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a b s t r a c t

This research presents iterative optimum training (IOT), which integrates deep neural networks
(DNNs) and population-based optimization techniques such as genetic algorithms (GAs). The proposed
technique reduces the number of experiments needed for training without adding complexity com-
pared with non-iterative DNN-GA techniques commonly used in the literature. In this work, IOT is
used to train an optimal controller for minimizing wind-induced vibration (WIV) using distributed
aerodynamic actuators. Wind tunnel experiments of a scaled cyber–physical aeroelastic building model
are used to demonstrate a novel application of the technique. IOT trains a DNN to approximate building
vibration at different wind conditions and actuator orientations using an initial set of experiments.
After this initial training, a GA uses the DNN to predict actuator orientations that minimize WIV for
the given wind condition. A group containing best orientations from the GA and uniform random
orientations is used to perform additional experiments and training of the DNN to enhance exploitation
and exploration. This process is repeated until the stopping criteria is achieved. This paper includes
results of a benchmark study comparing IOT to GA and DNN-GA techniques. Experimental results show
that IOT-based online control of the aeroelastic model reduces WIV acceleration amplitudes by up to
90% within 9.8 s upon controller activation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fluid flow around bluff bodies such as tall buildings and struc-
tures can cause a number of fluid–solid-interaction phenomena,
e.g., turbulent buffeting, flutter and vortex shedding [1]. The oc-
currence of one or a combination of these phenomena ultimately
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results in wind-induced fluctuating forces that cause structural
vibration [2,3]. Various works in the literature, including pre-
vious work of the authors, establish that modifications to the
perimeter geometry of a building can have a profound effect on
its wind-induced vibration (WIV) response [4–6]. Elshaer et al.
[7] performed a simulation-based aerodynamic corner optimiza-
tion and reported up to a 30% reduction in the drag coefficient,
which leads to a reduction in vibration amplitudes [7]. Sharma
et al. [4] concluded that even minor corner modifications to the
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List of abbreviations

ANN Artificial neural network
AOA Angle of attack
CAARC Commonwealth aeronautical advisory

research committee
DAA Distributed aerodynamic actuators
DNN Deep neural network
DOE Design of experiments
DOF Degree of freedom
ELU Exponential linear unit
FE Finite element
GAs Genetic algorithms
IOT Iterative optimum training
LDV Laser doppler vibrometer
MLP Multi-layer perceptron
PSD Power spectral density
RMS Root mean square
SA Simulated annealing
WIV Wind-induced vibration

building (e.g., corner rounding, chamfering) can result in 30%–60%
reduction in wind-induced loads [4]. However, such modifications
may also have adverse effects when subjected to different wind
flow characteristics and surrounding environments, which may
result from erection of other structures in the vicinity [4,8,9]. Xie
and Yang [10] presented a case study of a 270 m-high building
with plate fairings attached to its corners at a fixed orientation
of 45◦ [10]. The authors reported an 18% reduction on structural
design wind loads as a result. Yang et al. [11] studied buildings
with various vertical plate configurations on their perimeter. The
authors reported as much as 50% decrease in the drag force
coefficient for certain configurations [11]. These studies establish
the effectiveness of minor passive aerodynamic modifications in
WIV control for tall buildings. It is also shown that different
flow characteristics and environments require different modifi-
cations to maintain reduced WIV and prevent adverse effects.
This calls for the development of dynamic or active aerodynamic
modifications.

Evaluating the effect of active aerodynamic modifications is
challenging for computational simulations because they normally
require repetitive reconstruction of the simulation model, which
is computationally expensive [12]. Previous work of the authors
used a simplified 2D fluid–solid-interaction simulation model,
which enabled the geometry to change without reconstruction
in order to more efficiently optimize a smart morphing façade
system consisting of four corner plates [6,13]. These corner plates
were actively controlled based on average wind conditions. The
authors reported a 60%–80% reduction in WIV amplitudes when
the controller was employed. This 2D simplification also intro-
duced considerable approximation into the model, especially re-
garding turbulence modeling and 3D flow effects. In the lit-
erature, cyber–physical experimental wind tunnel models have
recently been used to design aerodynamic modifications for avi-
ation and tall building applications at a reduced experimental cost
[14–16]. In the current study, a cyber–physical scaled building
model is used to implement online controller training in a wind
tunnel. The model has four actively controlled corner plates, sim-
ilar to the previous simulation-based study of the authors [6,13].
The plates function as distributed aerodynamic actuators (DAAs),
which the controller can independently position in response to
time-averaged measurements of the wind condition to minimize
the resulting building vibration.

The core component of the proposed control scheme is a
multi-layer perceptron (MLP) DNN that approximates the re-
lationships between the inputs (average wind conditions and
DAA orientations) and the outputs (building accelerations). These
relationships are difficult to predict because they display strong
nonlinearity and non-monotonicity where, in certain conditions,
small changes to the geometry can cause large changes to the
wind-building system [6,13]. Many physical systems can display
such behavior, which calls for the development of methods to
model, optimize and control them. Population-based optimiza-
tion techniques (e.g., GAs, particle swarm, ant colony, etc.) are
widely used in the literature because they typically do not require
special knowledge of the system being optimized (e.g., mathe-
matical form, derivatives, etc.). These techniques are also known
to consume a large number of experiments or simulations, which
may be impractical for many reasons including excessive mon-
etary and/or time requirements. Methods are developed in the
literature to tackle such expensive optimization problems, includ-
ing both population-based and direct methods [17];[18]. The
basic concept is to consume the least possible number of function
evaluations even at the expense of increased computational over-
head of the method itself [19]. However, these methods usually
focus on optimizing the system rather than generating a predic-
tion model for it, which is needed in the current study to perform
online DAA control [20]. As discussed in later sections, this work
uses genetic algorithms (GAs) and deep neural networks (DNNs)
to perform both functions simultaneously, while using the DNN
as a surrogate model to guide the dispatch of additional function
evaluations.

Genetic algorithms are inspired by biological genetic process
found in nature. They have been used with great success in many
studies in the literature [12,21]. This optimization strategy is gen-
erally able to operate on discontinuous and multimodal systems;
however, GAs typically require a large number of experiments.
Artificial neural networks (ANNs) are inspired by the operation
of the human brain. DNNs are ANNs that have more than one
hidden layer between the input and the output layers. They
are widely utilized in performing cognitive functions (e.g., im-
age recognition and speech recognition) normally performed by
humans as well as predicting and controlling the behavior of
physical systems [22]. DNNs are widely integrated with GAs in
the literature to reduce the number of experiments required for
optimization. Initial experiments are used to train an MLP DNN
that predicts the system behavior. The GAs then dispatch the
predictor MLP instead of requiring additional experiments, thus
greatly reducing the overall experiments required. Dasgupta et al.
[23] utilized this technique to model and optimize a polymer-
enhanced ultrafiltration system [23]. Márquez-Nolasco et al. [24]
also used the technique to optimize and estimate the thermal
energy of an absorber with graphite disks [24]. Conde-Gutiérrez
et al. [25] used a similar technique to optimize an absorption heat
transformer [25]. In these works, the experiments performed for
training the MLP are arbitrary and unguided, except by human
experience. This may pose a problem for an arbitrary complex
system whose behavior is not completely understood, because
there is no guarantee that these experiments will train the MLP
DNN so it can render a result sufficiently close to the global
optimum. For such systems, a simple ‘grid’ of experiments may
not be adequate or efficient because highly nonlinear areas of the
parameter domain may need to be more densely probed relative
to other areas.

The research presented here uses a concept called optimization-

guided training to overcome the previously discussed drawbacks
[19]. The main strategy of this approach is to perform the exper-
iments selectively based on the progression of the optimization
instead of randomly or based on a grid of the parameters. This
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approach serves two purposes: (1) the training can be performed
with a smaller number of experiments and (2) the resulting
MLP is more densely trained around the optimum operating
control parameters. Point (2) is especially relevant for optimally
controlling a system because control parameters providing for
better system performance are prioritized in the training, which
increases the likelihood of generalizing the optimummodes of per-
formance for the system. Optimization-guided training is realized
in this work by an iterative modification to the original MLP-GA
procedure referred to here as iterative optimum training (IOT).
At first, a relatively small initial set of experiments is used to
train the MLP. The GA operates using the MLP instead of requiring
additional experiments. A set of best solutions from the GA are
evaluated using additional experiments and added to the training
data set to improve the training around the current optima to
enhance exploitation. Similarly, another set of uniformly random
solutions are evaluated and added to the data set to enhance ex-
ploration. The expanded data set is used to retrain the MLP which
is used again by the GA. The process is repeated until the stopping
criteria are met. Each iteration only requires a small number of
experiments, relative to the initial experiments, to evaluate the
solutions obtained from the GA. Because IOT starts from a smaller
initial sample set, it may locate the global optimum by using
significantly fewer experiments. Also, because the training data
set is expanded with random samples at each iteration, IOT does
not rely on the initial sample being representative of the whole
domain, so it has no inherent stall mechanism (as opposed to
pure GAs). In the proposed framework, the GA can be replaced by
any other population-based optimization technique (e.g., particle
swarm, ant colony, etc.) to benefit from the iterative nature of
the training. Huang et al. [26] used a similar iteration technique
to optimize the thickness of blow molded parts [26]. In that work,
the authors expand the data set by only one sample obtained
from the GA optimization after each iteration without adding
random samples. Therefore, the choice of this one sample is more
critical for the progression of the search, so the authors (1) used
design of experiments (DOE) to obtain the initial sample set as a
non-iterative exploration mechanism and (2) integrated GAs and
simulated annealing (SA) to improve the local search ability of
the GA to enhance exploitation. In the current study, multiple
samples are added from the GA and at random to enhance both
exploitation and exploration, which simplifies the implementa-
tion. Additionally, the current study uses the technique for online
training of a data-driven optimum controller and evaluates the
technique by comparing it to others using a benchmark function.

The generated controller uses the trained MLP to predict the
system performance and select the DAA orientations that min-
imize WIV at different average wind conditions. Another op-
timizer MLP maintains a direct correlation between the wind
condition and the optimum DAA orientations. This improves re-
sponse time of the online controller because it does not have to
search the predictor MLP for each wind condition it encounters.
The data-driven nature of the generated WIV controller enables
it to be trained for an arbitrary number of control surfaces on
many types of structures. While demonstrating the adaptation
capabilities of the proposed controller is outside the scope of
this work, predictor-optimizer ANN-based controllers are known
in the literature to have such capabilities [27]. Adaptation will
enable the controller to respond to changes in the environment,
such as erection of adjacent buildings.

Section 2 of this paper provides a definition of the optimiza-
tion and training problem posed by using DAAs to minimize WIV
and presents the IOT technique developed in this work. Section 3
discusses the scaled aeroelastic building model and the wind-
tunnel experiments. Section 4 presents the WIV minimization
results for the scaled building model and the MLP prediction per-
formance. Lastly, Section 5 includes a summary and conclusions
along with a brief discussion of related current and future work
that is being pursued by the authors.

Fig. 1. Schematic of the standard CAARC building with four corner plates
showing all parameters relevant to this study.

2. Problem statement and methods

This section begins by introducing the physical system that
originally motivated the research. It continues with a discus-
sion of the approach taken to minimize WIV using DAAs, and
includes details about the IOT technique, numerical benchmark
comparisons, and development of an IOT-based controller.

2.1. Problem definition

The Commonwealth Aeronautical Advisory Research Commit-
tee (CAARC) standard building is used as a base case in this
work because it is thoroughly studied in the literature [8,28].
Fig. 1 illustrates the full-scale CAARC building along with all key
parameters including dimensions which are 180 × 45 × 30 m
(Height H × Width B × Depth D). As illustrated in Fig. 1, the
building exhibits two sway (bending) and 1 torsional (twisting)
vibration degrees of freedom (DOFs) that are of primary interest
for this study. The figure also shows a top view of the building
with four plates acting as the DAAs attached at the corners having
orientation angles (α1 . . . α4). Since flow separation is strong at
the corners, varying the plate orientations at these locations is
expected to have a significant effect on WIV. This choice is also
motivated by findings of previous work of the authors [6,13].
This study uses a 1:400-scale aeroelastic model of the CAARC
building for experimental validation. The height and longitudinal
placement of the plates in addition to other design details of the
scaled aeroelastic model are discussed in Section 3.

The primary function of the controller is to obtain plate angle
combinations that minimize WIV accelerations at different aver-
age wind conditions. The objective function for this optimization
problem can be expressed as,

Min.Q (w, αi) = RMS (ẍ) + RMS (ÿ) + B

2
RMS

(
θ̈
)

(1)

where αi are the plate angles between 0 and 180 degrees, sub-
script i denotes the plate number, w = f

(
U, AOA

)
is the time-

averaged wind condition which consists of the average wind
speed U and the angle of attack AOA, RMS is the root-mean-
square for a defined interval of acceleration readings, and ẍ, ÿ,
θ̈ are the along-wind sway, cross-wind sway and torsional accel-
erations, respectively. The RMS of θ̈ has units of rad/s2 as opposed
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to m/s2 for the sway components, so it is numerically scaled by
half of the building width, which represents the radius of twist.
The range of 0 to 180 degrees for αi is sufficient because the
corner plates are aerodynamically symmetric. If nonsymmetric
DAAs are used, then a 360 degree range should be considered.
Approximating the function in Eq. (1) is essential for the proper
operation of an online controller that minimizes it. Even though
the building acceleration response depends on both the wind
condition and the plate angles, only the latter can be manipulated
by the controller. This separates the optimization parameters into
uncontrollable (w) and controllable parameters (αi).

2.2. Iterative optimum training

Fig. 2 illustrates the MLP network used by the IOT procedure to
approximate Eq. (1), Q (w, αi). The hidden layers of the network
contain neurons using exponential linear unit (ELU) activation
functions defined as,

ELU (x) =
{

x x ≥ 0
ex − 1 x < 0 (2)

due to their low computational cost and proven performance [29].
The output of the MLP network is a sigmoid activation function
(σ (x) = 1/{1 + e−x}) because its result is scaled between 0.0
and 1.0, which is suitable for representing all potential values of
Eq. (1).

Fig. 3 is a flow chart illustrating the IOT procedure. For each
wind condition, initial training for the MLP is performed using
k initial experiments. The GA utilizes the trained MLP rather
than requiring additional experiments (inverse ANN). The best
r1 × k solutions found by the GA are evaluated using additional
experiments, where r1 is the GA expansion ratio. If the stop-
ping criteria are met, the procedure terminates for the current
wind condition wj. Otherwise, additional experiments are also
performed for r2 × k uniform random samples, where r2 is the
random expansion ratio. The original samples k are expanded by
the summation of the new samples (r1 + r2) k. The MLP is re-
trained using the expanded set of samples and the process repeats
until stopping criteria are met. The way in which the original
samples k are expanded after each iteration greatly affects the
performance of the IOT technique. The r1 × k solutions found by
the GA help improve future training accuracy around the current
optima, which represents an exploitation mechanism, while the
r2 × k additional random solutions prevent the IOT technique
from stalling if the initial samples k had no representation of
the global optimum solution, which represents an exploration
mechanism. The next section discusses how these two mecha-
nisms improve the solution quality and reduce the number of
experiments required to perform optimum training. In addition
to generating the trained MLP Q̂ (w, αi), the procedure also stores
the optimum plate angle combinations [αi]

∗
j associated with each

wind condition encountered during training. These plate angles
are used to initiate the controller as illustrated in Section 2.4.

2.3. Numerical benchmark study

This section uses a benchmark function to provide compar-
isons to other techniques and establish the training/optimization
performance gains associated with the IOT technique. The Alpine
2 function was used to test, develop, and compare the IOT tech-
nique before using it with actual wind tunnel experiments [31].
This function was chosen mainly because it is multimodal and
non-separable. This behavior is expected in the wind-plate-

Fig. 2. The MLP Q̂ (w, αi) network used to implement the IOT procedure.

Fig. 3. Flow chart of the IOT technique for minimizing Eq. (1) while
simultaneously training the MLP.

building system because the wake forming behind a plate signif-
icantly affects the plate behind it, which causes non-separability.
The Alpine 2 function is given as [31],

Q (X) = Q
(
x1, . . . , xp

)
=

p∏

i=1

√
xi sin (xi) (3)

where p is the number of dimensions and xi ∈ [1, 10]. The func-
tion is continuous and has a global maximum f (X∗) = 2.808p at
xi = 7.917.

Table 1 lists parameters of the compared online training tech-
niques, including the developed IOT technique. The first tech-
nique considered is a direct GA that does not train or utilize an
MLP. The GA generation size was varied among 62 different val-
ues, as shown in Table 1. For each generation size, 30 independent
trials were performed. The maximum number of generations for
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Table 1

Parameters of the compared techniques.

Parameter GA MLP-GA IOT (this work)

Dimensions p 4

Selection method Fitness proportionate (roulette wheel)

Crossover Single point, 80%

Mutation Uniform, 10%

Elitism 12.5% of population

Training samples N/A [64, 72 . . . 4088, 4096] [64, 72 . . . 504, 512]

Population [16, 24 . . . 504, 512] 1024

Generations 50 50 20

MLP architecture N/A Same as Fig. 2, but neuron counts are 512, 256, 128 to fit larger sample counts of benchmark

MLP training N/A Backpropagation using Adam algorithm [30]

Optimum fitness 2.8084 = 62.17

Expansion ratios N/A N/A r1 = r2 = 25%

Stopping criterion Q ≥ 59.10 (95% × 62.17) N/A (no iteration) Q ≥ 59.10(95% × 62.17)

Normalized objective
Q − Min.

Max. − Min.
= Q − (−62.17)

2 × 62.17

each trial was set at 50 to prevent a stalling GA from halting the
progress of the comparison. The second technique considered was
a GA that utilizes an MLP (MLP-GA) that is trained from a constant
number of samples without iteration, similar to several studies in
the literature [23–25]. The training sample size was varied among
504 different values, as shown in Table 1. For each sample size,
6 independent trials were performed. Finally, the IOT technique
developed in this work and illustrated in the previous section
was compared to the other techniques. In reference to Fig. 3,
all parameters x1 . . . xp are assumed controllable, so n = 1. The
initial sample size k was varied among 56 different initial sample
sizes, as shown in the table. For each initial sample size, 24
independent trials were performed. At each iteration, the sample
size was expanded by 25% using the best solutions from the GA
that uses the trained MLP and by another 25% using uniform
random samples (r1 = r2 = 0.25 in Fig. 3). Except for the iterative
modification, all MLP architecture and training parameters are
identical among MLP-GA and IOT. The stopping criterion and all
other parameters of the three techniques are listed in Table 1.
The generation size and number of samples and/or trials for each
technique were determined to obtain a fair comparison between
the total number of samples required by each technique. This
is evident in Fig. 4, which plots the total number of samples
versus the normalized objective function (explained in Table 1)
for all three techniques. In many instances, the GA technique
is shown to achieve low normalized objective values (0.7–0.8)
at a relatively low number of samples (<2000). This behavior
seems to decrease as the number of samples increases until it
disappears at ∼4000 samples. This indicates stalled GA runs, in
which the initial population fails to contain a representation of
the global optimum solution. The MLP-GA technique shows a
large variance of the obtained optima at small sample sizes. That
variance decreases as the sample size increases. Additionally, the
mean normalized objective obtained by MLP-GA only manages
to match the GA technique at ∼2800 samples and the IOT tech-
nique at ∼3500 samples. These drawbacks of MLP-GA happen
because small sample sizes tend to fail to produce an MLP whose
prediction correctly represents the behavior function around the
global optimum. The IOT technique presented in this work has
the means to alleviate these drawbacks. At each iteration, when
the stopping criterion is not met, the original sample k is ex-
panded in light of previous iterations as well as with additional
random samples. This causes the IOT technique to have no stall
mechanism such as the case with the GA technique; therefore,
the IOT solution always satisfies the stopping criterion shown in

Fig. 4. Also, because the IOT starts from a small initial sample
k, it can still satisfy the stopping criterion early when smaller
samples manage to properly train the MLP. These observations
explain that the IOT fitted curve consistently provides the best
normalized objective for the total number of samples consumed.

2.4. IOT-based controller

As illustrated in Section 2.2, The IOT procedure has two out-
puts: (1) the dataset of the optimum plate angles α∗

i and (2)
the trained predictor MLP Q̂ (w, αi). Fig. 5 illustrates a controller
which utilizes these outputs to perform steady-state control of
the wind-building-plates system Q (Eq. (1)). An optimizer MLP
α∗
i (w) is used directly by the controller to obtain the optimum

plate angles knowing the current average wind condition. The IOT
output #1 mentioned earlier is used to provide initial training for
the optimizer MLP. During operation, the measured building ac-
celerations, the corresponding average wind conditions, and the
plate angles can be used to continuously train the predictor MLP.
The background optimizer uses output #2 (the predictor MLP
itself) to search for plate angles α̂∗

i that provide best expected
performance for the current average wind condition (inverse
MLP). The background optimizer does not have to be dispatched
for every wind condition that the system encounters; therefore, it
can operate locally using any remaining computational capacity,
or remotely on separate computational machines. The plate an-
gles found by the background optimizer and the corresponding
average wind condition can be used to continuously train the
optimizer MLP.

3. Aeroelastic model

This section discusses the scaled aeroelastic model and im-
plementation of the IOT experimental training procedure. The
aeroelastic model has a dimensional scale of 1:400. Table 2 lists
the scaling parameters of other quantities, which were required
to ensure transferability to the full-scale building [32]. As will be
shown in Section 3.4, the damping ratios were approximately the
same as the full-scale building, which yields the unity scale for
the Scruton number and eventually the accelerations, as shown
in the table [28].

The standard CAARC building discussed in Section 1 has an
average mass density of 160 kg/m3 which is uniformly distributed
along its height [8]. Also, it is reported that four lumped masses
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Fig. 4. Performance comparisons of the tested online training techniques.

Fig. 5. IOT-based control architecture for wind-building-plate system.

Table 2

Dynamic similarity parameters for the scaled aeroelastic model (subscripts m =
model and f = full-scale building).

Quantity Parameter Scale value

Length λL = lm/lf 1/400

Frequency λf = fm/ff 33

Time λt = tm/tf 1/33

Displacement λL = lm/lf 1/400

Mass λm = mm/mf 1/4003

Velocity λv = λLλf 1/12.1

Damping ratio ζm = ζf 1

Acceleration am = af 1

are enough to study most tall buildings [32]. Fig. 6 illustrates de-
tails of the 1:400 scale aeroelastic CAARC model. The height of the
scaled model is 451.7 mm. Four aluminum plates representing the
floors were equally spaced along the height (451.7/5 = 90.3 mm).
In order to evenly distribute wind forces, the amount of mass
at each floor was proportional to the envelope height assigned
to it. The top floor was assigned double the envelope height of
other floors to make room in the mass budget for the DAA plates
and their control mechanisms. This resulted in a model with four
adjustable lumped masses representing five floors two of which
were combined at the top floor. The columns were cut from
6061 aluminum threaded rods and were attached to the floors
using self-locking nuts. The envelope of the model was composed
of balsa wood panels laser cut from 1/32’’ (0.8 mm) stock and
attached to the floors. The weight of the final model excluding
the base was 0.62 kg, which was 2% over the target weight of
0.61 kg.

Fig. 6. Illustration and photo of the 1:400 scaled aeroelastic CAARC building
model used in this study.

3.1. GA-assisted aeroelastic model design

For the standard CAARC building, the first order sway mode
shapes are linear along the height of the building, while the
torsional mode shape is uniform. The torsional/sway first order
natural frequency ratio ranges from 1.2–1.5 in the literature [8,
33]. Column diameters at each floor were used to manipulate
the mode shapes and frequency ratios of the model [33]. A GA
optimization procedure was formulated and used to determine
the column cross-sections that (1) minimize the deviation from
linear mode shapes and (2) obtain appropriate torsional/sway
frequency ratios. The objective of this optimization was defined
as,

min.f (di) =
4∑

i=1

∆i +
⏐⏐⏐⏐
ωθ

ωx

− 1.2

⏐⏐⏐⏐ (4)

where di are the column diameters for floors i = 1 to 4, which
were chosen from a discrete list of readily available off-the-shelf
diameters, ∆i is the deviation from the linear mode shape at
floor i, ωθ and ωx are the torsional and along-wind sway natural
frequencies respectively. A finite element (FE) model of the scaled
building was used to calculate Eq. (4). The model consisted of
∼300,000 nodes for ∼160,000 3D solid elements and accounted
for every component of the aeroelastic model assembly including
fasteners, hardware, and the envelope boards. The mass density
of each component was estimated during the initial design phase
and updated with measured values after components were ac-
quired prior to assembly. The FE model was created using the
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Fig. 7. First order sway mode shapes for the scaled aeroelastic model obtained
using GA optimization.

Fig. 8. Components of the rotating plates mechanism.

Solidworks
®

frequency analysis module. Fig. 7 illustrates the first
order sway mode shapes and natural frequencies (ωx and ωy)
obtained using the GA optimization. The mode shapes show very
little deviation from linearity. These deviations are primarily due
to limiting the column diameter selection to discrete sizes. The
torsional mode shape occurs at 8.0 Hz, so the torsional/sway ratio
is 1.17 and 1.16 for the along- and cross-wind sway directions.
This ratio is only 2.5% lower than the range of ratios found in the
literature [28].

3.2. Distributed aerodynamic actuators

The four DAA plates were cut from 0.8 × 12.8 mm steel to
a length of 90 mm each. The width of the plates was chosen to
be approximately 10% of the building width B to ensure practical
plate dimensions at the full scale. The plates extended for approx-
imately 20% of the total building height to maintain their rigidity.
They were placed towards the top of the model to maximize
their effect because this is where wind velocities, wind forces,
and building deflections are typically the largest. Fig. 8 illustrates
the plate rotation mechanism. Each plate attaches to a rotational
encoder at the top, which measures actual plate position. The
plate motors have a range of 0–180◦ and weigh ∼9 grams each.
They can perform full travel in ∼0.2 s with a stall torque of ∼0.1
N.m and are compatible with Arduino

®
.

3.3. Cyber–physical instrumentation

Fig. 9 illustrates the data acquisition and plate control instru-
mentation that were used to complete the full cyber–physical
system. Python scripts utilized the nidaqmx software library to
control the data acquisition unit and enable serial communica-
tion with an Arduino which was used to control the motors.

Fig. 9. Cyber–physical instrumentation consisting of data collection and plate
control systems.

Fig. 10. Layout of the upstream buildings added to increase the RMS
accelerations at the diagonal critical direction (AOA = 56◦).

The tests were performed in a mobile wind tunnel built by the
Kansas State University Wind Power Team. The tunnel has a
1.1 m × 1.1 m test section powered by 4 industrial fans each
measuring 0.5 m × 0.5 m. The tunnel generates wind speeds
ranging from 0–14 m/s. The speed control on the tunnel is open-
loop and human operated with discrete integer ‘level’ settings.
Average free-stream windspeed U was determined using 3-min
averaged readings with a Testo 405i hot-wire anemometer placed
∼200 mm upstream of the model. While all wind speed readings
are taken at a single point, the 3-min averaging generates distinct
average wind speed values for each tunnel speed setting, which
is necessary for controller training.

3.4. Characterization

Experiments were performed to determine the first mode
natural frequencies and damping ratios for the scaled model.
The model was given an initial displacement smaller than 3 mm
and left to vibrate freely while the motion was measured with a
Polytec

®
OFV-5000 laser doppler vibrometer (LDV) unit as well

7



K.M. Abdelaziz and J.D. Hobeck Applied Soft Computing 114 (2022) 108100

Table 3

List of frequency and damping ratios for the scaled model.

Parameter Design Actual Difference

Natural frequency ratios
ωθ/ωx 8.0 Hz/ 6.8 Hz = 1.17 7.4 Hz/ 6.5 Hz = 1.13 3.4%
ωθ/ωy 8.0 Hz/ 6.9 Hz = 1.16 7.4 Hz/ 6.7 Hz = 1.10 5.2%
Damping ratios
ζx 1% 1.1% 10%
ζy 1% 1% 0.3%
ζθ – 0.8% –

Fig. 11. RMS acceleration trends for all tested wind conditions obtained after two IOT iterations (⋆ with the upstream buildings illustrated in Fig. 10).

as the onboard accelerometers. The power spectral density (PSD)
charts were plotted for each DOF to obtain natural frequencies.
Damping ratios were estimated using the logarithmic decrement
method. Table 3 lists the characterization results which show
minimal deviation from the design natural frequency ratios as ex-
plained in Section 3.1. These small deviations were primarily due
to minor manufacturing and assembly inaccuracies. The obtained
damping ratios for the linear modes are also in line with the full-
scale model, so no special modifications were made to change the
damping ratios.

3.5. Experiment-based training

This section summarizes the wind tunnel training process for
the DAA controller, which follows the IOT technique discussed in
Section 2. The system was trained at three critical wind directions
(AOA): 0◦, 56◦ (diagonal) and 90◦. The RMS accelerations (Eq. (1))
observed for AOA = 56◦ were considerably lower than those
for AOA = 0◦ and 90◦, which coincides with findings in the
literature [28]. Given such low accelerations, controller perfor-
mance could not be demonstrated at that direction. Therefore, a
special case was considered only for AOA = 56◦ where two rigid
scaled building models were positioned upstream of the principal
model as illustrated in Fig. 10. The presence of these upstream
buildings created additional flow features (e.g., vortices and large-
scale turbulence), which increased principal model accelerations
thereby enabling demonstration of the DAA controller. A total of 9
average wind speeds were tested at each wind direction, so a total
of 27 distinct wind conditions w were used for training. The wind
speed values for each wind direction are illustrated in Fig. 11.

In reference to Fig. 3, Table 4 lists the IOT technique pa-
rameters that were employed in the wind tunnel training pro-
cess. Two iterations were used as a stopping criterion because
it was observed that the RMS reduction is negligible thereafter.
These parameters translate to 60 experiments per wind condition,
which equals ∼1620 experiments in total for the 27 wind con-
ditions considered. The experiment control program is provided
with a different list of plate angle combinations to test at each
wind condition. For each combination, the acceleration data is

Table 4

IOT technique parameters employed for the wind tunnel training process.

Parameter n k r1 r2 Iterations

Value 27 40 12.5% 12.5% 2

Fig. 12. RMS acceleration prediction performance of the MLP trained using the
IOT procedure.

collected for 2 min and written to a comma-separated file. The
files from all combinations are later post-processed to extract the
RMS accelerations (Eq. (1)) and continue the IOT procedure.

4. Results and discussion

This section discusses the performance of an IOT-based con-
troller from observations of wind tunnel experiments, seeking
to actively minimize RMS acceleration of an aeroelastic model
via optimal control of DAAs. A brief consideration of the ex-
pected real-life performance of the cyber–physical system is also
included.

8
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Fig. 13. A sample of time histories showing maximum (blue) and minimum (green) building acceleration responses to demonstrate the influence of IOT-based DAA
control (⋆ case with upstream buildings as illustrated in Fig. 10).

Fig. 14. Comparison between along-wind acceleration PSDs of best (green) and worst (blue) plate configurations for the three wind directions considered (⋆ case
with upstream buildings as illustrated in Fig. 10).

4.1. IOT performance

Fig. 11 plots the sum of RMS acceleration (Eq. (1)) in a nor-
malized form (Q/f 2L) versus the reduced velocity (Vr = U/fL)
for the tested wind conditions. Where Q is the RMS acceleration
sum (Eq. (1)), f is the along-wind sway natural frequency, L is
the length scale (L =

√
DB) and U is the average wind speed. To

isolate the effect of the plates, the figure also plots the neutral
condition considered when the plates are parallel to the flow
for minimum engagement. For AOA = 0◦, the neutral position
was found to generate relatively low RMS values, but some plate
orientations maximized the RMS response considerably at Vr ≥
9.7. The best obtained plate orientations after two iterations are
always at or below the neutral position, which indicates the
effectiveness of the IOT optimization procedure. A similar trend
is obtained at AOA = 56◦ (with upstream buildings shown in
Fig. 10), but the neutral RMS response increases with Vr until the
end of the test range. This case also shows that the environment
surrounding the building can generate considerably high RMS

responses even at wind conditions that are normally safe. Which
justifies the need for active control at all wind conditions. The
maximum RMS response is obtained at AOA = 90◦ for Vr > 8.7.
This coincides with findings in the literature [28]. At Vr = 9.7, the
neutral position response surpasses the worst plate orientations
found during training. These extreme vibration levels caused
some of the model columns to fail from fatigue at Vr = 10.1.
The failed columns were later replaced, and no plate optimization
was performed at this velocity or beyond. Fig. 11 also shows
that in many cases, certain plate orientations maximize the RMS
accelerations. This justifies the need for actively controlled aero-
dynamic modifications because static modifications may have a
considerably negative contribution in unforeseen flow conditions.
The maximum reduction obtained in the RMS acceleration sum
(Eq. (1)) is 81%, 41% and 95% for the 0◦, 56◦ and 90◦ direc-
tions, respectively. This major reduction underlines the overall
effectiveness of the cyber–physical building system.

Fig. 12 illustrates the prediction performance of the predictor
MLP which was trained using the IOT procedure. The average

9
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absolute error in the prediction is only 0.3% the maximum RMS
sum and the R-squared value is 0.9985. The small relative error
and the high R-squared value mean that the trained MLP is
suitable for online control of the system, as discussed in the next
section. Also, due to the simultaneous optimization and training
nature of the IOT procedure, most of the training points exist at
the low end of RMS sum values, as shown in the figure.

4.2. Optimum performance

Fig. 13 compares the timeseries of the normalized 3-DOF
accelerations of the scaled model obtained using the best and
the worst plate angle combinations for each wind direction. The
speed at which the plot is generated for each direction has the
maximum RMS acceleration in Fig. 11 to clearly demonstrate
the effect of the plates. The reduction is considerable at AOA =
56◦ and major at both AOA = 0◦, 90◦ which agrees with the
RMS acceleration results in Fig. 11. Additionally, Fig. 14 shows
the corresponding along-wind acceleration PSDs for each time
series. For the cases without buildings upstream (0◦ and 90◦),
the minimum acceleration response is associated with a shift of
the peak frequency away from the structural natural frequencies
indicated on the figure. For the case with upstream buildings
(56◦), the turbulence-induced wind forces on the principal model
are distributed over a broader band of frequencies compared to
the relatively narrowband vortex-induced forces that are most
prominent for 0◦ and 90◦ cases. Also, in this configuration, plate
number 4 is completely blocked by the building, which reduces
its wind control authority. These factors help explain why the
controller reduces the RMS response by only 41% for this case as
opposed to 80%–90% for the other two cases. While the current
DAA configuration may still be more effective for other surround-
ing environments, future studies involving a higher number of
DAAs on the building’s perimeter are being considered.

4.3. Control response time

Fig. 15 plots the acceleration time series of all 3 DOFs con-
tinuously before and after the plate angles were changed from
the worst to the best configuration (at AOA = 90◦ and Vr =
9.7). The figure was obtained by keeping the plates at a known
poor configuration for a given wind condition and keeping the
controller inactive for 60 s. This allowed large magnitude os-
cillations to develop. Then, the controller was activated, and it
rotated the plates to the optimum configuration. Acceleration and
plate position data was collected throughout the experiment. The
figure also shows the running RMS accelerations calculated using
a sliding window width of 2 s. The acceleration amplitude for
rotation (dominant DOF) decreases by 33%, 61% and 90% after
1.1, 3.4 and 9.8 s, respectively. These reductions constitute major
improvements in the model’s WIV response. Additionally, for
a deployed system, the plates will be actuated as soon as the
adverse wind condition is encountered rather than waiting as was
done for this demonstration. In other words, with the controller
continuously activated, accelerations would not have a chance to
reach these high values and the DAA actuation would require
less time. At the 1/33 time scale listed in Table 2, the response
time of 1.1 s corresponds to 36.3 s for the full-scale building. It
is known that wind gusts typically last for less than 20 s, while
squalls can continue for minutes at a time [34,35]. The proximity
of the response time to the wind event time scales establishes
the applicability of the proposed four-plate DAA system to mit-
igate WIV. However, to account for different environments and
wind conditions, more advanced predictive techniques for wind
condition monitoring are being considered for future studies.

Fig. 15. Reduction of building accelerations due to changing the plate angles
to the optimum values (AOA = 90◦ , Vr = 9.7). The IOT-based controller was
inactive until t = 56 s for this demonstration.

5. Conclusions

An iterative optimum training (IOT) technique that can be
used to simultaneously optimize and predict the behavior of
nonlinear multimodal systems was presented. The technique in-
tegrates deep neural networks (DNNs) and genetic algorithms
(GAs) to balance and enhance its exploitation and exploration
abilities. IOT has no stall mechanism because the training samples
are expanded until convergence. A benchmark of the technique
showed that it can obtain the global optimum parameters using
a relatively smaller number of samples or experiments, without
compromising the solution quality or adding significant complex-
ity. The technique was later utilized to generate a distributed
aerodynamic actuator (DAA) controller to minimize WIV in an
aeroelastic building model. The controller is based on the outputs
of the IOT procedure including the trained multi-layer perceptron
(MLP) network. Wind tunnel experiments of a 1:400 scale cyber–
physical aeroelastic building model having 4 plates attached to
its corners as DAAs were used to perform the training. The scaled
model was designed using a GA procedure to guarantee the
linearity of its mode shapes and generate acceptable natural
frequency ratios. The model was tested at three critical wind di-
rections (AOA): 0◦, 56◦ and 90◦ at reduced velocities ranging from
7–11. Only the 56◦ direction had upstream scaled rigid buildings
installed during testing to create high turbulence interference
conditions. The following conclusions were obtained from the
wind tunnel experiments:

1- A reduction of 41%–95% in RMS acceleration was achieved
by using plate angle combinations determined from the IOT
procedure across various wind conditions. The maximum
reduction was obtained at AOA = 90◦.

2- Depending on the wind condition, some plate orientations
maximized the RMS response which justifies the need for
actively controlled rather than static aerodynamic modifi-
cations.

10
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3- In the frequency domain, the RMS reduction was often
associated with a diversion of the wind force dominant
frequencies away from the structural natural frequencies
of the model.

4- The MLP generated from the IOT procedure predicted the
RMS acceleration response of the building with an average
absolute error of only 0.3% of the maximum RMS accelera-
tion sum with an R-squared value of 0.9985, indicating its
suitability for online control.

5- At AOA = 90◦ and a reduced velocity Vr = 9.7, engaging the
IOT-based controller reduced the rotational acceleration
amplitude by up to 90% at steady-state and up to 33% in
as little as 1.1 s, which establishes the feasibility of the
system to mitigate vibration caused by wind events for the
full-scale building.

The findings of this research justify further studies involving
advanced predictive wind condition monitoring techniques and
additional DAA modules to further enhance practicality and mul-
tifunctionality. The benchmark comparisons and experimental
results show that the IOT procedure is effective in predicting and
optimizing nonlinear multimodal non-separable systems, such as
the presented cyber–physical aeroelastic model.
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