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A timely and detailed crop-specific land cover map can support many agricultural applications and decision
makings. However, in-season crop mapping over a large area is still challenging due to the insufficiency of
ground truth in the early stage of a growing season. To address this issue, this paper presents an efficient
machine-learning workflow for the rapid in-season mapping of corn and soybeans fields without ground truth
data for the current year. We use trusted pixels, a set of pixels that are predicted from the historical Cropland
Data Layer (CDL) data with high confidence in the current year’s crop type, to label training samples on multi-
temporal satellite images for crop type classification. The entire mapping process only involves a limited number
of satellite images acquired within the growing season (normally 3-4 images per scene) and no field data needs
to be collected. According to the investigation on 12 states of the U.S. Corn Belt, it is found that a considerable
number of trusted pixels can be identified from the historical CDL data by the trusted pixel prediction model
based on artificial neural network. According to the experiment on 49 Landsat-8 scenes and 31 Sentinel-2 tiles,
the in-season maps of corn and soybeans are expected to reach 85%-95% agreement with CDL as well as field
data by mid-July. Once the in-season satellite imagery becomes available, the crop cover map can be rapidly
created even with limited computational resources. This study provides a new perspective and detailed guidance
for rapid in-season mapping of corn and soybeans, which can be potentially applied to identify more diverse crop
types and scaled up to the entire United States.

1. Introduction Service (NASS) is produced using satellite imagery from the Landsat 8

OLI/TIRS sensor, the Disaster Monitoring Constellation (DMC) Deimos-1

Remote sensing has been proven an effective and efficient Earth
observation approach for land use and land cover (LULC) mapping and
agricultural monitoring (Fritz et al., 2015; Hansen and Loveland, 2012;
Lobell, 2013; Mulla, 2013). The crop-specific land cover map derived
from the remotely sensed images can provide the fundamental infor-
mation for crop yield estimation (Prasad et al., 2006; Sakamoto et al.,
2014), LULC change (Lark et al., 2017; Liu et al., 2005), food security
(Fischer et al., 2014), cropland diversity (Waldner et al., 2016), and
many other socio-economic activities. As the most well-known annual
agricultural land use map covering the conterminous United States
(CONUS), the Cropland Data Layer (CDL) product of United States
Department of Agriculture (USDA) National Agricultural Statistics

and UK2, the ISRO ResourceSat-2 LISS-3, and the ESA Sentinel-2 sensors
collected during the current growing season (USDA-NASS, 2019a). The
CDL data product has been used in many agricultural studies and ap-
plications, such as crop loss assessment (Di et al., 2017), crop planting
frequency modeling (Boryan et al., 2014), flood impact estimation
(Shrestha et al., 2017), and crop area estimation (Song et al., 2017).
Similarly, the Annual Crop Inventory (ACI) product of Agriculture and
Agri-Food Canada (AAFC) is produced using satellite images from
Landsat-8, Sentinel-2, and RADARSAT-2 sensors (AAFC, 2018). As a
crop type digital map covering the major cropland of Canada, the ACI
product has been used as reference data for the major crop types iden-
tification (Liu et al., 2016), winter wheat biomass estimation (Dong
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et al., 2016), cropland extent classification (Massey et al., 2018), and
measurement of landscape indicators (Ruan et al., 2019). However, both
CDL and ACI are end-of-season products usually releasing to the public
in the early next year although pre-public release products of CDL and
ACI are available internally at the late stage of a growing season for
evaluation and validation purpose, which means these data cannot meet
in-season needs of users. In-season mapping aims to create a crop-
specific land cover map during the growing season. For example, in
early 2019, at least 1 million acres of farmland in the Midwest U.S. were
damaged due to flooding (Huffstutter and Pamuk, 2019) and the pro-
duction of corn and soybeans in these areas could be significantly
affected. A timely and detailed crop cover map can facilitate the crop
loss estimation and decision support immediately after the flood event.
Since an operational field-level crop-specific mapping product for
CONUS is still not publicly available within growing season, a general
method for rapid mapping of major crop types is highly desired by not
only the food and agricultural sectors but also researchers, insurance
companies, and the LULC community.

Although many methods and algorithms can reach excellent classi-
fication performance in the study area at the early stage of a growing
season (hereafter called “in-season” or “early-season” for simplicity), it
is still a challenge to produce the regional-scale early-season crop cover
map at the field level. One crucial issue for the challenge is the insuffi-
ciency of ground truth data in the early season. Generally, producing a
high-quality regional-scale crop cover map requires a huge volume of
ground truth data. However, surveying field data over a large
geographic area is a time-critical activity which requires a substantial
investment of human and financial resources. The production of CDL
relies on massive ground truth information collected at the June Area
Survey by USDA NASS (Boryan et al., 2011). The production of ACI data
is based on the ground truth information by point observations from
local crop insurance companies and AAFC personnel (AAFC, 2019).
These surveyed data are not publicly available at all and are only
available internally at the late stage of a growing season (e.g., early
August) after processing and quality controls of collected ground truths.
Although there are many approaches for crop type classification, it is
difficult to apply to a larger area without training samples labeled by
ground reference data. This challenge drives us to develop an efficient
and effective approach to prepare training samples for remote sensing-
based in-season crop mapping.

With the considerable demand for the timely crop cover map, crop
mapping based on Moderate Resolution Spectroradiometer (MODIS)
data and moderate-to-high spatial resolution data, such as Landsat data
and Sentinel-2 data, has been widely studied around the world. For
example, Wardlow and Egbert (2008) and Dahal et al. (2018)) explored
the large-area crop mapping using MODIS time series. McNairn et al.
(2014) applied the supervised decision tree classification for the early-
season mapping of corn and soybeans in eastern Canada using
TerraSAR-X and RADARSAT-2 data. Hao et al. (2015) and Skakun et al.
(2017) investigated the capability of using MODIS data for early-season
crop mapping. Vaudour et al. (2015) utilized very high spatial resolution
Pleiades image for early-season mapping of crops and soil tillage oper-
ation. Tardy et al. (2017) proposed several past data fusion schemes for
land cover mapping, including major winter and summer crop classes,
using in-season Formosat-2 images and reference data from previous
periods. Hao et al. (2018) developed an improved artificial immune
network approach to identify major crops using Sentinel-1 and Sentinel-
2 time series. Kussul et al. (2018) combined Sentinel-2 data with
Sentinel-1A data for in-season crop mapping at regional scale in
Ukraine. Phalke and C)zdog’an (2018) and Johnson (2019) applied the
Landsat data for the field-level cropland mapping over large area.
Defourny et al. (2019) introduced the Sen2-Agri system to generate near
real-time national-scale crop type maps from Sentinel-2 data using
random forest and successfully demonstrated in Ukraine, Mali, and
South Africa. Demarez et al. (2019) investigated the feasibility of
combing Landsat-8 data and Sentinel-1 time series for the in-season
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classification of irrigated crops. Wang et al. (2019) used multi-
temporal Sentinel-2 data to map regional land use in complex land-
scapes. Gao et al. (2020) presented a within-season approach to detect
crop emergence during early growing season using Landsat and
Sentinel-2 data.

Different from the in-season mapping, pre-season mapping aims to
predict crop cover before the beginning of a growing season and nor-
mally does not involve remote sensing data directly. Modeling crop
sequence is a common way to predict the crop type on cropland. Many
studies have shown that the spatial information of crop planting can be
predicted by modeling the long-term crop sequence using land survey
data. Xiao et al. (2014) used an empirical modeling method to identify
the crop sequence patterns at a regional scale. Osman et al. (2015)
proposed a Markov logic-based approach of crop rotation modeling for
early crop mapping. Kollas et al. (2015), Yin et al. (2017), and Giordano
et al. (2020) analyzed and discussed several crop rotation models in
Europe. Since gathering and processing the land survey data of large
area is impractical for most researchers, the crop cover maps derived
from remote sensing images, such as CDL, become an ideal data source
for crop sequence modeling. From the historical CDL data, a crop rota-
tion map can be created by extracting croplands that follow specific crop
rotation such as alternate cropping patterns (Sahajpal et al., 2014; Wu
and Zhang, 2019). For example, it is well-known that many farmers in
the Midwestern U.S. alternatively grow corn and soybeans on the same
land unit year after year because of the effect on crop yield as well as soil
quality and fertility (Edwards et al., 1988; Karlen et al., 2006; Van Eerd
et al., 2014). To generalize the crop-specific expert knowledge to other
regions where the crop rotation patterns are different, Zhang et al.
(2019a) utilized artificial neural network (ANN) to predict the spatial
distribution of future crop planting before the beginning of a growing
season, which has been proven effective to produce pre-season crop map
and estimate crop yield for a normal year. However, one important issue
of the pre-season mapping is that the prediction result only relies on
prior knowledge from historical data, which could be problematic while
mapping for an anomaly year with disasters or large market and policy
changes. To address this issue, we assume the spectral information of
different crop growth stages in remote sensing data can contribute to
repair the erroneous predictions caused by accidents, artificial changes,
or lack of credible prior crop sequence knowledge. Based on this idea,
this paper introduces an innovative approach using machine-learned
trusted pixel (hereafter called “trusted pixels™), whose crop types have
been identified with high confidence by the crop sequence model
automatically learned from the time series of crop-specific land cover
data (e.g., CDL), to label training samples on satellite images for in-
season crop type classification.

This paper has two specific objectives: (a) using ANN to automati-
cally extract trusted pixels from historical CDL data; (b) exploring the
feasibility of mapping major crops (i.e., corn and soybeans) for the U.S.
Corn Belt based on multi-temporal satellite images using trusted pixels
as training samples. The rest of this paper is organized as follows: Sec-
tion 2 introduces the study area and data; Section 3 presents an ANN-
based machine learning framework for rapid mapping of corn and soy-
beans; Section 4 demonstrates a group of experiments to evaluate trus-
ted pixels and in-season crop cover maps; Section 5 discusses the
advantages of the proposed method, the uncertainty of CDL data, and
limitations and potential solutions of the current work; and Section 6
concludes this paper with a discussion of future works.

2. Study area and data

This study focuses on the U.S. Corn Belt region of the Midwestern
United States where agriculture has been the predominant land use class
of this region in the past few decades. Corn and soybean have become
the leading crops in many Corn Belt states since the late 1990s (Auch
et al., 2018). As the major agriculture region over the CONUS and the
largest production area of corn and soybeans in the world, the U.S. Corn
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Belt is a key study area for crop mapping as well as national-scale and
global-scale LULC change studies (Green et al., 2018). According to the
statistics by USDA NASS, in 2018 cropland makes up over 65% of the
total land in the study area and corn and soybeans cover 22.9% and
22.7% of the total cropland area, respectively. The geography and
agricultural land use information for Corn Belt states are shown in Fig. 1.
The study area consists of 12 states: Illinois, Indiana, Iowa, Kansas,
Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South
Dakota, and Wisconsin. USDA NASS divided each U.S. state into several
Agricultural Statistics Districts (ASDs) by geography, climate, and
cropping practices. Each ASD consists of a group of contiguous counties
with relatively similar agricultural characteristics and environment.
This study will investigate 102 contiguous ASDs across various ecor-
egions, including Northern Forests, Northern Agriculture-Forest Tran-
sition Zone, Midwest Agricultural, Western Plains, Glaciated Plains, and
East-Central Plains (Auch and Karstensen, 2015; Taylor et al., 2015).

The CDL time series will be used as the main reference data for crop
sequence model training as well as result validation. Produced by USDA
NASS, the CDL data product covers the entire CONUS at 30-meter spatial
resolution from 2008 to the present and some states from 1997 to 2007.
There are over 140 land use classes provided in the CDL, and the ac-
curacy for major crop types in most areas is close to 95% according to
the CDL metadata (USDA-NASS, 2019b). All CDL products can be
accessed through CropScape (https://nassgeodata.gmu.edu/
CropScape), a web-based geospatial information system developed and
maintained by the Center for Spatial Information Science and Systems of
George Mason University (Han et al., 2012; Zhang et al., 2019b).

As the two most widely accessible moderate-to-high spatial resolu-
tion data, Landsat-8 and Sentinel-2 data are explored in this study. The
Landsat-8 data cover the entire Earth’s surface at a 30 m resolution in a
16-day repeat cycle since 2013. The Sentinel-2 data provide the higher
spatial resolution of 10-20 m with a global 5-day revisit frequency
(depending on orbits and satellite, the same areas could be under
different angles) since 2015. There are many ways to access Landsat data
and Sentinel-2 data. The United States Geological Survey (USGS) Earth
Explorer (https://earthexplorer.usgs.gov/) is the official source for
downloading Landsat data. The ESA Copernicus Open Access Hub
(https://scihub.copernicus.eu/) provides complete and open access to
Sentinel-2 data.

Furthermore, we collected a set of field data using roadside sampling
strategy within Nebraska and Iowa, which contains 128 land units (77
for corn and 51 for soybeans) surveyed in July 2018 and 900 land units
(723 for corn and 177 for soybeans) surveyed in July 2019. Each land
unit represents a field of certain type of crop planted with a permanent
contiguous boundary. The Common Land Unit (CLU) of USDA provides
the vector data set of all registered agricultural fields in the United
States. However, it is not available for public. Therefore, we utilized GIS
software to manually delineate polygons for the field data based on the
Landsat-8 images of the same period. To ensure the surveyed land unit
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has a relatively permanent contiguous boundary and common land
management, we verified each polygon by referring to the historical CDL
data. These field data will be used as ground truth to validate the
mapping results.

3. Methodology
3.1. Overall workflow

Fig. 2 shows the overall workflow of the proposed in-season crop
mapping approach, which is composed of a data preparation module, a
trusted pixel prediction module, a crop type classification module, and a
validation module. The data preparation module converts the CDL data
and satellite data into the structured form to feed the trusted pixel
prediction module and classification module. The trusted pixel predic-
tion module automatically produces trusted pixels from the historical
CDL data. The crop type classification module deals with the identifi-
cation of corn and soybeans from the remote sensing images. The output
of the workflow is an in-season crop map. Finally, all mapping results
will be validated using ground truth data and CDL data. This section
presents the implementation details of each module.

3.2. Data preparation

This step aims to prepare the CDL data for the prediction of the
trusted pixel as well as build the multi-temporal and multi-spectral
satellite image stack for the classification model training. We pro-
cessed the data used for the experiments on the Google Earth Engine
(GEE) (Gorelick et al., 2017). The GEE data catalog has archived diverse
standardized geospatial data sets including the complete volume of CDL,
Landsat-8, and Sentinel-2 data. There are many product options for both
Landsat-8 data and Sentinel-2 data. To increase the consistency between
the two satellite data, we will adopt two atmospherically corrected
surface reflectance data, the Landsat-8 Surface Reflectance Tier 1
product and Sentinel-2 MultiSpectral Instrument (MSI) Level-2A prod-
uct. Meanwhile, we have developed the AgKit4EE toolkit on GEE (Zhang
et al., 2020a) to prepare the CDL time series for the entire study area.

Spectral bands and their derived indices from satellite images can
provide fundamental information for crop type classification (Arvor
et al., 2011; Low et al., 2013; Wardlow et al., 2007). This study in-
vestigates spectral features in six bands, including three visible spectrum
bands (blue, green, red), one near-infrared band (NIR), and two short-
wave infrared bands (SWIR-1, SWIR-2). Table 1 summarizes the infor-
mation of the selected bands in Landsat-8 data and Sentinel-2 data.
Additionally, we derive two commonly used indices, Normalized Dif-
ference Vegetation Index (NDVI) (Tucker, 1979) and Normalized Dif-
ference Water Index (NDWI) (Gao, 1996), from the given spectral bands.
The formulas of NDVI and NDWI are shown as follows:
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Fig. 2. Workflow for in-season crop mapping using trusted pixels and remote sensing images.

Table 1
Information of spectral bands in Landsat-8 data and Sentinel-2 data.
Landsat-8 Sentinel-2
Name Band Wavelength (micrometers) Spatial Resolution (meters) Band Wavelength (micrometers) Spatial Resolution (meters)
Blue B2 0.452-0.512 30 B2 0.439-0.535 10
Green B3 0.533-0.590 30 B3 0.537-0.582 10
Red B4 0.636-0.673 30 B4 0.646-0.685 10
NIR B5 0.851-0.879 30 B8 0.848-0.881 10
SWIR-1 B6 1.567-1.651 30 B11 1.539-1.681 20
SWIR-2 B7 2.107-2.294 30 B12 2.072-2.312 20
NDVI = NIR — Red image stack. Besides, the spatial resolution of the trusted pixel map and
" NIR + Red in-season crop cover map are identical with Landsat images and CDL
data. To unify the spatial resolution of the satellite data, all Sentinel-2
NDWI — NIR — SWIR images are resampled to 30 m using the nearest neighbor method.
NIR + SWIR

In the U.S. Corn Belt, corn is normally planted in late April through
late May and soybeans are planted in May through early June (USDA-
NASS, 2010). The best temporal period for satellite remote sensing of
corn and soybeans is from the time of planting to the peak of the growing
season in mid-July. To ensure the temporal dimension is adequately
covered in the training data, we acquired all low cloud cover (< 10%)
images taken between May and mid-July for each scene. After selecting
spectral features, each image is composed of 8 bands (i.e., blue, green,
red, NIR, SWIR-1, SWIR-2, NDVI, and NDWI). When building the image
stack for crop type classification, we sort all qualified satellite images by
date then stack the selected bands of each image to a 3-d array. For most
Landsat scenes within the study area, there are 3-4 qualified images
with at least one image per month, which means a multi-temporal image
stack normally consists of 24 or 32 bands in total. Take the image stack
with 24 bands as an example, the training data will contain spectral
information of different crop growth stages in May (band 1-8), June
(band 9-18), and July (band 19-24).

Since Landsat data is the main data source of CDL, the experiment in
this paper used the Landsat-8 images as the preference data. If a Landsat
image stack does not have enough low cloud cover images (less than 3
images), the Sentinel-2 data will be used to patch the missing scene. To
further minimize the effects of cloudy pixels in classification, we fill the
cloudy pixels with the corresponding pixels of the previous image in the

3.3. Trusted pixel prediction

Trusted pixels refer to pixels predicted from the historical CDL data
with high confidence in the current year’s crop type. As a practical
approach for discovering intricate patterns and structures in high-
dimensional data, machine learning has been widely used in LULC
studies. The production of trusted pixel is based on the crop sequence
pattern that automatically recognized from the CDL time series. To train
the crop sequence model, we integrate an ANN model with the in-season
mapping workflow, which has been proven effective to predict the
spatial distribution of major crop types (Zhang et al., 2019a).

Fig. 3 illustrates the process of trusted pixel prediction. First, we
convert the historical CDL time series into an image stack with crop
sequence features for all pixels. Each crop sequence feature is a one-
dimensional array containing the pixel-level time series of historical
CDL. Second, we feed each crop sequence feature into the prediction
model to predict the following year’s crop type of the corresponding
pixel. The ANN model for trusted pixel prediction has the fully-
connected multilayer perceptron (MLP) structure, which consists of
one input layer, five hidden layers, and one output layer. Each input
neuron represents each crop type value of the crop sequence feature. The
output layer of the neural network used SoftMax to calculate the prob-
ability value of three classes (corn, soybeans, or others). The crop type of
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Fig. 3. Predicting trusted pixels from historical CDL time series using ANN.

the corresponding pixel will be categorized as class with the highest
probability value. The final output of the prediction model is a predic-
tion map of crop cover and its probability map. By masking the high-
confident pixels (> 90%) on the prediction map, we can get a map of
trusted pixels. If the sequence is similar to a regular pattern, there is a
high chance that the pixel would be classified as a trusted pixel (e.g.,
corn 90%, soybeans 8%, others 2%). If a sequence cannot be recognized
by the well-trained model, the probability of each class could be more
even (e.g., corn 45%, soybeans 30%, others 25%) and it would be
classified as a non-trusted pixel.

The training data set is constructed with three recursive subsets with
an 8-year moving window of each. While producing trusted pixels for
2019, the ANN model is trained using sub-training set of 2010-2017
CDL labeled with 2018 CDL, 2009-2016 CDL labeled with 2017 CDL,
and 2008-2015 CDL labeled with 2016 CDL. This design can efficiently
extend the training data set and allow the neural network to recognize
crop sequence labels for the last three consecutive years. To convert
features into the readable form of neural network, the training data set
will be flattened to a structured 2-D table. Each row represents a sample
of a sequence of pixel-level crop type features labeled with the corre-
sponding pixel in the label set. For example, a training sample of pixel
that follows the corn-soybean rotation pattern will be represented as “1,
5,1,5,1,5,1, 5" labeling with “1” or “5, 1, 5, 1, 5, 1, 5, 5” labeling with
“5,” where “1” refers to corn and “5” refers to soybeans (the full class
table of CDL data is available at Google (2021)). Although the CDL data

is available since 1997, we would not build the training set with a very
long CDL time series because the quality of the early-year CDL varies
across regions and the coverage of CDL is incomplete before 2008, which
may significantly affect the accuracy of the machine-learned model.

To train a robust prediction model, the training set should provide
abundant samples with diverse crop sequence features. Based on the
similarity of agricultural characteristics and environment, USDA NASS
divided each U.S. state into several Agricultural Statistics Districts
(ASDs). To make sure the crop sequence features of prediction model as
much as possible, the models need to be trained for each ASD and the
trusted pixel mapping has to be done ASD by ASD. In this way, the well-
trained neural network would recognize the specific crop sequence in-
formation for the corresponding ASD.

3.4. Crop type classification

Fig. 4 shows the procedure of in-season crop type classification using
satellite images and trusted pixels. As described in the Section 3.2, the
input data structure of the classification model is an image stack with
both spectral and temporal information. The quantity of satellite images
used for assembling image stack depends on the availability of cloud-
free satellite images within growing season. Based on the spatial dis-
tribution of trusted pixels, the training samples are automatically
labeled on the image stack. The trusted pixel-based training samples can
be applied to diverse pixel-based classifiers. This study applied the MLP-
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Fig. 4. In-season crop type classification using multi-temporal satellite image stack and trusted pixels.
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based ANN as classifier which has a similar structure with the trusted
pixel prediction model. Each input neuron represents the value in the
one-dimensional band feature of the corresponding pixel. Finally, an in-
season crop cover map can be generated by applying the trained clas-
sification model on the full image. The geography, season starting, and
temporal collection of satellite images may significantly vary among the
different scenes over large area. To test the scalability and robustness of
the trusted pixel approach, we conduct crop type classification scene by
scene within the entire U.S. Corn Belt.

3.5. Validation

We use overall accuracy (OA), precision, recall, and Fl-score to
evaluate the agreement of mapping results with reference data. These
metrics are calculated by comparing all pixels of the mapping result with
their corresponding pixels of the CDL map or ground truth map. The OA
measures the proportion of correctly classified pixels in all pixels. The
precision and recall measure the classification result of each class, which
are defined as follow:

L. TP
Precision = ——
TP + FP
TP
Recall = ———
“CU=TP I EN

where TP represents the number of true positives, FP represents the
number of false positives, and FN represents the number of false nega-
tives. The F1-score combines precision and recall which is defined as:
Fl—2x Prect:Sl:on X Recall
Precision + Recall

Specifically, precision measures the fraction of tuples labeled as
positive which are actually positive. The recall measures the fraction of
positive tuples that were detected. Take corn as an example, the preci-
sion indicates the proportion of correctly classified corn pixels in all
pixels classified as corn. The higher the precision rate, the more accurate
the classified corn pixels are. The recall indicates the proportion of the
correct corn pixels of the classification result in all corn pixels of the
reference image. The higher the recall rate, the more corn pixels are
correctly classified. The result might have a high precision rate but low
recall rate, or high recall rate but low precision rate. The Fl-score can
measure the weighted average of precision and recall. The values of the
above metrics are between 0 and 1.

4. Experiments and results
4.1. Validation of trusted pixels

To fulfill the first objective of this study, we derived trusted pixels of
2018 by applying the crop sequence model (trained using CDL data of
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2007-2016) to the CDL data of 2010-2017. Fig. 5 shows the 2018
trusted pixel map of the study area. A probability map (Fig. 5a) is
created resulting from the SoftMax function where each pixel indicates
the highest probability value among corn, soybeans, and others. Based
on the probability map, we extracted pixels with high classification
confidence from the prediction result and produced the trusted pixel
map (Fig. 5b). The pixels higher than the threshold of 90% were clas-
sified as corn, soybean, or others. The pixels under the probability
threshold were considered the non-trusted pixels. The result indicates
that the trusted pixels of corn and soybeans are widely distributed across
the U.S. Corn Belt, especially Iowa, Illinois, Indiana, Eastern Nebraska,
Eastern South Dakota, Southwestern Minnesota, and Western Ohio.

This experiment used 2018 CDL data as reference data to validate the
reliability of trusted pixels. Fig. 6 illustrates the spatial distribution of
validation results at the ASD level. The precision rate of corn and soy-
beans are compared in Fig. 6a and Fig. 6b, which indicates the agree-
ment of the trusted pixels in each class with the corresponding CDL
pixels. The recall rate of corn and soybeans are compared in Fig. 6¢ and
Fig. 6d, which reflects the percentage of correctly classified trusted
pixels against the pixel number of the corresponding class in CDL. It can
be found the ASDs with high-density of trusted pixels are mainly
concentrated in Central Corn Belt Plains where the precision can reach
0.9 and the recall can reach 0.6. In contrast, the precision and recall of
ASDs that mostly covered by non-cropland, such as Western North
Dakota and Western South Dakota, are not as high as other areas.

Fig. 7 displays the 9-year crop rotation patterns (8-year sequence
followed by a prediction result) automatically recognized by the ANN in
the above results. This example illustrates the statistics for the quantity
of trusted pixels per crop rotation pattern in ASD #1750, #2770, and
#3160 (Fig. 7a) and validation of the most frequent crop rotation pat-
terns within selected regions (Fig. 7b). The overall precision of corn
pixels can reach up to 0.96 while the overall precision of soybeans pixels
is as high as 0.97 among selected ASDs. Such a high overall precision
rate indicates the ANN is capable of recognizing common crop rotation
patterns as well as patterns with minor anomaly from the historical CDL.
We can see the most frequent corn-soybean rotation pattern within the
selected ASDs is the alternate rotation pattern (i.e., “C-S-C-S-C-S-C-S-C”
and “S-C-S-C-S-C-S-C-S), in which the recall rate is more significant
than other patterns. The monocropping of corn (i.e., “C-C-C-C-C-C-C-C-
C”) exists in ASD #2770 and #3160. Moreover, a variety of other crop
rotation patterns were recognized, but the pixel number is much lower
than the regular patterns.

4.2. Validation of in-season crop cover map using CDL
The second objective of this study is conducting in-season crop
mapping using multi-temporal satellite images and trusted pixels as

training sample. In order to guarantee the image stack was assembled by
at least one eligible image per month, we gathered all cloud-free

Fig. 5. Spatial distribution of 2018 trusted
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Fig. 6. Spatial distribution of trusted pixels validation at ASD level. The ASDs with high-density of trusted pixels, such as Iowa, Illinois, and Indiana have a higher
precision rate (> 0.9) and recall rate (> 0.6). ASDs that mostly covered by non-cropland, such as Western North Dakota (ASD #3810,/3820/3840,/3870/3880) and
Western South Dakota (ASD #4610/4640/4670), have the lower precision (< 0.7) and recall (< 0.2).

Landsat-8 images (cloud coverage less than 10%) between May 2018
and July 2018 over the entire study area as well as Sentinel-2 images
over the regions where the cloud-free Landsat-8 images were unavai-
lable. The final mapping result covers 80 tiles, 49 of which were pro-
duced using Landsat-8 data and the rest were produced using Sentinel-2
data. The Landsat-8 data use the Worldwide Reference System-2 (WRS-
2). Each scene of Landsat-8 data is 185 km*180 km and uniquely
designated by a combination of Path and Row numbers. The Sentinel-2
Level-2A product is organized in ortho-rectified tiles, also called gran-
ules, of 100 km*100 km in UTM WGS84 projections. Each Sentinel-2 tile
is assigned an ID, in which the first 2 digits and 1 letter correspond to the
UTM zone while the two last letters correspond to a unique ID.

Fig. 8 demonstrates the 2018 in-season crop cover map and the
detailed mapping result of six region of interests (ROI) including three
Landsat-8 scenes and three Sentinel-2 tiles with the OA of 80%-85%,
85%-90%, and 90%-95%, respectively. The selected ROIs are distrib-
uted across various ecoregions in the U.S. Corn Belt. The ROI
“PO30R027” covers part of Lake Agassiz Plain Ecoregion and part of
Northern Glaciated Plains Ecoregion. The ROI “P028R032” is on the
border of Central Great Plains Ecoregion and the Western Corn Belt
Plains Ecoregion. The ROI “P023R032” is in the Central Corn Belt Plains
Ecoregion. The ROI “14TQQ” lies on the border of Northern Glaciated
Plains Ecoregion and Western Corn Belt Plains Ecoregion. The ROI
“15TWG” is in the Western Corn Belt Plains Ecoregion. The ROI
“16TFM” is in Southern Michigan/Northern Indiana Drift Plains Ecor-
egion. To show the discrepancy of in-season map and CDL, we calculated
the difference between two images and highlighted the misclassified

pixels in each ROL. The result indicates the difference between CDL and
in-season maps of low overall accuracy (80%-85%), such as
“PO30R027” and “16TFM,” was relatively significant. For the in-season
maps of high overall accuracy (90%-95%), such as “P023R032” and
“15TWG,” the crop types of nearly all land units were correctly classi-
fied. Only a few mixed pixels (mainly distributed on the boundary of
land unit) were misclassified. Considering the crop cover maps were
produced by July 2018 which was nearly six months earlier than the
release of 2018 CDL, such difference is reasonable for the in-season
mapping result.

Fig. 9 compares the overall validation results of prediction maps
(including trusted pixels and non-trusted pixels), trusted pixel maps, and
in-season crop cover maps for all investigated scenes. The box plots
show the in-season maps can reach as high overall precision rate as the
trusted pixel map. Meanwhile, the overall recall rate and overall F1-
score of in-season maps are higher than both trusted pixel maps and
prediction maps. Specifically, the mean/median precision values of corn
and soybeans were 0.85/0.86 and 0.87/0.89. The mean/median recall
rates of corn and soybeans were 0.78/0.83 and 0.78/0.83. The mean/
median F1-score rate of corn and soybeans were 0.80/0.83 and 0.81/
0.83. In most scenes, the precision rate of corn and soybean ranged from
0.81 to 0.90 and 0.83 to 0.92, the recall rates of corn and soybean ranged
from 0.69 to 0.90 and 0.68 to 0.88, and the F1-score of corn and soybean
ranged from 0.75 to 0.88 and 0.76 to 0.90. It could be reasonably
inferred from the validation result that a significant number of non-
trusted pixels can be correctly classified based on the spectral and
temporal features from satellite images.
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(b) Validation of most frequent crop rotation patterns within selected regions.

Fig. 7. Example of crop rotation patterns recognized by the ANN. ASD #1750 is located in Eastern Illinois, ASD #2770 is located in Southwestern Minnesota, ASD
#3160 is located in Eastern Nebraska. For each crop rotation pattern, “C” represents corn, “S” represents soybeans, “G” represents grass.

4.3. Validation of in-season crop cover map using field data

This section includes two experiments. First, we used field data and
the 2018 CDL as reference data to validate the in-season map of 2018. As
shown in Fig. 10, the location of field data surveyed in 2018 is covered
by the Sentinel-2 tile (14TQL) as well as two Landsat-8 scenes
(PO28R031, P028R032). We grouped the field data into two ROIs by
state and compared them to the corresponding pixels from CDL data and
in-season crop cover maps. The pixel-by-pixel validation results are
summarized in Table 2. The validation result suggests the in-season map
can reach the high F1 score (> 0.95) and OA (> 95%) using either field
data or CDL as reference data.

The second experiment validated the in-season mapping result of
2019 and derived the crop loss from the crop cover maps. Since most
Landsat-8 images during the growing season of 2019 had high cloud
coverage within the ROI, only the Sentinel-2 images were adopted in this
experiment. The production of the 2019 crop cover map involved the
following steps: (1) use CDL of 2007-2017 to train the crop sequence
model; (2) generate trusted pixels by applying the well-trained model on
2011-2018 CDL time series; (3) label training samples on the multi-
temporal image stack (images acquired between May 1 to June 30 of
2019) for each tile. The field data surveyed in 2019 were covered by six
Sentinel-2 tiles (14TQL, 14TPM, 14TPL, 14TNM, 14TNL, 14TML). The
validation results are summarized in Table 3. In early 2019, a severe
flood event occurred in the Midwestern U.S., and many croplands along
the Missouri River were damaged. Fig. 11 highlights the land cover
change before and after the 2019 Midwest flooding and compares with

the Landsat image of June 2019. It is noteworthy that our method suc-
cessfully detected and mapped the crop loss which was located at the
junction of Nebraska State, Iowa State, and Missouri State.

5. Discussion
5.1. Advantages of crop mapping using trusted pixels

This study presents an innovative machine learning approach for the
rapid in-season mapping of corn and soybeans. Here we summarize the
main advantages of the proposed method. First, the use of trusted pixel
provides a new perspective on crop type classification and LULC map-
ping. Compared with the traditional in-season mapping methods, the
proposed workflow does not require any ground truth data of the current
year, which would significantly reduce the workload of gathering
training samples at the early growing season, and could potentially
automate the crop mapping.

Second, the trusted pixels can be used to label various moderate-to-
high spatial resolution data and coupled with many kinds of pixel-based
classification algorithms. With the trusted pixels, many existing LULC
mapping methods, especially the machine learning algorithms that
require massive training samples, can be efficiently scaled up to a large
geographic area. Moreover, the trusted pixels can be potentially inte-
grated with other supervised classification workflows, such as transfer
learning-based crop type classification (Hao et al., 2020), to perform in-
season mapping for regions outside the United States, especially the
developing countries that are lack of historical crop cover data.
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Fig. 8. Comparison of in-season mapping result and CDL data. The yellow pixels represent corn. The green pixels represent soybeans. The gray pixels represent all
other land use types (e.g., water, developed area, forest, and grass). The difference between in-season map and CDL is highlighted with red pixels. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Another advantage of the proposed method is that only a few in-
season satellite images for each scene are required and no historical
satellite images are involved. Due to the lack of training samples, most
supervised learning-based crop mapping methods cannot be directly
used on the in-season satellite images. Many deep learning-based crop
type classification models used hundreds even thousands of historical
satellite images as training data. Some of them do reach excellent clas-
sification results, however, the training process of the classification
models, especially advanced neural networks with complex structures, is

extremely slow and difficult to repeat by other researchers. Since the
trusted pixels are distributed in the U.S. Corn Belt, the classification
model of our proposed framework can be specifically trained only using
the in-season satellite images for each scene.

According to our benchmark test on the desktop with 6-core CPU and
16 GB memory, it takes 5-10 min to extract trusted pixels for each ASD
and 15-20 min to produce the crop cover map for each Landsat scene.
When the latest satellite images become available, an in-season crop
cover map can be rapidly produced by the proposed machine learning
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Fig. 10. Comparison of 2018 ground truth data, CDL data, and in-season crop cover map based on Landsat-8 and Sentinel-2. The corresponding pixels of ground
truth data are highlighted in the CDL map and in-season crop cover map.

framework, even with the limited computational resources. 5.2. Pattern recognition in crop mapping

Based on the above advantages, we believe not only the agricultural
sector but also other societal sectors ranging from government, The proposed crop mapping workflow consists of two ANN models,
academia, to industry, would be benefited from this study. which are separately responsible for trusted pixel prediction and the

crop type classification. They have the similar MLP structure but the
input layers are different depending on the structure of input data. The
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Table 2
Validation of 2018 crop mapping result using field data and CDL as reference data.
Reference data ROI Precision Recall F1-score OA
Corn Soybean Corn Soybean Corn Soybean
Field NE (Landsat-8) 0.98 1.00 0.98 0.94 0.98 0.97 96.49%
data NE (Sentinel-2) 0.99 1.00 0.98 0.97 0.99 0.99 97.76%
IA (Landsat-8) 1.00 0.99 0.97 0.95 0.99 0.97 96.03%
1A (Sentinel-2) 1.00 1.00 0.97 0.96 0.99 0.98 96.67%
CDL NE (Landsat-8) 0.98 0.99 0.98 0.95 0.98 0.97 96.17%
NE (Sentinel-2) 0.99 0.98 0.98 0.98 0.99 0.98 97.35%
1A (Landsat-8) 0.96 0.99 0.98 0.98 0.97 0.99 95.01%
IA (Sentinel-2) 0.96 0.98 0.98 0.99 0.97 0.99 95.19%
Table 3
Validation of 2019 crop mapping result using field data as reference data.
ROI Precision Recall F1-score OA
Corn Soybean Corn Soybean Corn Soybean
14TQL 0.99 0.84 0.83 0.88 0.90 0.86 86.86%
14TPM 0.97 0.88 0.88 0.85 0.92 0.86 86.71%
14TPL 0.98 0.91 0.87 0.82 0.92 0.86 87.02%
14TNM 0.98 0.97 0.94 0.91 0.96 0.94 92.47%
14TNL 0.99 0.97 0.95 0.90 0.97 0.93 92.30%
14TML 0.96 0.92 0.90 0.81 0.93 0.86 87.81%
; ‘NE
In-season Map of 2019 Crop Loss sat Tmage

Fig. 11. Land cover change before and after the 2019 Midwest flooding. The crop loss map reflects the difference between 2019 in-season map and 2018 CDL. The

Landsat image of June 2019 is composited by Band 6, Band 5, and Band 2.

trusted pixel prediction model handles CDL data while the crop type
classification model deals with satellite images. Hence, the patterns
learned by the two models are completely different. The trusted pixel
prediction model can automatically recognize common crop rotation
patterns (e.g., monocropping or alternate cropping). Some previous
studies have explored the corn-soybean rotation pixels in the CDL
(Sahajpal et al., 2014; Stern et al., 2012). However, they failed to
investigate the crop sequence patterns that are not strictly periodic like
“C-S$-C-C-C-S-C-S-C” or “C-S-S-C-S-C-S-C-S” (“C” represents corn, “S”
represents soybeans). The anomaly in these patterns could be due to
policy change, fallow, as well as the mixed or misclassified pixel in CDL.
The advantage of the trusted pixel prediction model is the neural
network can automatically learn these corn-soybean rotation patterns
with a minor anomaly.

The crop type classification model learns the features from the time-
series profile of spectral bands and indices in the satellite images. Ac-
cording to the experiment result, the recall rate of in-season crop map-
ping result is highly correlated with the recall rate of trusted pixel while
the precision rate of in-season mapping result has no obvious correlation
with the precision and recall rate trusted pixel. Since the recall rate
represents the fraction of the trusted pixels that are successfully pre-
dicted, it can be inferred that the classification performance could be
affected by the quantity of trusted pixels. The more trusted pixels are
extracted, the more spectral and temporal patterns can be recognized in
the crop type classification model. On the contrary, if the volume of

11

training set is small, for example, using pixels based on hand-specified
rotation patterns as training samples, only limited spectral and tempo-
ral features would be learned by the neural network. This is also re-
flected in the Fig. 9 where the standard deviation is significantly higher
for the recall than for the precision as the trusted pixel recall has the
wide interquartile range.

The structure of the neural network used in the proposed workflow
can be further improved. The neural network works as a “black box” in
the process of trusted pixel prediction and crop type classification. This
is a common issue for the deep learning models because of their nested
non-linear structure (Samek et al., 2017). Since the development of new
deep learning algorithm is not the main objective of this study, we did
not pay much attention to the tuning of neural network. To achieve a
better performance, the hyperparameters, such as learning rates,
weights, optimizer, loss function, activation function, and batch size,
need to be specifically tuned for the classification model of each scene.

5.3. Uncertainty of cropland data layer

To train the trusted pixel prediction model, we constructed the
training set using CDL data from 2007. Technically, the more years
included in the training set, the more features the trusted pixel predic-
tion model can learn. This is based on the characteristics of the neural
network. There are two main reasons for abandoning the early-year
CDL. On the one hand, the coverage of CDL for the study area was
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incomplete before 2007. On the other hand, there were many mis-
classified pixels in the early-year CDLs due to the cloud or lack of sat-
ellite images (Zhang et al., 2020b).

This study used CDL and field data as reference data to evaluate
mapping results. From the experiment result of Section 4.2, we noticed
that the agreement of in-season mapping results with ground truth is
slightly higher than CDL. This difference could be primarily caused by
the uncertainty in CDL data (Liu et al., 2004). It is worth noting that the
current CDL data still contain a certain amount of errors, such as mis-
classified pixels, mixed pixels, and noisy pixels. According to the accu-
racy assessment of 2018 CDL by USDA NASS (USDA-NASS, 2019b), the
OA of corn and soybeans in the study area is between 88% and 93%. The
major crop types for a CDL state will normally have a classification ac-
curacy of 85% to 95%. There is potential uncertainty in the field data as
well. Waldner et al. (2019) discussed the biases associated with the field
data collected using the roadside sampling strategy and pointed the
roadside samples were less representative than random samples. Thus,
the actual accuracy of the in-season map for many areas may vary with
the validation result.

5.4. Limitations and potential solutions

As arecognized problem in LULC mapping, the cloud coverage in the
remote sensing images could significantly affect the performance of crop
type classification. Although only low cloud-covered (< 10%) satellite
images were taken, it is unavoidable that some pixels in the data set
contain noisy values, especially when mapping over large geographic
area. A potential method to address cloud issue is to build the multi-
temporal image stack using the Harmonized Landsat and Sentinel-2
(HLS) surface reflectance data set (Claverie et al., 2018). The HLS data
set is composed of Landsat-8 data and Sentinel-2 data, which has been
utilized in agricultural applications such as national-scale crop mapping
(Griffiths et al., 2019) and identification of crop intensity (Hao et al.,
2019). Another solution to tackle the cloud cover issue is combining
radar data, such as Sentinel-1 data, with multispectral data, which have
been proven effective to improve the crop mapping result (Ienco et al.,
2019; Steinhausen et al., 2018).

There are several ways to further improve the current mapping
result. As the major drawback of per-tile mapping, the tiling effect may
take place in which temporal information of the image stack is signifi-
cantly inconsistent between adjacent tiles. According to the experiment
result, the tiling effect is ignorable in most areas but still noticeable on a
few tiles. Since the availability of cloud-free images may vary from tile
to tile, it is challenging to eliminate the tiling effect over the entire study
area. To address this challenge, the spatial and temporal interpolation
module could be integrated into the proposed workflow, which has been
proven effective to improve the robustness of the crop type classification
using high temporal and spatial resolution satellite images (Inglada
et al., 2015). On the other hand, the pixel-based mapping may lead the
salt-and-pepper effect on some land units. The CLU data could efficiently
remove noises and misclassified pixels within the land unit. However,
the CLU data is unavailable for public use. To make up the lack of CLU,
we can apply boundary delineation methods to generate field bound-
aries for the object-based image analysis (Belgiu and Csillik, 2018; North
et al., 2019).

The ANN model learns the crop sequence features in the historical
CDL. But it is difficult to predict the crop type for land units that break
the pattern in the predicting year. The traditional crop rotation patterns
could be changed due to dynamic and uncertain factors, such as agri-
cultural practices change, natural hazards, climate change effects,
market situation, loss of soil fertility, water scarcity, government policy,
and other socioeconomic factors. The Section 4.1 has demonstrated the
capability of automatically recognizing variability in terms of crop
rotation patterns using machine learning. In the next phase, we will
systematically investigate new agricultural practices that are more sus-
tainable for environmental resources based on this study. Furthermore,
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we will incorporate other features, such as agricultural commodity
prices and weather information, into the training of prediction model.

6. Conclusion

This paper introduced an efficient and effective approach for rapid
in-season field-level mapping of corn and soybean. The innovation of the
proposed method is the use of trusted pixels, which compensate for the
lack of ground truth data in the early growing season. By applying ANN
with the historical CDL data, a considerable number of trusted pixels can
be automatically identified and used to label training samples on sat-
ellite images. According to the experiments on the U.S. Corn Belt, it was
found the average trusted-pixel precision of corn and soybean can reach
0.86 and 0.91 respectively. The trusted pixels were used to label training
samples for classifying crop types on 49 scenes of Landsat-8 data and 31
tiles of Sentinel-2 data. Compared with the 2018 CDL, most tested scenes
can achieve 85%-95% overall agreement with CDL by using images
acquired during the period from early May to mid-July 2018. The
validation of the 2018 mapping result against the limited numbers of
ground truths in Nebraska showed an overall accuracy higher than 96%.
Furthermore, the crop loss due to the Midwest flooding 2019 was suc-
cessfully highlighted in the in-season crop map by the end of June.

This study has explored the feasibility of using trusted pixels for
rapid in-season mapping of dominant crops (i.e., corn and soybeans)
over the U.S. Corn Belt. We have successfully demonstrated trusted
pixels can replace ground truth data and label satellite images for large-
area crop mapping with MLP-based ANN. It can be inferred that the
trusted pixel approach is also suitable for other common supervised
classifiers in remote sensing image classification, such as random forest,
decision tree, classification and regression tree (CART), and support
vector machine (SVM). In future research, we will identify more crop
types and scale up the framework to the entire CONUS. In addition, there
are many subsequent studies could be conducted based on the findings
of this paper. For example, the in-season crop cover map could be
incorporated with the historical CDL to calculate the historical cropping
patterns then predict the future crop acreage and production. We will
also conduct a systematic study on the spatial and temporal trend of
cropping over the U.S. Corn Belt in the future.
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