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A B S T R A C T   

A timely and detailed crop-specific land cover map can support many agricultural applications and decision 
makings. However, in-season crop mapping over a large area is still challenging due to the insufficiency of 
ground truth in the early stage of a growing season. To address this issue, this paper presents an efficient 
machine-learning workflow for the rapid in-season mapping of corn and soybeans fields without ground truth 
data for the current year. We use trusted pixels, a set of pixels that are predicted from the historical Cropland 
Data Layer (CDL) data with high confidence in the current year’s crop type, to label training samples on multi- 
temporal satellite images for crop type classification. The entire mapping process only involves a limited number 
of satellite images acquired within the growing season (normally 3–4 images per scene) and no field data needs 
to be collected. According to the investigation on 12 states of the U.S. Corn Belt, it is found that a considerable 
number of trusted pixels can be identified from the historical CDL data by the trusted pixel prediction model 
based on artificial neural network. According to the experiment on 49 Landsat-8 scenes and 31 Sentinel-2 tiles, 
the in-season maps of corn and soybeans are expected to reach 85%–95% agreement with CDL as well as field 
data by mid-July. Once the in-season satellite imagery becomes available, the crop cover map can be rapidly 
created even with limited computational resources. This study provides a new perspective and detailed guidance 
for rapid in-season mapping of corn and soybeans, which can be potentially applied to identify more diverse crop 
types and scaled up to the entire United States.   

1. Introduction 

Remote sensing has been proven an effective and efficient Earth 
observation approach for land use and land cover (LULC) mapping and 
agricultural monitoring (Fritz et al., 2015; Hansen and Loveland, 2012; 
Lobell, 2013; Mulla, 2013). The crop-specific land cover map derived 
from the remotely sensed images can provide the fundamental infor
mation for crop yield estimation (Prasad et al., 2006; Sakamoto et al., 
2014), LULC change (Lark et al., 2017; Liu et al., 2005), food security 
(Fischer et al., 2014), cropland diversity (Waldner et al., 2016), and 
many other socio-economic activities. As the most well-known annual 
agricultural land use map covering the conterminous United States 
(CONUS), the Cropland Data Layer (CDL) product of United States 
Department of Agriculture (USDA) National Agricultural Statistics 

Service (NASS) is produced using satellite imagery from the Landsat 8 
OLI/TIRS sensor, the Disaster Monitoring Constellation (DMC) Deimos-1 
and UK2, the ISRO ResourceSat-2 LISS-3, and the ESA Sentinel-2 sensors 
collected during the current growing season (USDA-NASS, 2019a). The 
CDL data product has been used in many agricultural studies and ap
plications, such as crop loss assessment (Di et al., 2017), crop planting 
frequency modeling (Boryan et al., 2014), flood impact estimation 
(Shrestha et al., 2017), and crop area estimation (Song et al., 2017). 
Similarly, the Annual Crop Inventory (ACI) product of Agriculture and 
Agri-Food Canada (AAFC) is produced using satellite images from 
Landsat-8, Sentinel-2, and RADARSAT-2 sensors (AAFC, 2018). As a 
crop type digital map covering the major cropland of Canada, the ACI 
product has been used as reference data for the major crop types iden
tification (Liu et al., 2016), winter wheat biomass estimation (Dong 
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et al., 2016), cropland extent classification (Massey et al., 2018), and 
measurement of landscape indicators (Ruan et al., 2019). However, both 
CDL and ACI are end-of-season products usually releasing to the public 
in the early next year although pre-public release products of CDL and 
ACI are available internally at the late stage of a growing season for 
evaluation and validation purpose, which means these data cannot meet 
in-season needs of users. In-season mapping aims to create a crop- 
specific land cover map during the growing season. For example, in 
early 2019, at least 1 million acres of farmland in the Midwest U.S. were 
damaged due to flooding (Huffstutter and Pamuk, 2019) and the pro
duction of corn and soybeans in these areas could be significantly 
affected. A timely and detailed crop cover map can facilitate the crop 
loss estimation and decision support immediately after the flood event. 
Since an operational field-level crop-specific mapping product for 
CONUS is still not publicly available within growing season, a general 
method for rapid mapping of major crop types is highly desired by not 
only the food and agricultural sectors but also researchers, insurance 
companies, and the LULC community. 

Although many methods and algorithms can reach excellent classi
fication performance in the study area at the early stage of a growing 
season (hereafter called “in-season” or “early-season” for simplicity), it 
is still a challenge to produce the regional-scale early-season crop cover 
map at the field level. One crucial issue for the challenge is the insuffi
ciency of ground truth data in the early season. Generally, producing a 
high-quality regional-scale crop cover map requires a huge volume of 
ground truth data. However, surveying field data over a large 
geographic area is a time-critical activity which requires a substantial 
investment of human and financial resources. The production of CDL 
relies on massive ground truth information collected at the June Area 
Survey by USDA NASS (Boryan et al., 2011). The production of ACI data 
is based on the ground truth information by point observations from 
local crop insurance companies and AAFC personnel (AAFC, 2019). 
These surveyed data are not publicly available at all and are only 
available internally at the late stage of a growing season (e.g., early 
August) after processing and quality controls of collected ground truths. 
Although there are many approaches for crop type classification, it is 
difficult to apply to a larger area without training samples labeled by 
ground reference data. This challenge drives us to develop an efficient 
and effective approach to prepare training samples for remote sensing- 
based in-season crop mapping. 

With the considerable demand for the timely crop cover map, crop 
mapping based on Moderate Resolution Spectroradiometer (MODIS) 
data and moderate-to-high spatial resolution data, such as Landsat data 
and Sentinel-2 data, has been widely studied around the world. For 
example, Wardlow and Egbert (2008) and Dahal et al. (2018)) explored 
the large-area crop mapping using MODIS time series. McNairn et al. 
(2014) applied the supervised decision tree classification for the early- 
season mapping of corn and soybeans in eastern Canada using 
TerraSAR-X and RADARSAT-2 data. Hao et al. (2015) and Skakun et al. 
(2017) investigated the capability of using MODIS data for early-season 
crop mapping. Vaudour et al. (2015) utilized very high spatial resolution 
Pleiades image for early-season mapping of crops and soil tillage oper
ation. Tardy et al. (2017) proposed several past data fusion schemes for 
land cover mapping, including major winter and summer crop classes, 
using in-season Formosat-2 images and reference data from previous 
periods. Hao et al. (2018) developed an improved artificial immune 
network approach to identify major crops using Sentinel-1 and Sentinel- 
2 time series. Kussul et al. (2018) combined Sentinel-2 data with 
Sentinel-1A data for in-season crop mapping at regional scale in 
Ukraine. Phalke and Özdoğan (2018) and Johnson (2019) applied the 
Landsat data for the field-level cropland mapping over large area. 
Defourny et al. (2019) introduced the Sen2-Agri system to generate near 
real-time national-scale crop type maps from Sentinel-2 data using 
random forest and successfully demonstrated in Ukraine, Mali, and 
South Africa. Demarez et al. (2019) investigated the feasibility of 
combing Landsat-8 data and Sentinel-1 time series for the in-season 

classification of irrigated crops. Wang et al. (2019) used multi- 
temporal Sentinel-2 data to map regional land use in complex land
scapes. Gao et al. (2020) presented a within-season approach to detect 
crop emergence during early growing season using Landsat and 
Sentinel-2 data. 

Different from the in-season mapping, pre-season mapping aims to 
predict crop cover before the beginning of a growing season and nor
mally does not involve remote sensing data directly. Modeling crop 
sequence is a common way to predict the crop type on cropland. Many 
studies have shown that the spatial information of crop planting can be 
predicted by modeling the long-term crop sequence using land survey 
data. Xiao et al. (2014) used an empirical modeling method to identify 
the crop sequence patterns at a regional scale. Osman et al. (2015) 
proposed a Markov logic-based approach of crop rotation modeling for 
early crop mapping. Kollas et al. (2015), Yin et al. (2017), and Giordano 
et al. (2020) analyzed and discussed several crop rotation models in 
Europe. Since gathering and processing the land survey data of large 
area is impractical for most researchers, the crop cover maps derived 
from remote sensing images, such as CDL, become an ideal data source 
for crop sequence modeling. From the historical CDL data, a crop rota
tion map can be created by extracting croplands that follow specific crop 
rotation such as alternate cropping patterns (Sahajpal et al., 2014; Wu 
and Zhang, 2019). For example, it is well-known that many farmers in 
the Midwestern U.S. alternatively grow corn and soybeans on the same 
land unit year after year because of the effect on crop yield as well as soil 
quality and fertility (Edwards et al., 1988; Karlen et al., 2006; Van Eerd 
et al., 2014). To generalize the crop-specific expert knowledge to other 
regions where the crop rotation patterns are different, Zhang et al. 
(2019a) utilized artificial neural network (ANN) to predict the spatial 
distribution of future crop planting before the beginning of a growing 
season, which has been proven effective to produce pre-season crop map 
and estimate crop yield for a normal year. However, one important issue 
of the pre-season mapping is that the prediction result only relies on 
prior knowledge from historical data, which could be problematic while 
mapping for an anomaly year with disasters or large market and policy 
changes. To address this issue, we assume the spectral information of 
different crop growth stages in remote sensing data can contribute to 
repair the erroneous predictions caused by accidents, artificial changes, 
or lack of credible prior crop sequence knowledge. Based on this idea, 
this paper introduces an innovative approach using machine-learned 
trusted pixel (hereafter called “trusted pixels”), whose crop types have 
been identified with high confidence by the crop sequence model 
automatically learned from the time series of crop-specific land cover 
data (e.g., CDL), to label training samples on satellite images for in- 
season crop type classification. 

This paper has two specific objectives: (a) using ANN to automati
cally extract trusted pixels from historical CDL data; (b) exploring the 
feasibility of mapping major crops (i.e., corn and soybeans) for the U.S. 
Corn Belt based on multi-temporal satellite images using trusted pixels 
as training samples. The rest of this paper is organized as follows: Sec
tion 2 introduces the study area and data; Section 3 presents an ANN- 
based machine learning framework for rapid mapping of corn and soy
beans; Section 4 demonstrates a group of experiments to evaluate trus
ted pixels and in-season crop cover maps; Section 5 discusses the 
advantages of the proposed method, the uncertainty of CDL data, and 
limitations and potential solutions of the current work; and Section 6 
concludes this paper with a discussion of future works. 

2. Study area and data 

This study focuses on the U.S. Corn Belt region of the Midwestern 
United States where agriculture has been the predominant land use class 
of this region in the past few decades. Corn and soybean have become 
the leading crops in many Corn Belt states since the late 1990s (Auch 
et al., 2018). As the major agriculture region over the CONUS and the 
largest production area of corn and soybeans in the world, the U.S. Corn 
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Belt is a key study area for crop mapping as well as national-scale and 
global-scale LULC change studies (Green et al., 2018). According to the 
statistics by USDA NASS, in 2018 cropland makes up over 65% of the 
total land in the study area and corn and soybeans cover 22.9% and 
22.7% of the total cropland area, respectively. The geography and 
agricultural land use information for Corn Belt states are shown in Fig. 1. 
The study area consists of 12 states: Illinois, Indiana, Iowa, Kansas, 
Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South 
Dakota, and Wisconsin. USDA NASS divided each U.S. state into several 
Agricultural Statistics Districts (ASDs) by geography, climate, and 
cropping practices. Each ASD consists of a group of contiguous counties 
with relatively similar agricultural characteristics and environment. 
This study will investigate 102 contiguous ASDs across various ecor
egions, including Northern Forests, Northern Agriculture-Forest Tran
sition Zone, Midwest Agricultural, Western Plains, Glaciated Plains, and 
East-Central Plains (Auch and Karstensen, 2015; Taylor et al., 2015). 

The CDL time series will be used as the main reference data for crop 
sequence model training as well as result validation. Produced by USDA 
NASS, the CDL data product covers the entire CONUS at 30-meter spatial 
resolution from 2008 to the present and some states from 1997 to 2007. 
There are over 140 land use classes provided in the CDL, and the ac
curacy for major crop types in most areas is close to 95% according to 
the CDL metadata (USDA-NASS, 2019b). All CDL products can be 
accessed through CropScape (https://nassgeodata.gmu.edu/ 
CropScape), a web-based geospatial information system developed and 
maintained by the Center for Spatial Information Science and Systems of 
George Mason University (Han et al., 2012; Zhang et al., 2019b). 

As the two most widely accessible moderate-to-high spatial resolu
tion data, Landsat-8 and Sentinel-2 data are explored in this study. The 
Landsat-8 data cover the entire Earth’s surface at a 30 m resolution in a 
16-day repeat cycle since 2013. The Sentinel-2 data provide the higher 
spatial resolution of 10–20 m with a global 5-day revisit frequency 
(depending on orbits and satellite, the same areas could be under 
different angles) since 2015. There are many ways to access Landsat data 
and Sentinel-2 data. The United States Geological Survey (USGS) Earth 
Explorer (https://earthexplorer.usgs.gov/) is the official source for 
downloading Landsat data. The ESA Copernicus Open Access Hub 
(https://scihub.copernicus.eu/) provides complete and open access to 
Sentinel-2 data. 

Furthermore, we collected a set of field data using roadside sampling 
strategy within Nebraska and Iowa, which contains 128 land units (77 
for corn and 51 for soybeans) surveyed in July 2018 and 900 land units 
(723 for corn and 177 for soybeans) surveyed in July 2019. Each land 
unit represents a field of certain type of crop planted with a permanent 
contiguous boundary. The Common Land Unit (CLU) of USDA provides 
the vector data set of all registered agricultural fields in the United 
States. However, it is not available for public. Therefore, we utilized GIS 
software to manually delineate polygons for the field data based on the 
Landsat-8 images of the same period. To ensure the surveyed land unit 

has a relatively permanent contiguous boundary and common land 
management, we verified each polygon by referring to the historical CDL 
data. These field data will be used as ground truth to validate the 
mapping results. 

3. Methodology 

3.1. Overall workflow 

Fig. 2 shows the overall workflow of the proposed in-season crop 
mapping approach, which is composed of a data preparation module, a 
trusted pixel prediction module, a crop type classification module, and a 
validation module. The data preparation module converts the CDL data 
and satellite data into the structured form to feed the trusted pixel 
prediction module and classification module. The trusted pixel predic
tion module automatically produces trusted pixels from the historical 
CDL data. The crop type classification module deals with the identifi
cation of corn and soybeans from the remote sensing images. The output 
of the workflow is an in-season crop map. Finally, all mapping results 
will be validated using ground truth data and CDL data. This section 
presents the implementation details of each module. 

3.2. Data preparation 

This step aims to prepare the CDL data for the prediction of the 
trusted pixel as well as build the multi-temporal and multi-spectral 
satellite image stack for the classification model training. We pro
cessed the data used for the experiments on the Google Earth Engine 
(GEE) (Gorelick et al., 2017). The GEE data catalog has archived diverse 
standardized geospatial data sets including the complete volume of CDL, 
Landsat-8, and Sentinel-2 data. There are many product options for both 
Landsat-8 data and Sentinel-2 data. To increase the consistency between 
the two satellite data, we will adopt two atmospherically corrected 
surface reflectance data, the Landsat-8 Surface Reflectance Tier 1 
product and Sentinel-2 MultiSpectral Instrument (MSI) Level-2A prod
uct. Meanwhile, we have developed the AgKit4EE toolkit on GEE (Zhang 
et al., 2020a) to prepare the CDL time series for the entire study area. 

Spectral bands and their derived indices from satellite images can 
provide fundamental information for crop type classification (Arvor 
et al., 2011; Löw et al., 2013; Wardlow et al., 2007). This study in
vestigates spectral features in six bands, including three visible spectrum 
bands (blue, green, red), one near-infrared band (NIR), and two short
wave infrared bands (SWIR-1, SWIR-2). Table 1 summarizes the infor
mation of the selected bands in Landsat-8 data and Sentinel-2 data. 
Additionally, we derive two commonly used indices, Normalized Dif
ference Vegetation Index (NDVI) (Tucker, 1979) and Normalized Dif
ference Water Index (NDWI) (Gao, 1996), from the given spectral bands. 
The formulas of NDVI and NDWI are shown as follows: 

Fig. 1. Geography of the study area (data from 2018 CDL by USDA NASS).  
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NDVI =
NIR − Red
NIR + Red  

NDWI =
NIR − SWIR
NIR + SWIR 

In the U.S. Corn Belt, corn is normally planted in late April through 
late May and soybeans are planted in May through early June (USDA- 
NASS, 2010). The best temporal period for satellite remote sensing of 
corn and soybeans is from the time of planting to the peak of the growing 
season in mid-July. To ensure the temporal dimension is adequately 
covered in the training data, we acquired all low cloud cover (< 10%) 
images taken between May and mid-July for each scene. After selecting 
spectral features, each image is composed of 8 bands (i.e., blue, green, 
red, NIR, SWIR-1, SWIR-2, NDVI, and NDWI). When building the image 
stack for crop type classification, we sort all qualified satellite images by 
date then stack the selected bands of each image to a 3-d array. For most 
Landsat scenes within the study area, there are 3–4 qualified images 
with at least one image per month, which means a multi-temporal image 
stack normally consists of 24 or 32 bands in total. Take the image stack 
with 24 bands as an example, the training data will contain spectral 
information of different crop growth stages in May (band 1–8), June 
(band 9–18), and July (band 19–24). 

Since Landsat data is the main data source of CDL, the experiment in 
this paper used the Landsat-8 images as the preference data. If a Landsat 
image stack does not have enough low cloud cover images (less than 3 
images), the Sentinel-2 data will be used to patch the missing scene. To 
further minimize the effects of cloudy pixels in classification, we fill the 
cloudy pixels with the corresponding pixels of the previous image in the 

image stack. Besides, the spatial resolution of the trusted pixel map and 
in-season crop cover map are identical with Landsat images and CDL 
data. To unify the spatial resolution of the satellite data, all Sentinel-2 
images are resampled to 30 m using the nearest neighbor method. 

3.3. Trusted pixel prediction 

Trusted pixels refer to pixels predicted from the historical CDL data 
with high confidence in the current year’s crop type. As a practical 
approach for discovering intricate patterns and structures in high- 
dimensional data, machine learning has been widely used in LULC 
studies. The production of trusted pixel is based on the crop sequence 
pattern that automatically recognized from the CDL time series. To train 
the crop sequence model, we integrate an ANN model with the in-season 
mapping workflow, which has been proven effective to predict the 
spatial distribution of major crop types (Zhang et al., 2019a). 

Fig. 3 illustrates the process of trusted pixel prediction. First, we 
convert the historical CDL time series into an image stack with crop 
sequence features for all pixels. Each crop sequence feature is a one- 
dimensional array containing the pixel-level time series of historical 
CDL. Second, we feed each crop sequence feature into the prediction 
model to predict the following year’s crop type of the corresponding 
pixel. The ANN model for trusted pixel prediction has the fully- 
connected multilayer perceptron (MLP) structure, which consists of 
one input layer, five hidden layers, and one output layer. Each input 
neuron represents each crop type value of the crop sequence feature. The 
output layer of the neural network used SoftMax to calculate the prob
ability value of three classes (corn, soybeans, or others). The crop type of 

Fig. 2. Workflow for in-season crop mapping using trusted pixels and remote sensing images.  

Table 1 
Information of spectral bands in Landsat-8 data and Sentinel-2 data.   

Landsat-8 Sentinel-2 

Name Band Wavelength (micrometers) Spatial Resolution (meters) Band Wavelength (micrometers) Spatial Resolution (meters) 

Blue B2 0.452–0.512 30 B2 0.439–0.535 10 
Green B3 0.533–0.590 30 B3 0.537–0.582 10 
Red B4 0.636–0.673 30 B4 0.646–0.685 10 
NIR B5 0.851–0.879 30 B8 0.848–0.881 10 
SWIR-1 B6 1.567–1.651 30 B11 1.539–1.681 20 
SWIR-2 B7 2.107–2.294 30 B12 2.072–2.312 20  
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the corresponding pixel will be categorized as class with the highest 
probability value. The final output of the prediction model is a predic
tion map of crop cover and its probability map. By masking the high- 
confident pixels (> 90%) on the prediction map, we can get a map of 
trusted pixels. If the sequence is similar to a regular pattern, there is a 
high chance that the pixel would be classified as a trusted pixel (e.g., 
corn 90%, soybeans 8%, others 2%). If a sequence cannot be recognized 
by the well-trained model, the probability of each class could be more 
even (e.g., corn 45%, soybeans 30%, others 25%) and it would be 
classified as a non-trusted pixel. 

The training data set is constructed with three recursive subsets with 
an 8-year moving window of each. While producing trusted pixels for 
2019, the ANN model is trained using sub-training set of 2010–2017 
CDL labeled with 2018 CDL, 2009–2016 CDL labeled with 2017 CDL, 
and 2008–2015 CDL labeled with 2016 CDL. This design can efficiently 
extend the training data set and allow the neural network to recognize 
crop sequence labels for the last three consecutive years. To convert 
features into the readable form of neural network, the training data set 
will be flattened to a structured 2-D table. Each row represents a sample 
of a sequence of pixel-level crop type features labeled with the corre
sponding pixel in the label set. For example, a training sample of pixel 
that follows the corn-soybean rotation pattern will be represented as “1, 
5, 1, 5, 1, 5, 1, 5” labeling with “1” or “5, 1, 5, 1, 5, 1, 5, 5” labeling with 
“5,” where “1” refers to corn and “5” refers to soybeans (the full class 
table of CDL data is available at Google (2021)). Although the CDL data 

is available since 1997, we would not build the training set with a very 
long CDL time series because the quality of the early-year CDL varies 
across regions and the coverage of CDL is incomplete before 2008, which 
may significantly affect the accuracy of the machine-learned model. 

To train a robust prediction model, the training set should provide 
abundant samples with diverse crop sequence features. Based on the 
similarity of agricultural characteristics and environment, USDA NASS 
divided each U.S. state into several Agricultural Statistics Districts 
(ASDs). To make sure the crop sequence features of prediction model as 
much as possible, the models need to be trained for each ASD and the 
trusted pixel mapping has to be done ASD by ASD. In this way, the well- 
trained neural network would recognize the specific crop sequence in
formation for the corresponding ASD. 

3.4. Crop type classification 

Fig. 4 shows the procedure of in-season crop type classification using 
satellite images and trusted pixels. As described in the Section 3.2, the 
input data structure of the classification model is an image stack with 
both spectral and temporal information. The quantity of satellite images 
used for assembling image stack depends on the availability of cloud- 
free satellite images within growing season. Based on the spatial dis
tribution of trusted pixels, the training samples are automatically 
labeled on the image stack. The trusted pixel-based training samples can 
be applied to diverse pixel-based classifiers. This study applied the MLP- 

Fig. 3. Predicting trusted pixels from historical CDL time series using ANN.  

Fig. 4. In-season crop type classification using multi-temporal satellite image stack and trusted pixels.  
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based ANN as classifier which has a similar structure with the trusted 
pixel prediction model. Each input neuron represents the value in the 
one-dimensional band feature of the corresponding pixel. Finally, an in- 
season crop cover map can be generated by applying the trained clas
sification model on the full image. The geography, season starting, and 
temporal collection of satellite images may significantly vary among the 
different scenes over large area. To test the scalability and robustness of 
the trusted pixel approach, we conduct crop type classification scene by 
scene within the entire U.S. Corn Belt. 

3.5. Validation 

We use overall accuracy (OA), precision, recall, and F1-score to 
evaluate the agreement of mapping results with reference data. These 
metrics are calculated by comparing all pixels of the mapping result with 
their corresponding pixels of the CDL map or ground truth map. The OA 
measures the proportion of correctly classified pixels in all pixels. The 
precision and recall measure the classification result of each class, which 
are defined as follow: 

Precision =
TP

TP + FP  

Recall =
TP

TP + FN  

where TP represents the number of true positives, FP represents the 
number of false positives, and FN represents the number of false nega
tives. The F1-score combines precision and recall which is defined as: 

F1 = 2 ×
Precision × Recall
Precision + Recall 

Specifically, precision measures the fraction of tuples labeled as 
positive which are actually positive. The recall measures the fraction of 
positive tuples that were detected. Take corn as an example, the preci
sion indicates the proportion of correctly classified corn pixels in all 
pixels classified as corn. The higher the precision rate, the more accurate 
the classified corn pixels are. The recall indicates the proportion of the 
correct corn pixels of the classification result in all corn pixels of the 
reference image. The higher the recall rate, the more corn pixels are 
correctly classified. The result might have a high precision rate but low 
recall rate, or high recall rate but low precision rate. The F1-score can 
measure the weighted average of precision and recall. The values of the 
above metrics are between 0 and 1. 

4. Experiments and results 

4.1. Validation of trusted pixels 

To fulfill the first objective of this study, we derived trusted pixels of 
2018 by applying the crop sequence model (trained using CDL data of 

2007–2016) to the CDL data of 2010–2017. Fig. 5 shows the 2018 
trusted pixel map of the study area. A probability map (Fig. 5a) is 
created resulting from the SoftMax function where each pixel indicates 
the highest probability value among corn, soybeans, and others. Based 
on the probability map, we extracted pixels with high classification 
confidence from the prediction result and produced the trusted pixel 
map (Fig. 5b). The pixels higher than the threshold of 90% were clas
sified as corn, soybean, or others. The pixels under the probability 
threshold were considered the non-trusted pixels. The result indicates 
that the trusted pixels of corn and soybeans are widely distributed across 
the U.S. Corn Belt, especially Iowa, Illinois, Indiana, Eastern Nebraska, 
Eastern South Dakota, Southwestern Minnesota, and Western Ohio. 

This experiment used 2018 CDL data as reference data to validate the 
reliability of trusted pixels. Fig. 6 illustrates the spatial distribution of 
validation results at the ASD level. The precision rate of corn and soy
beans are compared in Fig. 6a and Fig. 6b, which indicates the agree
ment of the trusted pixels in each class with the corresponding CDL 
pixels. The recall rate of corn and soybeans are compared in Fig. 6c and 
Fig. 6d, which reflects the percentage of correctly classified trusted 
pixels against the pixel number of the corresponding class in CDL. It can 
be found the ASDs with high-density of trusted pixels are mainly 
concentrated in Central Corn Belt Plains where the precision can reach 
0.9 and the recall can reach 0.6. In contrast, the precision and recall of 
ASDs that mostly covered by non-cropland, such as Western North 
Dakota and Western South Dakota, are not as high as other areas. 

Fig. 7 displays the 9-year crop rotation patterns (8-year sequence 
followed by a prediction result) automatically recognized by the ANN in 
the above results. This example illustrates the statistics for the quantity 
of trusted pixels per crop rotation pattern in ASD #1750, #2770, and 
#3160 (Fig. 7a) and validation of the most frequent crop rotation pat
terns within selected regions (Fig. 7b). The overall precision of corn 
pixels can reach up to 0.96 while the overall precision of soybeans pixels 
is as high as 0.97 among selected ASDs. Such a high overall precision 
rate indicates the ANN is capable of recognizing common crop rotation 
patterns as well as patterns with minor anomaly from the historical CDL. 
We can see the most frequent corn-soybean rotation pattern within the 
selected ASDs is the alternate rotation pattern (i.e., “C-S-C-S-C-S-C-S-C” 
and “S-C-S-C-S-C-S-C-S”), in which the recall rate is more significant 
than other patterns. The monocropping of corn (i.e., “C-C-C-C-C-C-C-C- 
C”) exists in ASD #2770 and #3160. Moreover, a variety of other crop 
rotation patterns were recognized, but the pixel number is much lower 
than the regular patterns. 

4.2. Validation of in-season crop cover map using CDL 

The second objective of this study is conducting in-season crop 
mapping using multi-temporal satellite images and trusted pixels as 
training sample. In order to guarantee the image stack was assembled by 
at least one eligible image per month, we gathered all cloud-free 

Fig. 5. Spatial distribution of 2018 trusted 
pixels within the study area. The probability 
map indicates the highest probability value 
resulting from the SoftMax function. The 
trusted pixel map includes the predicted 
pixels with probability higher than the 
threshold of 90%. A few ASDs, such as ASD 
#2720 and ASD #2730 (located at Northern 
Minnesota), and ASD #2610, ASD #2620, 
ASD #2630 (located at Northern Michigan), 
are mainly covered by non-croplands. These 
ASDs were not investigated.   
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Landsat-8 images (cloud coverage less than 10%) between May 2018 
and July 2018 over the entire study area as well as Sentinel-2 images 
over the regions where the cloud-free Landsat-8 images were unavai
lable. The final mapping result covers 80 tiles, 49 of which were pro
duced using Landsat-8 data and the rest were produced using Sentinel-2 
data. The Landsat-8 data use the Worldwide Reference System-2 (WRS- 
2). Each scene of Landsat-8 data is 185 km*180 km and uniquely 
designated by a combination of Path and Row numbers. The Sentinel-2 
Level-2A product is organized in ortho-rectified tiles, also called gran
ules, of 100 km*100 km in UTM WGS84 projections. Each Sentinel-2 tile 
is assigned an ID, in which the first 2 digits and 1 letter correspond to the 
UTM zone while the two last letters correspond to a unique ID. 

Fig. 8 demonstrates the 2018 in-season crop cover map and the 
detailed mapping result of six region of interests (ROI) including three 
Landsat-8 scenes and three Sentinel-2 tiles with the OA of 80%–85%, 
85%–90%, and 90%–95%, respectively. The selected ROIs are distrib
uted across various ecoregions in the U.S. Corn Belt. The ROI 
“P030R027” covers part of Lake Agassiz Plain Ecoregion and part of 
Northern Glaciated Plains Ecoregion. The ROI “P028R032” is on the 
border of Central Great Plains Ecoregion and the Western Corn Belt 
Plains Ecoregion. The ROI “P023R032” is in the Central Corn Belt Plains 
Ecoregion. The ROI “14TQQ” lies on the border of Northern Glaciated 
Plains Ecoregion and Western Corn Belt Plains Ecoregion. The ROI 
“15TWG” is in the Western Corn Belt Plains Ecoregion. The ROI 
“16TFM” is in Southern Michigan/Northern Indiana Drift Plains Ecor
egion. To show the discrepancy of in-season map and CDL, we calculated 
the difference between two images and highlighted the misclassified 

pixels in each ROI. The result indicates the difference between CDL and 
in-season maps of low overall accuracy (80%–85%), such as 
“P030R027” and “16TFM,” was relatively significant. For the in-season 
maps of high overall accuracy (90%–95%), such as “P023R032” and 
“15TWG,” the crop types of nearly all land units were correctly classi
fied. Only a few mixed pixels (mainly distributed on the boundary of 
land unit) were misclassified. Considering the crop cover maps were 
produced by July 2018 which was nearly six months earlier than the 
release of 2018 CDL, such difference is reasonable for the in-season 
mapping result. 

Fig. 9 compares the overall validation results of prediction maps 
(including trusted pixels and non-trusted pixels), trusted pixel maps, and 
in-season crop cover maps for all investigated scenes. The box plots 
show the in-season maps can reach as high overall precision rate as the 
trusted pixel map. Meanwhile, the overall recall rate and overall F1- 
score of in-season maps are higher than both trusted pixel maps and 
prediction maps. Specifically, the mean/median precision values of corn 
and soybeans were 0.85/0.86 and 0.87/0.89. The mean/median recall 
rates of corn and soybeans were 0.78/0.83 and 0.78/0.83. The mean/ 
median F1-score rate of corn and soybeans were 0.80/0.83 and 0.81/ 
0.83. In most scenes, the precision rate of corn and soybean ranged from 
0.81 to 0.90 and 0.83 to 0.92, the recall rates of corn and soybean ranged 
from 0.69 to 0.90 and 0.68 to 0.88, and the F1-score of corn and soybean 
ranged from 0.75 to 0.88 and 0.76 to 0.90. It could be reasonably 
inferred from the validation result that a significant number of non- 
trusted pixels can be correctly classified based on the spectral and 
temporal features from satellite images. 

Fig. 6. Spatial distribution of trusted pixels validation at ASD level. The ASDs with high-density of trusted pixels, such as Iowa, Illinois, and Indiana have a higher 
precision rate (> 0.9) and recall rate (> 0.6). ASDs that mostly covered by non-cropland, such as Western North Dakota (ASD #3810/3820/3840/3870/3880) and 
Western South Dakota (ASD #4610/4640/4670), have the lower precision (< 0.7) and recall (< 0.2). 

C. Zhang et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 102 (2021) 102374

8

4.3. Validation of in-season crop cover map using field data 

This section includes two experiments. First, we used field data and 
the 2018 CDL as reference data to validate the in-season map of 2018. As 
shown in Fig. 10, the location of field data surveyed in 2018 is covered 
by the Sentinel-2 tile (14TQL) as well as two Landsat-8 scenes 
(P028R031, P028R032). We grouped the field data into two ROIs by 
state and compared them to the corresponding pixels from CDL data and 
in-season crop cover maps. The pixel-by-pixel validation results are 
summarized in Table 2. The validation result suggests the in-season map 
can reach the high F1 score (> 0.95) and OA (> 95%) using either field 
data or CDL as reference data. 

The second experiment validated the in-season mapping result of 
2019 and derived the crop loss from the crop cover maps. Since most 
Landsat-8 images during the growing season of 2019 had high cloud 
coverage within the ROI, only the Sentinel-2 images were adopted in this 
experiment. The production of the 2019 crop cover map involved the 
following steps: (1) use CDL of 2007–2017 to train the crop sequence 
model; (2) generate trusted pixels by applying the well-trained model on 
2011–2018 CDL time series; (3) label training samples on the multi- 
temporal image stack (images acquired between May 1 to June 30 of 
2019) for each tile. The field data surveyed in 2019 were covered by six 
Sentinel-2 tiles (14TQL, 14TPM, 14TPL, 14TNM, 14TNL, 14TML). The 
validation results are summarized in Table 3. In early 2019, a severe 
flood event occurred in the Midwestern U.S., and many croplands along 
the Missouri River were damaged. Fig. 11 highlights the land cover 
change before and after the 2019 Midwest flooding and compares with 

the Landsat image of June 2019. It is noteworthy that our method suc
cessfully detected and mapped the crop loss which was located at the 
junction of Nebraska State, Iowa State, and Missouri State. 

5. Discussion 

5.1. Advantages of crop mapping using trusted pixels 

This study presents an innovative machine learning approach for the 
rapid in-season mapping of corn and soybeans. Here we summarize the 
main advantages of the proposed method. First, the use of trusted pixel 
provides a new perspective on crop type classification and LULC map
ping. Compared with the traditional in-season mapping methods, the 
proposed workflow does not require any ground truth data of the current 
year, which would significantly reduce the workload of gathering 
training samples at the early growing season, and could potentially 
automate the crop mapping. 

Second, the trusted pixels can be used to label various moderate-to- 
high spatial resolution data and coupled with many kinds of pixel-based 
classification algorithms. With the trusted pixels, many existing LULC 
mapping methods, especially the machine learning algorithms that 
require massive training samples, can be efficiently scaled up to a large 
geographic area. Moreover, the trusted pixels can be potentially inte
grated with other supervised classification workflows, such as transfer 
learning-based crop type classification (Hao et al., 2020), to perform in- 
season mapping for regions outside the United States, especially the 
developing countries that are lack of historical crop cover data. 

Fig. 7. Example of crop rotation patterns recognized by the ANN. ASD #1750 is located in Eastern Illinois, ASD #2770 is located in Southwestern Minnesota, ASD 
#3160 is located in Eastern Nebraska. For each crop rotation pattern, “C” represents corn, “S” represents soybeans, “G” represents grass. 
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Another advantage of the proposed method is that only a few in- 
season satellite images for each scene are required and no historical 
satellite images are involved. Due to the lack of training samples, most 
supervised learning-based crop mapping methods cannot be directly 
used on the in-season satellite images. Many deep learning-based crop 
type classification models used hundreds even thousands of historical 
satellite images as training data. Some of them do reach excellent clas
sification results, however, the training process of the classification 
models, especially advanced neural networks with complex structures, is 

extremely slow and difficult to repeat by other researchers. Since the 
trusted pixels are distributed in the U.S. Corn Belt, the classification 
model of our proposed framework can be specifically trained only using 
the in-season satellite images for each scene. 

According to our benchmark test on the desktop with 6-core CPU and 
16 GB memory, it takes 5–10 min to extract trusted pixels for each ASD 
and 15–20 min to produce the crop cover map for each Landsat scene. 
When the latest satellite images become available, an in-season crop 
cover map can be rapidly produced by the proposed machine learning 

Fig. 8. Comparison of in-season mapping result and CDL data. The yellow pixels represent corn. The green pixels represent soybeans. The gray pixels represent all 
other land use types (e.g., water, developed area, forest, and grass). The difference between in-season map and CDL is highlighted with red pixels. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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framework, even with the limited computational resources. 
Based on the above advantages, we believe not only the agricultural 

sector but also other societal sectors ranging from government, 
academia, to industry, would be benefited from this study. 

5.2. Pattern recognition in crop mapping 

The proposed crop mapping workflow consists of two ANN models, 
which are separately responsible for trusted pixel prediction and the 
crop type classification. They have the similar MLP structure but the 
input layers are different depending on the structure of input data. The 

Fig. 9. Box plot of validation results for all investigated scenes. The yellow and green box represent the result of corn and soybeans, respectively. The upper and 
lower bounds of the box represent the first and third quartiles. The cross mark, the bar in the box, and vertical line indicate the mean, median, and mini
mum–maximum bound. The solid dots are outliers of each cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 10. Comparison of 2018 ground truth data, CDL data, and in-season crop cover map based on Landsat-8 and Sentinel-2. The corresponding pixels of ground 
truth data are highlighted in the CDL map and in-season crop cover map. 
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trusted pixel prediction model handles CDL data while the crop type 
classification model deals with satellite images. Hence, the patterns 
learned by the two models are completely different. The trusted pixel 
prediction model can automatically recognize common crop rotation 
patterns (e.g., monocropping or alternate cropping). Some previous 
studies have explored the corn-soybean rotation pixels in the CDL 
(Sahajpal et al., 2014; Stern et al., 2012). However, they failed to 
investigate the crop sequence patterns that are not strictly periodic like 
“C-S-C-C-C-S-C-S-C” or “C-S-S-C-S-C-S-C-S” (“C” represents corn, “S” 
represents soybeans). The anomaly in these patterns could be due to 
policy change, fallow, as well as the mixed or misclassified pixel in CDL. 
The advantage of the trusted pixel prediction model is the neural 
network can automatically learn these corn-soybean rotation patterns 
with a minor anomaly. 

The crop type classification model learns the features from the time- 
series profile of spectral bands and indices in the satellite images. Ac
cording to the experiment result, the recall rate of in-season crop map
ping result is highly correlated with the recall rate of trusted pixel while 
the precision rate of in-season mapping result has no obvious correlation 
with the precision and recall rate trusted pixel. Since the recall rate 
represents the fraction of the trusted pixels that are successfully pre
dicted, it can be inferred that the classification performance could be 
affected by the quantity of trusted pixels. The more trusted pixels are 
extracted, the more spectral and temporal patterns can be recognized in 
the crop type classification model. On the contrary, if the volume of 

training set is small, for example, using pixels based on hand-specified 
rotation patterns as training samples, only limited spectral and tempo
ral features would be learned by the neural network. This is also re
flected in the Fig. 9 where the standard deviation is significantly higher 
for the recall than for the precision as the trusted pixel recall has the 
wide interquartile range. 

The structure of the neural network used in the proposed workflow 
can be further improved. The neural network works as a “black box” in 
the process of trusted pixel prediction and crop type classification. This 
is a common issue for the deep learning models because of their nested 
non-linear structure (Samek et al., 2017). Since the development of new 
deep learning algorithm is not the main objective of this study, we did 
not pay much attention to the tuning of neural network. To achieve a 
better performance, the hyperparameters, such as learning rates, 
weights, optimizer, loss function, activation function, and batch size, 
need to be specifically tuned for the classification model of each scene. 

5.3. Uncertainty of cropland data layer 

To train the trusted pixel prediction model, we constructed the 
training set using CDL data from 2007. Technically, the more years 
included in the training set, the more features the trusted pixel predic
tion model can learn. This is based on the characteristics of the neural 
network. There are two main reasons for abandoning the early-year 
CDL. On the one hand, the coverage of CDL for the study area was 

Table 2 
Validation of 2018 crop mapping result using field data and CDL as reference data.  

Reference data ROI Precision Recall F1-score OA   

Corn Soybean Corn Soybean Corn Soybean  

Field NE (Landsat-8)  0.98  1.00  0.98  0.94  0.98  0.97  96.49% 
data NE (Sentinel-2)  0.99  1.00  0.98  0.97  0.99  0.99  97.76%  

IA (Landsat-8)  1.00  0.99  0.97  0.95  0.99  0.97  96.03%  
IA (Sentinel-2)  1.00  1.00  0.97  0.96  0.99  0.98  96.67% 

CDL NE (Landsat-8)  0.98  0.99  0.98  0.95  0.98  0.97  96.17%  
NE (Sentinel-2)  0.99  0.98  0.98  0.98  0.99  0.98  97.35%  
IA (Landsat-8)  0.96  0.99  0.98  0.98  0.97  0.99  95.01%  
IA (Sentinel-2)  0.96  0.98  0.98  0.99  0.97  0.99  95.19%  

Table 3 
Validation of 2019 crop mapping result using field data as reference data.  

ROI Precision Recall F1-score OA  

Corn Soybean Corn Soybean Corn Soybean  

14TQL  0.99  0.84  0.83  0.88  0.90  0.86  86.86% 
14TPM  0.97  0.88  0.88  0.85  0.92  0.86  86.71% 
14TPL  0.98  0.91  0.87  0.82  0.92  0.86  87.02% 
14TNM  0.98  0.97  0.94  0.91  0.96  0.94  92.47% 
14TNL  0.99  0.97  0.95  0.90  0.97  0.93  92.30% 
14TML  0.96  0.92  0.90  0.81  0.93  0.86  87.81%  

Fig. 11. Land cover change before and after the 2019 Midwest flooding. The crop loss map reflects the difference between 2019 in-season map and 2018 CDL. The 
Landsat image of June 2019 is composited by Band 6, Band 5, and Band 2. 
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incomplete before 2007. On the other hand, there were many mis
classified pixels in the early-year CDLs due to the cloud or lack of sat
ellite images (Zhang et al., 2020b). 

This study used CDL and field data as reference data to evaluate 
mapping results. From the experiment result of Section 4.2, we noticed 
that the agreement of in-season mapping results with ground truth is 
slightly higher than CDL. This difference could be primarily caused by 
the uncertainty in CDL data (Liu et al., 2004). It is worth noting that the 
current CDL data still contain a certain amount of errors, such as mis
classified pixels, mixed pixels, and noisy pixels. According to the accu
racy assessment of 2018 CDL by USDA NASS (USDA-NASS, 2019b), the 
OA of corn and soybeans in the study area is between 88% and 93%. The 
major crop types for a CDL state will normally have a classification ac
curacy of 85% to 95%. There is potential uncertainty in the field data as 
well. Waldner et al. (2019) discussed the biases associated with the field 
data collected using the roadside sampling strategy and pointed the 
roadside samples were less representative than random samples. Thus, 
the actual accuracy of the in-season map for many areas may vary with 
the validation result. 

5.4. Limitations and potential solutions 

As a recognized problem in LULC mapping, the cloud coverage in the 
remote sensing images could significantly affect the performance of crop 
type classification. Although only low cloud-covered (< 10%) satellite 
images were taken, it is unavoidable that some pixels in the data set 
contain noisy values, especially when mapping over large geographic 
area. A potential method to address cloud issue is to build the multi- 
temporal image stack using the Harmonized Landsat and Sentinel-2 
(HLS) surface reflectance data set (Claverie et al., 2018). The HLS data 
set is composed of Landsat-8 data and Sentinel-2 data, which has been 
utilized in agricultural applications such as national-scale crop mapping 
(Griffiths et al., 2019) and identification of crop intensity (Hao et al., 
2019). Another solution to tackle the cloud cover issue is combining 
radar data, such as Sentinel-1 data, with multispectral data, which have 
been proven effective to improve the crop mapping result (Ienco et al., 
2019; Steinhausen et al., 2018). 

There are several ways to further improve the current mapping 
result. As the major drawback of per-tile mapping, the tiling effect may 
take place in which temporal information of the image stack is signifi
cantly inconsistent between adjacent tiles. According to the experiment 
result, the tiling effect is ignorable in most areas but still noticeable on a 
few tiles. Since the availability of cloud-free images may vary from tile 
to tile, it is challenging to eliminate the tiling effect over the entire study 
area. To address this challenge, the spatial and temporal interpolation 
module could be integrated into the proposed workflow, which has been 
proven effective to improve the robustness of the crop type classification 
using high temporal and spatial resolution satellite images (Inglada 
et al., 2015). On the other hand, the pixel-based mapping may lead the 
salt-and-pepper effect on some land units. The CLU data could efficiently 
remove noises and misclassified pixels within the land unit. However, 
the CLU data is unavailable for public use. To make up the lack of CLU, 
we can apply boundary delineation methods to generate field bound
aries for the object-based image analysis (Belgiu and Csillik, 2018; North 
et al., 2019). 

The ANN model learns the crop sequence features in the historical 
CDL. But it is difficult to predict the crop type for land units that break 
the pattern in the predicting year. The traditional crop rotation patterns 
could be changed due to dynamic and uncertain factors, such as agri
cultural practices change, natural hazards, climate change effects, 
market situation, loss of soil fertility, water scarcity, government policy, 
and other socioeconomic factors. The Section 4.1 has demonstrated the 
capability of automatically recognizing variability in terms of crop 
rotation patterns using machine learning. In the next phase, we will 
systematically investigate new agricultural practices that are more sus
tainable for environmental resources based on this study. Furthermore, 

we will incorporate other features, such as agricultural commodity 
prices and weather information, into the training of prediction model. 

6. Conclusion 

This paper introduced an efficient and effective approach for rapid 
in-season field-level mapping of corn and soybean. The innovation of the 
proposed method is the use of trusted pixels, which compensate for the 
lack of ground truth data in the early growing season. By applying ANN 
with the historical CDL data, a considerable number of trusted pixels can 
be automatically identified and used to label training samples on sat
ellite images. According to the experiments on the U.S. Corn Belt, it was 
found the average trusted-pixel precision of corn and soybean can reach 
0.86 and 0.91 respectively. The trusted pixels were used to label training 
samples for classifying crop types on 49 scenes of Landsat-8 data and 31 
tiles of Sentinel-2 data. Compared with the 2018 CDL, most tested scenes 
can achieve 85%–95% overall agreement with CDL by using images 
acquired during the period from early May to mid-July 2018. The 
validation of the 2018 mapping result against the limited numbers of 
ground truths in Nebraska showed an overall accuracy higher than 96%. 
Furthermore, the crop loss due to the Midwest flooding 2019 was suc
cessfully highlighted in the in-season crop map by the end of June. 

This study has explored the feasibility of using trusted pixels for 
rapid in-season mapping of dominant crops (i.e., corn and soybeans) 
over the U.S. Corn Belt. We have successfully demonstrated trusted 
pixels can replace ground truth data and label satellite images for large- 
area crop mapping with MLP-based ANN. It can be inferred that the 
trusted pixel approach is also suitable for other common supervised 
classifiers in remote sensing image classification, such as random forest, 
decision tree, classification and regression tree (CART), and support 
vector machine (SVM). In future research, we will identify more crop 
types and scale up the framework to the entire CONUS. In addition, there 
are many subsequent studies could be conducted based on the findings 
of this paper. For example, the in-season crop cover map could be 
incorporated with the historical CDL to calculate the historical cropping 
patterns then predict the future crop acreage and production. We will 
also conduct a systematic study on the spatial and temporal trend of 
cropping over the U.S. Corn Belt in the future. 
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Löw, F., Michel, U., Dech, S., Conrad, C., 2013. Impact of feature selection on the 
accuracy and spatial uncertainty of per-field crop classification using Support Vector 
Machines. ISPRS J. Photogramm. Remote Sens. 85, 102–119. https://doi.org/ 
10.1016/J.ISPRSJPRS.2013.08.007. 

Massey, R., Sankey, T.T., Yadav, K., Congalton, R.G., Tilton, J.C., 2018. Integrating 
cloud-based workflows in continental-scale cropland extent classification. Remote 
Sens. Environ. 219, 162–179. https://doi.org/10.1016/j.rse.2018.10.013. 

McNairn, H., Kross, A., Lapen, D., Caves, R., Shang, J., 2014. Early season monitoring of 
corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. 
Geoinf. 28, 252–259. https://doi.org/10.1016/j.jag.2013.12.015. 

Mulla, D.J., 2013. Twenty five years of remote sensing in precision agriculture: Key 
advances and remaining knowledge gaps. Biosyst. Eng., Special Issue: Sens. Technol. 
Sustain. Agriculture 114, 358–371. https://doi.org/10.1016/j. 
biosystemseng.2012.08.009. 

North, H.C., Pairman, D., Belliss, S.E., 2019. Boundary delineation of agricultural fields 
in multitemporal satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
12, 237–251. https://doi.org/10.1109/JSTARS.2018.2884513. 

Osman, J., Inglada, J., Dejoux, J.F., 2015. Assessment of a markov logic model of crop 
rotations for early crop mapping. Comput. Electron. Agric. 113, 234–243. https:// 
doi.org/10.1016/j.compag.2015.02.015. 
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