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A B S T R A C T

In this paper we investigate the dynamics of the inertial sea wave energy converter (ISWEC) device using fully-
resolved computational fluid dynamics (CFD) simulations. Originally prototyped by the Polytechnic University
of Turin, the device consists of a floating, boat-shaped hull that is slack-moored to the sea bed. Internally, a
gyroscopic power take-off (PTO) unit converts the wave-induced pitch motion of the hull into electrical energy.
The CFD model is based on the incompressible Navier–Stokes equations and utilizes the fictitious domain
Brinkman penalization (FD/BP) technique to couple the device physics and water wave dynamics. A numerical
wave tank is used to generate both regular waves based on fifth-order Stokes theory and irregular waves based
on the JONSWAP spectrum to emulate realistic sea operating conditions. A Froude scaling analysis is performed
to enable two- and three-dimensional simulations for a scaled-down (1:20) ISWEC model. It is demonstrated
that the scaled-down 2D model is sufficient to accurately simulate the hull’s pitching motion and to predict the
power generation capability of the converter. A systematic parameter study of the ISWEC is conducted, and
its optimal performance in terms of power generation is determined based on the hull and gyroscope control
parameters. It is demonstrated that the device achieves peak performance when the gyroscope specifications
are chosen based on the reactive control theory. It is shown that a proportional control of the PTO control
torque is required to generate continuous gyroscopic precession effects, without which the device generates
no power. In an inertial reference frame, it is demonstrated that the yaw and pitch torques acting on the hull
are of the same order of magnitude, informing future design investigations of the ISWEC technology. Further,
an energy transfer pathway from the water waves to the hull, the hull to the gyroscope, and the gyroscope to
the PTO unit is analytically described and numerically verified. Additional parametric analysis demonstrates
that a hull length to wavelength ratio between one-half and one-third yields high conversion efficiency (ratio
of power absorbed by the PTO unit to wave power per unit crest width). Finally, device protection during
inclement weather conditions is emulated by gradually reducing the gyroscope flywheel speed to zero, and
the resulting dynamics are investigated.
1. Introduction

Ocean waves are a substantial source of renewable energy, with an
estimated 2.11 ± 0.05 TW available globally (Gunn and Stock-Williams,
2012). For perspective, the United States generated 3.7 TWy (terawatt
years1) worth of energy in 2013, making up about 20% of the world’s
total energy production. Of this amount, only about 9% or 0.33 TWy
was generated from renewable sources. It is estimated that the US
will produce approximately 8.65 TWy by 2050 (Korde and Ringwood,
2016). There is an ever-increasing need to invest in renewable energy
harvesting techniques in order to accelerate economic growth while
maintaining a safe and healthy planet Earth. Wave energy conversion
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1 1 TWy = 8.76 × 1012 kWh.

is one of the crucial strategies towards realizing future energy sus-
tainability. It is estimated that about 230 TWh/year of wave energy
can be extracted from the East Coast and about 590 TWh/year from
the West Coast of the United States alone. In spite of this abundantly
available energy source, there is currently no commercial-scale wave
power operation that exists today.

There are several unique challenges specific to wave energy ex-
traction processes, including hostile ocean environments, saltwater
corrosion, stochasticity of ocean and sea waves, and costly offshore
wave farm setup. Nevertheless steady progress is being made both in
the design and engineering analyses of wave energy extraction devices,
which are known as wave energy converters (WECs). Consequently,
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Fig. 1. The inertial sea wave energy converter (ISWEC) device developed by the Mattiazzo Group at Polytechnic University of Turin. (a) ISWEC device freely floating in relatively
calm sea conditions. (b) Gyroscope casing mounted on the power take-off (PTO) axis. The PTO system is housed inside the hull. (c) Front and (d) side views of the ISWEC
exhibiting pitching motion during operation. Image courtesy of the Mattiazzo Group and Wave for Energy S.R.L., Turin.
several WEC designs have been proposed over the years after gain-
ing popularity following the 1970s oil crisis. However, unlike wind
turbines, an ultimate WEC architecture has not yet been identified by
researchers.

One WEC design that addresses some of the critical wave energy
extraction challenges is the inertial sea wave energy converter (ISWEC)
device prototyped by the Polytechnic University of Turin (Bracco et al.,
2011; Cagninei et al., 2015; Vissio, 2017). This device consists of a
floating, boat-shaped hull that is slack-moored to the seabed, which
internally houses a gyroscopic power take-off unit (PTO); see Fig. 1. The
ISWEC can be classified as a pitching point-absorber whose dimensions
are shorter than the length of the water waves. The device utilizes
precession effects produced from the spinning gyroscope and pitching
hull to drive a sealed electric generator/PTO. The rotational velocity
of the spinning gyroscope and the PTO control torque act as sea-
state tuning parameters that can be optimized/controlled (in real-time
or via remote human–machine interfaces) to enhance the conversion
efficiency of the device. Since all crucial electro-mechanical parts are
sealed within the hull, the ISWEC is a robust and cost-effective wave
energy conversion technology. Due to its simple design, devices can be
produced by retrofitting abandoned ships, which can potentially reduce
manufacturing costs and lead to easy adoption of the technology.
Moreover, such devices could be lined up end-to-end just offshore,
which would not only ensure maximal wave energy absorption but also
protection of the coastline.

Although ISWEC devices have only recently been prototyped since
their inception in 2011 by Bracco et al. (2011, 2009, 2010a,b, 2012),
their design and performance has been of much interest to the greater
research community in the past few years. Medeiros and Brizzolara
(2018) used the boundary element method (BEM) based on linear
potential flow equations to simulate the ISWEC and evaluate its power
generation capabilities as a function of flywheel speed and derivative
control of the PTO torque. They also demonstrated that the spinning
gyroscopes can induce yaw torque on the hull. Faedo et al. used an
alternative moment-matching-based approach to model the radiation
force convolution integral, thereby overcoming the computational and
representational drawbacks of simulating ISWEC devices using the
2

BEM-based Cummins equation (Faedo et al., 2018). Although these
lower fidelity methods are able to simulate ISWEC dynamics at low
computational costs, they are unable to resolve highly nonlinear phe-
nomena often seen during practical operation such as wave-breaking
and wave-overtopping. Unsurprisingly, the Turin group has extensively
used carefully calibrated (with respect to wave tank experiments) BEM
models to refine and optimize their preliminary designs (Bracco et al.,
2015, 2019; Raffero et al., 2015; Bracco et al., 2016). In contrast,
simulations based on the incompressible Navier–Stokes (INS) equa-
tions are able to resolve the wave–structure interaction (WSI) quite
accurately and without making small motion approximations employed
by low-fidelity BEM models (Ruehl et al., 2014; Yu and Li, 2013).
However, fully-resolved INS simulations are computationally expensive
and typically require high performance computing (HPC) frameworks.
A compromise between the linear BEM and fully nonlinear CFD models
is the nonlinear BEM framework in which nonlinear wave excitation
(Froude–Krylov) forces are used to simulate the device dynamics based
on its instantaneous wetted surface. Recent studies (Novo et al., 2018;
Penalba et al., 2017; Giorgi et al., 2020) have successfully simulated
the WEC dynamics considering the nonlinear effects arising from the
device geometry, viscous forces, and wave excitation forces using the
nonlinear BEM framework. The nonlinear effects can be important,
particularly when an aggressive control is used for a WEC device, which
may push the device to operate in a nonlinear dynamical regime.

Although fully nonlinear CFD models are computationally expen-
sive, nevertheless in a preliminary study, Bergmann et al. enabled
fully-resolved simulation of the ISWEC’s wave–structure interaction by
making use of an INS-based flow solver coupled to an immersed bound-
ary method (Bergmann et al., 2015). The wave propagation in their
channel followed the canonical ‘‘dam-break’’ problem setup (Nangia
et al., 2019a) — a column of water is released from one end of the
channel, which is then reflected from the opposite end, and so-forth.
Although such simple wave propagation models are not suitable to
study the device performance at a real site of operation, Bergmann
et al. were able to capture key device dynamics in their simulations.
In addition to these research efforts, industry has become interested in
piloting and manufacturing these devices. Recently, the multinational
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oil and gas corporation Eni installed an ISWEC device off the coast
of Ravenna2 near their offshore assets. It is clear that there is a
need to further investigate ISWEC dynamics and explore the design
space to enable rapid adoption of this technology, possibly through an
industry-academic partnership.

In this work, we perform a comprehensive study of the ISWEC
device using high fidelity simulations from a previously developed
fictitious domain Brinkman penalization (FD/BP) method based on the
incompressible Navier–Stokes equations (Bhalla et al., 2020). Although
the methodology is similar to the work of Bergmann et al. we consider
more realistic operating conditions by using a numerical wave tank
(NWT) to generate both regular and irregular water waves. We conduct
a systematic variation of control parameters (i.e. PTO control torque,
flywheel moment of inertia and speed, hull length) to determine the
optimal performance of the device (in term of power generation) and
study its dynamics as a function of these parameters. We also provide
a theoretical basis to obtain the optimal control parameters for the
device’s design at a specific installation site. Moreover, we analytically
describe an energy transfer pathway from water waves to the hull,
the hull to the gyroscope, and the gyroscope to the power take-off
(PTO) unit, and verify that it is numerically satisfied by our simulations.
A Froude scaling analysis is performed to reduce the computational
cost of simulating a full-scale ISWEC device, which is used to define
the geometry and flow conditions for both two- and three-dimensional
simulations of a scaled down 1:20 ISWEC device. Additionally, we
verify that the 2D ISWEC model produced similar dynamics to the
3D model, thereby allowing us to obtain accurate results at reduced
simulation cycle times. We also simulate a possible device protection
strategy during inclement weather conditions and study the resulting
dynamics.

The rest of the paper is organized as follows. We first describe the
dynamics, power generation, geometric properties, and scaling analysis
of the ISWEC device in Section 2. Next, we describe the numerical wave
tank approach used to generate both regular and irregular waves for
our simulations in Section 3. In Section 4, we describe the continuous
and discrete equations for the multiphase wave–structure interaction
system, and outline/validate the solution methodology for the FD/BP
technique. In Section 5, we briefly describe the software implementa-
tion and computing hardware utilized in this study. In Section 6, we
perform spatial and temporal resolution tests to select a grid spacing
and time step size that ensures adequate resolution of ISWEC dynamics.
Finally in Section 7, we conduct a systematic parameter study on
the various hull and gyroscope parameters and evaluate the device
performance in terms of generated power.

2. ISWEC dynamics

In this section, we mathematically describe the dynamics, power
generation, and geometric properties of the ISWEC device.

2.1. ISWEC dynamics

Externally, the ISWEC device appears as a monolithic hull that is
slack-moored to the seabed. Internally, the device houses a spinning
gyroscopic system that drives a sealed electric generator. The pitching
motion of the hull is mainly responsible for converting the wave motion
into electrical output. To simplify the model and discussion, the other
remaining degrees of freedom of the hull are not considered in this
study; see Appendix A for a comparison of one and two degrees of free-
dom ISWEC models. As the device operates, the combination of wave
induced pitching torque along 𝛿-axis and spinning gyroscope/flywheel
velocity 𝜙̇ along 𝜙-axis induces a precession torque in the 𝜀-coordinate
irection. The wave energy conversion is made possible by damping

2 https://www.eni.com/en-IT/operations/iswec-eni.html
3

the motion along the 𝜀-direction by the electric generator, which is
commonly referred to as the power take-off (PTO) unit. Fig. 2(a) shows
the schematic of the ISWEC device, including the external hull, ballast,
gyroscope, and PTO unit.

To derive the three-way coupling between the waves, hull, and
gyroscopic system we consider an inertial reference frame 𝑥𝑦𝑧 attached
to the hull and a rotating non-inertial reference frame 𝑥1𝑦1𝑧1 attached
to the gyroscope as shown in Fig. 2(b). The gyroscope reference frame
is obtained from the hull reference frame by two subsequent finite
rotations 𝛿 and 𝜀. The origin of both reference frames is taken to be
the center of gravity of the device.

In the absence of waves, 𝛿 = 0 and 𝜀 = 0, and the flywheel
otates with a constant angular velocity 𝜙̇ along the vertical 𝑧1-axis.
his configuration is taken to be the initial position of the device, in
hich the two reference frames also coincide. When the first wave

eaches the hull location, a wave induced pitching torque tilts the
evice by an angle 𝛿 and the hull attains a pitching velocity 𝛿̇ along the
𝑥-axis. The gyroscope structure rotates by the same angle 𝛿 about the
𝑥- (or the 𝑥1-) axis. The rotated configuration of the 𝑥1𝑦1𝑧1 reference
frame is shown by dashed lines in Fig. 2(b). As the hull begins to
pitch, the gyroscope is subject to two angular velocities: 𝛿̇ along 𝑥1-
xis and 𝜙̇ along 𝑧1-axis. This wave induced pitching torque and the
ngular velocity of the spinning gyroscope produces a precession torque
n the third orthogonal direction 𝑦1. This induced torque precesses
he gyroscope by an angle 𝜀 about the 𝑦1-axis. As a result of the two
ubsequent rotations, the gyroscope frame attains an orientation shown
y bold red lines in Fig. 2(b).

The evolution of the gyroscope’s dynamics results in a gyroscopic
orque G = (𝑥1 ,𝑦1 ,𝑧1 ), which can be related to the rotational
inematic variables using conservation of angular momentum. The
ngular velocity Ω1 of the gyroscope reference frame and the angular
elocity ΩG of the gyroscope are both written in the 𝑥1𝑦1𝑧1 coordinate
ystem and their evolution can be expressed in terms of 𝛿, 𝜀, and 𝜙̇ as

Ω1 = 𝛿̇ cos 𝜀 𝑖1 + 𝜀̇ 𝑗1 + 𝛿̇ sin 𝜀 𝑘̂1, (1)

ΩG = 𝛿̇ cos 𝜀 𝑖1 + 𝜀̇ 𝑗1 + (𝛿̇ sin 𝜀 + 𝜙̇) 𝑘̂1, (2)

in which 𝑖1, 𝑗1, and 𝑘̂1 are the unit vectors along 𝑥1-, 𝑦1-, and 𝑧1-
directions, respectively. The rate of change of the gyroscope’s angular
momentum with respect to time is related to the gyroscopic torque G
by

G =
d𝐇G
d𝑡

, (3)

in which 𝐇G = IGΩG is the angular momentum of the gyroscope and
G is the inertia matrix of the gyroscope. In the 𝑥1𝑦1𝑧1 reference frame,
G reads as

IG =
⎡

⎢

⎢

⎣

𝐼𝑥1𝑥1 0 0
0 𝐼𝑦1𝑦1 0
0 0 𝐼𝑧1𝑧1

⎤

⎥

⎥

⎦

≈
⎡

⎢

⎢

⎣

𝐼 0 0
0 𝐼 0
0 0 𝐽

⎤

⎥

⎥

⎦

. (4)

The flywheel structure, including its support brackets, etc., is typically
designed such that 𝐼𝑥1𝑥1 ≈ 𝐼𝑦1𝑦1 = 𝐼 and 𝐼𝑧1𝑧1 = 𝐽 ⪆ 𝐼 . Using Eqs. (2)
and (4), the angular momentum of the flywheel is given by

𝐇G = 𝐼𝛿̇ cos 𝜀 𝑖1 + 𝐼𝜀̇ 𝑗1 + 𝐽 (𝛿̇ sin 𝜀 + 𝜙̇) 𝑘̂1. (5)

Differentiating Eq. (5) with respect to time in the inertial reference
frame involves computing time derivatives of the unit vectors 𝑖1, 𝑗1,
nd 𝑘̂1:

d𝑖1
d𝑡

= Ω1 × 𝑖1 = −𝜀̇ 𝑘̂1 + 𝛿̇ sin 𝜀 𝑗1, (6)

d𝑗1
d𝑡

= Ω1 × 𝑗1 = 𝛿̇ cos 𝜀 𝑘̂1 − 𝛿̇ sin 𝜀 𝑖1, (7)

d𝑘̂1
d𝑡

= Ω1 × 𝑘̂1 = −𝛿̇ cos 𝜀 𝑗1 + 𝜀̇ 𝑖1. (8)

https://www.eni.com/en-IT/operations/iswec-eni.html


Ocean Engineering 229 (2021) 108879K. Khedkar et al.
Fig. 2. (a) ISWEC device schematic and the main rotational velocities of the system: hull’s pitch velocity 𝛿̇, gyroscope’s angular velocity 𝜙̇, and the induced precession velocity
of the PTO shaft 𝜀̇. (b) Hull and gyroscope reference frames.
Finally, after some algebraic simplifications, a componentwise expres-
sion for the gyroscopic torque G is obtained

G =
⎡

⎢

⎢

⎣

𝑥1
𝑦1
𝑧1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐼𝛿 cos 𝜀 + (𝐽 − 2𝐼) 𝛿̇𝜀̇ sin 𝜀 + 𝐽𝜙̇𝜀̇
𝐼𝜀̈ + (𝐼 − 𝐽 )𝛿̇2 sin 𝜀 cos 𝜀 − 𝐽𝜙̇𝛿̇ cos 𝜀

𝐽𝛿 sin 𝜀 + 𝐽 𝛿̇𝜀̇ cos 𝜀 + 𝐽𝜙̈

⎤

⎥

⎥

⎦

. (9)

The precession velocity 𝜀̇ of the generator shaft is damped using a
proportional derivative (PD) control law implemented in the PTO unit.
The PD control torque can be modeled as a spring–damper system with
the following form

𝜀 = G ⋅ 𝑗1 = −𝑘𝜀 − 𝑐𝜀̇. (10)

Here, 𝑘 is a spring-like stiffness parameter and 𝑐 is a damper-like
dissipation parameter that can be adjusted in real-time (usually through
feedback) to enhance the conversion efficiency of the device when the
incoming waves change their characteristics. The wave power absorbed
by the PTO unit (as a function of time) is

𝑃PTO = 𝑐𝜀̇2. (11)

Therefore, the precession component of the gyroscopic torque is bal-
anced by the PD control torque, 𝑦1 = 𝜀, which is also responsible
for extracting the wave energy. The other components 𝑥1 and 𝑧1
of the gyroscopic torque are balanced/sustained by the hydrodynamic
torques acting on the hull and the subsequent hull-gyroscope inter-
actions. To understand this balance, we consider the hydrodynamic
torque and motion of the hull about the pitch (𝑥-direction) as observed
from the inertial reference frame 𝑥𝑦𝑧

hydro = 𝐼H
d𝛿̇
d𝑡

+𝛿 , (12)

in which hydro is the hydrodynamic torque acting on the hull, 𝐼H
is the moment of inertia of the hull, and 𝛿 is the projection of the
gyroscopic torque on the 𝑥-axis:

𝛿 = G ⋅ 𝑖

= G ⋅ (𝑖1 cos 𝜀 + 𝑘̂1 sin 𝜀)

= (𝐽 sin 2𝜀 + 𝐼 cos 2𝜀)𝛿 + 𝐽𝜙̇𝜀̇ cos 𝜀 + 2(𝐽 − 𝐼)𝛿̇𝜀̇ sin 𝜀 cos 𝜀 + 𝐽𝜙̈ sin 𝜀.
(13)

From Eq. (12) it can be seen that the gyroscopic reaction 𝛿 acting on
the hull opposes the wave induced pitching motion. Similarly, a second
reaction torque 𝜙 acts on the hull along the 𝑧-direction and opposes
its wave induced yaw motion:

𝜙 = G ⋅ 𝑘̂

= G ⋅
[

(𝑘̂1 cos 𝜀 − 𝑖1 sin 𝜀) cos 𝛿 + 𝑗1 sin 𝛿
]

=
[

(𝐽 − 𝐼)𝛿 sin 𝜀 cos 𝜀 + 𝛿̇𝜀̇[𝐽 (cos2 𝜀 − sin2 𝜀) + 2𝐼 sin2 𝜀]

−𝐽𝜙̇𝜀̇ sin 𝜀 + 𝐽𝜙̈ cos 𝜀
]

cos 𝛿
4

+
[

𝐼𝜀̈ + (𝐼 − 𝐽 )𝛿̇2 sin 𝜀 cos 𝜀 − 𝐽𝜙̇𝛿̇ cos 𝜀
]

sin 𝛿 (14)

In Section 7.3.1, we show that this yaw torque is the same order of
magnitude as the pitch torque 𝛿 . In practice, however, its contribu-
tion is partially cancelled out by the mooring system of the device.
Moreover, using an even number of gyroscopic units will cancel the
yaw component of the gyroscopic torque acting on the hull if each
flywheel pair spins with equal and opposite velocity, as described by
Raffero (2014). Therefore, we do not consider the effect of 𝜙 on the
ISWEC dynamics in our (3D) model.

2.2. Power transfer from waves to PTO

To understand the power transfer from waves to the hull and from
the hull to the PTO unit, we derive the time-averaged kinetic energy
equations of the ISWEC system. These equations highlight the coupled
terms that are responsible for wave energy conversion through the
ISWEC device.

First, we consider the rotation of the gyroscope around the PTO axis.
The equation of motion in the 𝜀-coordinate direction, as derived in the
previous section is re-written below

𝐼𝜀̈ + (𝐼 − 𝐽 )𝛿̇2 sin 𝜀 cos 𝜀 − 𝐽𝜙̇𝛿̇ cos 𝜀 = 𝜀 = −𝑘𝜀 − 𝑐𝜀̇. (15)

Rearranging Eq. (15) with the approximation 𝐼 ≈ 𝐽 simplifies the
equation to

𝐼𝜀̈ + 𝑐𝜀̇ + 𝑘𝜀 = 𝐽𝜙̇𝛿̇ cos 𝜀. (16)

From the above equation, it can be seen that the product of the hull’s
pitch velocity 𝛿̇ and the gyroscope’s angular velocity 𝜙̇ yields a forcing
term that drives the PTO motion. Multiplying Eq. (16) by the precession
velocity 𝜀̇ and rearranging some terms, we obtain the kinetic energy
equation for the PTO dynamics

𝐼 d
dt

(

𝜀̇2

2

)

+ 𝑐𝜀̇2 + 𝑘 d
dt

(

𝜀2

2

)

= 𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀. (17)

Taking the time-average of Eq. (17) over one wave period, the first and
third terms on the left hand side of the equation evaluate to zero. The
remaining terms describe the transfer of power from the hull to the PTO
unit:

⟨𝑐𝜀̇2⟩ = ⟨𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀⟩, (18)

in which ⟨⋅⟩ = 1
 ∫ 𝑡+𝑡 (.) dt represents the time-average of a quantity

over one wave period  .3 Here, ⟨𝑐𝜀̇2⟩ is the average power absorbed by
the PTO, denoted 𝑃PTO, and ⟨𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀⟩ is the average power generated
due to the gyroscopic motion through its interaction with the hull,

3 For irregular waves the time-average could be defined over one significant
wave period.
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Fig. 3. ISWEC hull shapes.
denoted 𝑃gyro. Similarly, the kinetic energy equation of the hull can be
derived by multiplying the hull dynamics Eq. (12) by the pitch velocity
𝛿̇

hydro𝛿̇ = 𝐼H𝛿𝛿̇ +𝛿 𝛿̇. (19)

Under the assumptions 𝐼 ≈ 𝐽 and a constant gyroscope spinning speed,
𝛿 in Eq. (13) simplifies to

𝛿 = 𝐽𝛿 + 𝐽𝜙̇𝜀̇ cos 𝜀. (20)

Using Eqs. (19) and (20), and rearranging some terms, we obtain

hydro𝛿̇ = 𝐼H
d
dt

(

𝛿̇2

2

)

+ 𝐽 d
dt

(

𝛿̇2

2

)

+ 𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀. (21)

Taking the time-average of Eq. (21) over one wave period, the first and
second terms on the right hand side evaluate to zero, and the expression
reads

⟨hydro𝛿̇⟩ = ⟨𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀⟩. (22)

Here, ⟨hydro𝛿̇⟩ is the power transferred from the waves to the hull,
denoted 𝑃hull, and ⟨𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀⟩ is the same expression on the right side
of Eq. (18). Hence, combining Eqs. (18) and (22), we obtain an equation
describing the pathway of energy transfer from waves to the PTO:

⟨hydro𝛿̇⟩
⏟⏞⏞⏞⏟⏞⏞⏞⏟
waves→hull

= ⟨𝐽𝜙̇𝛿̇𝜀̇ cos 𝜀⟩
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
hull→gyroscope

= ⟨𝑐𝜀̇2⟩
⏟⏟⏟

gyroscope→PTO

, (23)

which is written succinctly as 𝑃hull = 𝑃gyro = 𝑃PTO. Eq. (23) is
quantitatively verified for the ISWEC model under both regular and
irregular wave environments in Section 7.

2.3. PTO and gyroscope parameters

The energy transfer equation can be used to select the PTO and
gyroscope parameters that achieve a rated power of the installed device
𝑃R. From Eq. (23)

𝑐 =
𝑃R
⟨𝜀̇2⟩

=
2𝑃R

𝜀̇20
, (24)

in which 𝜀̇0 is the amplitude of the precession velocity, expressed in
terms of the amplitude of the precession angle 𝜀0 as 𝜀̇0 = 𝜀0𝜔. Here, we
assume that all of the ISWEC components are excited at the external
wave frequency 𝜔 = 2𝜋∕ to achieve optimal performance. Based on
experimental data of real ISWEC devices (Vissio, 2017; Cagninei et al.,
2015), we prescribe 𝜀0 in the range 40◦ ≤ 𝜀0 ≤ 80◦ to obtain the damp-
ing parameter 𝑐 from Eq. (24). To prescribe the rest of the gyroscope
parameters, we make use of Eq. (18). Since this expression is nonlinear,
we linearize it about 𝜀 = 0◦ (a reasonable approximation for relatively
calm conditions) to estimate the gyroscope angular momentum as

𝐽𝜙̇ =
𝑐𝜀0
𝛿0
, (25)

in which the amplitude of the hull pitch velocity 𝛿̇0 = 𝛿0𝜔, expressed in
terms of the amplitude of the hull pitch angle 𝛿0, is used. Again based
on the experimental data, we prescribe 𝛿 in the range 2◦ ≤ 𝛿 ≤ 20◦,
5

0 0
and 𝜙̇ in the range 250 ≤ 𝜙̇ ≤ 1000 RPM4 to obtain the 𝐽 value of the
gyroscope from Eq. (25). The 𝐼 value of the gyroscope is set as a scaled
value of 𝐽 , i.e. 𝐼 = 𝛾𝐽 where 𝛾 ≤ 1. We study the effect of varying 𝛾 in
Section 7.3.3.

The only remaining free parameter is the PTO stiffness 𝑘 used in
the control torque. We make use of reactive control theory (Korde and
Ringwood, 2016) and prescribe 𝑘 as

𝑘 = 𝜔2𝐼, (26)

ensuring that the gyroscopic system oscillates at the wave frequency
around the PTO axis. Using the linearized version of Eq. (16), it can be
shown that if the gyroscope oscillates with the external wave forcing
frequency, a resonance condition is achieved along the PTO axis and
the output power is maximized (Korde and Ringwood, 2016). In this
state, both the hull and gyroscopic systems oscillate at the external
wave frequency and their coupling is maximized.

2.4. Hull shape

The ISWEC’s external hull is a boat-shaped vessel, which we idealize
by a half-cylinder of length 𝐿, height 𝐻 , and width 𝑊 . For the actual
device, a part of the outer periphery is flattened out to ease the
installation of mechanical and electrical parts near the bottom-center
location (see Fig. 3(b)). We neglect these geometric details in our model
shown in Fig. 3(a). The inside of the device is mostly hollow and the
buoyancy-countering ballast is placed around the outer periphery.

The hull length 𝐿 is a function of 𝜆, the wavelength of the ‘‘design’’
wave at device installation site. As analyzed by Cagninei et al. (2015),
the optimal hull length is between 𝜆∕3 ≤ 𝐿 ≤ 𝜆∕2 for an ISWEC
device that is mainly excited in the pitch direction. The hull width W
is decided based on the rated power of the installed device 𝑃R, relative
capture width (RCW)/conversion efficiency of the device (assuming
a unit width) 𝜂, and wave power per unit crest width 𝑃wave. These
quantities are related through the expressions

𝑊 =
𝑃R

𝜂 ⋅ 𝑃wave
and 𝜂 = 𝑃PTO∕𝑃wave, (27)

in which 𝑃 denotes time-averaged power. Section 3 provides closed-
form expressions of 𝑃wave for both regular and irregular waves. For the
2D ISWEC model we use 𝑊 = 1, which corresponds to a unit crest
width of the wave.

2.5. Scaled ISWEC model

In order to reduce the computational cost of simulating a full-scale
ISWEC device operating in high Reynolds number (Re) regimes, we use
Froude scaling (Journée and Massie, 2001) to scale the model problem
down by a 1:20 ratio. The Froude number (Fr) measures the resistance
of a partially submerged object moving through water and is defined
as

Fr =
characteristic velocity

gravitational wave velocity =
𝑈c

√

𝑔𝐿c
, (28)

4 This range of 𝜙̇ is for the full-scale ISWEC device, which can be scaled by
an appropriate factor for the scaled-down model. See Section 2.5 for scaling
analyses.
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in which 𝑈c is the characteristic velocity, 𝐿c is the characteristic length,
and 𝑔 is the gravitational acceleration constant. In offshore marine
hydromechanics, Froude scaling allows us to compare the dynamics
of two vessels even if their sizes are different (since they produce a
similar wake). Two vessels having the same Froude number may not be
operating in the same Reynolds number regime. In the present study,
the scaled-down model operates in lower Re conditions and it does not
capture fine scale details such as extreme wave breaking and spray
dynamics that occur at higher Reynolds numbers. These small scale
features are mostly dictated by viscous and surface tension effects, and
a very fine computational mesh is needed to adequately resolve them.
However, the main quantities of interest such as power generated for
the full-scale device can be inferred from scaled-down simulations by
using appropriate scaling factors, some of which we derive next.

• Length scaling: The geometric parameters such as length, width
or height are simply scaled by a factor of 𝛼. In the present study,
we use 𝛼 = 20. An exception to this length scaling is hull width
in 2D, which is taken to be unity in the scaled model. Therefore
in 2D, the scaling factor for hull width is 𝑊 rather than 𝛼.

• Acceleration scaling: The full-scale and scaled-down models op-
erate under the same gravitational force field. Therefore, the
gravitational constant 𝑔 (or any other acceleration) remains un-
changed.

• Density scaling: Density is an intrinsic material property, and
thus it remains the same for both the full-scale and scaled-down
models.

• Volume scaling: Since volume is proportional to the length cubed,
it is scaled by 𝛼3.

• Mass scaling: Mass can be expressed as a product of density 𝜌 and
volume, and its scaling for 2D and 3D ISWEC models are obtained
as

𝑀model
𝑀full-scale

=
𝜌 (𝐿 ×𝐻 ×𝑊 ) ||

|model

𝜌 (𝐿 ×𝐻 ×𝑊 ) ||
|full-scale

=
𝑊model

𝛼2 ⋅𝑊full-scale
. (29)

• Velocity scaling: Velocity scaling is obtained by equating the
Froude numbers

𝑈c
√

𝑔𝐿c

|

|

|

|

|model
=

𝑈c
√

𝑔𝐿c

|

|

|

|

|full-scale
(30)

⇒
𝑈c,model
𝑈c,full-scale

=

√

𝐿c,model
𝐿c,full-scale

= 1∕𝛼
1
2 . (31)

• Time scaling: Letting 𝑡c represent a characteristic time, time
scaling can be obtained from the length and velocity scalings as

𝑈c,model
𝑈c,full-scale

=
𝐿c∕𝑡c

|

|

|model

𝐿c∕𝑡c
|

|

|full-scale

(32)

⇒
𝑡c,model
𝑡c,full-scale

= 1∕𝛼
1
2 . (33)

Similarly, scaling factors of other quantities of interest such as force
and power can be obtained in terms of 𝛼, and are enumerated in
Table 1 for both two and three spatial dimensions. Full-scale (scaled-
down) quantities should be divided (multiplied) by factors in the third
and fourth columns to obtain the scaled-down (full-scale) quantities, in
three and two spatial dimensions, respectively.

2.6. Scaled hull parameters

In this section, we use the Froude scaling derived in the previous
section to obtain the scaled-down hull parameters required for our
simulations. The scaled-down parameters of the gyroscope will be
6

presented in Section 7, where they are systematically varied to study
Table 1
Froude scaling of various quantities for the 3D and 2D ISWEC models. Dimensional
units for the quantities used in this work are shown in column 2.

Quantity Units Scaled 3D model Scaled 2D model

Length m 𝛼 𝛼
Area m2 𝛼2 𝛼2

Volume m3 𝛼3 –
Time s 𝛼

1
2 𝛼

1
2

Velocity m/s 𝛼
1
2 𝛼

1
2

Acceleration m/s2 1 1
Frequency s−1 𝛼−

1
2 𝛼−

1
2

Angular velocity s−1 𝛼−
1
2 𝛼−

1
2

Mass kg 𝛼3 𝛼2 ⋅𝑊
Density kg/m3 1 1
Force kg m/s2 𝛼3 𝛼2 ⋅𝑊
Moment of inertia kg m2 𝛼5 𝛼4 ⋅𝑊
Torque kg m2/s2 𝛼4 𝛼3 ⋅𝑊
Power kg m2/s3 𝛼

7
2 𝛼

5
2 ⋅𝑊

their effect on device performance. The hull properties of the full-
scale ISWEC device are taken from an experimental campaign (Cagninei
et al., 2015; Vissio, 2017) conducted at the Pantelleria test site in the
Mediterranean Sea.

The scaled-down (1:20) values of the hull properties are tabulated
in Table 2. To verify that the scaled-down values correlate well to
the model geometry, we perform geometric estimation of the hull
properties by assuming the hull to be a filled sector of a circle in
two spatial dimensions. The geometric center (GC) and the center of
buoyancy (CB) of the submerged sector can be calculated geometrically,
and are found to be located at a distance 𝑍GC = 0.0163 m and 𝑍CB
= 0.0605 m below the still waterline, respectively (see Fig. 4). From
Table 2, the scaled distance between the center of gravity of the device
and waterline is 𝑍CG = 0.0285 m. It can be seen that the CB lies below
the CG and GC, satisfying the stability condition for floating bodies.
Additionally CG lies below GC because in the real device, more mass is
distributed towards the lower half portion.

Similarly, the scaled-down moment of inertia of the hull 𝐼H can be
argued geometrically. We first estimate the density of the hull from
the scaled mass (90 kg) and the area of the sector (0.1225 m2) to
be 𝜌estimate = 734.69 kg∕m3. Then we use 𝜌estimate to calculate the
moment of inertia of the filled sector about its geometric center as 𝐼GC
= 3.1768 kg m2. In the real device, most of the mass is concentrated
along the outer periphery, resembling a ring rather than a filled sector.
Since, the moment of inertia of a ring is twice as that of a filled circle,
𝐼estimate ≈ 2𝐼GC = 6.3536 kg m2, which is close to what we obtain from
Table 2.

3. Wave dynamics

This section describes the types of waves, both regular and irregular,
and the numerical tank approach used to simulate the ISWEC dynamics.

3.1. Regular waves

We use Fenton’s fifth-order wave theory (Fenton, 1985) to generate
regular waves of height , time period  , and wavelength 𝜆. According
to fifth-order Stokes theory and assuming that the waves propagate in
the positive 𝑦-direction, the wave elevation 𝜂(𝑦, 𝑡) from a still water
surface at depth 𝑑 above the sea floor is

𝜂(𝑦, 𝑡) = 𝑠 𝜂1(𝑦, 𝑡) + 𝑠2 𝜂2(𝑦, 𝑡) + 𝑠3 𝜂3(𝑦, 𝑡) + 𝑠4 𝜂4(𝑦, 𝑡) + 𝑠5 𝜂5(𝑦, 𝑡), (34)

in which, 𝑠 = 𝜅∕2 is the wave steepness, 𝜂1 = 𝜅−1 cos(𝜔𝑡 − 𝜅𝑦) is
the basic harmonic component, 𝜅 = 2𝜋∕𝜆 is the wavenumber, and
𝜔 = 2𝜋∕ is the wave frequency. The remaining terms in Eq. (34) are
higher-order corrections to linear wave theory, whose details are given
in Fenton (1985). The velocity and pressure solutions to the fifth-order
Stokes wave can also be found in Fenton (1985).
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Table 2
ISWEC hull full-scale and scaled-down parameters. Freeboard (FB) is the distance between the hull top surface and the still
waterline, which is found experimentally.
Hull property Notation Units Full-scale Scaled-down 3D model Scaled-down 2D model

Length 𝐿 m 15.33 0.7665 0.7665
Height 𝐻 m 4.5 0.225 0.225
Width 𝑊 m 8 0.4 1
Freeboard FB m 1.52 0.076 0.076
Center of gravity 𝑍CG m 0.57 0.0285 0.0285
Mass 𝑀H kg 288000 36 90
Pitch moment of inertia 𝐼H kg m2 7.712 × 106 2.41 6.025
Fig. 4. Hull geometry with properties: 𝐿 = 0.7665 m, 𝐻 = 0.225 m, 𝑅 = 0.4389 m and 𝜉 = 60.83◦.
i
a
p

The (fifth-order) Stokes waves satisfy the dispersion relationship
iven by
2 = 𝑔𝜅 tanh (𝜅𝑑), (35)

hich relates the wavenumber 𝜅 to the wave frequency 𝜔. Eq. (35) is an
mplicit equation requiring an iterative process to compute 𝜅 given 𝜔,
r vice versa. Instead, an explicit equation can be used with sufficient
ccuracy in all water depth regimes (Fenton, 1988):

𝑑 ≈
𝛤 + 𝛽2 (cosh 𝛽)−2

tanh 𝛽 + 𝛽 (cosh 𝛽)−2
, (36)

in which, 𝛽 = 𝛤 (tanh𝛤 )−
1
2 , and 𝛤 = 𝜔2𝑑∕𝑔.

A converter’s efficiency 𝜂 is measured relative to the available wave
energy at the installation site. The traveling water waves transport (ki-
netic and potential) energy as they move along the sea or ocean surface,
which is partially absorbed by the converter. The time-averaged wave
power per unit crest width carried by regular waves in the propagation
direction is given by Journée and Massie (2001)

𝑃wave =
1
8
𝜌w𝑔2𝑐g, (37)

n which 𝜌w is the density of water and 𝑐g is the group velocity of waves
the velocity with which wave energy is transported) given by

g = 1
2
𝜆


(

1 + 2𝜅𝑑
sinh(2𝜅𝑑)

)

. (38)

In the deep water limit, where 𝑑 > 𝜆∕2 and 𝜅𝑑 → ∞, Eqs. (35) and (38)
become

𝜔2 = 𝑔𝜅 or 𝜆 =
𝑔 2

2𝜋
and 𝑐g = 𝜆

2
. (deep water limit)

(39)

Using Eq. (39) in Eq. (37), the wave power in the deep water limit can
be expressed as

𝑃 =
𝜌w𝑔22

≈ 2 kW/m, (deep water limit) (40)
7

wave 32𝜋
in which the constant numerical factor 𝜌w𝑔2∕32𝜋 ≈ 103 when evaluated
with SI units.

When simulating a scaled-down model, both  and 𝜆 are scaled-
down by the length scale 𝛼 to generate waves similar to the full-
scale model. The scaled time period is obtained from the dispersion
relationship between 𝜆 and  .

3.2. Irregular waves

Irregular waves depict a more realistic sea state and are modeled
as a superposition of a large number of first-order regular wave com-
ponents. Using the superposition principle, the sea surface elevation is
expressed as

𝜂(𝑦, 𝑡) =
𝑁
∑

𝑖=1
𝑎𝑖 cos(𝜅𝑖𝑦 − 𝜔𝑖𝑡 + 𝜃𝑖), (41)

n which 𝑁 is the number of wave components, each having its own
mplitude 𝑎𝑖, angular frequency 𝜔𝑖, wavenumber 𝜅𝑖, and a random
hase 𝜃𝑖. The wavenumber 𝜅𝑖 is related to the angular frequency 𝜔𝑖

by the dispersion relationship given by Eq. (35). The phases 𝜃𝑖 of each
wave component are random variables following a uniform distribution
in the range [0, 2𝜋].

The linear superposition of wave components also implies that
the energy carried by an irregular wave is the sum of the energy
transported by individual wave components. When the number of wave
components 𝑁 tends to infinity, a continuous wave spectral density
function 𝑆(𝜔) is used to describe the energy content of the wave compo-
nents in an infinitesimal frequency bandwidth d𝜔. The area under the
curve gives the total energy of an irregular wave, modulo the factor
𝜌w𝑔. Discretely, the component wave frequencies are typically chosen
at an equal interval of 𝛥𝜔 between a narrow bandwidth of frequencies.
The wave spectrum 𝑆(𝜔) approaches zero for frequencies outside the
narrow bandwidth and peaks at a particular value of frequency 𝜔p (here
we consider only singly-peaked wave spectra). The amplitude of each
wave component is related to the spectral density function by

𝑎 =
√

2 ⋅ 𝑆(𝜔 ) ⋅ 𝛥𝜔. (42)
𝑖 𝑖
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Fig. 5. The JONSWAP wave spectrum obtained using s = 0.1 m, and p = 1 s (𝜔p = 2𝜋
rad/s).

The standard uni-directional wave energy spectra 𝑆(𝜔) are based on
two parameters: the significant wave height and the average wave
period (Journée and Massie, 2001). One such wave energy spectrum
was defined by Hasselmann et al. (1973), who analyzed the fetch-
limited (or coastal) wind generated sea data collected during the Joint
North Sea Wave Project (JONSWAP) carried out in 1968 and 1969. In
this work we use the JONSWAP spectrum to generate irregular waves,
which reads as

𝑆(𝜔) =
320 ⋅2

s

 4
p

⋅ 𝜔−5 ⋅ exp

(

−1950
 4

p
⋅ 𝜔−4

)

⋅ 𝛾𝐴, (43)

n which s is the significant wave height, and p is the peak time
period, i.e., the time period with the highest spectral peak (see Fig. 5).
The remaining parameters in Eq. (43) are:

𝛾 = 3.3 (peakedness factor) (44)

𝐴 = exp

⎡

⎢

⎢

⎢

⎣

−
⎛

⎜

⎜

⎝

𝜔
𝜔p

− 1

𝜎
√

2

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

p = 2𝜋
p

(angular frequency at spectral peak) (45)

𝜎 =
{

0.07 if 𝜔 ≤ 𝜔p
0.09 if 𝜔 > 𝜔p

(46)

The peak enhancement factor 𝛾𝐴 in Eq. (43) accounts for the fully-
developed sea state. For more details on the assumptions used to define
the JONSWAP spectrum, we refer the readers to Hasselmann et al.
(1973).

The mean wave power per unit crest width carried by an irregular
wave is obtained from 𝑆(𝜔) as

𝑃wave = 𝜌w𝑔
(

∫

∞

0
𝑆(𝜔) d𝜔

)

𝑐g ≈ 𝜌w𝑔

( 𝑁
∑

𝑖=1

1
2
𝑎2𝑖

)

𝑐g, (47)

in which the group velocity 𝑐g is calculated from Eq. (38) using the
significant wavelength and peak time period of the spectrum. In the
deep water limit, Eq. (47) simplifies to

𝑃wave ≈ 0.492
s p kW/m. (deep water limit). (48)

3.3. Wave steepness

As discussed in Section 2.3, if the oscillation frequencies of the hull
and gyroscope system are synchronized with that of the wave, the
coupling between the hull and the gyroscope system (and therefore
8

the output power) can be increased. Along with frequency synchro-
nization, the oscillation amplitude of the hull can also be increased
to enhance the device performance. This will result in more power
transfer from the hull to the gyroscope system. The wave steepness (𝑠)
defined in Eq. (34), which gives a relation between the wave height
 and wavelength 𝜆, plays an important role in deciding the PTO
and gyroscope system parameters such that the hull exhibits larger
pitching motion. This is achieved by adjusting the gyroscope and PTO
parameters such that the maximum hull pitch angle (amplitude) 𝛿0
is expected to reach the maximum wave steepness angle 𝛿s of the
incoming wave. An expression for 𝛿s can be obtained by approximating
the incoming wave as a regular (simple harmonic) wave with elevation
𝜂(𝑦, 𝑡) given by

𝜂(𝑦, 𝑡) = 𝑎 ⋅ cos(𝜅𝑦 − 𝜔𝑡), (49)

here 𝑎 = /2, is the wave amplitude. Differentiating the above
quation with respect to 𝑦, we obtain
d𝜂(𝑦, 𝑡)
d𝑦

= 𝑎 ⋅ (−𝜅 sin(𝜅𝑦 − 𝜔𝑡)). (50)

he maximum wave steepness (i.e. the slope) is obtained when sin(𝜅𝑦−
𝑡) = −1,

(

d𝜂(𝑦, 𝑡)
d𝑦

)

max
= 𝜅 ⋅


2

= 𝑠. (51)

Finally, the maximum wave steepness angle is then given by

𝛿s = tan−1
(𝜅

2

)

= tan−1
(𝜋
𝜆

)

(52)

When the condition 𝛿0 = 𝛿s is used to calculate the gyroscope and PTO
parameters, the ISWEC device is observed to have maximum efficiency.
A study on the variation of 𝛿0 relative to 𝛿s for different wave heights
is conducted in Section 7.2.

3.4. Numerical wave tank

The wave–structure interaction of the scaled-down ISWEC device
is simulated in a numerical wave tank (NWT) as shown in Fig. 6.
Water waves are generated at the left boundary of the domain using
Dirichlet boundary conditions for the velocity components. The waves
traveling in the positive 𝑦-direction are reflected back towards the
inlet side from the device surface and also from the right boundary
of the domain. This results in wave distortion and wave interference
phenomena, which reduces the ‘‘quality’’ of waves reaching the device
to study its performance. Several techniques have been proposed in
the literature (Miquel et al., 2018; Windt et al., 2018, 2019) to mit-
igate these effects, including the relaxation zone method (Jacobsen
et al., 2012), the active wave absorption method (Higuera et al.,
2013; Frigaard and Brorsen, 1995; Schäffer and Klopman, 2000), the
momentum damping method (Choi and Yoon, 2009; Ha et al., 2013),
the viscous beach method (Ghasemi et al., 2014), the porous media
method (Dong and Zhan, 2009; Jacobsen et al., 2015), and the mass-
balance PDE method (Hu et al., 2016). In this work, we use the
relaxation zone method at inlet and outlet boundaries. The purpose of
the relaxation zone near the channel inlet (the wave generation zone)
is to smoothly extend the Dirichlet velocity boundary conditions into
the wave tank up to a distance of one wavelength, so that the reflected
waves coming from the ISWEC device do not interfere with the left
boundary. In contrast, the relaxation zone near the right boundary
(the wave damping zone) smoothly damps out the waves reaching the
domain outlet near the right end. The wave damping zone is taken
to be two wavelengths wide in our simulations. More details on the
implementation of the relaxation zone method and level set based NWT
can be found in our prior work (Nangia et al., 2019a).

We impose zero-pressure boundary condition at the channel top
boundary, 𝑧max = 2.75𝑑. To mitigate the interaction between shed
vortices (due to the device motion) and the top boundary of the
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Fig. 6. Numerical wave tank (NWT) schematic showing wave generation, wave damping, and vorticity damping zones. The ISWEC device is placed in the working zone of length
7𝜆.
channel, we use a vorticity damping zone to dissipate the vortex
structures reaching the boundary; see Fig. 6. The vorticity damping
zone is implemented in terms of a damping force 𝐟d in the momentum
equation

𝐟d = −𝑔̆(𝑧̃)𝐮, (53)

in which, 𝑔̆(𝑧̃) = 𝜌air (cos(𝜋𝑧̃) + 1)∕(4𝛥𝑡) is the smoothed damping
coefficient, 𝜌air is the density of the air phase, 𝛥𝑡 is the time step
size, 𝑧̃ = (𝑧 − 𝑧max)∕𝛥d is the normalized 𝑧 coordinate, and 𝛥d is the
vorticity damping zone width, which is taken to be six cells wide in
our simulations.

4. Numerical model based on the incompressible Navier–Stokes
equations

We use a fully-Eulerian fictitious domain Brinkman penalization
(FD/BP) method (Bhalla et al., 2020) to perform fully-resolved wave–
structure interaction simulations. In the fictitious domain methods,
the governing equations for the fluid are extended into the region
occupied by the solid structure, yielding a single set of PDEs for the
entire domain. Additional constraints are imposed in the structure
domain to ensure that the velocity field within acts like a rigid body.
This is in contrast to body-conforming grid methods, in which the
fluid equations are solved only on a domain surrounding the im-
mersed body. For applications involving moving body fluid–structure
interaction (FSI), fictitious domain methods are computationally less
expensive than body-conforming grid techniques due to the absence of
expensive re-meshing operations.

In this section, we first describe the continuous governing equations
for the FD/BP formulation and the interface tracking approach for the
multiphase FSI system. Next, we briefly describe the spatiotemporal dis-
cretization, overall solution methodology, and time-stepping scheme.
Finally, we describe the coupling used to simulate the dynamics of an
inertial sea wave energy converter device, which involves modeling the
effect of a rigid body pitch torque. A validation case for vortex induced
vibration of a rectangular plate exhibiting galloping motion is presented
at the end of this section. We refer readers to the references by Nangia
et al. (2019a,b), Bhalla et al. (2020) and Dafnakis et al. (2020) for
more details on the Cartesian grid fluid solver, FD/BP formulation, and
simulating wave energy converters within this framework, respectively.

4.1. Continuous equations of motion

Let 𝛺 ⊂ R𝑑 with 𝑑 = 3 denote a fixed three-dimensional region in
space. The dynamics of a coupled multiphase fluid–structure system oc-
cupying this domain are governed by the incompressible Navier–Stokes
(INS) equations
𝜕𝜌𝐮(𝐱, 𝑡)

𝜕𝑡
+ ∇ ⋅ 𝜌𝐮(𝐱, 𝑡)𝐮(𝐱, 𝑡) = −∇𝑝(𝐱, 𝑡) + ∇ ⋅

[

𝜇
(

∇𝐮(𝐱, 𝑡) + ∇𝐮(𝐱, 𝑡)𝑇
)]

+ 𝜌𝐠 + 𝐟c(𝐱, 𝑡), (54)

∇ ⋅ 𝐮(𝐱, 𝑡) = 0, (55)
9

which describe the momentum and incompressibility of a fluid with
velocity 𝐮(𝐱, 𝑡) and pressure 𝑝(𝐱, 𝑡) using an Eulerian coordinate system
𝐱 = (𝑥, 𝑦, 𝑧) ∈ 𝛺. Note that Eqs. (54) and (55) are written for the
entire fixed region 𝛺, which can be further decomposed into two
regions occupied by the fluid 𝛺f(𝑡) ⊂ 𝛺 and the immersed body
𝛺b(𝑡) ⊂ 𝛺. These regions are non-overlapping, i.e. 𝛺 = 𝛺f(𝑡) ∪ 𝛺b(𝑡),
and 𝐟c(𝐱, 𝑡) represents a rigidity-enforcing constraint force density that
vanishes outside 𝛺b(𝑡); this ensures a rigid body velocity 𝐮b(𝐱, 𝑡) is
attained within the solid region. The spatiotemporally varying density
and viscosity fields are denoted by 𝜌(𝐱, 𝑡) and 𝜇(𝐱, 𝑡), respectively. An
indicator function 𝜒(𝐱, 𝑡) is further used to track the location of the
solid body, which is nonzero only within 𝛺b(𝑡). The acceleration due
to gravity is directed towards the negative 𝑧-direction: 𝐠 = (0, 0,−𝑔).

The immersed structure is treated as a porous region with vanishing
permeability 𝜅p ≪ 1, yielding the following formula for the Brinkman
penalized constraint force

𝐟c(𝐱, 𝑡) =
𝜒(𝐱, 𝑡)
𝜅p

(

𝐮b(𝐱, 𝑡) − 𝐮(𝐱, 𝑡)
)

. (56)

Section 4.4.5 describes the fluid–structure coupling algorithm, and
Section 4.4.6 describes the external ISWEC torque specification, which
together are used to determine the rigid body velocity 𝐮b(𝐱, 𝑡) applied
to 𝛺b(𝑡).

4.2. Interface tracking

All of the cases described in the present work involve a single rigid
structure interacting with an air–water interface. We briefly describe
the interface tracking methodology here, and refer readers to Nangia
et al. (2019b,a) for further details on its implementation. A scalar level
set function 𝜎(𝐱, 𝑡) is used to demarcate liquid (water) and gas (air)
regions, 𝛺l ⊂ 𝛺 and 𝛺g ⊂ 𝛺, respectively, in the computational
domain. The air–water interface 𝛤 (𝑡) = 𝛺l ∩ 𝛺g is implicitly defined
by the zero-contour of 𝜎. The same methodology is employed to track
the surface of the immersed body 𝑆b(𝑡) = 𝜕𝑉b(𝑡) using the zero-contour
of a level set function 𝜓(𝐱, 𝑡); the aforementioned indicator function for
the solid domain is computed based on 𝜓 . The evolution of these level
set fields is governed by linear advection via the local fluid velocity
field
𝜕𝜎
𝜕𝑡

+ ∇ ⋅ 𝜎𝐮 = 0, (57)
𝜕𝜓
𝜕𝑡

+ ∇ ⋅ 𝜓𝐮 = 0. (58)

Making use of the signed distance property, the density and viscosity
across the entire computational domain can be conveniently expressed
as a functions of 𝜎(𝐱, 𝑡) and 𝜓(𝐱, 𝑡)

𝜌(𝐱, 𝑡) = 𝜌(𝜎(𝐱, 𝑡), 𝜓(𝐱, 𝑡)), (59)

𝜇(𝐱, 𝑡) = 𝜇(𝜎(𝐱, 𝑡), 𝜓(𝐱, 𝑡)). (60)

After every time step, both level set functions are reinitialized to main-
tain signed distance functions to their respective interfaces. Standard
approaches for computing a steady-state solution to the Hamilton–
Jacobi equation is used to reinitialize 𝜎, whereas an analytical distance
computation to the immersed body is used to reinitialize 𝜓 .
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Fig. 7. (a) Schematic of a two-dimensional slice through the computational domain 𝛺, in which an immersed body interacts with an air–water interface. (b) Cartesian mesh
iscretization of the domain 𝛺 and the value of the indicator function 𝜒(𝐱, 𝑡) used to differentiate between the fluid and solid regions in the FD/BP method; 𝜒(𝐱, 𝑡) = 1 inside

the solid domain and 𝜒(𝐱, 𝑡) = 0 in air and water domains. The zero-contour of 𝜎(𝐱, 𝑡) tracks the air–water interface 𝛤 (𝑡), while the zero-contour of 𝜓(𝐱, 𝑡) tracks the solid–fluid
interface 𝑆b(𝑡).
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4.3. Spatial discretization

The continuous equations of motion Eqs. (54)–(55) are discretized
on a staggered Cartesian grid made up of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 rectan-
gular cells covering the domain 𝛺; see Fig. 7. The mesh spacings
in the three spatial directions are denoted by 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧 re-
pectively. Without loss of generality, let the lower left corner of
he rectangular domain be the origin (0, 0, 0) of the coordinate sys-
em. Using this reference point, each cell center of the grid has po-
ition 𝐱𝑖,𝑗,𝑘 =

(

(𝑖 + 1
2 )𝛥𝑥, (𝑗 +

1
2 )𝛥𝑦, (𝑘 +

1
2 )𝛥𝑧

)

for 𝑖 = 0,… , 𝑁𝑥 − 1,
𝑗 = 0,… , 𝑁𝑦 − 1, and 𝑘 = 0,… , 𝑁𝑧 − 1. The physical location
f the cell face that is half a grid cell away from 𝐱𝑖,𝑗,𝑘 in the 𝑥-
irection is given by 𝐱𝑖− 1

2 ,𝑗,𝑘
=

(

𝑖𝛥𝑥, (𝑗 + 1
2 )𝛥𝑦, (𝑘 +

1
2 )𝛥𝑧

)

. Similarly,

𝐱𝑖,𝑗− 1
2 ,𝑘

=
(

(𝑖 + 1
2 )𝛥𝑥, 𝑗𝛥𝑦, (𝑘 +

1
2 )𝛥𝑧

)

and 𝐱𝑖,𝑗,𝑘− 1
2

=
(

(𝑖 + 1
2 )𝛥𝑥, (𝑗 +

1
2 )

𝛥𝑦, 𝑘𝛥𝑧
)

are the physical locations of the cell faces that are half
grid cell away from 𝐱𝑖,𝑗,𝑘 in the 𝑦- and 𝑧-directions, respectively.

he level set fields, pressure degrees of freedom, and the material
roperties are all approximated at cell centers and are denoted 𝜎𝑛𝑖,𝑗,𝑘 ≈
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, 𝜓𝑛𝑖,𝑗,𝑘 ≈ 𝜓
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, 𝑝𝑛𝑖,𝑗,𝑘 ≈ 𝑝
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, 𝜌𝑛𝑖,𝑗,𝑘 ≈ 𝜌
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

nd 𝜇𝑛𝑖,𝑗,𝑘 ≈ 𝜇
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, respectively; some of these quantities are in-
erpolated onto the required degrees of freedom as needed (see Nangia
t al., 2019b for further details). Here, the time at time step 𝑛 is denoted
𝑛. The velocity degrees of freedom are approximated on cell faces,
ith notation 𝑢𝑛

𝑖− 1
2 ,𝑗,𝑘

≈ 𝑢
(

𝐱𝑖− 1
2 ,𝑗,𝑘

, 𝑡𝑛
)

, 𝑣𝑛
𝑖,𝑗− 1

2 ,𝑘
≈ 𝑣

(

𝐱𝑖,𝑗− 1
2 ,𝑘
, 𝑡𝑛

)

, and

𝑤𝑛
𝑖,𝑗,𝑘− 1

2

≈ 𝑤
(

𝐱𝑖,𝑗,𝑘− 1
2
, 𝑡𝑛

)

. The gravitational body force and constraint
orce density on the right-hand side of the momentum equation (54)
re also approximated on the cell faces.

Second-order finite differences are used to discretize all spatial
erivatives. Subsequently, the discretized version of these differential
perators are denoted with ℎ subscripts; i.e., ∇ ≈ ∇ℎ. For more details
n the spatial discretization, we refer readers to prior studies (Nangia
t al., 2019b; Cai et al., 2014; Griffith, 2009; Bhalla et al., 2013).

.4. Solution methodology

Next, we describe the methodology used to solve the discretized
quations of motion. At a high level, this involves three major steps:

1. Specifying the material properties 𝜌(𝐱, 𝑡) and 𝜇(𝐱, 𝑡) throughout
the computational domain.

2. Calculating the Brinkman penalization rigidity constraint force
density 𝐟c based on the ISWEC dynamics

3. Computing the updated solutions to 𝜎, 𝜓 , 𝐮, and 𝑝.
10

t

n the present work, we briefly review the computations above in the
ontext of ISWEC devices with a single unlocked rotational degree of
reedom. For a more general treatment of the FD/BP method, we refer
eaders to previous work by Bhalla et al. (2020) and references therein.

.4.1. Density and viscosity specification
At the air–water 𝛤 and fluid–solid 𝑆b interfaces, a smoothed Heav-

side function is used to transition between the three phases. In this
ransition region, 𝑛cells grid cells are used on either side of the interfaces
o provide a smooth variation of material properties. A given material
roperty ℑ (such as density 𝜌 or viscosity 𝜇) is prescribed throughout
he computational domain first by computing the flowing phase (i.e. air
nd water)

flow
𝑖,𝑗,𝑘 = ℑl + (ℑg −ℑl)𝐻̃ flow

𝑖,𝑗,𝑘 , (61)

nd then correcting ℑflow to account for the solid region

full
𝑖,𝑗,𝑘 = ℑs + (ℑflow

𝑖,𝑗,𝑘 −ℑs)𝐻̃
body
𝑖,𝑗,𝑘 . (62)

ere, ℑfull is the final scalar material property field throughout 𝛺. Stan-
ard numerical Heaviside functions are used to facilitate the transition
pecified by Eqs. (61) and (62):

𝐻̃ flow
𝑖,𝑗,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝜎𝑖,𝑗,𝑘 < −𝑛cells𝛥𝑥,
1
2

(

1 + 1
𝑛cells𝛥𝑥

𝜎𝑖,𝑗,𝑘 +
1
𝜋
sin

(

𝜋
𝑛cells𝛥𝑥

𝜎𝑖,𝑗,𝑘
))

, |𝜎𝑖,𝑗,𝑘| ≤ 𝑛cells𝛥𝑥,

1, otherwise,

(63)

𝐻̃body
𝑖,𝑗,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝜓𝑖,𝑗,𝑘 < −𝑛cells𝛥𝑥,
1
2

(

1 + 1
𝑛cells𝛥𝑥

𝜓𝑖,𝑗,𝑘 +
1
𝜋
sin

(

𝜋
𝑛cells𝛥𝑥

𝜓𝑖,𝑗,𝑘
))

, |𝜓𝑖,𝑗,𝑘| ≤ 𝑛cells𝛥𝑥,

1, otherwise,

(64)

e use the same number of transition cells 𝑛cells = 2 for both air–water
nd fluid–solid interfaces in our simulations, although this is not an
nherent limitation of our method. We refer readers to Nangia et al.
2019a) for more discussion.

.4.2. Time stepping scheme
A fixed-point iteration time stepping scheme using 𝑛cycles = 2 cycles

er time step is used to evolve quantities from time level 𝑡𝑛 to time
evel 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡. A 𝑘 superscript is used to denote the cycle number
f the fixed-point iteration. At the beginning of each time step, the
olutions from the previous time step are used to initialize cycle 𝑘 = 0:
𝑛+1,0 = 𝐮𝑛, 𝑝𝑛+

1
2 ,0 = 𝑝𝑛−

1
2 , 𝜎𝑛+1,0 = 𝜎𝑛, and 𝜓𝑛+1,0 = 𝜓𝑛. At the initial

ime 𝑛 = 0, the physical quantities are prescribed via initial condition.
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4.4.3. Level set advection
An standard explicit advection scheme is used to evolve the two

level set functions
𝜎𝑛+1,𝑘+1 − 𝜎𝑛

𝛥𝑡
+𝑄

(

𝐮𝑛+
1
2 ,𝑘, 𝜎𝑛+

1
2 ,𝑘

)

= 0, (65)

𝜓𝑛+1,𝑘+1 − 𝜓𝑛

𝛥𝑡
+𝑄

(

𝐮𝑛+
1
2 ,𝑘, 𝜓𝑛+

1
2 ,𝑘

)

= 0, (66)

n which 𝑄(⋅, ⋅) represents an explicit piecewise parabolic method
xsPPM7-limited) approximation to the linear advection terms on cell
enters (Griffith, 2009; Rider et al., 2007).

.4.4. Incompressible Navier–Stokes solution
The following spatiotemporal discretization of the incompressible

avier–Stokes Eqs. (54)–(55) (in conservative form) is employed

𝝆̆𝑛+1,𝑘+1𝐮𝑛+1,𝑘+1 − 𝝆𝑛𝐮𝑛

𝛥𝑡
+ 𝐂𝑛+1,𝑘 = −∇ℎ𝑝

𝑛+ 1
2
,𝑘+1 +

(

𝐋𝜇𝐮
)𝑛+ 1

2
,𝑘+1 +℘𝑛+1,𝑘+1𝐠 + 𝐟𝑛+1,𝑘+1c ,

(67)

∇ℎ ⋅ 𝐮𝑛+1,𝑘+1 = 0, (68)

n which the discretized convective derivative 𝐂𝑛+1,𝑘 and the den-
ity approximation 𝝆̆𝑛+1,𝑘+1 are computed using a consistent mass/
omentum transport scheme; this is vital to ensure numerical stability

or cases involving air–water density ratios. This scheme is described
n detail in previous studies by Nangia et al. (2019b) and Bhalla et al.
2020). A standard semi-implicit approximation to the viscous strain
ate

(

𝐋𝜇𝐮
)𝑛+ 1

2 ,𝑘+1 = 1
2

[

(

𝐋𝜇𝐮
)𝑛+1,𝑘+1 +

(

𝐋𝜇𝐮
)𝑛
]

is employed, in which
(

𝐋𝜇
)𝑛+1 = ∇ℎ ⋅

[

𝜇𝑛+1
(

∇ℎ𝐮 + ∇ℎ𝐮𝑇
)𝑛+1

]

. The two-stage process described
by Eqs. (61) and (62) is used to obtain the newest approximation to
viscosity 𝜇𝑛+1,𝑘+1. The flow density field is used to construct the gravita-
tional body force term ℘𝐠 = 𝝆flow𝐠, which avoids spurious currents due
to large density variation near the fluid–solid interface (Nangia et al.,
2019a).

4.4.5. Fluid–structure coupling
Next, we describe the Brinkman penalization term that imposes the

rigidity constraint in the solid region, and the overall fluid–structure
coupling scheme. In this work, we simplify the treatment of the FSI cou-
pling by only considering immersed bodies with a single unlocked rota-
tional degree of freedom (DOF); a more general approach is described
in Bhalla et al. (2020).

The Brinkman penalization term is treated implicitly and computed
as

𝐟𝑛+1,𝑘+1c =
𝜒
𝜅p

(

𝐮𝑛+1,𝑘+1b − 𝐮𝑛+1,𝑘+1
)

, (69)

n which the discretized indicator function 𝜒 = 1 − 𝐻̃body is 1 only
inside the body domain and defined using the structure Heaviside
function 𝐻̃body from Eq. (64). A permeability value of 𝜅p ∼ (10−8)
has been shown to be sufficiently small enough to effectively enforce
the rigidity constraint (Gazzola et al., 2011; Bhalla et al., 2020). With
𝐗com denoting the position of the center of mass of the body, the rigid
body velocity 𝐮b = 𝐔r +𝐖r ×

(

𝐱 − 𝐗com
)

can be expressed as a sum of
translational 𝐔r and rotational 𝐖r velocities. In this work, 𝐔r = 𝟎 and

e simply have
𝑛+1,𝑘+1
b = 𝐖𝑛+1,𝑘+1

r ×
(

𝐱 − 𝐗𝑛+1,𝑘+1com
)

. (70)

oreover, two of the rotational DOFs are locked in the present study,
.e. they are constrained to zero. Hence, the expression for 𝐖r can be
implified even further,

𝑛+1,𝑘+1
r =

(

𝛿̇𝑛+1,𝑘+1, 0, 0
)

, (71)

̇
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n which 𝛿 is the rotational velocity of the structure about its pitch axis.
The rigid body velocity can be computed by integrating Newton’s
econd law of motion for the pitch axis rotational velocity:

H
𝛿̇𝑛+1,𝑘+1 − 𝛿̇𝑛

𝛥𝑡
= 𝑛+1,𝑘

hydro −𝑛+1,𝑘
𝛿 , (72)

in which 𝐼H is the moment of inertia of the hull, hydro is the net
hydrodynamic torque, and 𝑛+1,𝑘

𝛿 is the projection of the gyroscopic
torque about the 𝑥-axis. The net hydrodynamic torque is computed by
summing the contributions from pressure and viscous forces acting on
the hull and taking the pitch component

hydro = 𝑖 ⋅

[

∑

f

(

𝐱 − 𝐗𝑛+1,𝑘
com

)

×
(

−𝑝𝑛+1,𝑘𝐧f + 𝜇f

(

∇ℎ𝐮𝑛+1,𝑘 +
(

∇ℎ𝐮𝑛+1,𝑘
)𝑇

)

⋅ 𝐧f

)

𝛥𝐴f

]

.

(73)

he hydrodynamic traction in the above equation is evaluated on
artesian grid faces near the hull that define a stair-step representation
f the body on the Eulerian mesh (Bhalla et al., 2020), with 𝐧f and 𝛥𝐴f

representing the unit normal vector and the area of a given cell face,
respectively. The computation of the gyroscopic action 𝛿 is described
in the following section.

4.4.6. Coupling the ISWEC dynamics
The ISWEC is allowed to freely rotate about its pitch axis and its

motion depends on the hydrodynamic and external torques acting on it.
The external torque 𝛿 generated by the gyroscopic action is unloaded
on the hull and opposes the wave-induced pitching motion. Therefore,
𝛿 appears with negative sign on the right side of Eq. (72). The
analytical expression for this pitch torque is given by Eq. (13), while
its discretization is written as

𝑛+1,𝑘
𝛿 =

(

𝐽 sin 2𝜀𝑛+1,𝑘 + 𝐼 cos 2𝜀𝑛+1,𝑘
)

𝛿𝑛+1,𝑘 + 𝐽𝜙̇𝜀̇𝑛+1,𝑘 cos 𝜀𝑛+1,𝑘

+ 2 (𝐽 − 𝐼) 𝛿̇𝑛+1,𝑘𝜀̇𝑛+1,𝑘 sin 𝜀𝑛+1,𝑘 cos 𝜀𝑛+1,𝑘 + 𝐽𝜙̈ sin 𝜀𝑛+1,𝑘, (74)

in which the pitch acceleration term 𝛿𝑛+1,𝑘 is calculated using a stan-
dard finite difference (explicit forward Euler) of the hull’s pitch veloc-
ity:

𝛿𝑛+1,𝑘 =

⎧

⎪

⎨

⎪

⎩

𝛿̇𝑛+1,𝑘−𝛿̇𝑛
𝛥𝑡 , 𝑘 > 0,

𝛿̇𝑛−𝛿̇𝑛−1
𝛥𝑡 , 𝑘 = 0.

(75)

We set 𝛿𝑛+1,0 = 𝛿𝑛, 𝜀𝑛+1,0 = 𝜀𝑛, 𝛿̇𝑛+1,0 = 𝛿̇𝑛, and 𝜀̇𝑛+1,0 = 𝜀̇𝑛 for cycle
𝑘 = 0.

The precession acceleration 𝜀̈ is given analytically by Eq. (15),
which in discretized form reads

𝜀̈𝑛+1,𝑘 = 1
𝐼

[

−𝑘𝜀𝑛+1,𝑘−1 − 𝑐𝜀̇𝑛+1,𝑘−1 − (𝐼 − 𝐽 )
(

𝛿̇𝑛+1,𝑘
)2 sin 𝜀𝑛+1,𝑘−1

× cos 𝜀𝑛+1,𝑘−1 + 𝐽𝜙̇𝛿̇𝑛+1,𝑘 cos 𝜀𝑛+1,𝑘−1
]

. (76)

This newest approximation to the precession acceleration 𝜀̈𝑛+1,𝑘 is
xplicitly calculated using only the prior cycle’s values of precession
elocity 𝜀̇𝑛+1,𝑘−1 and angle 𝜀𝑛+1,𝑘−1. New approximations to 𝜀̇ and 𝜀 at

cycle 𝑘 are computed using the Newmark-𝛽 method (Newmark, 1959)
as follows:

̇ 𝑛+1,𝑘 = 𝜀̇𝑛 + 𝛥𝑡
2

(

𝜀̈𝑛 + 𝜀̈𝑛+1,𝑘
)

(77)

𝜀𝑛+1,𝑘 = 𝜀𝑛 + 𝛥𝑡𝜀̇𝑛 + 𝛥𝑡2

4
(

𝜀̈𝑛 + 𝜀̈𝑛+1,𝑘
)

(78)

As described in Section 2, the PTO stiffness 𝑘 and damping 𝑐 parameters
in the control torque and the gyroscope’s angular velocity 𝜙̇, accelera-
tion 𝜙̈ = 0, and moments of inertia 𝐼 and 𝐽 are known a priori and do
not represent additional unknowns in the calculation of 𝑛+1,𝑘

𝛿 . Hence
the procedure outlined by Eqs. (74) to (78) enables the calculation of
the external pitch torque shown on the right-hand side of Eq. (72), thus
coupling the ISWEC dynamics to the FD/BP methodology.
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Table 3
Comparison of maximum pitch angle 𝜗max and galloping frequency 𝑓𝜗 with prior
numerical studies.

𝜗max 𝑓𝜗
Robertson et al. (2003) 15◦ 0.0191
Yang and Stern (2012) 15.7◦ 0.0198
Yang and Stern (2015) 16.1◦ 0.0197
Kolahdouz et al. (2020) 15◦ 0.0198
Present 15.2◦ 0.0197

4.5. FSI validation

To validate our implementation of the method described in this
section, we simulate the vortex induced vibration of a rectangular plate
undergoing galloping motion. This single rotational degree of freedom
case has been widely used as a benchmark problem for FSI algorithms
in prior literature. It also mimics the ISWEC model well, which pri-
marily oscillates in the pitch direction. The governing equation for the
spring–mass–damper plate model reads as

𝐼𝜗𝜗̈ + 𝐶𝜗𝜗̇ +𝐾𝜗𝜗 = hydro, (79)

in which 𝜗 is the pitch angle of the plate measured from the horizontal
axis, 𝐼𝜗 is the pitch moment of inertia about the center of mass, 𝐶𝜗
is the torsional damping constant, 𝐾𝜗 is the torsional spring constant,
and hydro is the hydrodynamic moment acting on the plate due to the
external fluid flow.

To compare of our results with prior simulations, we consider a
plate with a width-to-thickness ratio of 𝛬∗ = 𝐿p∕𝐻p = 4, a non-
imensional moment of inertia of 𝐼∗𝜗 = 𝐼𝜗∕(𝜌s𝐻4

p ) = 400, a non-
dimensional damping ratio of 𝜁∗𝜗 = 𝐶𝜗∕

(

2
√

𝐾𝜗𝐼𝜗
)

= 0.25, and a
educed velocity of 𝑈∗ = 𝑈∞∕(𝑓𝜗𝐻p) = 40. Here, 𝑈∞ is the free stream

velocity and 𝑓𝜗 =
√

𝐾𝜗∕𝐼𝜗∕2𝜋 is the natural frequency of the spring–
ass–damper system. The rectangular plate is centered at the origin
ith an initial non-zero pitch of 𝜗 = 1◦. The computational domain

s taken to be 𝛺 = [−32 cm, 96 cm] × [−32 cm, 32 cm], a rectangular
domain of size 𝐿𝑥 ×𝐿𝑦 = 128 cm × 64 cm. Five grid levels are used to
discretize the domain, with the structure embedded on the finest grid
level. A coarse grid spacing of ℎcoarsest = 𝐿𝑦∕32 is used on the coarsest
level. The finest level is refined with a refinement ratio of 𝑛ref = 2,
whereas the rest of the finer levels are refined using a refinement ratio
of 𝑛ref = 4 from their next coarser level. A uniform inflow velocity
𝐔 =

(

𝑈∞ = 1 cm/s, 0 cm/s
)

is imposed on the left boundary (x = -
32 cm), whereas zero normal traction and zero tangential velocity
boundary conditions are imposed on the right boundary (x = 96 cm).
The bottom (y = -32 cm) and top (y = 32 cm) boundaries satisfy zero
normal velocity and zero tangential traction boundary conditions. The
Reynolds number of the flow based on the inlet velocity is set to Re =
𝜌f𝑈∞𝐻p∕𝜇f = 250. A constant time step size of 𝛥𝑡 = 0.048ℎf inest is used
for the simulation. After the initial transients, a vortex shedding state
is established, which results in a periodic galloping of the rectangular
plate. Fig. 8(a) shows the pitch angle of the plate as a function of
time. Figs. 8(b)–8(d) show three representative snapshots of the FSI
dynamics and the vortex shedding pattern. Fig. 8(e) shows a typical
AMR patch distribution in the domain due to the evolving structural
and vortical dynamics. Table 3 compares the maximum pitch angle
𝜗max and galloping frequency of the plate 𝑓𝜗 with values obtained from
previous numerical studies; an excellent agreement with prior studies
is obtained for both these rotational quantities.

5. Software implementation

The FD/BP algorithm and the numerical wave tank method de-
scribed here is implemented within the IBAMR library, which is an
open-source C++ simulation software focused on immersed boundary
methods with adaptive mesh refinement; the code is publicly hosted
12

t

at https://github.com/IBAMR/IBAMR. IBAMR relies on SAMRAI (Hor-
nung and Kohn, 2002) for Cartesian grid management and the AMR
framework. Linear and nonlinear solver support in IBAMR is provided
by the PETSc library (Balay et al., 1997, 2015a,b). All of the example
cases in the present work made use of distributed-memory parallelism
using the Message Passing Interface (MPI) library. Simulations were
carried out on both the XSEDE Comet cluster at the San Diego Su-
percomputer Center (SDSC)5 and the Fermi cluster at San Diego State
University (SDSU). Comet houses 1,944 Intel Haswell standard compute
nodes consisting of Intel Xeon E5-2680v3 processors with a clock speed
of 2.5 GHz, and 24 CPU cores per node. Fermi houses 65 compute nodes
with different generations of Intel Xeon processors.

Between 64 and 128 cores were used for the 2D computations pre-
sented here, while 128 cores were used for the 3D computations. The 2D
SWEC model using the medium grid resolution described in Section 6.1
equired approximately 6,129 s to execute 15,000 time-steps on Comet
sing 80 cores. The 3D ISWEC model using the coarse grid resolution
escribed in Section 7.1 required approximately 82,000 s to execute
0,000 time-steps on Fermi using 128 cores of Intel Xeon E5-2697Av4
roadwell processors with a clock speed of 2.6 GHz.

. Spatial and temporal resolution tests

In this section, we perform a grid convergence study on the 2D
SWEC model in a NWT with regular waves using four different spatial
esolutions. We also conduct a temporal resolution study to determine
time step size 𝛥𝑡 that is able to adequately resolve the high-frequency
ave components of irregular waves. Although our implementation

s capable of adaptive mesh refinement, we use static grids for all
ases presented in this section. As mentioned in Section 4, we lock all
he translational degrees of freedom of the hull and only consider its
itching motion. Appendix A compares the rotational dynamics in the
resence of heaving motion of the device, and justifies the accuracy of
he 1-DOF model to calculate the main quantities of interest such as
ower output and conversion efficiency of the device.

The size of the computational domain is 𝛺 = [0, 10𝜆] × [0, 2.75𝑑]
ith the origin located at the bottom left corner (see Fig. 6). The hull
arameters for the 2D model are given in Table 2, and the CG of the
ull is located at (5𝜆, 𝑑 − 𝑍CG). The quiescent water depth is 𝑑 = 0.65
, acceleration due to gravity is 𝑔 = 9.81 m∕s (directed in negative

-direction), density of water is 𝜌w = 1025 kg/m3, density of air is
air = 1.2 kg/m3, viscosity of water 𝜇w = 10−3 Pa s and viscosity of
ir is 𝜇air = 1.8 × 10−5 Pa s. Surface tension effects are neglected for
ll cases as they do not affect the wave and converter dynamics at the
cale of these problems.

.1. Grid convergence study

To ensure the wave–structure interaction dynamics are accurately
esolved, we conduct a grid convergence study to determine an ade-
uate mesh spacing. The dynamics of the ISWEC hull interacting with
egular water waves are simulated on four meshes: coarse, medium,
ine, and finest. Each mesh consists of a hierarchy of 𝓁 grids; the compu-
ational domain is discretized by a coarsest grid of size 𝑁𝑦×𝑁𝑧 and then
ocally refined 𝓁 − 1 times by an integer refinement ratio 𝑛ref ensuring
hat the ISWEC device and air–water interface are covered by the finest
rid level. The grid spacing on the finest level are calculated using
he following expressions: 𝛥𝑦min = 𝛥𝑦0∕𝑛𝓁−1ref and 𝛥𝑧min = 𝛥𝑧0∕𝑛𝓁−1ref ,
here 𝛥𝑦0 and 𝛥𝑧0 are the grid spacings on the coarsest level. The time

tep size 𝛥𝑡 is chosen to ensure the maximum Courant–Friedrichs–Levy
CFL) number = 0.12 for coarse, medium, and fine grid resolutions and
.24 for the finest (to reduce the computational cost) grid resolution.

5 https://www.xsede.org/-/xsede-resources-aid-international-engineering-
eam-on-wave-energy-project

https://github.com/IBAMR/IBAMR
https://www.xsede.org/-/xsede-resources-aid-international-engineering-team-on-wave-energy-project
https://www.xsede.org/-/xsede-resources-aid-international-engineering-team-on-wave-energy-project
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Fig. 8. Galloping motion of a rectangular plate with 𝛬∗ = 4, 𝐼∗ = 400, 𝜁∗𝜗 = 0.25 and 𝑈 ∗ = 40. (a) Temporal evolution of pitch angle 𝜗; (b)—(d) Vorticity (1/s) plots at three
representative time instants t = 221.25 s,𝑡=309 s, and t = 349.5 s, respectively. (e) Dynamic mesh/patch distribution in the domain at a representative time instant t = 352.5 s.
The mesh parameters and time step sizes considered here are shown in
Table 4.

Regular water waves, generated based on the fifth-order wave the-
ory presented in Section 3.1, enter the left side of the domain and
interact with the ISWEC hull. Temporal evolution of the hull’s pitch
angle 𝛿 and the gyroscope’s precession angle 𝜀 are the primary outputs
used to evaluate mesh convergence. The results and the specification of
the wave, ISWEC, and gyroscope parameters are shown in Fig. 9. For a
quantitative comparison, we calculate the average percentage change
in the peak values of 𝛿 and 𝜀 for two consecutive grid resolutions
between the time interval 𝑡 = 10 s to 20 s. The obtained average
percentage change for 𝛿 peaks is 24.18% between coarse and medium
grid resolutions, 10.42% between medium and fine grid resolutions,
and 3.4% between fine and finest grid resolutions, and for 𝜀 peaks
13
these values are 22.15%, 14.6%, and 1.9%, respectively. Fig. 10(a)
shows a close-up of the medium resolution grid and the 2D ISWEC
model. A minimum of 8 grid cells vertically span the height of the
wave, indicating that the wave elevation is adequately resolved; for
the coarse (finest) grid resolution, approximately 4 (30) grid cells span
the wave height (results not shown). Additionally, the number of cells
covering the ISWEC hull length is approximately 30, 60, 119, and 238
for the coarse, medium, fine, and finest grid resolutions, respectively.
Fig. 10(b) shows well-resolved vortical structures produced by the
interaction of the ISWEC device and air–water interface on the medium
resolution grid. From the quantitative and qualitative results shown
in Figs. 9 and 10, we conclude that the medium grid resolution can
capture the WSI dynamics with reasonable accuracy. Table 5 compares
the wall clock time required to execute 10,000 time steps of the 2D
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Table 4
Refinement parameters used for the 2D ISWEC dynamics grid convergence study.

Parameters Coarse Medium Fine Finest

𝑛ref 2 2 4 4
𝓁 2 2 2 3
𝑁𝑦 300 600 600 300
𝑁𝑧 34 68 68 34
𝛥𝑡 (s) 2 × 10−3 1 × 10−3 5 × 10−4 5 × 10−4

ISWEC model for the four grid resolutions; the medium grid resolution
offers a reasonable compromise between accuracy of the solution and
simulation time. Therefore for the remaining cases studied here, we
make use of the medium grid resolution.

6.2. Temporal resolution study

Next, we conduct a temporal resolution study to ensure that WSI
dynamics of irregular waves and the ISWEC device are adequately re-
solved. As described in Section 3.2, irregular water waves are modeled
as a superposition of 𝑁 harmonic wave components. The energy carried
y each wave component is related to its frequency 𝜔𝑖 (see Eq. (43)

and Fig. 5). Moreover as shown in Fig. 5, high frequency waves with
𝜔𝑖 in the range of 10 rad/s to 20 rad/s carry considerable amounts of
energy. Hence, the time step 𝛥𝑡 should be chosen such that these high
frequency (small wave period 𝑖) components are well-resolved since
they contribute significantly to the power absorbed by the device.

The dynamics of the ISWEC hull interacting with irregular water
waves are simulated using three different time step sizes: 𝛥𝑡 = 10−3

s, 5 × 10−4 s and 2.5 × 10−4 s. For all three cases, we use a medium
resolution grid with refinement parameters given by Table 4. Temporal
evolution of the hull’s pitch angle 𝛿 and the power absorbed by the
PTO unit 𝑃PTO are the primary outputs used to evaluate temporal
convergence. The results and the specification of the irregular wave,
ISWEC, and gyroscope parameters are shown in Fig. 11. It is observed
that the hull’s pitching motion is relatively insensitive to the chosen
time step size 𝛥𝑡. Since its dynamics are governed mainly by those
waves carrying the largest energy, we can conclude that the higher
frequency wave components are adequately resolved. The difference
between the three temporal resolutions is more apparent in Fig. 11(b),
in which we calculate the average power absorbed by the PTO unit
𝑃PTO over the interval 𝑡 = 10 s and 𝑡 = 20 s. For 𝛥𝑡 = 10−3 s, 5 × 10−4 s
and 2.5×10−4 s, the power absorbed is 𝑃PTO = 1.7656 W, 1.8859 W and
1.9484 W, respectively. It is seen that smaller time step sizes allow for
the resolution of higher-frequency wave peaks, which directly increases
the absorbed power by 6.81% when halving the time-step from 1 ×10−3

s to 5 ×10−4 s, and an increase by 3.31% when halving the time-step
from 5 ×10−4 s to 2.5 × 10−4 s.

Based on these results, we hereafter use the medium grid spatial
resolution, and time step sizes of 𝛥𝑡 = 1 × 10−3 s and 𝛥𝑡 = 5 × 10−4 s for
regular and irregular wave WSI cases, respectively.

7. Results and discussion

In this section, we investigate several aspects of the dynamics of the
inertial sea wave energy converter device:

• First, we compare the PTO power predictions by the 3D and
2D ISWEC models under identical wave conditions. Utilizing the
scaling factors presented in Table 1, we show that the power pre-
dicted by the 3D model can be inferred from the power predicted
by the 2D model reasonably well.

• Next, we study the effect of the maximum hull pitch angle pa-
rameter 𝛿0 and make recommendations on how to select it based
on the maximum wave steepness 𝛿s. We consider different ‘‘sea
states’’ characterized by regular waves of different heights , and
consequently of different steepnesses.
14
• Thereafter, a parametric analysis for the 2D ISWEC model is
performed using both regular and irregular water waves to study
its dynamics. We vary the following parameters to recommend
‘‘design’’ conditions for the device: PTO damping coefficient 𝑐,
flywheel speed 𝜙̇, moment of inertia 𝐽 and 𝐼 , and PTO stiffness
coefficient 𝑘.

• Afterwards, the effect of varying hull length to wavelength ratios
is studied.

• Finally, we simulate a possible device protection strategy during
inclement weather conditions and study the resulting dynamics.

All the 2D simulations are conducted in a NWT with computational
domain size 𝛺 = [0, 10𝜆] × [0, 2.75𝑑] as shown in Fig. 6. Our
prior experience in wave–structure interaction modeling in two spatial
dimensions suggests that the aforementioned length and height extents
of the NWT are adequate to avoid boundary effects (Dafnakis et al.,
2020; Nangia et al., 2019a). For 3D cases the computational domain
size is same as in 2D, with the additional dimension having length
5𝑊 ; 𝑊 is the width of 3D model of the hull. Simulation results in
Appendix B verify that the tank width of 5𝑊 is large enough to ensure
that the ISWEC dynamics are undisturbed by lateral boundaries as well.
The origin of the NWT is taken to be the bottom left corner of the
domain and shown by the point 𝑂 in Fig. 6. The CG of the ISWEC hull
is located at (2.5𝑊 , 5𝜆, 𝑑 −𝑍CG) for 3D cases and (5𝜆, 𝑑 −𝑍CG) for the
2D cases. The rest of the hull parameters are presented in Table 2. The
water and air material properties are the same as those described in
Section 6.

7.1. 3D and 2D ISWEC models

In this section, we investigate the dynamics of the 2D and 3D ISWEC
models interacting with regular and irregular water waves. We compare
the motion of the hull and the power absorption capabilities of each
model. The 2D model is simulated on a medium grid resolution and the
3D model on a coarse grid resolution using the refinement parameters
specified in Table 4. The third dimension is discretized with 𝑁𝑥 = 38
grid cells for 3D cases. Fig. 12(a) shows the configuration of the locally
refined mesh (𝓁 = 2), along with visualizations of regular and irregular
waves for the three-dimensional NWT.

First, we consider two different prescribed maximum pitch angles
𝛿0 = 5◦ and 20◦ for each model. Regular waves are generated with
properties  = 0.1 m and  = 1 s. The values for the gyroscope and
PTO parameters for this choice of 𝛿0 are given in Table 6. The rated
power of the device 𝑃R is taken to be the available wave power 𝑃wave
for calculating the parameters reported in Table 6. The hull undergoes
pitching motion as the regular waves impact the device, as shown in
Fig. 12(b). The temporal evolution of the hull pitch angle 𝛿 for the 2D
and the 3D ISWEC models are shown in Figs. 13(a) and 13(b). From
these results, it is observed that the dynamics for the 2D case match
well with the 3D case after the initial transients. The power transferred
to the hull from the waves 𝑃hull, the power generated through the hull-
gyroscope interaction 𝑃gyro, and the power absorbed by the PTO unit
𝑃PTO at 𝛿0 = 5◦ (𝛿0 = 20◦) for the 2D and 3D models are shown in
Figs. 13(c) and 13(d) (Figs. 13(e) and 13(f)), respectively. The time-
averaged powers 𝑃PTO, 𝑃gyro and 𝑃hull over the time interval 𝑡 = 10 s
and 𝑡 = 20 s (after the hull’s motion achieved a periodic steady state) are
also shown in Figs. 13(c)—13(f). From these results, it is seen that the
energy transfer pathway Eq. (23) is numerically verified. Furthermore,
the power absorbed by the PTO unit for the full-scale device can be
calculated by multiplying the power absorbed by the 2D model by the
Froude scaling given in Table 1

𝑃full-scale = 𝛼
5
2 ⋅ 𝑊 ⋅ 𝑃2D, (PTO unit). (80)

Similarly for the 3D model,

̄ 7
2 ⋅ 𝑃 , (PTO unit). (81)
𝑃full-scale = 𝛼 3D
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Fig. 9. Temporal evolution of (a) hull pitch angle 𝛿 and (b) gyroscope precession angle 𝜀, for coarse (—–, black), medium (—–, red), fine (—–, green), and finest (—–, blue) grid
resolutions. Fifth-order regular water waves are generated with  = 0.1 m,  = 1 s and 𝜆 = 1.5456 m, satisfying the dispersion relation given by Eq. (35). A maximum ISWEC
pitch angle 𝛿0 = 5◦ and a maximum gyroscope precession angle of 𝜀0 = 70◦ are used to calculate the rest of the parameters following the procedure described in Section 2.3:
PTO damping coefficient 𝑐 = 0.3473 N m s/rad, gyroscope moment of inertia 𝐽 = 0.0116 kg m2 and PTO stiffness coefficient 𝑘 = 0.4303 N m/rad. The speed of the flywheel is
𝜙̇ = 4000 RPM, and 𝐼 = 0.94 × 𝐽 = 0.0109 kg m2.

Fig. 10. Wave–structure interaction of the 2D ISWEC model at 𝑡 = 27 s using the medium grid resolution: (a) locally refined mesh with two levels (𝓁 = 2) and (b) representative
vortical and air–water interfacial dynamics resulting from the WSI.

Fig. 11. Temporal evolution of (a) hull pitching dynamics and (b) power absorbed by PTO, for three different time step sizes: 𝛥𝑡 = 10−3 s (—–, black), 𝛥𝑡 = 5 × 10−4 s (—–, red)
and 𝛥𝑡 = 2.5 × 10−4 s (—–, green). Irregular water waves (satisfying the dispersion relation Eq. (35)) are generated with s = 0.1 m, p = 1 s and 𝑁 = 50 wave components, with
frequencies in the range 3.8 rad/s to 20 rad/s distributed at equal 𝛥𝜔 intervals. A maximum ISWEC pitch angle 𝛿0 = 5◦ and a maximum gyroscope precession angle of 𝜀0 = 70◦

are used to calculate the rest of the parameters following the procedure described in Section 2.3: PTO damping coefficient 𝑐 = 0.1724 N m s/rad, gyroscope moment of inertia
𝐽 = 0.0057 kg m2 and PTO stiffness coefficient 𝑘 = 0.2138 N m/rad. The speed of the flywheel is 𝜙̇ = 4000 RPM, and 𝐼 = 0.94 × 𝐽 = 0.0054 kg m2. The mean wave power per unit
crest width carried by the irregular waves calculated by Eq. (47) is 𝑃wave = 5.0798 W.
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Table 5
Wall clock time to execute 10,000 time steps of the 2D ISWEC model using the four grid resolutions
tabulated in Table 4. The 2D model is executed on 64 cores of the Fermi cluster, and same time step size
of 𝛥𝑡 = 5 × 10−4 is used for all mesh resolutions.
Grid resolution Wall clock time (s) Increase in time

compared to the
previous grid (%)

Time to execute a
single time step (s)

Coarse 4903 − 0.49
Medium 6086 24.12 0.60
Fine 9179 50.82 0.91
Finest 17 905 95.06 1.79
Table 6
The PTO and gyroscope parameters for various regular wave heights  and 𝛿0 values, as calculated by the procedure described
in Section 2.3. The rated power of the device 𝑃R is taken to be the available wave power 𝑃wave for these calculations. The
prescribed gyroscope parameters are 𝜀0 = 70◦, 𝜙̇ = 4000 RPM, and 𝐼 = 0.94 × 𝐽 . The parameter units for 𝑐 are N m s/rad, 𝐽
and 𝐼 are kg m2, and 𝑘 are N m/rad.
Regular wave properties Parameters Prescribed hull pitch angle 𝛿0

2◦ 5◦ 10◦ 15◦ 20◦ 𝛿𝑠

 = 0.025 m and  = 1 s
𝑐 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217
𝐽 0.0018 0.00072 0.00036 0.00024 0.00018 0.0012
𝑘 0.0673 0.0269 0.0134 0.0089 0.0067 0.0464

 = 0.05 m and  = 1 s
𝑐 0.0868 0.0868 0.0868 0.0868 0.0868 0.0868
𝐽 0.0072 0.0029 0.0014 0.00090 0.00072 0.0025
𝑘 0.2692 0.1076 0.0538 0.0358 0.0269 0.0928

 = 0.1 m and  = 1 s
𝑐 0.3473 0.3473 0.3473 0.3473 0.3473 0.3473
𝐽 0.0290 0.0116 0.0058 0.0039 0.0029 0.0050
𝑘 1.0777 0.4303 0.2171 0.1421 0.1065 0.1876

 = 0.125 m and  = 1 s
𝑐 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427
𝐽 0.0453 0.0181 0.0090 0.0060 0.0045 0.0063
𝑘 1.6827 0.6731 0.3365 0.2243 0.1682 0.2361
r
p
𝛿
𝛿
n
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w
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Finally, combining the two expressions above yields

𝑃3D =
𝑊full-scale

𝛼
⋅ 𝑃2D = 0.4 × 𝑃2D, (PTO unit), (82)

n which 𝑊full-scale = 8 m is the width of the full-scale model and
= 20 is the length scaling factor. For the 2D cases, the average power

bsorbed by the PTO unit is 𝑃2D = 1.6972 W for 𝛿0 = 5◦, and 𝑃2D =
.1694 W for 𝛿0 = 20◦. For the 3D cases, the average powers absorbed
y the PTO unit are 0.5915 W and 0.4178 W for 𝛿0 = 5◦ and 𝛿0 = 20◦,
espectively, which are close to the expected values of 0.6788 W and
.4677 W predicted by Eq. (82). Note that better agreement between
he simulated and expected average powers in 3D can be obtained by
ncreasing the spatial and temporal resolutions. Nevertheless, we are
onfident that the dynamics are reasonably resolved for the chosen grid
pacing and time step size.

Next, we perform a similar scaling analysis for 2D and 3D ISWEC
odels in irregular wave conditions. Irregular water waves are gener-

ted with properties s = 0.1 m, p = 1 s and 50 wave components
ith frequencies 𝜔𝑖 in the range 3.8 rad/s to 20 rad/s (see Fig. 12(c)).
hrough empirical testing, fifty wave components were found to be suf-
icient to represent the energy of the JONSWAP spectrum. We consider
maximum pitch angle of 𝛿0 = 5◦ for the device. The evolution of 𝛿

or the two models are compared in Fig. 14(a). Similar to the regular
ave case presented above, the dynamics of the 2D and 3D models
umerically agree and the energy transfer pathway Eq. (23) is nearly
atisfied. Moreover, the average power absorbed by the PTO unit for the
D model is 𝑃2D = 1.8859 W, yielding an expected 3D power of 0.7543

according to Eq. (82); this is close to the power value of 0.5538 W
btained by the 3D simulation.

Based on these results, we ultimately conclude that the 2D model
s sufficient to accurately simulate ISWEC dynamics and to predict the
ower generation/absorption capability of the converter. Hereafter, we
ocus on further investigating dynamics and parameter choices for the
D model.
16
7.2. Selection of prescribed hull pitch angle 𝛿0

In this section, we investigate the relationship between the pre-
scribed hull pitch angle parameter 𝛿0, the maximum pitch angle ac-
tually attained by the hull 𝛿max through WSI, and the maximum wave
steepness of the incoming waves 𝛿s. Recall that the maximum wave
steepness was calculated in Section 3.3 by approximating the fifth-order
wave as a linear harmonic wave. We consider the ISWEC dynamics on
four regular water waves with same time period  = 1 s (i.e. 𝜆 = 1.5456
m) but varying wave heights:  = 0.025 m, 0.05 m, 0.1 m and 0.125 m,
each having maximum wave steepness 𝛿s = 2.9◦, 5.8◦, 11.48◦ and 14.25◦,
espectively (see Eq. (52)). The prescribed PTO and gyroscope system
arameters for each sea state and six maximum pitch angle values
0 = 2◦, 5◦, 10◦, 15◦, 20◦ and 𝛿s are shown in Table 6. Additionally,
0 = 1◦ and 30◦ cases are also simulated, but the parameter values are
ot tabulated for brevity.

The results of this parameter study are shown in Fig. 15. It is
bserved that when 𝛿0 < 𝛿s, 𝛿max increases linearly with 𝛿0 (Fig. 15(a)),
llustrating that the hull’s maximum oscillation amplitude correlates
ell with 𝛿0. When the prescribed 𝛿0 is greater than 𝛿s, it is seen that

max no longer increases; rather it maintains a constant value with
espect to 𝛿0. This indicates that further increasing 𝛿0 will not lead
o larger pitch oscillations, i.e. the 𝛿max attained by the hull is the
argest value permitted by the slopes of the wave. In Figs. 15(b) and
5(c), we show trends in the maximum precession angle attained by
he gyroscope 𝜀max and the relative capture width (RCW) 𝜂, which
easures the device efficiency as a ratio of the average power absorbed

y the PTO unit to the average wave power per unit crest width (see
q. (27)). Maximization of both these quantities is achieved when
0 is set close to 𝛿s. As the hull achieves the maximum pitch angle
hysically permitted by the slopes of the wave, further increasing 𝛿0
mounts to reducing 𝐽𝜙̇ (Eq. (25)) or the hull-gyroscope coupling,
hich explains the reduction in both maximum precession and device
fficiency. Hereafter, we prescribe 𝛿0 based on the value maximizing 𝜂
s we conduct further parametric analyses of the 2D ISWEC model.
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Fig. 12. (a) Locally refined Cartesian mesh with two levels of mesh refinement used for the 3D NWT. Representative WSI of the 3D ISWEC model at 𝑡 = 28.8 s: (b) regular
waves, and (c) irregular waves.
7.3. Parametric analyses of gyroscope parameters

In this section, we conduct a parameter sweep around the energy-
maximizing PTO and gyroscope parameters estimated by the theory
presented in Section 2.3. We test the theory’s predictive capability and
describe the effect of these parameters on the converter’s performance
17
and dynamics. In each of the following subsections, only a single
parameter is varied at a time.

Simulations are conducted using both regular water waves with 
= 0.1 m and  = 1 s, and irregular waves with s = 0.1 m, p = 1
s and 50 wave components with frequencies 𝜔𝑖 in the range 3.8 rad/s
to 20 rad/s. These wave conditions serve as device ‘‘design’’ conditions
at its installation site. For regular waves, the prescribed pitch angle
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Fig. 13. WSI of the 2D and 3D ISWEC models in regular water wave conditions ( = 0.1 m and  = 1 s). Temporal evolution of the hull pitch angle (𝛿) for the 2D and 3D
SWEC models for (a) 𝛿0 = 5◦ and (b) 𝛿0 = 20◦. Power absorbed by the PTO unit 𝑃PTO (—–, black), power generated through the hull-gyroscope interaction 𝑃gyro (—–, red) and
ower transferred to the hull from the regular water waves 𝑃hull (—–, green) for the (c) 2D model with 𝛿0 = 5◦, (d) 3D model with 𝛿0 = 5◦, (e) 2D model with 𝛿0 = 20◦ and (f)
D model with 𝛿0 = 20◦. Averaged power over the time period 𝑡 = 10 s and 𝑡 = 20 s are shown in the legends.
a
i

𝜀

s taken to be 𝛿0 = 10◦, and the PTO and gyroscope parameters are
iven in Table 6. For irregular waves, the prescribed pitch angle 𝛿0 = 5◦

s used. The PTO and gyroscope parameters remain the same as those
sed in the temporal resolution study (see Section 6.2). These particular
alues of 𝛿0 were found to maximize the RCW of the converter at design
onditions; for an example, see Fig. 15 for regular waves with  = 0.1

and  = 1 s.

.3.1. PTO damping coefficient 𝑐
We first consider the PTO unit damping coefficient 𝑐, which directly

mpacts the power absorption capability of the device. We prescribe
our different values, 𝑐 = 0.05, 0.3473, 1.0 and 2.0 N m s/rad, to
valuate its impact on ISWEC dynamics. The optimal damping coef-
icient value of 𝑐 = 0.3473 is predicted by the theory. Results for the
ull interacting with regular waves are shown in Fig. 16. As expected
or smaller damping coefficients, the gyroscope is able to attain larger
recession angles 𝜀 and velocities 𝜀̇, as seen in Fig. 16(b). Higher
recession velocities yield larger pitch torque 𝛿 values (see Eq. (20)),
hich opposes the motion of the hull and restrict its maximum pitch
scillation; this is consistent with the dynamics shown in Figs. 16(a)
18
nd 16(c). Moreover the hull’s pitch velocity 𝛿̇ is reduced with decreas-
ng 𝑐, leading to a smaller (in magnitude) precession torque 𝜀 acting

on the PTO shaft (see Eq. (15)); our simulations show this behavior as
observed in Fig. 16(d).

In Fig. 16(e), we compare the time-averaged powers 𝑃hull, 𝑃gyro, and
𝑃PTO as a function of varying PTO damping coefficient. It can be seen
that these three powers are in reasonable agreement with each other,
indicating that the energy transfer pathway Eq. (23) is approximately
satisfied. In terms of power generation, it is observed that the device
achieves peak performance when a PTO damping coefficient 𝑐 = 0.2
is prescribed, which is close to the theoretically estimated 𝑐 value
of 0.3473; the percentage difference in powers is approximately 8%
between these two 𝑐 values. The reason for an optimum value of 𝑐 is
as follows: as the damping coefficient increases, the precession velocity
decreases. The power absorbed by the PTO unit is the product of 𝑐 and
̇ 2 (Eq. (11)), and therefore these competing factors must be balanced
in order to achieve maximum power generation.

Finally in Fig. 16(f), we show the evolution of the yaw torque
𝜙 acting on the hull for 𝑐 = 0.3473, noting that its magnitude is
approximately one-fifth of the pitch torque  . Although this is not
𝛿



Ocean Engineering 229 (2021) 108879

19

K. Khedkar et al.

Fig. 14. WSI of the 2D and 3D ISWEC models with 𝛿0 = 5◦ in irregular water wave conditions (s = 0.1 m and p = 1 s, 𝑁 = 50, and 𝜔𝑖 in the range 3.8 rad/s to 20 rad/s). (a)
Temporal evolution of the hull pitch angle (𝛿) for the 2D and 3D ISWEC models. Power absorbed by the PTO unit 𝑃PTO (—–, black), power generated through the hull-gyroscope
interaction 𝑃gyro (—–, red) and power transferred to the hull from the irregular water waves 𝑃hull (—–, green) for the (b) 2D and (c) 3D models.

Fig. 15. (a) Maximum hull pitch angle 𝛿max, (b) maximum gyroscope precession angle 𝜀max, and (c) relative capture width 𝜂 of the ISWEC device for various regular wave sea
states and prescribed pitch angles 𝛿0:  = 0.025 m (—–, black),  = 0.05 m (—–, red),  = 0.1 m (—–, green), and  = 0.125 m (—–, blue) for  = 1 s. RCW is calculated
from time-averaged powers over the interval 𝑡 = 10 s to 𝑡 = 20 s.
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Fig. 16. Dynamics of the 2D ISWEC model for four different values of PTO damping coefficient 𝑐, with regular wave properties  = 0.1 m and  = 1 s. Temporal evolution of
(a) hull pitch angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d) precession torque 𝜀 for 𝑐 = 0.05 N m s/rad (—–, black), 𝑐 = 0.3473 N m s/rad (—–, red),
𝑐 = 1.0 N m s/rad (—–, green), and 𝑐 = 2.0 N m s/rad (—–, blue); (e) comparison of time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for various values of 𝑐; (f) yaw
torques 𝜙 and 𝑧1 produced in the inertial reference frame and gyroscope reference frame (inset), respectively.
insignificant, we do not consider the effect of 𝜙 for the 3D ISWEC
model (see Section 2.1) since its contribution will be canceled out (1) by
using an even number of gyroscopic units (if each flywheel pair spins
with equal and opposite velocities) (Raffero, 2014), and (2) partially by
the mooring system. Discounting 𝜙 during the ISWEC design phase
would misalign the converter with respect to the main wave direction,
which will reduce its performance. It is also interesting to note that the
yaw torque in the gyroscopic frame of reference 𝑧1 is at least two
orders of magnitude lower than the yaw torque in the inertial reference
frame, as evidenced by the inset of Fig. 16(f).

Similar dynamics are observed when the ISWEC model is simulated
in irregular wave conditions for four different values, 𝑐 = 0.05, 0.1724,
1.0 and 2.0 N m s/rad. The results are presented in Appendix C.1. The
optimal damping coefficient value of 𝑐 = 0.1724 is obtained from the
theory. The results are compared in Fig. C.26. The figure shows that the
device achieves peak performance at a 𝑐 value of 0.2, which is quite
close to the theoretically predicted optimum value of 𝑐 = 0.1724; the
percentage difference in powers is less than 2% between these two 𝑐
values. The response of the hull and gyroscope to irregular waves can
be seen in Figs. 26(a) and 26(b), respectively. The pitch torque and
20
the precession torque are shown in Figs. 26(c) and 26(d), respectively.
From Fig. 26(e), it is verified that the energy transfer pathway given
by Eq. (23) is satisfied. We note that the device efficiency is higher in
irregular wave conditions as compared to regular wave conditions. This
can be seen by comparing the maximum value of relative capture width
for  = 0.1 m in Figs. 15(c) and 26(f): 𝜂max = 24.36% vs. 𝜂max = 37.61%,
respectively. The power carried by irregular waves is approximately
half that of regular waves when they have the same significant height
and time period. Therefore for the prescribed device dimensions, the
converter is more efficient in less energetic wave conditions.

7.3.2. Flywheel speed 𝜙̇
Next, we conduct a parameter sweep of the flywheel speed 𝜙̇ and

investigate its effects on the ISWEC dynamics. The speed of the flywheel
affects not only the amount of angular momentum 𝐽𝜙̇ generated in the
gyroscope, but also the magnitude of the gyroscopic torques produced
as seen in Eqs. (15) and (20). We consider four different flywheel
speeds: 𝜙̇ = 100 RPM, 1000 RPM, 4000 RPM, and 8000 RPM, with 𝛿0
= 10◦ and the remaining gyroscope parameter are prescribed based on
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Fig. 17. Dynamics of the 2D ISWEC model for four different values of flywheel speed 𝜙̇. The regular wave properties are  = 0.1 m and  = 1 s. Temporal evolution of (a) hull
pitch angle 𝛿, and (b) gyroscope precession angle 𝜀 for 𝜙̇ = 100 RPM (—–, black), 𝜙̇ = 1000 RPM (—–, red), 𝜙̇ = 4000 RPM (—–, green), and 𝜙̇ = 8000 RPM (—– , blue); (c)
comparison of time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for various values of 𝜙̇.

Fig. 18. Dynamics of 2D ISWEC model for three different values of flywheel moment of inertia 𝐽 . The regular wave properties are  = 0.1 m and  = 1 s. Temporal evolution
of (a) hull pitch angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d) precession torque 𝜀 for 𝐽 = 0.0005 kg m2 (—–, black), 𝐽 = 0.0058 kg m2 (—–, red),
and 𝐽 = 0.5 kg m2 (—–, green). For all cases, 𝐼 = 0.94 × 𝐽 .
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Fig. 19. Dynamics of 2D ISWEC model for four different values of 𝐼 . The regular wave properties are  = 0.1 m and  = 1 s. Temporal evolution of (a) hull pitch angle 𝛿, and
(b) gyroscope precession angle 𝜀 for 𝐼 = 0.5 × 𝐽 (—–, black), 𝐼 = 0.75 × 𝐽 (—–, red), 𝐼 = 0.94 × 𝐽 (—–, green), and 𝐼 = 1.0 × 𝐽 (—– , blue). (c) Comparison of time-averaged powers
from the interval 𝑡 = 10 s to 𝑡 = 20 s for each value of 𝐼 . For all cases, 𝐽 = 0.0058 kg m2.
Table 6. Recall that these values were obtained for 𝜙̇ = 4000 RPM in
Table 6.

The results for a hull interacting with regular waves are shown
in Fig. 17. It is seen that the maximum pitch angle decreases with
increasing 𝜙̇ (Fig. 17(a)), while a non-monotonic relationship is seen
between the maximum precession angle and 𝜙̇ (Fig. 17(b)). Time-
averaged powers are shown in Fig. 17(c), which again shows that
Eq. (23) is approximately satisfied. Power absorption is maximized at
flywheel speed of 𝜙̇ = 4500 RPM , which can be physically explained
as follows. As 𝐽𝜙̇ increases, the gyroscopic system is able to generate
significant precession torque which increases the absorption capacity
of the PTO unit. However, this increased angular momentum also in-
creases the pitch torque opposing the hull, thereby limiting its pitching
motion and reducing the power absorbed from the waves. These two
competing factors leads to an optimum value of 𝜙̇.

Similar dynamics are obtained when the ISWEC interacts with
irregular waves for varying values of 𝜙̇. The results are shown in
Appendix C.2. The comparison of pitch angle for various 𝜙̇ values is
shown in Fig. 27(a) and of precession angle is shown in Fig. 27(b).
Eq. (23) is again satisfied as seen from the time-averaged powers in
Fig. 27(c). In this case, the power maximizing flywheel speed is 𝜙̇ =
3500 RPM.

7.3.3. Flywheel moment of inertia 𝐽 and 𝐼
The angular momentum 𝐽𝜙̇ generated in the gyroscope can also

be modified by varying the flywheel size via its moment of inertia
components 𝐽 and 𝐼 . First, we consider three different values 𝐽 =
0.0005 kg m2, 0.0058 kg m2 and 0.5 kg m2, which correspond to light,
medium, and heavy weight gyroscopes, respectively. The 𝐽 = 0.0058
value is obtained from theoretical estimates based on the prescribed 𝛿0
and 𝜀0 values. A value of 𝐼 = 0.94 × 𝐽 is set for each case, and the
remaining gyroscope parameters are prescribed based on Table 6.

The results for a hull interacting with regular waves are shown
in Fig. 18. It is seen that the light gyroscope produces insignificant
precession angles and torques due to the lack of angular momentum
22
generated by the flywheel. Moreover, the heavy gyroscope produces
even smaller 𝜀 torque as it slowly drifts around the PTO axis; the
proportional component of the control torque (𝑘𝜀) is not strong enough
to return the gyroscope to its mean position of 𝜀 = 0◦. Additionally, the
light (heavy) weight gyroscope produces small (large) pitch torques 𝛿
opposing the hull, which explains the large (small) pitch amplitudes
exhibited by the device. Finally, it is seen that the medium weight
gyroscope, with 𝐽 = 0.0058 kg m2 calculated from the procedure
described in Section 2.3, produces the largest precession amplitudes 𝜀
and velocities 𝜀̇, leading to high power absorption by the PTO unit.

We also study the effect of varying 𝐼 while keeping 𝐽 = 0.0058
kg m2 fixed. We consider four different values 𝐼 = 0.5×𝐽 , 𝐼 = 0.75×𝐽 ,
𝐼 = 0.94 × 𝐽 and 𝐼 = 1.0 × 𝐽 , and the results for a device interacting
with regular waves are shown in Fig. 19. It is seen that the dynamics
of the hull and gyroscope and the system powers are not significantly
affected by the choice of 𝐼 .

Similarly, ISWEC dynamics with irregular waves are studied for
three different values of 𝐽 . Results for varying 𝐽 values are compared in
Fig. C.28 in Appendix C.3, which are qualitatively similar to the results
obtained with regular waves. The effect of varying 𝐼 with respect to 𝐽 is
also simulated, and the results are shown in Fig. C.29 in Appendix C.3.
It is seen that the hull pitch and the gyroscope precession angles are
relatively insensitive to variations in 𝐼 . It is observed that the powers
are relatively constant across different 𝐼 values under irregular wave
conditions as well.

7.3.4. PTO stiffness coefficient 𝑘
Finally, we study the effect of varying the PTO stiffness coefficient

𝑘 on the dynamics of the ISWEC device. This term appears as a
restoring torque 𝑘𝜀 in the precession angle Eq. (16) and acts to drive the
gyroscope’s oscillation about its mean position 𝜀 = 0◦. The oscillation
frequency is directly influenced by 𝑘 and can be chosen to ensure a
resonant condition is attained between the gyroscope and the incoming

waves, thus maximizing the power absorbed by the system.
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Fig. 20. Dynamics of 2D ISWEC model for four different values of PTO stiffness 𝑘. The regular wave properties are  = 0.1 m and  = 1 s. Temporal evolution of (a) hull pitch
angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d) precession torque 𝜀 for 𝑘 = 0 N m/rad (—–, black), 𝑘 = 0.2171 N m/rad (—–, red), 𝑘 = 1.0 N m/rad
(—–, green), and 𝑘 = 5.0 N m/rad (—–, blue); (e) comparison of time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for various values of 𝑘. Power is maximized at 𝑘 = 0.1,
which is quite close to the theoretically estimated 𝑘 = 0.2171 value.
We consider four different values of 𝑘 = 0.0 N m/rad, 0.2171
N m/rad, 1.0 N m/rad, and 5.0 N m/rad, with the remaining gyroscope
parameter chosen according to Table 6. The 𝑘 = 0.2171 value is
obtained from theoretical considerations provided in Section 2.3. The
results for a hull interacting with regular waves are shown in Fig. 20. As
𝑘 increases, the maximum precession angle 𝜀 and velocity 𝜀̇ decreases
leading to decreased power absorption by the device. The increased
PTO stiffness value tends to keep the gyroscope close to its zero-
mean position, which reduces the hull-gyroscope coupling. This can be
observed from the lowered values of 𝛿 torques in Fig. 20(c). As a
consequence, the hull pitching motion increases, as seen in Fig. 20(a).

The 𝑘 = 0 case warrants additional discussion. When the PTO
stiffness is zero, the gyroscope attains a larger maximum precession
amplitude and generates more power than the 𝑘 > 0 cases over the
time period 𝑡 = 10 s and 𝑡 = 20 s. However, Fig. 21 shows the long-term
dynamics for 𝑘 = 0; it is seen that the gyroscope is unable to sustain its
precession oscillation as it eventually falls to one side (𝜀 = −90◦) and
remains there. At this configuration, the gyroscope yaw axis and the
hull pitch axis are aligned, and the precession effect is lost. As these
gyroscopic oscillations vanish, the torques tend towards zero, the hull
exhibits unrestrained pitch oscillation, and no power is generated.
23
Next, we simulate ISWEC dynamics with irregular waves using four
different values of 𝑘 = 0 N m/rad, 0.2138 N m/rad, 1.0 N m/rad, and
5.0 N m/rad. The results are compared in Fig. C.30 in Appendix C.4,
and are qualitatively similar to the those obtained with regular waves.
Similar behavior of the ISWEC with 𝑘 = 0 is observed — the gyroscope
is unable to oscillate and falls to one side (𝜀 = −90◦) and produces van-
ishing precession effects. However, with irregular waves the precession
effects are lost much sooner compared to the regular waves case.

7.4. Hull length to wavelength (𝐿∕𝜆) variation

In this section, we study the effect of hull length to wavelength ratio
(𝐿∕𝜆) on the ISWEC dynamics. We select three ratios 𝐿∕𝜆 = 0.25, 0.5
and 0.75 for this analysis. The length of the hull is kept constant at 𝐿
= 0.7665 m, and the wavelength of the regular water waves is varied.
The PTO and gyroscope parameters used in the three simulations are
presented in Table 7. Results consist of temporal evolution of the
hull pitch and gyroscope precession angles in Figs. 22(a) and 22(b),
respectively. It is observed that the hull pitch is maximum when 𝜆∕3 ≤
𝐿 ≤ 𝜆∕2, as discussed in Section 2.4. As a consequence, the gyroscope



Ocean Engineering 229 (2021) 108879

24

K. Khedkar et al.

Fig. 21. Long-term dynamics of the 2D ISWEC model for 𝑘 = 0 PTO stiffness: (a) hull pitch angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d) precession
torque 𝜀. The regular wave properties are  = 0.1 m and  = 1 s.

Fig. 22. Dynamics of 2D ISWEC model for three different hull length to wavelength ratios 𝐿∕𝜆. The regular wave height is  = 0.1 m, while its period  is calculated based on
the dispersion relation given by Eq. (36) as wavelength 𝜆 is varied. Temporal evolution of (a) hull pitch angle 𝛿 and (b) gyroscope precession angle 𝜀 for 𝐿∕𝜆 = 0.25 (—–, black),
𝐿∕𝜆 = 0.5 (—–, red), and 𝐿∕𝜆 = 0.75 (—–, green); (c) RCW 𝜂 computed using time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for each value of 𝐿∕𝜆.
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Fig. 23. Dynamics of 2D ISWEC model as the flywheel speed 𝜙̇ is reduced from 4000 RPM to 0 RPM amidst steady operation. The regular wave properties are  = 0.1 m and
 = 1 s. Temporal evolution of (a) hull pitch angle 𝛿; (b) gyroscope precession angle 𝜀; (c) pitch torque 𝛿 ; (d) precession torque 𝜀; and (e) temporal variation of flywheel
peed.
i
t

𝑓

a
s
p

able 7
alculated values of PTO and gyroscope parameters for different 𝐿∕𝜆 ratios using 𝐿 =
.7665 m, 𝛿0 = 10◦, 𝜀0 = 70◦, and 𝜙̇ = 4000 RPM. 𝐼 = 0.94 × 𝐽 for all cases. Regular
ater waves with  = 0.1 m are simulated. The rated power of the device 𝑃R is taken

to be the available wave power 𝑃wave for these calculations. Units: 𝜆 is in m, 𝑐 is in
N m s/rad, 𝐽 and 𝐼 are in kg m2 and 𝑘 is in N m/rad.
𝐿∕𝜆 𝜆 PTO and gyroscope parameters

𝑐 𝐽 𝑘

0.25 3.0659 1.3491 0.0225 0.3705
0.5 1.5456 0.3473 0.0058 0.2171
0.75 1.0219 0.1773 0.0029 0.1679

precesses more and the conversion efficiency of the device increases
(see Fig. 22(c)).

7.5. Device protection during inclement weather conditions

The ISWEC hull houses costly electro-mechanical components that
need to be protected during harsh, stormy weather conditions. During
inclement weather, the hull and gyroscope dynamics can be chaotic,
25

t

which may damage the system components. To protect the housed
components, the gyroscope needs to be turned off. This can be done
by reducing the flywheel speed to zero using remote human–machine
interfaces. The combined hull-gyroscope system then behaves like a
single floating entity. In this section, we simulate the dynamics of the
ISWEC device as the flywheel speed is reduced to zero amidst steady
operation. We simulate this scenario with regular water waves of  =
0.1 m and  = 1 s. To reduce the flywheel speed from 4000 RPM to 0
RPM, we use the following relation

𝜙̇(𝑡) = 4000 ⋅ (1 − 𝑓 (𝑡))∕2, (83)

n which 𝑓 (𝑡) is a function that smoothly transitions from −1 to 1 in
he transition time interval 𝛥𝑇 . The function 𝑓 is given by

= tanh
(

2𝜋(𝑡 − 𝑇half)
𝛥𝑇

)

, (84)

in which 𝑇half = 𝑇start + 𝛥𝑇 /2. In our simulation, we set 𝑇start = 15 s
nd 𝛥𝑇 = 5 s. Fig. 23(e) shows the smooth transition of the flywheel
peed towards zero in 5 s. When the gyroscope is turned off, the
recession effects cease and the system attains a mean zero position,
hus protecting the internal hardware and device components. This is
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a

Fig. A.24. Comparison of 2-DOF (pitch and heave) and 1-DOF (pitch only) ISWEC models for (a) hull pitch angle 𝛿, and (b) gyroscope precession angle 𝜀. (c) Hull heave
displacement, and (d) power at various levels for the 2-DOF ISWEC model. Fifth-order regular water waves are generated with  = 0.1 m,  = 1 s and 𝜆 = 1.5456 m, satisfying
the dispersion relation given by Eq. (35). A maximum ISWEC pitch angle 𝛿0 = 5◦ and a maximum gyroscope precession angle of 𝜀0 = 70◦ are used. The gyroscope parameters
re: damping coefficient 𝑐 = 0.3473 N m s/rad, moment of inertia 𝐽 = 0.0116 kg m2, and PTO stiffness 𝑘 = 0.4303 N m/rad. The speed of the flywheel is 𝜙̇ = 4000 RPM, and
𝐼 = 0.94 × 𝐽 = 0.0109 kg m2.

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t
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seen in Figs. 23(b), 23(c), and 23(d), which show that 𝜀, 𝛿 , and
𝜀 are reduced to zero, respectively. As the gyroscopic effects vanish,
the hull is observed to be oscillating with greater pitch amplitude
(Fig. 23(a)). From the device protection standpoint this poses no critical
issue, as the external hull is specifically designed to weather sea storms.

8. Conclusions

In this study, we systematically investigated the wave–structure
interaction dynamics of the inertial sea wave energy converter (ISWEC)
technology. Our computational model is based on the incompressible
Navier–Stokes equations and employs the fictitious domain Brinkman
penalization (FD/BP) approach to handle the fluid–structure coupling.
The dynamics of the ISWEC hull and gyroscope system were coupled
to this CFD solver to enable fully-resolved 1-DOF simulations of the
device. To emulate realistic operating conditions of the device, a nu-
merical wave tank was used to generate both regular waves based on
fifth-order Stokes theory and irregular waves based on the JONSWAP
spectrum. We performed Froude scaling analysis of the full-scale ISWEC
model to determine the required parameters for our 1:20 scaled-down
two- and three-dimensional simulations.

Our numerical investigation demonstrated that the 2D model was
sufficient to accurately simulate the hull’s pitching motion, and to
predict the power generation/absorption capability of the converter.
We showed that setting the prescribed hull pitch angle parameter
𝛿0 close to the maximum wave steepness will maximize the device’s
relative capture width (i.e. power generation efficiency). A compre-
hensive parameter sweep demonstrated that the device achieves peak
performance when the gyroscope specifications are chosen based on
the reactive control theory described in Section 2.3. It was also shown
that a proportional control of the PTO control torque is required to
generate continuous precession effects of the gyroscope, without which
the gyroscope tends to align with the hull pitch axis. Under this
26
Fig. B.25. Comparison of ISWEC pitch dynamics for three different computational
domain widths 3𝑊 , 5𝑊 , and 7𝑊 . Fifth-order regular water waves are generated with

= 0.1 m,  = 1 s and 𝜆 = 1.5456 m. A maximum ISWEC pitch angle 𝛿0 = 5◦ and a
maximum gyroscope precession angle of 𝜀0 = 70◦ are used. The gyroscope parameters
are: damping coefficient 𝑐 = 0.1389 N m s/rad, moment of inertia 𝐽 = 0.0046 kg m2,
and PTO stiffness 𝑘 = 0.1697 N m/rad. The speed of the flywheel is 𝜙̇ = 4000 RPM,
and 𝐼 = 0.94 × 𝐽 = 0.0043 kg m2.

cenario, the device does not generate any power. We also showed that
lthough the yaw torque in the gyroscope reference frame is small,
t is of the same order of magnitude as the pitch torque induced on
he hull in an inertial reference frame. Therefore, the yaw torque on
he hull should be considered in the design phase of these devices to
void any misalignment of the converter from the main wave direction.
ur simulations also verify that the hull length to wavelength ratio

hould be between one-half and one-third to achieve high conversion
fficiency. Throughout our parameter study, we numerically verify
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Fig. C.26. Dynamics of the 2D ISWEC model for four different values of PTO damping coefficient 𝑐, with irregular wave properties s = 0.1 m and p = 1 s and 50 wave
omponents with frequencies 𝜔𝑖 in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d)
recession torque 𝜀 for 𝑐 = 0.05 N m s/rad (—–, black), 𝑐 = 0.1724 N m s/rad (—–, red), 𝑐 = 1.0 N m s/rad (—–, green), and 𝑐 = 2.0 N m s/rad (—–, blue); (e) comparison
f time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for various values of 𝑐; (f) relative capture width 𝜂 for various values of 𝑐.
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he theoretical power transfer pathway between the water waves and
he hull, the hull and the gyroscope, and the gyroscope to the PTO
nit for both regular and irregular wave environments. Although the
ower transfer is derived for ISWEC devices in this work, an analogous
elationship could be derived for heaving or surging point absorbers.
inally, we investigated the dynamics of the ISWEC system as the
lywheel speed is reduced to zero to emulate device protection during
nclement weather conditions.

By making use of high performance computing, our work demon-
trates that it is feasible to use fully-resolved simulations to interrogate
he device physics and dynamics of wave energy converters. They can
lso be used as a design tool to explore the parametric space for further
ptimization of such devices.
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Fig. C.27. Dynamics of the 2D ISWEC model for four different values of flywheel speed 𝜙̇. The irregular wave properties are s = 0.1 m and p = 1 s and 50 wave components
with frequencies 𝜔𝑖 in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle 𝛿, and (b) gyroscope precession angle 𝜀 for 𝜙̇ = 100 RPM (—–, black), 𝜙̇ = 1000
RPM (—–, red), 𝜙̇ = 4000 RPM (—–, green), and 𝜙̇ = 8000 RPM (—– , blue); (c) comparison of time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for various values of 𝜙̇.

Fig. C.28. Dynamics of 2D ISWEC model for three different values of flywheel moment of inertia 𝐽 . The irregular wave properties are s = 0.1 m and p = 1 s and 50 wave
components with frequencies 𝜔𝑖 in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d)
precession torque 𝜀 for 𝐽 = 0.0005 kg m2 (—–, black), 𝐽 = 0.0058 kg m2 (—–, red), and 𝐽 = 0.5 kg m2 (—–, green). For all cases, 𝐼 = 0.94 × 𝐽 .
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Fig. C.29. Dynamics of 2D ISWEC model for four different values of 𝐼 . The irregular wave properties are s = 0.1 m and p = 1 s and 50 wave components with frequencies 𝜔𝑖
n the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle 𝛿, and (b) gyroscope precession angle 𝜀 for 𝐼 = 0.5×𝐽 (—–, black), 𝐼 = 0.75×𝐽 (—–, red), 𝐼 = 0.94×𝐽
—–, green), and 𝐼 = 1.0 × 𝐽 (—– , blue). (c) Comparison of time-averaged powers from the interval 𝑡 = 10 s to 𝑡 = 20 s for each value of 𝐼 . For all cases, 𝐽 = 0.0058 kg m2.
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ppendix A. Two degrees of freedom ISWEC model

We compare the hull and gyroscope dynamics obtained using two
egrees of freedom (pitch and heave) and one degree of freedom (pitch
nly) ISWEC models. The same case from Fig. 24(a) is simulated using
he two models on a medium grid resolution. Figs. 24(a) and 24(b)
how the comparison of hull pitch angle 𝛿 and gyroscope precession
ngle 𝜀, respectively. As observed in Fig. A.24, including an additional
eave degree of freedom only marginally affects the rotational motion
f the hull and gyroscope, and consequently the power output of the
evice. Fig. 24(c) shows the heave dynamics of the hull about its
ean 𝑧-location. The heave amplitude is approximately one-tenth of

he hull height for the prescribed wave characteristics. Although the
eave motion is not negligible in this case, it nonetheless does not
ignificantly affect the rotational dynamics. In contrast to heave, the
urge degree of freedom can affect the relative phase between the wave
xcitation forces and the body motion, which can lead to a different
et of optimal parameters of the device than those found without
onsidering the surge motion. However, the surge motion of the ISWEC
evice is assumed to be negligible, because of the motion constraints
mposed by the mooring system. Finally, Fig. 24(d) shows that the
ower transfer equation is satisfied even for the 2-DOF ISWEC model.

ppendix B. Effect of domain width in 3D simulations

Here we simulate the ISWEC dynamics by taking three different tank
idths to select a sufficiently wide tank that reduces the interference

aused by the lateral walls on the device dynamics. The 3D regular
ave case with a prescribed pitch angle of 𝛿0 = 5◦, as discussed in
ection 7.1 is considered. The selected widths for the wave tank are
𝑊 , 5𝑊 , and 7𝑊 , in which 𝑊 is the hull width of the 3D ISWEC
odel. Among the considered widths, the 7𝑊 tank width case has

he ISWEC device located farthest away from the lateral walls, and
29
s therefore expected to be least affected from the wall interference
ffects. The temporal evolution of hull pitch angle is compared for
hree wave tank widths, and the results are shown in Fig. B.25. From
he plots, it is observed that there is not much difference in the pitch
ynamics of the device. However, taking a closer look at the inset plot
eveals that the results obtained using a tank width of 5𝑊 is closer to
hose obtained using a width of 7𝑊 . Hence, we take the tank width to
e 5𝑊 in our 3D simulations, which has a lower computational cost
ompared to the 7𝑊 case.

ppendix C. Irregular wave results

.1. PTO damping coefficient 𝑐

See Fig. C.26.

.2. Flywheel speed 𝜙̇

See Fig. C.27.

.3. Flywheel moment of inertia 𝐽 and 𝐼

See Figs. C.28 and C.29.

.4. PTO stiffness coefficient 𝑘

See Fig. C.30.
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Fig. C.30. Dynamics of 2D ISWEC model for four different values of PTO stiffness 𝑘. The irregular wave properties are s = 0.1 m and p = 1 s and 50 wave components with
requencies 𝜔𝑖 in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle 𝛿, (b) gyroscope precession angle 𝜀, (c) pitch torque 𝛿 , and (d) precession torque
𝜀 for 𝑘 = 0 N m/rad (—–, black), 𝑘 = 0.2138 N m/rad (—–, red), 𝑘 = 1.0 N m/rad (—–, green), and 𝑘 = 5.0 N m/rad (—–, blue); (e) comparison of time-averaged powers

rom the interval 𝑡 = 10 s to 𝑡 = 20 s for various values of 𝑘. Power is maximized at 𝑘 = 0.1, which is quite close to the theoretically estimated 𝑘 = 0.2138 value.
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