL of growth-factor freemedia and both the constant

on and pulsed conditions were given 200 mL of FBS (to a final concentration of 10% v/v). After 1 hour, the media on the cells of the

pulsed and constant off condition was removed, and fresh growth-factor free media was added while the media for the cells in the

constant on condition was switched for regular growth media (containing growth factors). After 3 hours, the cells underwent the fix-

ation protocol described above.

Bandpass pulse experiment – serum

READer clonal cells were plated into 6 well plates 24 hours before the start of stimulation and placed into growth-factor free media

12 hours prior to stimulation. After this 12-hour starvation period, the constant on condition was given serum to a final concentration

of 10% v/v, and the longest duration of pulse (typically 12 hours) was given serum to the same final concentration. Then, working

backwards from longest pulse duration to shortest, serum was added to the appropriate well. After the shortest pulse duration,

all wells that were receiving pulsed inputs, as well as the constant off condition, were placed in growth-factor free media while

the constant ON condition was placed in full growth media for 3 hours. After this wait time, cells underwent the fixation protocol

described above.

For the optogenetic bandpass experiments described in Figure 3, READer clonal cells transduced with the OptoSOS systemwere

plated in individual 35mm dishes 24 hours before the start of the experiments and, upon being placed into growth factor free media

12 hours prior to stimulation, were placed in a box covered in foil to protect the cells from the light. As described above, in order from

longest pulse duration to shortest, the individual dishes of cells were placed in a light box stimulated with blue light. After all of the

cells were placed in the box for the appropriate amount of time, the light plate was turned off for 3 hours. After this wait time, cells

underwent the fixation protocol described above.

Off-time analysis

READer clonal cells were plated into 6-well plates 24 hours prior to the start of stimulation and placed into growth-factor free media

12 hours prior to stimulation. Cells were stimulatedwith a 15-minute pulse of serum and switched to growth-factor freemedia at stag-

gered time points, so that all conditions were harvested together but experienced different intervals between the serum pulse and

harvesting. From there, the cells underwent the fixation protocol described above.

Pulse train experiment

For pulse train experiments involving optogenetic stimuli, READer cells expressing the OptoSOS system were plated into 6 well

plates 36 hours prior to experimentation. 12 hours prior to the beginning of the experiment, cells were placed in growth-factor

free media and wrapped in foil to prevent light exposure. Light was delivered using custom-printed circuit boards of blue

450 nm light-emitting diodes (LEDs). During light stimulation, cells were maintained in an incubator at 37 �C in separate foil-

wrapped boxes covered with separate blue LED boards delivering different patterns of light inputs. Each LED board was con-

nected to a separate constant-current LED driver, all of which were controlled using an Arduino MEGA 2560 microcontroller

board. The Arduino was programmed with open-source IDE software to deliver different dynamic light input regimes to each

circuit board. To minimize phototoxicity, light inputs were delivered in cycles of 20 sec ON and 10 sec OFF which allowed

us to minimize light exposure while still delivering a constant stimulus to cells by taking advantage of the slow (�0.5–1 min)

dark decay rate of iLID activation (Guntas et al., 2015). After 16 hours in the light box, the cells underwent the fixation protocol

described above.
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Fos immunofluorescence staining
READer clonal cells were plated in wells of a 96-well plate. 24 hours post plating, and 12 hours prior to stimulation began, cells were

placed into growth-factor freemedia. 20minutes prior to each timepoint, the pulse condition was given a 20-minute pulse of serumby

adding 10ul (10% by volume final concentration) of FBS and then placed back into growth-factor free media. At the endpoint of the

20-minute pulse, the corresponding ‘sustained-input’ well for that timepoint was given 10 mL of FBS (10% by volume final concen-

tration). After all of the timepoints were completed, all cells were fixed by removing the media, adding 75 mL of CytoFix solution and

incubating at room temperature for 10 minutes. CytoFix was then removed and an additional 100 mL of PBS was added and then

dumped out to further wash out remaining CytoFix. Cells were then permeabilized by adding 100 mL of ice-cold 90% methanol to

each well and incubating at -20C for 10 minutes. Methanol was then removed, and the cells were washed with 100 mL of PBS. Cells

were then incubated in IF buffer (PBS + 10% FBS + 2mM EDTA) at room temperature for 1 hour. After blocking, the cells were then

placed in 75 mL of primary antibody (Fos antibody Rabbit mAb – 9F6) at a 1:3000 dilution in IF-T buffer (50 mL of IF buffer + 150 mL

Trixon X-100) and incubated overnight at 4 C. After primary incubation, cells were washed with IF-T buffer three times with 5-minute

incubations between washes. Cells were then placed in 70 mL of secondary antibody that was diluted 1:500 in IF-T buffer and were

incubated at room temperature for 1 hour. After 3 more washes using IF-T buffer with 5-minute incubations, DAPI was added to stain

nuclei, and PBS was added for long term storage at 4 �C. Images were acquired with 24 hours of staining.

Cell cycle analysis
READer clonal cells were plated into T75 flask at 40% confluency. After 36 hours, the media was switched out for growth-factor free

media for 12 hours. Serumwas added for a final concentration of 10% by volume for 1 hour and then switched back to growth-factor

free media. Cells were then fixed using the protocol delineated above. After 24 hours, the cells were sorted into two tubes, one for

GFP-positive and the other for GFP-negative cells using the FACSAria. The two populations were then spun down and re-suspended

in FACS staining buffer (0.1% Triton X-100 in PBS). After a mild vortex to get single-cell suspension, PI was added to a final concen-

tration of 20 mg/mL and RNase A was added to a final concentration of 200 mg/mL. After a mild vortex, the cells were incubated at

room temperature for 30 minutes and then run on LSRII flow cytometer. FSC Express 7 was then used to perform cell-cycle analysis.

MATHEMATICAL MODELING

Basic simulation details
Computational screen

u(t) - pathway input (Erk activity) took on values of either 0 or 10. Inputs were either 0 simulation minutes (.0001 minutes for

computational ease), 40 minutes or 400 minutes for a total simulation time of 500 minutes. Inputs represent constant OFF, pulsed

and constant ON respectively.

x1(t) - intermediate node/TF and x2(t) – output node/GFP. Values were determined using ode15s and equations delineated in

Figure S1.

For each simulation, random parameter values were drawn from a logarithmic scale and plugged into the respective model. For

each input condition, after ode15s was run, GFP (x2) traces were cut off at the 400minute mark for all inputs such that the 400minute

input simulation could represent constant ON. The MATLAB trapz() function was then used to find the area under the curve (AUC)

of the resulting GFP traces under each input condition. Response ratio was calculated by dividing the AUC values of the pulse con-

dition by either constant ON (Pulse versus ON) or constant OFF (Pulse versus OFF).

Pulse-scan experiment

u(t) - pathway input (Erk activity) took on values of either 0 or 10. 100 different inputs were used ranging from 1 simulation minute to

1400 simulation minutes, increasing in a log scale.

x1(t) - intermediate node/TF, x2(t) – output node/GFP, and x3(t) – negative feedback. Values were determined using ode15s and

equations delineated in Equations 28, 29, and 30, below.

For each input time, model was simulated in 3 parts: (1) from time 0 to 10, input was off (value of 0), (2) from time 10 to 10+pulse

duration, input was on (value of 10), (3) from the end of (2) until that plus 1000minutes, input was off. The final part was done to ensure

that anyGFP that could bemadewould be allowed to do so. TheMATLAB trapz() functionwas used to calculate the area under the

curve of the GFP trace and saved in a vector the same length as the space of pulse durations.

Computational screen for pulse detecting feed forward loops
Goal: identification of synthetic gene circuit to respond selectively to pulsatile signaling

Our objective in the report was to find a network architecture that could implement pulse detection in the hopes that we could use this

architecture to make a synthetic gene to respond to pulsatile signaling events. With the advent of live-cell biosensors, it has become

clear that many signaling pathways do not follow the textbook dogma of activating to a high constant manner. Instead, signaling

pathways in mammalian cells display ornate time-varying patterns of activation. More recent advances in optogenetics and micro-

fluidics have shown that different cellular fates rely upon these time-varying inputs to drive specific cell fates. Although connections

between dynamic signaling pathways and their consequences are beginning to be revealed, there are still major unanswered ques-

tions about where such dynamics may exist in vivo and what genetic networks enable such pulsatile activity. As one needs high res-

olution, long-term imaging to capture dynamic signaling activity, live-cell biosensors are still limited in addressing such questions as
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they are relatively low-throughput andmany endogenous contexts are inaccessible to such imaging. If one had a gene that selectively

responds to such pulses, one could stain for such a gene to perform higher-throughput and in vivo fixed assays. Because no genes

with selective pulse detection have been identified/characterized, we decided to engineer such a gene.

To build such a synthetic gene, we first had to identify networks that could enable robust pulse detection. We decided to focus on

the feedforward loop (FFL) network architecture class. FFLs are a pattern of genes in which an initial input acts an intermediate node

and both then go on to act upon the final output node. If both the direct connection and the indirect connection from the stimulus to

the output node have the same sign (both activating or both inactivating) the motif is deemed coherent; in the opposite scenario it is

considered incoherent (Alon, 2007; Mangan and Alon, 2003). In the past, detailed characterization of these network motifs has re-

vealed their wide range of filtering capabilities. For instance, the coherent FFL type 1 has been shown to enable persistence detection

– sustained but not pulsatile inputs lead to expression of the final output (Gerardin et al., 2019). Incoherent FFLs have been implicated

in enabling fold-change detection, specifically in the case of WNT signaling (Goentoro et al., 2009). Finally, it has been shown that

many of the incoherent FFLs can respond to pulses, however their selectivity over sustained on or off signals has yet to be determined

(Csikász-Nagy et al., 2009).

Computational screen using AND logic

To determine which FFL architecture could implement pulse detection, we decided to first assay all eight of the possible combina-

tions for a FFL with three connections using both AND andOR logic for the final output node. To build thesemodels we started from a

simple set of two equations in which the intermediate node (x1) is made in proportion to the amount of input and the output node (x2)

is made by integrating the amounts of x1 and input. As an example, below is the derivation for Circuit 2 (Figure 1B):

dx1
dt

= V1,
Cn1

1

Cn1
1 + un1

� k1,x1 (Equation 1)
n2
dx2
dt

= V2,
x1

xn21 +Cn2
2

,
Cn3

3

un3 +Cn3
3

� k2,x2 (Equation 2)

In Equation 1, u represents the signaling input and has values of either 0 uM when the input is off, and a value of 10 uM when the

input is on. Species x1 is produced in a manner proportional to the parameter V1, and in proportion to one Hill function. In this Hill

function, u acts as an inhibitor andC1 is the activation coefficient. As u surpasses C1 the fraction approaches 0making the production

term go to 0. On the other hand, when u is less than C1, the Hill function is close to 1, making the production term a positive number.

TheHill coefficient n1 govern the steepness of this response. Species x1 degrades at a rate proportional to itself and parameter k1. The

structure of Equation 2 resembles the structure of Equation 1, except there are now two hill functions integrated in AND logic. The

activator in the first Hill function is x1 and the repressor in the second Hill function is u.

Next, we nondimensionalize Equations 1 and 2 using the identities in Equations 3, 4, and 5 to focus in on the characteristic dy-

namics of the READer system.

~x1 =
x1

V1=k1

(Equation 3)
~x2 =
x2

V2=k2

(Equation 4)
~u =
u

C1

(Equation 5)

We also define the following nondimensional parameters:

a =
C3

C1

(Equation 6)
b =
C2

V1=k1

(Equation 7)

Inserting these nondimensional identities and parameters into Equations 1 and 2 produces the equations used for Circuit 2 in the

computational screen (Figures 1D, S1, and S2):

d ~x1
dt

= k1

�
1

un1 + 1
� ~x1

�
(Equation 8)
� n2
d ~x2
dt

= k2
~x1

~x1
n2 + bn2

,
an3

~un3 +an3
� ~x2

�
(Equation 9)
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From this derivation one can appreciate that a general form for the FFL loops is as follows:

d ~x1
dt

= k1
�
f+ =�ðuÞ� ~x1

�
(Equation 10)
d ~x2
dt

= k2

�
g+ =�gðx1Þ , h+ =�ðuÞ� ~x2

�
(Equation 11)

In these equations, the positive (activating) form for the hill functions f, g, or h uses the form:

xn

xn + bn (Equation 12)

And the negative (repressive) form of the hill function uses the form:

bn

xn + bn (Equation 13)

For Equations 12 and 13, in the case of functions f and h in Equations 10 and 11, u would take the place of x and a would take the

place of b.

In the following table, we delineate all of the equations used in the computational screen for each incoherent feedforward circuit

with AND logic:
Circuit 1 d ~x1
dt

= k1

�
un1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
~x1

n2

~x1
n2 + bn2

,
un3

un3 +an3
� ~x2

�
Circuit 2 d ~x1

dt
= k1

�
1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
~x1

n2

~x1
n2 + bn2

,
an3

un3 +an3
� ~x2

�
Circuit 3 d ~x1

dt
= k1

�
un1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
bn2

~x1
n2 + bn2

,
an3

un3 +an3
� ~x2

�
Circuit 4 d ~x1

dt
= k1

�
1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
~x1

n2

~x1
n2 + bn2

,
an3

un3 +an3
� ~x2

�
Circuit 5 d ~x1

dt
= k1

�
un1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
~x1

n2

~x1
n2 + bn2

,
an3

un3 +an3
� ~x2

�
Circuit 6 d ~x1

dt
= k1

�
1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
bn2

~x1
n2 + bn2

,
an3

un3 +an3
� ~x2

�
Circuit 7 d ~x1

dt
= k1

�
un1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
bn2

~x1
n2 + bn2

,
un3

un3 +an3
� ~x2

�
Circuit 8 d ~x1

dt
= k1

�
1

un1 +1
� ~x1

�
d ~x2
dt

= k2

�
~x1

n2

~x1
n2 + bn2

,
un3

un3 +an3
� ~x2

�

To perform the computational screen, we applied three separate inputs: 0.00001 (constant off), 4 (pulsed), and 40 simulation

time units (constant on) to a randomly chosen set of parameters for each circuit for a total simulation time of 40 time unites.

The area under the curve (AUC) of the x2 curve for each simulation was used to calculate the output under each input condition.

By computing the ratio of the AUC of pulsed to those of the other constant inputs, we could identify simulations that enabled se-

lective pulse detection. This was done 10,000 times for each circuit (Figures 1C and 1D). From this analysis, only Circuit 7 showed
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any robust level of pulse detection, with >90% of simulations resulting in greater output in the pulsed condition compared to the

constant on and off inputs.

To ensure that our screen recapitulated known features of FFL, we looked at each individual circuit under the same parameter values.

From this analysis, it was clear that Circuit 7 did provide pulse detection while the other circuits did not (Figures 1E and S2).We also saw

that Circuit 1, also known as Coherent FFL type 1, responded most in the sustained constant on input case (Figure S2A). This is in line

with previous literature that suggests that this network motif enables persistence detection (Gerardin et al., 2019).

Computational screen using OR logic

In the previous computational screen, we computed the final output node (x2) using AND logic. By this we mean that both input and

x1 need to be positively acting on x2 at the same time to produce x2; if either input or x1 is a repressor, then their absence is require for

the production of x2. We next wanted to perform the same screen except using OR logic for x2 when it integrates the levels of both x1

and input. To do this, we changed the form of Equation 11 to the following:

d ~x2
dt

= k2

�
1�

�
1�g+ =�gðx1Þ� , �1� h+ =�ðuÞ

�� ~x2

�
(Equation 14)

In this setup, let us say that both g and h are activating functions (Equation 12). In the case when either x1 or u is greater than their

respective threshold value, then, the inner (1- g+ =�gðx1Þ) or ð1 � h+ =�ðuÞ) go to 0 making the production term 1. Only in the case that

both g(x1) and h(u) are approaching 0 does the production term go to 0. Using this logic, we arrive at the following 8 sets of equations

for incoherent feedforward networks using OR logic:
Circuit 1 d ~x1
dt

= k1
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�
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� ~x2

�
Circuit 8 d ~x1

dt
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�
1

un1 + 1
� ~x1

�
d ~x2
dt
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�
1 �

�
1 � ~x1

n2

~x1
n2 + bn2

�
,

�
1 � un3

un3 +an3

�
� ~x2

�

We then perform the same computational screen that we performed for the AND gate logic. From this analysis, it was clear that

none of the OR gate logics performed pulse detection as few simulations ever landed in the upper right hand quadrant (Figure S1B).

However, one circuit seemed to display pulse specific repression – Circuit 5 (Figure S1C). Interestingly, this circuit is the logical in-

verse of Circuit 7 with AND logic. Circuit 7 with AND logic can be represented as:

x2 = NOT u AND x1 (Equation 15)
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If x2 is pulse detection and we are looking for pulse specific repression, we are essentially searching for (NOT x2). When we perform

this NOT operation over Equation 15, we get:

~x2 = NOT x2 = u OR NOT x1 (Equation 16)

The logical operation represented by Equation 16 is the one performed in Circuit 5 with OR logic.

Conclusion

Overall, we have successfully performed a computational screen over all FFL networks using both AND and OR logic for the

final output node to search for pulse detecting circuits. Validating our approach, Circuit 1 (which has previously been identified as

a persistence detection circuit) robustly responded to sustained signals more strongly than pulsed and off inputs. Using this screen,

we identified one circuit topology – Circuit 7 – which provides pulse detection. Interestingly, our OR gate screen revealed that the

logical inverse of Circuit 7 with AND gate logic, Circuit 5, allowed for pulse-specific repression, further validating the approach.

This work, in conjunction with similar computational studies (Adler et al., 2017; Chau et al., 2012; Gerardin et al., 2019; Ma et al.,

2009), demonstrates the utility of computational screens for identifying biological networks that enable specific filtering capabilities.

Characterization of 3-node network that enables band-pass filtering
Goal: Understand and experimentally tune parameters controlling band-pass filtering

To our knowledge, this is the first network motif that has been described to possess such selective dynamic band-pass filtering ca-

pabilities at the protein level, providing the first insight into how cells may interpret different frequencies. However, how can different

genes respond to different frequencies? What parameters do cells alter to change the selectivity and placement of the optimal

response pulse? To address these questions, we used both mathematical modeling and experiments to understand what affects

properties of the band-pass such as peak position, peak height and band-pass width (selectivity). To computationally assay the sys-

tem, we took our model (Figure 2H) that has three equations for the three species (transcription of KTR-Gal4, GFP and negative regu-

lator) with its 11 parameters and varied each parameter independently 100-fold down and up from the values previously used that

seemed to recapitulate experimental data (Figure 2I). For each parameter set, we simulated a band-pass experiment in which we

initiate pulses of different lengths and then wait a fixed amount of simulated time. Each resulting band-pass was then analyzed

for the peak position, peak height, and width (selectivity). From this analysis, we chose 3 key parameters that affected these features:

the timescale onwhich the KTR-Gal4 ismade, the timescale onwhich the negative regulator ismade, and the affinity that Gal4 protein

has for the GFP promoter (Figures 4A–4F). By simply altering these three parameters, we could define band-pass curves of similar

selectivity and peak height, for different peak positions (Figures 4G–4J).

Mathematical model for parameter scan

Equations 17, 18, and 19 describe the dynamics of the READer system. For simplicity, we do not represent every component of the

READer system with an equation. Instead, we choose the minimal number of equations necessary to reproduce the most salient fea-

tures of the READer system dynamics: pulse detection and band-pass filtering. Species x1 can be thought of as the transcription of

KTR-Gal4, both in the active and inactive form. Species x2 can be thought of as the amount of nuclear KTR-Gal4 protein. Species x3
can be thought of as the amount of ERK negative regulator in cells. At t = 0 min, x1 = x2 = x3 = 0 uM.

dx1
dt

= V1,
un1

Cn1
1 + un1

,
Cn2

2

xn23 +Cn2
2

� k1,x1 (Equation 17)
n3
dx2
dt

= V2,
x1

xn31 +Cn3
3

,
Cn4

4

un4 +Cn4
4

� k2,x2 (Equation 18)
dx3
dt

= V3,
xn51

xn51 +Cn5
5

� k3,x3 (Equation 19)

In Equation 17, u represents the ERK signaling input, which is on in the presence of growth factors or optogenetic stimulation and

off when growth factors and optogenetic stimulation are absent. When off, u has a value of 0 mM, andwhen on u has a value of 10 mM.

Species x1 is produced in a manner proportional to the parameter V1, and in proportion to two Hill functions. In the first Hill function,

u acts as an activator and C1 is the activation coefficient. In the second Hill function, x3 acts as a repressor and C2 is the repression

coefficient. The Hill coefficients n1 and n2 govern the steepness of the first and second Hill functions, respectively. Species x1 de-

grades at a rate proportional to itself and parameter k1. The structure of Equation 18 resembles the structure of Equation 17, except

the activator in the first Hill function is x1 and the repressor in the second Hill function is u. Equation 19 only contains a single Hill

function with activator x1.

We nondimensionalize Equations 17, 18, and 19 using the identities in Equations 20, 21, 22, and 23 to focus in on the characteristic

dynamics of the READer system.

~x1 =
x1

V1=k1

(Equation 20)
e8 Cell Systems 13, 1–12.e1–e13, February 16, 2022



ll
Article

Please cite this article in press as: Ravindran et al., A synthetic gene circuit for imaging-free detection of signaling pulses, Cell Systems (2021), https://
doi.org/10.1016/j.cels.2021.10.002
~x2 =
x2

V2=k2

(Equation 21)
~x3 =
x3

V3=k3

(Equation 22)
~u =
u

C1

(Equation 23)

We also define the following nondimensional parameters:

a =
C4

C1

(Equation 24)
b1 =
C2

V3=k3

(Equation 25)
b2 =
C3

V1=k1

(Equation 26)
b3 =
C5

V1=k1

(Equation 27)

Inserting Equations 20, 21, 22, 23, 24, 25, 26, and 27 nondimensional identities and parameters into Equations 17, 18, and 19 pro-

duces the nondimensionalized equations used in the main text (Figure 2H):

d ~x1
dt

= k1

�
~un1

1+ ~un1
,

b
n2
1

~x3
n2 + b

n2
1

� ~x1

�
(Equation 28)
� n3
d ~x2
dt

= k2
~x1

~x1
n3 + b

n3
2

,
an4

~un4 +an4
� ~x2

�
(Equation 29)
�

d ~x3
dt

= k3
~x1

n5

~x1
n5 + b

n5
3

� ~x3

�
(Equation 30)

As discussed in the main text, the READer system serves as a bandpass filter that discriminates among different durations of ERK

signaling. Using the set of Equations 28, 29, and 30, we can reproduce all of the important dynamic filtering capabilities: (1) detection

of a single short pulse of input (Figures 2D–2G), (2) disregard of long pulses (Figure 2G), and (3) band-pass filtering depending on

Equation 30 (negative feedback), meaning that both very short pulses and very long pulses do not result in maximum output and

that an intermediate pulse results in the optimal output of the system (Figure 2I).
Parameter Value [Units]

n1 1

n2 5

n3 5

n4 5

n5 5

k1 0.1 [1/min]

k2 0.02 [1/min]

k3 0.025 [1/min]

b1 0.2

b2 0.1

b3 0.01

a 0.5
For the model, the values above were picked by hand to reflect the time scales of KTR and GFP production and degradation

observed in the time course data (Figure S3). The variable ~x2 corresponds to the amount GFP transcription induced by nuclear
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KTR-Gal4. We can generate a computational bandpass curve from Equations 28, 29, and 30 by plotting the area under the curve of

the ~x2 trace for different values of pulse length t where:

~u= 10 mM; ð0 % t % tÞ
~u= 0 mM; ðt > tÞ (Equation 31)

The total simulation time for each t is t +100 time units to allow for GFP to be made. The bandpass curve for the parameter values

listed in the above table is centered around (i.e. ~x2 has the highest value for) an ERK signaling duration of t = 41.8 min.

Parameter scan for variables that control bandpass filtering

To begin to understand what controls bandpass filtering we decide to perform a parameter scan for each parameter in Equations 28,

29, and 30.We sought to better under how changing parameter values changes the bandpass curve’s peak location, peak amplitude,

and selectivity. A higher width corresponds to a lower selectivity. Peak location is the pulse length t that allows for the highest GFP

and peak amplitude is the resulting GFP from this optimal pulse length. We define the selectivity of the bandpass as the width of the

curve at half the maximum ~x2 amplitude for each bandpass curve. The results of this analysis would shed light on how the physical

properties of the molecules that compose READer and the native ERK-dependent processes it interacts with relate to the dynamic

filtering features of READer.

The parameters in Table 1 relate to physical properties of the molecules that READer interacts with and is composed of.

Parameters k1, k2, and k3 dictate the time scale of KTR-Gal4, GFP, and ERK negative regulator production, respectively,

with low k values resulting in slow production and high k values resulting in fast production. In Equations 17, 18, and 19, k1,

k2, and k3 appear as the parameters governing the degradation of ~x1, ~x2, and ~x3, respectively. The value of k1 can be altered

through manipulation of the KTR-Gal4 degradation tag, and the value of k2 can be altered through manipulation of the GFP

degradation tag. The value of k3 would be difficult to alter, as it corresponds to the degradation rate of the unknown ERK nega-

tive regulator native to the cells into which READer has been introduced. In all cases, a high k value would correspond to a

protein with fast degradation.

b1, b2, and b3 are the threshold values that help determine whether ~x1, ~x2, and ~x3 are produced, respectively. Large amounts of

KTR-Gal4 can only be produced when the amount of ERK negative regulator is less than b1, GFP can only be produced in large

amounts when the amount of KTR-Gal4 exceeds b2, and negative regulator can only be produced in large amounts when the amount

of active ERK exceeds b3. While b1 and b3 are properties native to the cells into which READer has been introduced, b2 can be altered

by strengthening or weakening the UAS sequence that governs GFP production. A stronger UAS would lower the value of b2 while a

weaker UAS would raise the b2 value.

Finally, a is the ratio of the u threshold C4 to the u threshold C1. When u > C1, large amounts of KTR-Gal4 can be produced. When

u < C4, large amounts of GFP can be produced. Because u can only take on two values, 0 for uoff or 10 mM for uon, the ratio a = C4/C1

dictates whether or not a high level of GFP production is possible. If uon > C1 and C1 > C4, i.e. a < 1, KTR-Gal4 can be produced, but it

is also excluded from the nucleus and thus cannot induce GFP production while ERK signaling is still present. If uon > C1 and C1 < C4,

i.e. a > 1, then GFP can be produced while the ERK signal remains on. For READer to function well as a pulse detector, amust be less

than 10. The value of a can be altered by changing the nuclear export sequence (NES) on the KTR-Gal4. A stronger NES would lower

the value of a while a weaker NES would raise it.

To better understand how to achieve high-selectivity, high-amplitude bandpass filtering at various ERK signaling durations, we

varied each parameter’s value from one hundredth its Table 1 value to one hundred times the Table 1 value. The radar plots show

how peak position, peak selectivity, and peak amplitude vary in response to variations in k1, k2, k3, b1, b2, b3, and a (Figures 4B

and 4C). The parameters that show the greatest variation in one or more of the bandpass filtering metrics, as shown by the great-

est difference along one of the spider plot axes between the yellow (low parameter value) and blue (high parameter value) marker,

are k1, k3, b1 and b2. Varying b1 has the potential to remove negative regulation of ERK activity from the equations entirely, so we

focus further analysis on k1, k3, and b2. Although varying each parameter changes the value of multiple metrics, each parameter

controls each metric to a different extent. k3 primarily changes the peak position: increasing k3 moves peak position to a higher

ERK signaling duration. Moving the peak position to a higher ERK signaling duration by varying k3 also mildly increases the ampli-

tude and selectivity. To center the bandpass peak around a shorter ERK signaling duration, k1 and b2 must be varied to maintain

high amplitude and selectivity. Increasing b2 does nothing to the peak position, but it increases amplitude and decreases selec-

tivity. Increasing k1 changes all three metrics: the peak position moves to a higher signaling duration, selectivity decreases, and

amplitude increases. Notably, only two of the important parameters we identified have values that can be engineered in one di-

rection or another. We predict k1 can be altered by changing the degron tag attached to the KTR-Gal4, while we predict b2 can be

altered by changing the strength of the UAS sequence to which the KTR-Gal4 binds to produce GFP. k3, however, the parameter

that most directly corresponds to the peak position, is dictated by the degradation rate of the unknown ERK negative regulator

native to the system.

Because each of these three parameters control the three bandpass metrics to different extents, the values of the parameters can

be adjusted in concert to achieve high-selectivity, high-amplitude bandpass filters for any ERK signaling duration. Plotting the pa-

rameters values that allowed us to achieve high-selectivity, high-amplitude bandpass filtering for ERK signaling durations of 40,

60, 80, 100, and 120 min, it becomes apparent that a curve can be drawn through 3D parameter space to select for bandpass filters

of any duration (Figures 4D and 4E).
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Experimental tuning of band-pass

To experimentally tune the READer system, we decided to try and change the degradation of the KTR-Gal4 protein and thus the

timescale of the KTR-Gal4 (k1 in our model). Intuitively, if the KTR-Gal4 is degraded faster then fewer of the longer pulse durations

will make it to GFP output. To test this, we needed a way to quickly turn on and off signaling on demand in clones that express the

reporter GFP gene at equivalent levels. For the first, we used an optogenetic Ras/Erk activator previously created in our lab in

which the catalytic domain of SOS is recruited to the membrane via the blue-light dimerization system, iLID and SSPB. We

took cells expressing this system and infected them with the reporter GFP construct and sorted clones. To ensure that a clone

had functional optogenetic Erk activation, we infected clones with ErkKTR-iRFP, placed them on the scope and subjected the cells

to cycles of blue light and dark (Figure 3). From this analysis we chose one clone that had a functional optogenetic actuator and the

reporter.

With this clone in hand we could now test variants of the READer circuit. To increase the degradation of the circuit at the protein

level, we either added a modified PEST sequence that decreases the half-life even further than the original PEST sequence. At the

transcriptional level we used either the original TUBULIN 3’ UTR or the one from FOS, which has been shown to have a short-lived

mRNA. All combinations of these PEST sequences and 3’ UTRs were cloned into the READer PiggyBAC construct (Figure 4G). These

variants were transfected into the test-bed clone and single-cell clones were then derived. When we did a full band-pass experiment

with pulse durations ranging from 5 minutes to 12 hours, we found that all 4 READer circuits do implement band-pass filtering (Fig-

ure 4H). However, when we did a more fine-tuned experiment where we did every pulse duration in increments of 15 minutes from no

stimulation to 2 hour pulses, we find that READer constructs harboring the FOS 3’ UTR have markedly increased selectivity (smaller

band-widths) when compared to those that have the longer-lived TUBULIN 30 UTR (Figures 4I and 4J).

Conclusion

Overall, we have successfully developed aminimalmathematical system of equations that recapitulates the bandpass filtering exper-

imentally observed in the READer system. By performing a parameter scan for all of themajor components of the system, we find that

there are three parameters (k1, k3 and b2) that control the selectively, peak position and peak amplitude of the bandpass. Because

each of these parameters control more than one of these features, we tune all three simultaneously to derive bandpass curves of

specific peak position, height and selectivity. Experimentally we show that by tuning the k1 parameter (degradation of the KTR-

Gal4) we are able to change the filtering capabilities of the READer system. This analysis points to the key knobs that nature may

alter to specify which pulses may be read out by downstream targets of pulsatile signaling activity. This also provides us a framework

with which to develop more synthetic systems to create more tunable and orthogonal dynamic channels.

Extending the model to our experimental implementation of the READer circuit
While our initial modeling was intended as a general, flexible implementation of different feedforward architectures, we also seek to

model the operation of a particular experimental implementation of the READer circuit (e.g. in comparing modeled and experimental

single-cell GFP responses to various ErkKTR-mScarlet dynamics; Figure 5). We thus sought to derive a model that retained the

simplicity of our initial system while also appropriately representing Erk-triggered nuclear export of the KTR-Gal4-VP64 (KGV) tran-

scription factor and its resulting effect on GFP production.

We first modeled nuclear KGV as partitioning between nucleus and cytosol, under the simplifying assumption that the two com-

partments are of equal volume. We can write:

dx1n
dt

= kcnðuÞ,x1c � kncðuÞ,x1n (Equation 32)

where kcn and knc are the rate of movement into the nucleus and out of the nucleus, respectively – rates that could in principle be

influenced by Erk (u). We denote the amounts of KGV in the nucleus and cytosol as xn and xc, respectively, and the total KGV protein

as x1, the intermediate node produced by Erk-triggered gene expression in our generic feedforward model.

x1c + x1n = x1 (Equation 33)

By assuming KGV nuclear/cytosolic transport equilibrates rapidly relative to changes in protein concentration and Erk activity, we

manipulate Equations 32 and 33 to obtain:

kcn , x1 � kcn,x1n = knc,x1n (Equation 34)

We make two simplifying assumptions on the Erk-driven rates of nuclear import and export. First, we assume that Erk exerts its

effect primarily through increasing KGV nuclear export. Second, we assume that KGV is primarily nuclear in the absence of Erk ac-

tivity, an assumption that reasonably matches prior observations of strong nuclear ErkKTR localization in Erk-OFF conditions.

Together, these allow us to write:

knc = knc;1,u (Equation 35)

Plugging Equation 35 into 34 and re-arranging gets us:

x1n
x1

=
kcn

kcn + knc
=

kcn
kcn + knc;1,u

(Equation 36)
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For an appropriate constant K, we thus obtain

x1n =
K

K + u
� x1 =aðuÞ,x1 (Equation 37)

A simple model of gene expression would hold that GFP production depends only on nuclear KGV concentration by a standard Hill

production term, allowing us to write:

dx2
dt

= k2

�
x1n

5

x1n5 + b2
5
� x2

�
(Equation 38)
 

dx2
dt

= k2
ðaðuÞ,x1Þ5

ðaðuÞ,x1Þ5 + b2
5
� x2

!
(Equation 39)

To compare our model to experimental data, we also included an additional integrator variable (x4) to represent total GFP protein

produced from mRNA (x2). This leads to a full, 4-equation model:

dx1
dt

= k1

 
u

1+ u
,

b5
1

x35 + b5
1

� x1

!
(Equation 40)
 

dx2
dt

= k2
ðaðuÞ,x1Þ5

ðaðuÞ,x1Þ5 + b2
5
� x2

!
(Equation 41)
�

dx3
dt

= k3
x1

5

x15 + b3
5
� x3

�
(Equation 42)
dx4
dt

= k4ðx2 � x4Þ (Equation 43)
aðuÞ = K

K + u
(Equation 44)

QUANTIFICATION AND STATISTICAL ANALYSIS

Microscopy data analysis
Initial READer cell experiment analysis

Raw images were collected as ND2 files (Nikon Elements) and were subsequently imported into ImageJ. The ImageJ ‘‘Measure’’ tool

was used to manually quantify mean intensity of the nuclei of cells of interest. These files were saved and then imported into R for

subsequent statistical analysis and plotting. The code for this analysis can be found in Supplementary Code from (Ravindran

et al., 2020).

Simultaneous KTR and READer analysis

ND2 files from Nikon Elements software were imported into ImageJ. The measure tool was used to quantify mean intensity of the

nuclei and cytoplasmic intensity for cell of interest in the KTR channel (mScarlet). These text files were then saved and imported

into MATLAB to capture nuclear intensity for READer channel (GFP) and to produce figures. Specifically, this code first reads in

the two text files that provide the nuclear and cytoplasmic intensities of the KTR channel aswell as provides the details for the position

of the nucleus. From here, the percent nuclear KTR is calculated by dividing the nuclear intensity by the sum of the nuclear and cyto-

plasmic intensity and multiplying by 100. The details of the ellipse over time used to quantify the nuclear intensity is then read out

(specifically the x and y coordinates, the width and the height of the ellipse). These are then used to create amask that is then applied

on a tif file version of the GFP images such that all intensity values are NaN except for those within the mask. The average intensity is

then used to calculate the average GFP intensity in the nucleus over time. Return to a pulsatile state was defined as a drop in cyto-

plasmic intensity to 55% and an increase in GFP was defined as a 25% increase in GFP intensity over initial fluorescence intensity.

To feed the KTR intensities into our mathematical model, we first binarized the traces by taking any value above 45% nuclear KTR

(55% cytoplasmic) to mean an Erk off state (input = 0) and any value above below 45% nuclear KTR (55% cytoplasmic) to mean an

Erk on state (input =10). These traces were then fed into the model and the resulting GFP curve (variable x2) was plotted. Both the

resultingmodel GFP traces and experimental GFP traces weremin-max normalized and then interpolation was used on experimental

GFP such that both traces had an equivalent number of points. Code is available upon reasonable request.

Fos analysis

ND2 files from Nikon were imported into ImageJ and saved as ‘.tif’ files. These were then imported into MATLAB and custom code

waswritten to analyze the cells. Essentially, masks were created using DAPI image for each condition and then this maskwas applied
e12 Cell Systems 13, 1–12.e1–e13, February 16, 2022
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to the Fos and READer images. The mean nuclear intensity from each cell was then used for downstream analysis. Code is available

upon reasonable request.

Transcriptional Burst Analysis

Protocol was adapted from (Wilson et al., 2017). Briefly, 7 z-stack slices spanning 4.5 um (0.8um between z-slices) which was

centered on the middle of the nucleus. This z-stack was max projected to allow all the bursts to be visualized on a single plane.

Positional information was tracked using the measure tool in Fiji. MATLAB code was used to take in the positional information, fit

a 2-dimensional Gaussian to the identified region and finally calculated the integrated area under the fitted Gaussian as the burst

intensity. The code for this analysis can be found in Supplementary Code from (Ravindran et al., 2020).

Statistical test
For Figure S3, statistical testing was done using a two-sided student’s t-test where p-values < 0.05 were considered significant.
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