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Abstract—Motivated by application to quantum radar and the
known benefits of quantum illumination in the high-noise low-
reflectance regime, we study the design of signaling schemes for
covertly probing a distant target over a lossy and noisy bosonic
channel. Specifically, we analyze the performance of diffuse and
sparse signaling schemes, which achieve covertness by spreading
a constant number of photons in many modes or in a few modes,
respectively. We benchmark the performance against a converse
bound that holds for arbitrary covert quantum illumination
schemes. Numerical results suggest the superior performance of
the diffuse signaling scheme, which we conjecture outperforms
any other covert quantum illumination scheme.

I. INTRODUCTION

Motivated by potential improvements in the performance of
radar sensing, there has been much recent research on quantum
illumination [1], [2]. The key premise of quantum illumination
is to rely on a signal/idler entangled state, typically a photon
pair obtained at the output of a spontaneous parametric down-
conversion (SPDC) source, to illuminate a target with the
signal and exploit the idler to analyze the reflected signal.
In the regime of weak target reflectivity and high background
noise, quantum illumination affords a factor of four improve-
ment in the detection error probability exponent compared to
a non-entangled coherent state based sensing [3]. This result
is all the more surprising as entanglement is broken in the
lossy noisy bosonic channel modeling the sensing, so that
the returning and idler signals are not entangled. Notable
recent results in quantum illumination include the proposal
of realizable detectors [4]–[6] and a converse result placing
limits on the best possible performance achievable using any
quantum illumination system [7].

Concurrently, there has been a growing interest for the study
of information-theoretic covertness in classical and quantum
settings, defined as the ability to provably ensure a low
probability of detection against an adversary deploying an
optimal detector. In the context of reliable communication,
results on covert communications have highlighted the exis-
tence of a square-root law [8] and led to the characterization
of the covert capacity [8]–[11] for many channel models.
In the context of sensing, the results most relevant to the
present work are the covert sensing studies in [12], [13],
which have considered the problem of estimating an unknown
phase while preventing a quantum adversary from detecting
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the presence of the sensing. Undetectability is made possible
by the presence of thermal noise impairing the detection of the
adversary. The square-root law takes the form of a limit on
the scaling of the mean-square phase estimation error, which
scales as O( 1√

n
) if n is the number of modes. Follow up work

has analyzed covert sensing for classical [14] and classical-
quantum channels [15], illustrating the usefulness of adaptivity
through the characterization of detection error exponents and
suggesting the potential benefits of entanglement in specific
settings.

In the present work, we analyze the performance of covert
quantum sensing schemes in the context of quantum illu-
mination. Specifically, we consider the problem of detecting
the presence of a target while escaping detection from an
adversary. Our main results are the comparative performance
analysis of two signaling schemes, which we call diffuse and
sparse signaling, and the characterization of a converse bound
on detection error probability limiting the performance of any
covert quantum illumination scheme. As further detailed in
the next sections, the diffuse and sparse schemes differ in how
they achieve a low average photon number: the diffuse scheme
spreads energy across all available modes while the sparse
scheme concentrates a higher energy in a few modes. The latter
scheme is relevant in that it might offer some experimental
simplifications.

The rest of the paper is organized as follows. We introduce
the formal model of covert quantum illumination in Section II.
We analyze the performance of diffuse and sparse signaling
in Section III and derive a converse bound in Section IV. We
illustrate the results numerically in Section V.

II. COVERT QUANTUM ILLUMINATION

Throughput the paper, the set {|x〉 : x = 0, 1, · · · } denotes
the basis of Fock states while N ,

∑∞
x=0 |x〉〈x| denotes the

photon number operator. A lossy bosonic channel with excess
noise n and transmissivity η is concisely denoted by Ln,η .

The specific model used to analyze covert quantum illu-
mination is illustrated in Fig. 1. A transmitter, Alice, aims
at detecting whether a distant target exists while avoiding
detection from a monitoring adversary, Willie. To sense the
target, Alice prepares a signal-reference state |φ〉InSn to
be transmitted over n modes (such as n signal/idler pairs
resulting from an SPDC source) and transmits the signal |φSn〉
while retaining the reference |φIn〉 in a quantum memory
to assist detection. Covertness is measured with respect to
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Fig. 1. Covert quantum illumination model.

the situation in which Alice does not transmit any signal,
which corresponds to transmitting the vacuum state |0〉〈0|
over n modes. We model the distant target by a beam-splitter
with transmissivity η(h), where h ∈ {0, 1} depending on the
absence (h = 0) or presence (h = 1) of a target. In the
absence of the target, η(0) , 1, while in the presence of the
target, η(1) , ηt < 1. Alice’s signal is sent to one input
port while the other input port is in the vacuum state |0〉〈0|.
One output port of the target is fed back to Alice through
a lossy bosonic channel LnA,τA while the other output port
is accessed by Willie through another lossy bosonic channel
LnW ,τW . This effectively assumes that all signals not reflected
back to Alice are potentially detected by Willie. The effective
channels to Alice and Willie are LnA(1−τA),(1−η(h))τA and
LnW (1−τW ),η(h)τW , respectively.

Alice’s objective is to detect the presence or absence of the
target. Formally, under hypothesis h ∈ {0, 1}, Alice obtains
the state

ρ
(h)
InRn , (idIn ⊗ LnA(1−τA),(1−η(h))τA)(φInSn) (1)

after transmission and performs a joint measurement on the re-
turn signal and reference to decide on the value of h. Assuming
the target is equally likely to be present or not, the estimation
error is defined as the minimum sum of the probabilities of
false alarm and missed detection Pe , PFA+PMD

2 . The optimal
value of Pe is known as the Helstrom limit.

Concurrently, Willie’s objective is to detect the presence or
absence of Alice’s sensing signal. Specifically, Willie, who
knows the state |φ〉InAb prepared by Alice and the presence
of absence of the target h ∈ {0, 1}, receives the state

ρ
(h)
Wn , trIn

(
(idIn ⊗ LnW (1−τW ),η(h)τW )(φInSn)

)
, (2)

based of which he attempts to detect whether Alice transmitted
φAn or was silent, corresponding to transmitting |0〉〈0|⊗n. The
detectability of Alice’s activity by Willie is measured through
the quantum relative entropy

max
h=0,1

D
(
ρ
(h)
Wn‖(ρ(h)0 )⊗n

)
. (3)

where

ρ
(h)
0 , LnW (1−τW ),η(h)τW (|0〉〈0|). (4)

A small value of the quantum relative entropy ensures that
Willie’s best detection is not much better than a guess that
ignores his received signals, effectively ensuring covertness.

The problem of covert quantum illumination consists in
characterizing the minimum value of Pe subject to an upper
bound δ > 0 on the quantum relative entropy in (3). It will be
convenient to introduce the covert estimation error exponent
defined as limn→∞− 1√

nδ
logPe, which we shall see is only

a function of the channel parameters and does not depend on
the block length n or the relative entropy bound δ.

Remark 1. The model of Fig. 1 corresponds to a situation in
which the amplitude and phase of the target are known, and
therefore does not capture the full challenges of radar sensing.
A natural extension of the model is to consider the presence
of a Rayleigh-faded target as in [6] but is outside the scope
of the present work.

III. COVERT SIGNALING FOR QUANTUM ILLUMINATION

We now derive the estimation error of two explicit signaling
schemes, which we refer to as diffuse and sparse signaling.

A. Performance of Diffuse Signaling

For diffuse signalling, Alice prepares n independent EPR
pairs |φ〉InSn , |EPR〉IS (nS)

⊗n where

|EPR〉IS (nS) ,
∞∑
x=0

√
nS

x

(1 + nS)x+1
|x〉I |x〉S . (5)

and transmits φSn over the channel. The signaling is called
diffuse because every one of the n modes contains energy but,
as we shall see shortly, the mean photon number nS must van-
ish with n to satisfy the covertness constraint. We denote by
ρ
(h)
IR (nS) , (idI ⊗ LnA(1−τA),(1−η(h))τA)(|EPR〉〈EPR|(nS))

the state received by Alice under hypothesis h. We similarly
define ρ(h)W (nS) as the received state by Willie under hypoth-
esis h. The optimal estimation error is then [3]

exp

(
−nnS max

s∈[0,1]
Φ(s, nS)

)
= exp

(
−n
(
nS max

s∈[0,1]
Ψ(s) +O(nS

2)

))
(6)

where

Φ(s, nS) , − log

((
ρ
(0)
IR(nS)

)s (
ρ
(1)
IR(nS)

)1−s)
(7)

Ψ(s) ,
∂Φ

∂nS
(s, 0). (8)

Ψ(s) can be evaluated numerically using a symplectic decom-
position. For a single mode, the quantum relative entropy is

max
h=0,1

D
(
ρ
(h)
W (nS)‖ρ(h)W (0)

)
= max
h=0,1

(
η(h)τWnS + (1− τW )nW

)
× log

(
η(h)τWnS + (1− τW )nW

)
(1 + (1− τW )nW )(

η(h)τWnS + (1− τW )nW + 1
)

(1− τW )nW

+ log
1 + (1− τW )nW

η(h)τWnS + (1− τW )nW + 1



=
(τWnS)

2

2(1− τW )nW (1 + (1− τW )nW )
+O(nS

3). (9)

To ensure that the quantum relative entropy does not exceed
δ > 0 over n modes, the mean photon number should be
chosen to satisfy

nS .

√
2δ(1− τW )nW (1 + (1− τW )nW )

nτ2W
, (10)

where the inequality ignores terms in O( 1
n ). The resulting

covert estimation error exponent is then√
2(1− τW )nW (1 + (1− τW )nW )

τ2W
max
s∈[0,1]

Ψ(s). (11)

B. Performance of Sparse Signaling

For sparse signalling, Alice prepares nαn (αn < 1) inde-
pendent EPR pairs that she transmits in randomly selected
modes out of n. The signaling is called sparse because we
shall see that the fraction αn of modes containing a signal
is vanishing when the mean photon number of each signal
mode does not vanish. The sparse signaling scheme offers
experimental advantages over the diffuse scheme, although we
shall see that this comes at a performance cost.

Formally, let us fix nS independent of n and a vanish-
ing sequence {αn}n≥1 of non-negative numbers. Let Pn be
Bernoulli(αn). For ζ > 0, define the set

A , {xn ∈ {0, 1}n : αn(1 + ζ) ≥ 1

n

n∑
i=1

xi ≥ αn(1− ζ)},

(12)

which contains the length n binary sequences whose normal-
ized weight is close to αn, and define

PXn(xn) ,

{
P ⊗n

n (xn)
P ⊗n

n (A) xn ∈ A,
0 xn /∈ A.

(13)

We need to expurgate “atypical” sequences to avoid com-
promising the error exponent. Alice samples Xn according
to PXn , and in mode i, prepares an independent EPR pair
|EPR〉IS (nSXi) and transmits the S sub-system over the
channel. Following the calculations of [14], we upper-bound
the estimation error by

exp (−nαn(1− ζ)(Φ(s, nS) + o(1))) . (14)

Further following [14], we upper bound the quantum relative
entropy under hypothesis h for nS small enough as

D
(
ρ
(h)
Wn‖

(
ρ
(h)
0

)⊗n)
(15)

≤ nD
(
αnρ

(h)
W (nS) + (1− αn)ρ

(h)
0 ‖ρ

(h)
0

)
+ o(1) (16)

≤ 1

2
α2
nχ2(ρ

(h)
W (nS)‖ρ(h)0 ) + o(1) (17)

=
α2
n

2

(η(h)τWnS)2

((1− τW )nW )2 + (1− τW )nW − (η(h)τWnS)2

+ o(1), (18)

where χ2(ρ‖σ) , tr
(
ρ2σ−1

)
− 1. To ensure that the quantum

relative entropy does not exceed δ > 0 over n modes, the
fraction αn of EPR pairs must then satisfy

αn .

√
2δ ((1− τW )nW )2 + (1− τW )nW )

n(τWnS)2
− 1, (19)

where the inequality ignores again terms in O( 1
n ). Therefore,

the resulting covert estimation error exponent is√
2
(
((1− τW )nW )2 + (1− τW )nW − (η(h)τWnS)2

)
Φ(s, nS)

τWnS
. (20)

Note that in the limit of nS → 0, Eq. (20) tends to Eq. (11).

C. On the Optimality of the Diffuse Scheme

The sparse signaling offers potential experimental benefits,
chiefly by using EPR pairs parsimoniously; however, we posit
that this comes at a performance cost. While we could not
establish this result formally, we show next that the result is
true if the following conjecture holds.

Conjecture 1. Φ(s, nS) defined in (7) is concave in nS for
all s ∈ [0, 1].

We explored the validity of the conjecture numerically and
could not find evidence of the contrary. In the remainder of
the section, we assume that the conjecture holds.

Suppose that Alice samples Xn in Rn+ from an arbitrary dis-
tribution PXn . She then prepares |φ〉InSn , |EPR〉IS (X1) ⊗
· · ·⊗|EPR〉IS (Xn) and transmits φSn over the channel, which
corresponds to varying the mean photon number in each pair
according to the realization of Xn. For a specific realization
Xn = xn, the Chernoff bound and Jensen’s inequality imply
that the estimation error is at least

exp

(
− sup
s∈[0,1]

n∑
i=1

Φ(s, xi)

)
(a)

≥ exp

(
−n sup

s∈[0,1]
Φ(s, x)

)
(21)

for x , 1
n

∑n
i=1 xi, where (a) holds if Conjecture 1 is true. We

now provide a bound on the mean photon number transmitted
by Alice given a covertness constraint.

Lemma 1. Let Alice prepare an arbitrary initial state |φ〉InSn

such that

max
h=0,1

D
(
ρ
(h)
Wn‖

(
ρ
(h)
0

)⊗n)
≤ δ. (22)

We then have

NS ,
n∑
i=1

tr (φAiN) (23)

≤
√
nδf(nW , τW ) + o(

√
n), (24)

where

f(nW , τW ) ,

√
(2((1− τW )nW )2 + 2(1− τW )nW )

τW
. (25)



Note that Lemma 1 holds regardless of the conjecture.

Proof. The proof is largely borrowed from [16] and is inspired
by the characterization of the covert capacity in [10], [17]. We
first single-letterize the covertness condition and use the result
that thermal states maximize the entropy for a given mean
photon number. The details of the proof are as follows. Note
that

D
(
ρWn‖

(
ρ
(h)
0

)⊗n)
(26)

= −H(ρWn)− tr
(
ρWn log

((
ρ
(h)
0

)⊗n))
(27)

= −H(ρWn)−
n∑
i=1

tr
(
ρWi

log ρ
(h)
0

)
(28)

≥
n∑
i=1

(
−H(ρWi

)− tr
(
ρWi

log ρ
(h)
0

))
(29)

=
n∑
i=1

D
(
ρWi
‖ρ(h)0

)
(30)

= nD

(
1

n

n∑
i=1

ρWi
‖ρ(h)0

)
. (31)

Let us define

ρ ,
1

n

n∑
i=1

ρWi , (32)

for which we have

tr (Nρ) = η(h)τW
NS
n

+ (1− τW )nW . (33)

We then have

D
(
ρ‖ρ(h)0

)
= −H(ρ)− tr

(
ρ log(ρ

(h)
0 )
)

(34)

Furthermore,

tr
(
ρ log(ρ

(h)
0 )
)

(35)

= tr

(
ρ log

( ∞∑
x=0

((1− τW )nW )x

((1− τW )nW + 1)x+1
|x〉〈x|

))
(36)

= tr
(
ρ

(
log

(
(1− τW )nW

(1− τW )nW + 1

)
N

+ log
1

(1− τW )nW + 1
1

))
(37)

= log

(
(1− τW )nW

(1− τW )nW + 1

)
tr (Nρ)

+ log
1

(1− τW )nW + 1
. (38)

For a given mean photon number, thermal states maximize the
entropy [18]. Therefore,

−H(ρ) ≥ − (tr (Nρ) + 1) log (tr (Nρ) + 1)

+ tr (Nρ) log (tr (Nρ)) . (39)

We thus have

D
(
ρ‖ρ(h)0

)
= − (tr (Nρ) + 1) log (tr (Nρ) + 1) + tr (Nρ) log (tr (Nρ))

− log

(
(1− τW )nW

(1− τW )nW + 1

)
tr (Nρ)

− log
1

(1− τW )nW + 1

=

(
η(h)τW

NS

n

)2
2((1− τW )nW )2 + 2(1− τW )nW

+O
((NS

n

)3
)
.

(40)

We finally obtain

NS ≤
√
nδ (2((1− τW )nW )2 + 2(1− τW )nW )

η(h)τW
+ o(
√
n).

(41)

Applying Lemma 1, to the specific protocol, we obtain that

EPXn

[
1

n

n∑
i=1

Xi

]
≤ 1√

n

(√
δf(nW , τW ) + o(1)

)
(42)

when

max
h=0,1

D
(
ρ
(h)
Wn‖

(
ρ
(h)
0

)⊗n)
≤ δ. (43)

By Markov’s inequality, we have

PPXn

(
1

n

n∑
i=1

Xi ≤
n

(n− 1)
√
n

(√
δf(nW , τW ) + o(1)

))

= PPXn

(
1

n

n∑
i=1

Xi ≤
1√
n

(√
δf(nW , τW ) + o(1)

))
(44)

≥ 1

n
(45)

Since Φ(s, x) is non-decreasing in x, we can lower-bound the
estimation error by

EPXn

[
exp

(
−n sup

s∈[0,1]
Φ

(
s,

1

n

n∑
i=1

Xi

))]
(46)

≥ 1

n
exp

(
−n sup

s∈[0,1]
Φ

(
s,

1√
n

(√
δf(nW , τW ) + o(1)

)))
(47)

=
1

n
exp

(
−
√
nδf(nW , τW ) sup

s∈[0,1]
Ψ (s) + o(

√
n)

)
, (48)

where Ψ(s) is defined in (8). Therefore, the achievable ex-
ponent is less than (11), showing the suboptimality of any
scheme other than the diffuse signaling scheme.1

1A similar result was derived in [19] in the context of covert communica-
tions.



IV. CONVERSE BOUND

We now derive a fundamental limit on the detection error of
any covert quantum illumination scheme. The approach lever-
ages a very recent bound established for standard quantum
illumination [7] and adapts it to account for the covertness
constraint.

Theorem 2. Any achievable exponent is less than

− ln

(
1− (1− ηt)τA

1 + nA(1− τA)

)
f(nW , τW ), (49)

where f(nW , τW ) is defined in Lemma 1.

Proof. Alice prepares the state |φ〉InSn and transmits φAn

over the channel. By [7, Eq. (13)], we have

Pe ≥
1

2
exp

(
ln

(
1− (1− ηt)τA

1 + nA(1− τA)

)
NS
)

(50)

where

NS ,
n∑
i=1

tr (φAi
N) (51)

and N is number operator. Using the bound on NS from
Lemma 1 completes the proof.

V. NUMERICAL ILLUSTRATION

We conclude the paper with a numerical illustration of the
covert estimation error exponents obtained for the diffuse sig-
naling scheme, the sparse signaling scheme, and the converse
bound. Fig. 2 illustrates the exponents obtained for nS = 0.5,
ηt = 0.3, τW = τA = 0.3, as a function of the noise parameter
nW = nA. The diffuse signaling scheme achieves close to
optimal performance while the sparse signaling scheme suffers
from more than a factor of two loss.
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Fig. 2. Comparison of covert estimation error exponents for diffuse and sparse
signaling schemes. See text for parameter values.

VI. DISCUSSION AND FUTURE WORK

We studied two schemes for covert quantum sensing: sparse
and diffuse signaling. While sparse signaling may be ex-
perimentally more feasible, we show that given a conjec-
ture, which we checked numerically, the diffuse signaling

has optimal performance over a large class of schemes. We
also established an upper bound on the performance of any
covert quantum sensing strategy. For future work, beyond
investigating the validity of the conjecture, one can explore the
benefits of quantum error correction codes for covert quantum
sensing (e.g., see [20], [21]).
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