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1. Introduction

Numerical simulation of multiphysics problems within complex domains has garnered much interest in the past couple 
of decades. In the seminal work by Angot et al. [1], the authors describe a simple approach for simulating the incompressible 
flow over obstacles by applying an additional forcing term to the governing equations. In [1], this volume penalization (VP) 
methodology (also known as the Brinkman penalization method) was used to impose no-slip Dirichlet boundary conditions 
at the obstacle interface. Due to the simplicity of its formulation and implementation, the VP technique has been successfully 
applied to study a variety of fluid-structure interaction problems, including but not limited to water entry/exit [2], wave 
energy conversion [3,4], aquatic locomotion [5,6], fluttering instabilities [7], and flapping flight of insects [8,9]. In all of these 
applications, the Dirichlet boundary condition formulation of the VP method was used. In the past few years penalization 
methods for Neumann and more general Robin boundary conditions have been proposed, although the analysis of such 
techniques is still an active area of research [10–14].

Kadoch et al. [10] extended the Dirichlet boundary condition VP formulation of Angot et al. [1] to allow for the imposition 
of homogeneous Neumann boundary conditions. Independently within the context of distributed Lagrange multipliers based 
fictitious domain method, Doostmohammadi et al. [15] informally described a way to enforce homogeneous flux boundary 
conditions on an interface by simply setting the thermal conductivity to zero within the obstacle. Sakurai et al. [14] recently 
developed a flux-based VP framework for imposing inhomogeneous, spatially constant Neumann boundary conditions on the 
boundary of a penalization region, which formally extended the methodology of Kadoch et al. [10]. This extension enables 
the simulation of more complex problems within the VP framework, such as flux-driven thermal convection in irregular 
domains. In the flux-based VP approach of Sakurai et al., the diffusion coefficient of the governing equation is modified and 
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an additional forcing term is applied near the interface in order to impose the desired flux value on the boundary. This 
provides a simple and efficient way to impose flux boundary conditions on embedded interfaces.

Through empirical testing of the penalized Poisson equation, Sakurai et al. [14] conclude that their method degrades 
to first-order accuracy if the embedded interface is not grid-aligned/grid-conforming despite the use of second-order finite 
differences. They also conclude that if two interfaces are considered, grid-aligned or otherwise, and a different flux boundary 
condition is imposed on each of them, then the method also degrades to first-order spatial accuracy. However, the method 
is second-order accurate for grid-aligned interfaces if the same (spatially constant) Neumann boundary condition values are 
considered.

In this letter, we provide counter-examples to demonstrate that it is possible to retain second-order accuracy using 
Sakurai et al.’s method, even when different flux boundary conditions are imposed on multiple interfaces that do not 
conform to the Cartesian grid. We consider both continuous and discontinuous indicator functions in our test problems. 
Both indicator functions yield a similar convergence rate for the problems considered here. We also find that the order of 
accuracy results for some of the cases presented in Sakurai et al. are not reproducible. This is demonstrated by re-considering 
the same one- and two-dimensional Poisson problems solved in [14] in this letter.

The results shown in this letter demonstrate that the spatial order of accuracy of the flux-based VP approach of Sakurai 
et al. is between O(1) and O(2), and it depends on the underlying problem/model. The spatial order of accuracy cannot 
simply be deduced a priori based on the imposed flux values, shapes, or grid-conformity of the interfaces, as concluded in 
Sakurai et al. [14]. Further analysis is required to understand the spatial convergence rate of the flux-based VP method.

2. Mathematical formulation

Consider the computational domain � = �f ∪ �s consisting of disjoint fluid and (fictitious) solid regions �f and �s, 
respectively. As described by Sakurai et al. [14], the volume penalized Poisson equation with Neumann boundary conditions 
n · ∇q = qn imposed on ∂�s reads

−∇ · [{κ (1 − χ) + ηχ}∇q] = (1 − χ) f + ∇ · (χβ) − χ∇ · β, (1)

in which q(x) is a scalar quantity of interest, κ(x) is a spatially varying diffusion coefficient, f (x) is a general forcing 
function, η > 0 is the penalization parameter, fb(x) = ∇ · (χβ)−χ∇ ·β is an additional forcing function required to impose 
Neumann boundary conditions on ∂�s , and χ(x) is an indicator function that is 1 if x ∈ �s and 0 if x ∈ �f . Eq. (1) is 
formally derived in Thirumalaisamy et al. [16]. The vector-valued flux forcing function β(x) is selected such that n · β = qn

on the interface ∂�s. The unit normal vector n points out from the fluid region and into the solid region. Note that since 
χ(x) = 0 within the fluid domain, Eq. (1) simplifies to the standard Poisson equation in �f

−∇ · [κ∇q] = f . (2)

Sakurai et al.’s volume penalization formulation can also be generalized to handle problems with multiple interfaces. 
Consider a computational domain composed of disjoint volumetric regions �d

i (for i = 1, . . . , D) and �n
j (for j = 1, . . . , N)

with imposed Dirichlet and Neumann boundary conditions, respectively; i.e., �s = �d
1 ∪ �d

2 ∪ · · · ∪ �d
D ∪ �n

1 ∪ �n
2 ∪ · · · ∪ �n

N . 
The general form of the volume penalized Poisson equation is given by

− ∇ ·
⎡⎣⎧⎨⎩κ

⎛⎝1 −
N∑

j=1

χn
j

⎞⎠+
N∑

j=1

ηχn
j

⎫⎬⎭∇q

⎤⎦ =
⎛⎝1 −

N∑
j=1

χn
j

⎞⎠ f

+
N∑

j=1

{
∇ ·

(
χn

j β j

)
− χn

j ∇ · β j

}
−

D∑
i=1

χd
i

(
q − qd

i

)
η

, (3)

in which a Dirichlet boundary condition q = qd
i is satisfied on ∂�d

i and a Neumann boundary condition n j · ∇q = qn
j is 

satisfied on ∂�n
j . The indicator function χn(x) (respectively, χd(x)) is 1 if x ∈ �n (respectively, �d) and 0 if x ∈ � \ �n

(respectively, �d). Again, the vector-valued flux forcing functions are chosen such that n j · β j = qn
j . Eq. (3) assumes that 

the same value of the penalization coefficient η is used for all the interfaces, although this is not an inherent limitation of 
this formulation nor our implementation. Note that general expressions could also be written for other governing equations 
such as the heat, advection-diffusion, and incompressible Navier-Stokes equations, however, we omit them for brevity.

Sakurai et al. considered a spatially constant value for qn (and qd) along an interface embedded in a Cartesian domain 
and used periodic boundary conditions on ∂� in their work. We remark that the VP form of Eq. (3) is also valid for spatially 
varying qn(x) or qd(x), and the method is equally applicable when non-periodic boundary conditions are imposed on ∂�. 
The discretization of Eqs. (2) and (3) uses standard second-order finite differences on a Cartesian grid. Moreover, the level 
set methodology is used for representing the embedded interface, and standard regularized Heaviside functions are used to 
compute the smooth indicator function
2
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χ(x) =

⎧⎪⎨⎪⎩
1, φ(x) < −ncells h,

1 − 1
2

(
1 + 1

ncellsh φ(x) + 1
π sin

(
π

ncellsh φ(x)
))

, |φ(x)| ≤ ncells h,

0, otherwise,

(4)

in which φ(x) is a signed distance function to the interface that is taken to be negative when x ∈ �s and positive when 
x ∈ �f , h is the uniform grid spacing for the Cartesian mesh, and ncells ∈R is the number of cells over which the indicator 
function is smoothed on either side of the interface. Sakurai et al. considered a discontinuous indicator function in their test 
problems, which we write below

χ(x) =

⎧⎪⎨⎪⎩
1, φ(x) < 0,
1
2 , φ(x) = 0,

0, otherwise.

(5)

To compare our results with those reported in [14], we also consider the discontinuous indicator function (along with the 
continuous one) in our test problems.

The VP method described in this section is implemented within the open-source IBAMR software package [17]. We refer 
interested readers to our previous work for a more detailed discussion on the discretization techniques and linear solvers 
used within IBAMR [18,19,2].

3. Results and discussion

In this section, we use the method of manufactured solution (MMS) to assess the accuracy of the flux-based VP approach 
introduced in Sakurai et al. using several examples. We discretely solve the VP Poisson Eq. (1), which yields a numerical 
solution that approximates qexact(x) in the fluid domain �f with the desired boundary conditions imposed on ∂�s . In all 
the cases considered here, we set κ = 1. Eq. (1) is solved over the computational domain � and the domain is discretized 
with N and N × N Cartesian grid cells for 1D and 2D problems, respectively. A solid region �s is embedded within �, and 
the grid does not conform to its boundary. Inhomogeneous Neumann boundary conditions n · ∇q = n · ∇qexact = n · β are 
imposed on the boundary of the solid region ∂�s. As discussed by Sakurai et al. [14], it is not necessary that β = ∇qexact: 
an arbitrary function β = ∇q̃ can also be used as long as ∇q̃ = ∇qexact on ∂�s. Indeed, this would be the case in practice, as 
the solution to the Poisson equation is sought and not known a priori. The number of interface cells ncells is set to 2 for the 
continuous indicator function unless otherwise stated. The order of accuracy results presented here are determined based on 
the L1 and L∞ norm of the error (denoted E1 and E∞ , respectively) between the analytical and numerical solutions, which 
are computed only in the fluid domain. The penalization parameter η is chosen to be η = 10−8, which is the penalization 
value specified in [14].

3.1. Analysis of 1D Poisson equation with same inhomogeneous Neumann boundary condition

We first consider the 1D Poisson problem with the same flux boundary condition on the two ends of the fluid domain 
�f , as done in Sec. 2.1 of Sakurai et al. [14]. The fluid domain �f ∈ [0, π ] is embedded into a larger computational domain 
� ∈ [0, 2π ], as shown in Fig. 1. Same inhomogeneous Neumann boundary condition value is imposed on the two fluid-solid 
interfaces located at x = 0 and x = π , respectively, and is taken to be

dq

dx

∣∣∣∣
x=0

= α and
dq

dx

∣∣∣∣
x=π

= α. (6)

We take the flux forcing function to be β = α î for this test case. Here, î denotes the unit vector in the positive x-direction. 
The forcing function f (x) is taken to be

f (x) = m2 cos(mx). (7)

The analytical solution of this problem using a zero-mean condition on q in � f , 
∫
�f

q(x) dx = 0, reads as

qexact(x) = cos(mx) + αx − πα

2
. (8)

We solve the penalized Poisson equation using both continuous and discontinuous indicator functions as defined in 
Sec. 2. The parameters α and m are taken to be 1, and periodic boundary conditions are imposed on ∂� (see Fig. 1). Since 
the solution to the Poisson equation on a periodic computational domain is determinable only up to an additive constant, 
the discrete set of equations for this case results in a singular matrix. To invert the matrix using a direct solver, we replace 
the first linear equation with 

∫
�

q(x) dx = 0 condition, as done in Kolomenskiy et al. [11]. We remark that although the 
obtained numerical solution depends on the linear equation that is replaced by the zero-mean condition (as also noted 
in [11]), the order of accuracy of the solution remains the same.
3
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Fig. 1. Schematic of the computational domain used in Sakurai et al. [14] to solve the 1D Poisson problem in the fluid region. The solid region in the figure 
represents the fictitious domain. Periodic boundary conditions are imposed on the external boundaries.

Fig. 2. 1D Poisson problem with same flux boundary conditions. Error norms E1 and E∞ as a function of grid size N using continuous (solid line with 
symbols) and discontinuous (dashed line with symbols) indicator functions when (A) the fluid-solid interface at x = π is aligned with the Cartesian cell 
face, and (B) when it is not; (C) numerical solution q obtained using N = 256, α = 1, and m = 1, along with the exact solution. The penalization parameter 
η is taken as 10−8.

Two sets of N values are selected to assess the order of accuracy of the solution: (i) Naligned = [32, 64, 128, 256, 512,1024] 
which aligns the fluid-solid interface located at x = π with the Cartesian cell face, as done in [14], and (ii) Nnon−aligned = 
[25, 75, 225, 675, 2025] which does not. The other two fluid-solid interfaces at x = 0 and x = 2π are located on grid cell 
faces by construction. Fig. 2 compares the spatial convergence rate for the two grid setups. As observed in Fig. 2(A), when 
the interface aligns with the Cartesian grid face, O(2) convergence rate is obtained using both continuous and discontinuous 
indicator functions. Second-order spatial accuracy is also obtained in Sakurai et al. [14] using the discontinuous indicator 
function using a similar grid setup. However, the order of accuracy degrades to O(1) when the interface is not aligned with 
the grid, as observed in Fig. 2(B). The authors in [14] did not present the order of accuracy results using a non-conforming 
grid (to the interface) for this problem. Finally, Fig. 2(C) shows the numerical solution q, and compares it against the exact 
solution for N = 256 grid. An excellent agreement is obtained.
4



R. Thirumalaisamy, N. Nangia and A.P.S. Bhalla Journal of Computational Physics 433 (2021) 110163
3.2. Analysis of 1D Poisson equation with different inhomogeneous Neumann boundary conditions

We now consider the 1D Poisson problem with different inhomogeneous Neumann boundary conditions on the two ends 
of the fluid domain, as done in Sec. 2.3 of Sakurai et al. The forcing function f (x) for this case is

f (x) = m2 sin(mx), (9)

and the inhomogeneous Neumann boundary condition values on the two ends are

dq

dx

∣∣∣∣
x=0

= α + m and
dq

dx

∣∣∣∣
x=π

= α − m. (10)

Here, α and m parameters are taken to be 1. The problem setup remains the same as shown in Fig. 1. The analytical solution 
of this problem (using a zero-mean condition on q in � f ) reads as

qexact(x) = sin(mx) + αx − 2

mπ
− πα

2
. (11)

The flux forcing function is taken to be β = ∇qexact = (m cos(mx) + α) î, which also satisfies the boundary conditions written 
in Eq. (10). We again replace the first linear equation with zero mean of q in � to obtain the unique solution. The results 
for this case are presented in Fig. 3 for Naligned and Nnon−aligned grid size values, as taken in the previous section.

In Fig. 3(A) we observe O(2) convergence for both types of indicator functions when the interface aligns with the 
Cartesian grid face. This is in contrast to Sakurai et al. [14] where O(1) convergence is reported for this test problem 
using a similar grid setup; the results reported in [14] are not reproducible despite the use of same discretization method 
and problem setup. The authors in [14] attribute the reduction in accuracy to different values of flux boundary condition, 
which is clearly not the case here. Fig. 3(B) shows the order of accuracy results when the interface is not aligned with 
the Cartesian cell face — O(1) convergence rate is exhibited using both continuous and discontinuous indicator functions. 
Finally, Fig. 3(C) shows the numerical solution q, and compares it against the exact solution for N = 256 grid. An excellent 
agreement is obtained.

The results presented in the above two sections may suggest that the spatial accuracy of the flux-based VP method 
is O(2) when the interface aligns the Cartesian mesh, but degrades to O(1) when it does not. This is also one of the 
conclusions in Sakurai et al. However, our next examples contradict this conclusion.

3.3. Analysis of 2D Poisson equation with different flux boundary conditions

Here we solve the penalized form of Poisson equation (1) in a circular annulus using different flux boundary conditions 
on the two interfaces. The same case is considered in Sec. 3 of Sakurai et al. The circular annulus has an inner radius ri

of π/4 and an outer radius ro of 3π/4, and is centered around the point (π, π). The annulus is embedded into a larger 
computational domain � ∈ [0, 2π ]2, as shown in Fig. 4(A). The forcing function for this case is

f (r) = 16 cos(4r) + 4 sin(4r)

r
, (12)

in which r =
√

(x − π)2 + (y − π)2, and the flux boundary condition values on the two interfaces are taken to be

dq

dr

∣∣∣∣
r= π

4

= 3α and
dq

dr

∣∣∣∣
r= 3π

4

= α. (13)

The exact solution for this problem using the zero-mean condition 
∫
�f

rq(r) dr = 0 reads as

qexact(r) = cos(4r) + 3

4
απ log(r) − 3

32
απ

(
9 log

(
3

4
π

)
− log

(π

4

)
− 4

)
. (14)

We solve the 2D penalized Poisson equation using both continuous and discontinuous indicator functions. Homogeneous 
Dirichlet boundary conditions are imposed on ∂�. The flux forcing function β for this case is taken to be β(x) = g(x)er , in 
which er = ( x−π

r ,
y−π

r

)
and g(x) is

g(x) =
{

α
(

4r
3π

)2 (
4
(
1 − r

π

))3 if 0 ≤ r ≤ π

0 otherwise
(15)

The same form of β is also used in [14], although β = ∇qexact can also be defined here. Fig. 4 compares the numerical 
solution with the exact solution as written in Eq. (14). The convergence rate of the solution as a function of grid size is also 
shown. From Fig. 4(D), we note that the convergence rate is close to O(2), as opposed to O(1) reported in Sakurai et al. for 
5
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Fig. 3. 1D Poisson problem with different flux boundary conditions. Error norms E1 and E∞ as a function of grid size N using continuous (solid line with 
symbols) and discontinuous (dashed line with symbols) indicator functions when (A) the fluid-solid interface at x = π is aligned with the Cartesian cell 
face, and (B) when it is not; (C) numerical solution q obtained using N = 256, α = 1, and m = 1, along with the exact solution. The penalization parameter 
η is taken as 10−8.

this problem. We again remark that despite using the same problem setup and discretization technique, the spatial order 
of accuracy shown in [14] is not reproducible for this test problem as well. Moreover, different values of the flux boundary 
condition and/or the circular shape of the interface did not reduce the order of accuracy, as was reasoned by the authors 
in [14] for this problem.

3.4. Analysis of flux boundary condition on complex interfaces

In this section, we consider geometrically complex interfaces and use a manufactured solution of the form

qexact(x) = sin(x) sin(y), (16)

to demonstrate that the spatial order of accuracy for the flux-based VP method can indeed be O(2), despite imposing 
different flux values on multiple interfaces that do not conform to the Cartesian grid.

Specifically, we consider three different interfacial geometries centered about the point (π, π): a hexagram, a horseshoe, 
and an x-cross. The region interior to the interface is considered to be the (fictitious) solid domain; see Fig. 5. It can be 
noted that these shapes involve sharp corners and the interfaces do not align with the grid. The required forcing function 
f (x) is obtained by plugging Eq. (16) into Eq. (2), and the flux forcing function is taken to be β = ∇qexact. Dirichlet boundary 
conditions are imposed on the external boundaries, i.e., q|∂�(x) = qexact(x), and spatially varying flux boundary conditions 
are imposed on the embedded interfaces. As shown in Fig. 5, second-order spatial convergence rates are exhibited for each 
of these complex annuli using both continuous and discontinuous indicator functions.
6



R. Thirumalaisamy, N. Nangia and A.P.S. Bhalla Journal of Computational Physics 433 (2021) 110163
Fig. 4. 2D Poisson problem with different flux boundary conditions on the two interfaces: (A) problem setup; (B) variation of the numerical solution along 
y-direction at a fixed x = 3.12 location using N = 256 grid; (C) variation of numerical solution along x-direction at a fixed y = 3.12 location using N = 256
grid; (D) error norms E1 and E∞ as a function of grid size N using continuous (solid lines with symbols) and discontinuous (dashed lines with symbols) 
indicator functions. The penalization parameter η is taken as 10−8, and α is taken as 1.

We also consider two additional complex domains with the same manufactured solution as written in Eq. (16). The first 
one is a complex annulus whose outer surface is a hexagram and the inner surface is a circle of radius 1. Both surfaces 
are centered about the point (π, π). Flux boundary conditions are imposed on the two surfaces of the annulus, whereas 
homogeneous Dirichlet boundary conditions are imposed on the external boundaries of the computational domain. The zero-
mean condition on q in the fluid/annulus domain is imposed as a post-processing step to obtain the unique solution for 
this case. Fig. 6(C) shows the spatial order of accuracy for this case. Second-order convergence is exhibited. For the second 
complex domain case, we embed all of the previously considered interfaces into a rectangular computational domain and 
impose spatially varying flux boundary condition on the interfaces. The fluid domain is exterior to all the interfaces. The 
penalized Poisson equation is solved by imposing q|∂�(x) = qexact(x). Fig. 6(D) shows the convergence rate for the second 
annulus case. Again, the method exhibits O(2) convergence.

3.5. Spatial accuracy of scalar transport due to incompressible fluid flow

Finally, we assess the order of accuracy of the advection-diffusion system coupled to an incompressible Navier-Stokes 
solver. We consider a circular solid region centered about the point (π, π) with radius r = 1.5. The penalized momentum, 
continuity, and advection-diffusion equations are given by

∂ρu

∂t
+ ∇ · ρuu = −∇p + ∇ ·

[
μ
(
∇u + ∇uT

)]
+ χ

η
(ub − u) + f, (17)

∇ · u = 0, (18)
7
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Fig. 5. The numerical solution q (top row), and the error norms E1 and E∞ as a function of grid size N (bottom row) for three complex annuli; (A) 
Hexagram; (B) Horseshoe; (C) X-cross. The results are shown for both continuous (solid line with symbols) and discontinuous (dashed line with symbols) 
indicator functions. The penalization parameter is taken as 10−8. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

∂q

∂t
+ (1 − χ) (u · ∇q) = ∇ · [{κ (1 − χ) + ηχ}∇q] + (1 − χ) f + ∇ · (χβ) − χ∇ · β. (19)

Here, u(x, t) denotes the fluid velocity, p(x, t) denotes the fluid pressure, q(x, t) is a scalar quantity that is passively trans-
ported by the flow, f(x, t) denotes the momentum body force term and η is the penalization parameter. The fluid density ρ , 
fluid viscosity μ, and diffusivity κ are all set to 1. The flux-based VP method is used to impose inhomogeneous Neumann 
boundary conditions on the surface of the solid for the transported variable q (n · ∇q = n · ∇qexact), while the standard 
Brinkman penalization method is used to impose Dirichlet boundary conditions for the velocity (u = ub). Once again the 
flux boundary condition for q is spatially varying.

We use the MMS with the following exact steady-state solutions for u, p, and q:

uexact(x, t → ∞) = sin(x) cos(y), (20)

vexact(x, t → ∞) = − cos(x) sin(y), (21)

pexact(x, t → ∞) = sin(x) sin(y), (22)

qexact(x, t → ∞) = sin(x) sin(y). (23)

These exact solutions are plugged into the unpenalized versions of Eq. (17) and (19) in order to determine the required 
forcing functions f and f . Note that the imposed boundary condition in the solid region is the steady-state velocity u =
ub = uexact. The fluid and advection-diffusion solvers employed here are second-order accurate in both space and time. 
All terms in Eqs. (17)-(19) are treated implicitly in time, except for the convective terms that are treated explicitly. We 
refer readers to [18] for more details on the spatiotemporal discretization employed in our solvers. The coupled system is 
run with a time step size of �t = 2 × 10−3 (convective CFL is approximately 0.30) until steady-state and error norms are 
computed between the exact and numerical solutions within the fluid domain (outside the circular region).

Fig. 7 shows the order of convergence for the transported quantity q, velocity u, and pressure p. The numerical solutions 
of q and p are also shown. As observed in the figure, the velocity u, pressure p, and the transported quantity q exhibit 
8
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Fig. 6. (A) Numerical solution in a complex annulus bounded by a hexagram and a circle; (B) Numerical solution in a complex annulus formed by multiple 
interfaces and the rectangular computational domain; (C) Error norms E1 and E∞ as a function of grid size N for the first annulus case; (D) Error norms 
E1 and E∞ as a function of grid size N for the second annulus case. The results are shown for both continuous (solid line with symbols) and discontinuous 
(dashed line with symbols) indicator functions. The penalization parameter η is taken as 10−8.

second-order convergence rates. This test further corroborates the prior section’s results that O(2) convergence is possible 
using interfaces that do not conform to the Cartesian grid within the flux-based VP framework.

4. Conclusions

In this letter, we used the method of manufactured solution to analyze the spatial order of accuracy of the novel flux-
based VP formulation described in [14]. We demonstrated that the flux-based VP method can exhibit second-order spatial 
convergence even when different flux values are imposed on interfaces that do not conform to the Cartesian grid. We also 
showed that the convergence rate provided in [14] for some of the cases is not reproducible. We considered both continuous 
and discontinuous indicator functions in our test problems. The two indicator functions yielded similar convergence rate for 
the problems considered here. Our results suggest that the flux-based VP approach has a spatial order of accuracy between 
O(1) and O(2), and it depends on the underlying problem/model. The convergence rate cannot simply be deduced a priori
based on the imposed flux values, shapes, or grid-conformity of the interfaces, as concluded in Sakurai et al. Further analysis 
should be carried out to understand the spatial convergence rate of the flux-based VP method.

We also demonstrated that the method can be applied to problems involving spatially varying flux values on the embed-
ded boundaries. Moreover, cases involving non-periodic boundary conditions on the external computational domain were 
also considered. Finally, we successfully applied this method to the advection-diffusion equation coupled to an incompress-
ible Navier-Stokes solver, and demonstrated a case in which second-order convergence is achieved for an (circular) interface 
that does not conform to the Cartesian grid.
9
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Fig. 7. Advection-diffusion system coupled to a fluid solver problem. Numerical solution of: (A) Transported quantity q; (B) Pressure field and velocity 
vectors. Error convergence rate as a function of grid size N for: (C) q, (D) u, and (E) p. The results shown here are obtained using the continuous indicator 
function.
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Appendix A. Supplementary material

MATLAB scripts to simulate the 1D Poisson problems of Sec. 3.1 and 3.2 are included in the supplementary material 
section. A MATLAB script used to generate signed distance functions for the complex domains considered in Sec. 3.4 is 
also included. The two dimensional test problems considered in this work can be obtained from the IBAMR Github reposi-
tory [17].

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2021.110163.
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