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A B S T R A C T

In this paper we employ two implementations of the fictitious domain (FD) method to simulate water-entry and
water-exit problems and demonstrate their ability to simulate practical marine engineering problems. In FD
methods, the fluid momentum equation is extended within the solid domain using an additional body force that
constrains the structure velocity to be that of a rigid body. Using this formulation, a single set of equations is
solved over the entire computational domain. The constraint force is calculated in two distinct ways: one using
an Eulerian–Lagrangian framework of the immersed boundary (IB) method and another using a fully-Eulerian
approach of the Brinkman penalization (BP) method. Both FSI strategies use the same multiphase flow algorithm
that solves the discrete incompressible Navier–Stokes system in conservative form. A consistent transport scheme
is employed to advect mass and momentum in the domain, which ensures numerical stability of high density
ratio multiphase flows involved in practical marine engineering applications. Example cases of a free falling
wedge (straight and inclined) and cylinder are simulated, and the numerical results are compared against
benchmark cases in literature.

1. Introduction

Fluid-structure interaction (FSI) at the free water surface is a fun-
damental hydrodynamics problem that is of great importance to en-
gineers working in the fields of naval architecture and marine en-
gineering [1–4]. These unsteady and nonlinear FSI problems can be
further divided into two main categories of water-entry and water-exit
of structures [5,6]. Some practical examples of water-entry and exit
problems include hydrodynamic impact on bow structures of ships
during slamming and wave run-up effects on marine platforms [7]. The
water-entry of free falling marine structures produce large impact loads
that can threaten their immediate and long-term safety. Therefore, it is
important to estimate the impact loads on structures to ensure their safe
design and operability. Several experimental [2,8], theoretical [9–11],
and more recently computational fluid dynamics (CFD) techni-
ques [7,12–14] have been used in the literature to study these problems
at a fundamental level. The latter approach is the subject matter of the
current study.

With the advancement of computing technology, it is now possible

to simulate full three dimensional, unsteady FSI problems involving
complex structural geometries. Presently, both boundary element
method (BEM) based [15–17] and incompressible Navier–Stokes (INS)
method based simulations [18,19] are routinely employed in the design
process of marine structures. The BEM is based on potential flow
equations, which ignore the full nonlinear convective and viscous dis-
sipation terms found in the INS equations; hence, BEM based solvers are
much faster in compute time than INS based solvers. However, INS
solvers are more general than BEM solvers and therefore can reliably
model complicated phenomena like wave breaking, wave overtopping,
and wave run-up over structures [20–22]. Moreover, several commer-
cial CFD codes such as Fluent [23] or STAR-CCM+ [24], and open-
source codes such as OpenFOAM [25] now include support for mod-
eling structures interacting with free water surface. In these codes, the
most robust way of simulating large-displacement FSI is to use two sets
of meshes: an underlying fluid mesh and an overlaying structure mesh
for providing boundary conditions to the fluid solver. The fluid mesh
can be block-structured, whereas the structure mesh is generally un-
structured to represent complex geometries. The inside region of the
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solid is not meshed as it does not participate in the solution process.1

This dual mesh approach to FSI is also known as the Chimera or overset
mesh method [18,26] in the literature. These codes and the FSI strategy
based on overset meshes have been adopted by several marine and
ocean research groups to model complicated FSI pro-
blems [7,18,26,27].

In this work we discuss a different FSI strategy to simulate water-
entry and water-exit problems and demonstrate that it can be efficiently
and reliably used to model these complex problems. Our FSI strategy is
based on the fictitious domain (FD) methodology [28,29], in which the
fluid equations are extended into the solid domain. The velocity field
inside the solid is obtained by solving the common momentum and
incompressibility equations. The main advantage of this FSI strategy is
that complex structures can be modeled without employing an un-
structured mesh for the solid. Additionally, the momentum and con-
tinuity equations can be solved on structured Cartesian grids using fast
linear solvers. Another benefit of this strategy is the implicit-coupling of
the fluid and structure; stability-preserving sub-iterations between the
fluid and solid domains are not required, in contrast with overset mesh
based methods. For non neutrally-buoyant structures that are fre-
quently encountered in marine engineering applications, numerically
stable solutions are obtained in a single iteration using the strongly-
coupled FD formulations. These stability preserving characteristics of
FD methods are attributed to resolution of a correct or physical density
field in the inertial term of the momentum equation (including the
inner region occupied by the immersed solid); this circumvents any
numerical issues pertaining to added/reduced mass effects.

There are various approaches to implement FD methods. Two of the
most popular approaches are the immersed boundary (IB) method [30]
and the Brinkman penalization (BP) method [31,32]. In the FD/IB ap-
proach the structure is tracked in a Lagrangian frame of reference,
whereas in FD/BP method the immersed structure is tracked on the
Eulerian grid itself (usually by some indicator function). Both methods
solve the INS equations in the entire domain with an additional body
forcing term in the solid domain. The additional force in the momentum
equation acts like a constraint force, which imposes rigid body velocity
in the region occupied by the structure. FD/IB methods estimate this
constraint force in the Lagrangian form and transfers it back to the
Eulerian grid using suitable IB kernels [33,34]. FD/BP methods calcu-
late the constraint force in the Eulerian form directly [35]. An efficient
time-splitting approach using the distributed Lagrange multiplier method
(DLM) of Sharma and Patankar [29] is employed to calculate the La-
grangian constraint force. In contrast, FD/BP methods apply the con-
straint force in a time-implicit manner while solving the momentum
equation. Section 4 describes the full time-stepping algorithm for these
two methods in detail. We remark that there are various versions of the
IB method described in the literature [36]; in this work the original IB
method machinery of Peskin [30] is employed.

More recently, fully-implicit FD methods have been proposed in the
literature. In these methods, the unknown constraint forces are solved
for as a part of an extended system of INS equations; i.e. the fluid ve-
locity, pressure, and rigidity-enforcing constraint forces are solved for
simultaneously as a large block matrix system [37–41]. These devel-
opments have been enabled due to advances in linear algebra techni-
ques such as physics-based preconditioning for iterative Krylov sol-
vers [39,40], and large scale sparse direct solvers for systems involving
dense Schur complements [41]. Some of these methods also allow for
higher-order spatiotemporal discretization schemes and general
boundary condition treatments on the fluid-structure interface [37,38].

Another class of hybrid overset mesh/IB methods, known as the
sharp-interface approach [42–45], is often used to simulate compli-
cated FSI problems. These methods solve the fluid equations on regular

Cartesian grids but zero-out solution inside the solid domain pro-
grammatically. The computational domain is divided into fluid nodes,
solid nodes, and IB nodes. IB nodes are located near the solid surface in
the fluid side and provide velocity boundary conditions to the fluid
nodes. Sub-iterations are generally required to couple the two domains
in order to maintain numerical stability. These methods also require
complicated computational geometry algorithms to impose structure
velocities at the IB nodes. Sharp-interface methods have also been used
to model marine engineering FSI problems with success [13,45].
However, we do not consider them in this work as they are funda-
mentally different to FD methods.

The remainder of the paper is organized as follows. We first in-
troduce the continuous and discrete system of equations in Sections 2
and 4, respectively. Next we describe the time-stepping schemes of the
FD/BP and FD/IB methods in Section 4.2. Comparisons and salient
features of the two FD implementations are described in Section 5.
Software implementation is described in Section 6. A 2D free-falling
inclined wedge with three free degrees of freedom is simulated in
Section 7.1 to validate the implementation of the FD/BP method, which
is relatively new compared to our more mature FD/IB implementa-
tions [33,39,40,46,47]. Simulations of water-entry and water-exit of a
free falling wedge and a cylinder with both FD methods are shown in
the remainder of Section 7 and the results are compared with literature.
Finally, computational costs of the two FD implementations are com-
pared in Section 8.

2. The continuous equations of motion

2.1. Multiphase fictitious domain formulation

We begin by describing the continuous governing equations for a
coupled multiphase fluid-structure system occupying a fixed region of
space ,d for =d 2 or 3 spatial dimensions. In fictitious domain FSI
formulations, the momentum and divergence-free condition for the
domain occupied by the fluid and structure are described in a fixed
Eulerian coordinate system = …x xx ( , , )d1 . For the FD/IB method, a
Lagrangian description of the immersed body configuration is em-
ployed, in which = …s s Bs ( , , )d1 denotes the fixed material co-
ordinate system attached to the structure and B d is the Lagrangian
curvilinear coordinate domain. The position of the immersed structure
is denoted by X(s, t) in the Lagrangian frame, with the body occupying
the volumetric Eulerian region Vb(t)⊂Ω at time t. In contrast, the FD/
BP method uses an indicator function χ(x, t) defined on the Eulerian
grid to describe the location of the body. The indicator function is non-
zero only in the structure domain Vb(t). We use spatially and temporally
varying density ρ(x, t) and dynamic viscosity μ(x, t) fields to model not
only multiple fluids occupying the domain, but also non neutrally-
buoyant structures. The equations of motion for the coupled fluid-
structure system for the fictitious domain formulation read as

+ = + + +

+

t
t

t t p t µ t t

t

u x u x u x x u x u x g

f x

( , ) · ( , ) ( , ) ( , ) ·[ ( ( , ) ( , ) )]

( , ),

T

c (1)

=tu x· ( , ) 0. (2)

Eqs. (1) and (2) are the incompressible Navier–Stokes momentum and
continuity equations written in conservative form for the fixed region in
space Ω. Here, u(x, t) is the fluid velocity, p(x, t) is the pressure, and
fc(x, t) is the Eulerian constraint force density that is non-zero only in
the region occupied by the structure. The gravitational acceleration is
denoted by = …g gg ( , , )d1 . In the present study, we choose to directly
work with the conservative form of the momentum equation, since it
has been shown that methods based on the non-conservative form ex-
hibit numerical instabilities for problems involving air-water inter-
faces [48–52].

The specific form of the constraint force fc(x, t) depends on the
1 Only a no-slip condition on the fluid-structure interface is required to si-

mulate FSI of a rigid body.
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particular fluid-structure interaction algorithm employed. For the FD/
IB methodology, the constraint forces are first calculated on the
Lagrangian mesh and later transferred to the background Eulerian grid.
Conversely, the Lagrangian structure is displaced by interpolating the
background Eulerian velocity onto the Lagrangian domain. The inter-
actions between Eulerian and Lagrangian quantitates are mediated by
integral transformations using a Dirac delta function, usually defined as
a tensor product of one-dimensional singular kernels = = xx( ) ( )i

d
i i1 .

The Lagrangian–Eulerian interaction equations are written as

=t t tf x F s x X s s( , ) ( , ) ( ( , )) d ,
Bc (3)

=t t tU s u x x X s x( , ) ( , ) ( ( , )) d , (4)

=
t

t tX s U s( , ) ( , ). (5)

Eq. (3) relates the Lagrangian force density F(s, t) to a corresponding
Eulerian density fc(x, t), which is commonly known as force spreading
operation in the IB literature [30]. Eq. (4)relates the physical velocity of
each Lagrangian material point U(s, t) to the background Eulerian ve-
locity field u(x, t), hence defining the velocity interpolation operation.
The velocity interpolation operation ensures that the immersed struc-
ture moves according to the local fluid velocity u(x, t) (see Eq. (5)), and
that the no-slip condition is implicitly satisfied at the fluid-solid inter-
faces. The standard discretization of these operators are described later
in Section 3.3, and we refer readers to Peskin [30] for a detailed ana-
lysis of their properties. In the FD/IB formulation the appearance of the
Eulerian constraint force density fc(x, t) is due to a rigidity constraint
imposed on the Lagrangian velocity field + =t tU s U s[ ( , ) ( , ) ] 0,T1

2
which is continuously enforced through a distributed Lagrange multiplier
force field (see Patankar et al. [28] and Sharma and Patankar [29]).
Discretely, an approximation to the Lagrangian force density F(s, t) is
computed and spread onto the background Eulerian grid; this process is
described briefly in Section 4.2.4, and in more detail by Shirgaonkar
et al. [53] and Bhalla et al. [33].

In the FD/BP method, the constraint force fc(x, t) is defined as a
(Brinkman) penalization force that enforces a desired motion ub(x, t) in
the spatial location occupied by the body. More specifically, the im-
mersed structure is treated as a porous body with a vanishing perme-
ability K≪ 1 (effectively making the region impenetrable and translate
with the desired rigid body velocity) and the penalization force is for-
mulated as [31,35,54]

=t t
K

t tf x x u x u x( , ) ( , ) ( ( , ) ( , )).c b (6)

In contrast with the immersed boundary method, the FD/BP method is
a purely Eulerian approach to modeling the fluid-structure system.
Section 4.2.3 describes the numerical algorithm for computing the rigid
body velocity ub(x, t) from the fluid-structure interaction.

2.2. Interface tracking

To prescribe the material properties (i.e. density and viscosity) for
the three phases on the Eulerian grid, we use two scalar level set
functions ϕ(x, t) and ψ(x, t). The zero-contour of ϕ function implicitly
defines the liquid-gas interface, whereas the zero-contour of ψ function
defines the structure boundary. The level set function ϕ conveniently
allows prescription of the liquid density ρl and viscosity μl in the spatial
region Ωl(t)⊂Ω occupied by the liquid, and the gas density ρg and
viscosity μg in the spatial region Ωg(t)⊂Ω occupied by the gas. The
codimension-1 interface between these two fluids is denoted as

=t( ) l g. The complex topological changes in the liquid-gas in-
terface due to fluid-fluid and fluid-structure interactions can be easily
handled within the level set framework, without employing any re-
meshing procedures [55–57]. Level set methods are also relatively
simple to implement on locally-refined meshes. Similar to the ϕ level

set, the ψ level set function allows prescription of the solid density ρs
and viscosity μs in the region occupied by the structure Vb(t). The co-
dimension-1 boundary of the immersed structure is denoted as

=S t V t( ) ( )b b .
As the simulation progresses in time, all three phases are advected

by the incompressible Eulerian velocity field. This phase transport is
governed by the conservative, linear level set advection equations

+ =
t

u· 0, (7)

+ =
t

u· 0. (8)

The density and viscosity in the three phases are determined as a
function of these auxiliary fields as

=t t tx x x( , ) ( ( , ), ( , )), (9)

=µ t µ t tx x x( , ) ( ( , ), ( , )). (10)

In practice, regularized Heaviside functions (see Section 4.1) are used to
obtain the discretized form of Eqs. (9) and (10).

Although various functional forms can be used to define the level
sets in multiphase flow applications, the most practical form is the
signed distance function. At time =t 0, the distances to Γ(t) and Sb(0) are
computed and set as initial conditions to the level set advection Eqs. (7)
and (8):

=x
x y x

x y x
( , 0)

min , (0),

min , (0),
y

y

(0)
g

(0)
l

(11)

=
V

V
x

x y x

x y x
( , 0)

min , (0),

min , (0).
S

b

S
b

y

y

(0)

(0)

b

b (12)

Notice that under advection, there is no guarantee that ϕ and ψ will
remain signed distance functions [58]. At each time step, a re-
initialization procedure is used to maintain the signed distance prop-
erties. Note that by using this formulation, initial conditions are only
required for ϕ and ψ and not for ρ and μ.

3. Spatial discretization

This section describes the discretization of the governing equations
for the coupled FSI system for both fictitious domain formulations. For
the FD/BP method, we use only Eulerian quantities that are discretized
on a staggered Cartesian grid, whereas for the FD/IB method, additional
Lagrangian quantities are approximated on a collection of immersed
markers. The Lagrangian markers can be arbitrarily positioned on the
background Eulerian grid without conforming to the grid lines.
Regularized versions of the Dirac delta function are used to define
discrete grid transfer operations for the FD/IB method. To simplify the
treatment of the two methods, we focus on describing the =d 2 spatial
dimensions case; the discretization in three spatial dimensions is ana-
logous. We refer readers to prior studies [33,47] for a description of the
FD/IB method in 3D.

3.1. Eulerian discretizaton for FD methods

We employ a staggered Cartesian grid discretization for quantities
described in the Eulerian frame; see Fig. 1. A Cartesian grid made up of
Nx×Ny cells covers the physical, rectangular domain Ω with mesh
spacing Δx and Δy in each direction. Assuming that the bottom left
corner of the domain is situated at the origin (0,0), each cell center of
the grid has position = + +( )i x j yx ( ) , ( )i j,

1
2

1
2 for = …i N0, , 1x

and = …j N0, , 1y . For a given cell (i, j), = +( )i x j yx , ( )i j,
1
2

1
2

is
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the physical location of the cell face that is half a grid space away from
xi,j in the x-direction, and = +( )i x j yx ( ) ,i j k, ,

1
2

1
2

is the physical
location of the cell face that is half a grid cell away from xi,j in the y-
direction. The flow and structure level sets, and pressure degrees of
freedom are approximated at cell centers and are denoted by

tx( , ),i j
n

i j
n

, , and p p tx( , ),i j
n

i j
n

, , respectively. Here, tn denotes the
time at time step n. The material properties are also approximated at
cell centers, tx( , )i j

n
i j

n
, , and µ µ tx( , )i j

n
i j

n
, , ; these quantities are

interpolated onto the required degrees of freedom as needed (see [52]
for further details). Velocity components are staggered and are defined
on their respective cell faces: ( )u u tx , ,i j

n
i j

n
, ,1

2
1
2

and

( )v v tx ,i j
n

i j
n

, ,1
2

1
2

. The components of the gravitational and con-
straint forces on the right-hand side of the momentum equation are also
approximated on respective faces of the staggered grid.

Classic second-order finite differences are used to discretize spatial
derivative operators and are denoted with h subscripts; i.e. ∇ ≈∇h. We
refer readers to prior studies [33,52,59,60] for a full description of

these staggered grid discretizations.

3.2. Lagrangian discretization for the FD/IB method

Lagrangian quantities such as positions, velocities, and forces are
defined on immersed markers that are allowed to arbitrarily cut
through the background Cartesian mesh (see Fig. 1(d)). These markers
are indexed by (l, m) with curvilinear mesh spacings (Δs1, Δs2).

A discrete approximation to any general quantity defined on marker
points is described by =t l s m s ts( , ) ( , , )l m

n
l m

n n
, , 1 2 at time tn.

More specifically, the position, velocity, and force of a marker point are
denoted as Xl,m, Ul,m, and Fl,m, respectively. Fig. 1(c) shows a sketch of
Lagrangian–Eulerian discretization in two spatial dimensions.

3.3. Lagrangian–Eulerian interaction for the FD/IB method

The transfer of quantities between the Eulerian and Lagrangian
grids requires discrete approximations to the velocity interpolation and

Fig. 1. (a) Sketch of the immersed structure interacting with liquid and gas phases in a rectangular domain. (b) Numerical discretization of the domain Ω into
Eulerian grid cells (■, purple) and the indicator function χ used in the FD/BP method to differentiate between the fluid and solid regions; = 1 inside the structure
domain and = 0 in liquid and gas domains. (c) Numerical discretization of the domain Ω into Eulerian grid cells (■, purple) and Lagrangian markers (■, orange)
for the FD/IB method. (d) Two Cartesian grid cells on which the components of the velocity field u are approximated on the cell faces (→ , black); the pressure p and
level sets ϕ and ψ are approximated on the cell center (•, black); and the Lagrangian quantities are approximated on the marker points (■, orange), which can
arbitrarily cut through the Eulerian grid. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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force spreading integrals described by Eqs. (3) and (4). It is convenient
to use short-hand notation to denote these integrals. More specifically,
the force spreading integral of Eq. (3) is denoted by =f X F[ ] ,h in
which X[ ]h is the discrete version of the force-spreading operator. The
velocity interpolation integral of Eq. (4) is denoted by =U X u[ ] ,h in
which X[ ]h is the discrete version of velocity-interpolation operator. It
can be shown that if h and h are taken to be adjoint operators, i.e.

= *,h h then the Lagrangian–Eulerian coupling conserves en-
ergy [30].

The discrete velocity interpolation of the staggered grid fluid velo-
city onto a specific configuration of Lagrangian markers (i.e.

=U X u[ ] )h reads

= ( )U u x yx X ,l m i j h i j l m
x

, 1
2 , 1

2 , ,

i j1
2 , (13)

= ( )V v x yx X ,l m i j h i j l m
x

, , 1
2 , 1

2
,

i j, 1
2 (14)

The discrete spreading of a force density (defined on Lagrangian mar-
kers) onto faces of the staggered grid (i.e. =f X F[ ]h ) reads

= ( )f F s sx X( ) ( ) ,i j
V

l m h i j l m
X

1 1
2 , 1 , 1

2 , , 1 2
l m b, (15)

= ( )f F s sx X( ) ( ) .i j
V

l m h i j l m
X

2 , 1
2

2 , , 1
2

, 1 2
l m b, (16)

In the above expressions, δh(x) denotes a regularized version of the two-
dimensional Dirac delta function based on a four-point kernel func-
tion [30]. We use the same discrete Dirac delta function for both force-
spreading and velocity interpolation operators, which ensures that

= *h h. We refer readers to [30,33] for more details on various
properties (including the spatial invariance property) and im-
plementation of the grid transfer operations.

4. Solution methodology

In this section, we describe the full time-stepping scheme and the
fluid-structure interaction algorithms employed for the FD/BP and FD/
IB methods. We first describe the numerical elements common to both
implementations, such as material property specification, level set ad-
vection and reinitialization, and incompressible Navier–Stokes solver
for high density ratio multiphase flows. The main difference between
the two FD methods is the fluid-structure coupling algorithm, which is
detailed thereafter.

4.1. Material property specification

As described earlier in Section 2.2, the zero isocontours of ϕ(x, t)
and ψ(x, t) represent the liquid-air interface Γ(t) and the boundary of
the immersed structure Sb(t), respectively. Using the signed distance
property of ϕ and ψ, we define smoothed Heaviside functions that are
regularized over ncells grid cells on either side of the interfaces (as-
suming =x y),

=

<

+ +H

n x

n x n x
n x

0, ,

1
2

1
2

1
2

sin , | | ,

1, otherwise,

i j

i j

i j i j i j,
flow

, cells

cells
,

cells
, , cells

(17)

=

<

+ +H

n x

n x n x
n x

0, ,

1
2

1
2

1
2

sin , | | ,

1, otherwise,

i j

i j

i j i j i j,
body

, cells

cells
,

cells
, , cells

(18)

A given material property ζ (such as ρ or μ) is then prescribed in the
whole domain using a two-step process. First, the material property in
the “flowing” phase is set via the liquid-gas level set function

= + H( ) .i j i j,
flow

l g l ,
flow

(19)

Next, the material property is set on cell centers throughout the com-
putational domain, taking into account the solid phase 2

= + H( ) .i j i j i j,
full

s ,
flow

s ,
body

(20)

Without loss of generality, the liquid phase is represented by negative
values of ϕ and the solid phase is represented by negative ψ values. Note
that in the above equations, we have assumed that the number of
transition cells is the same across Γ and Sb. This is not a strict re-
quirement of the numerical method, but it is true for all the cases
considered in the present work.

In general, the signed distance property of ϕ and ψ is not preserved
under advection governed by Eqs. (7) and (8). Therefore, a re-
initialization process is carried out at the end of each time step such
that and +n 1 represent a signed distance to their respective interfaces.
This is described briefly in Appendix A, and in more detail by Nangia
et al. [47].

4.2. Full time stepping scheme

We now describe the general time stepping scheme employed over
the time interval + = +t t t t t[ , ] [ , ]n n n n 1 ; within each time step, ncycles
cycles of fixed-point iteration are used. In the present work, we always
use =n 2cycles . Note that k appears as a superscript to distinguish the
cycle number. At the beginning of each time step we set =k 0, with

=+u u ,n n1,0 =+p p ,n n,01
2

1
2 =+ ,n n1,0 =+ ,n n1,0 and =+X Xn n1,0 . At

the first time step =n 0, these quantities are prescribed initial condi-
tions. The midpoint, time-centered approximation to Lagrangian posi-
tions is given by = ++ +X X X( )n k n k n, 1

2
1,1

2 .(Fig. 2)

4.2.1. Scalar advection
The level set Eqs. (7) and (8) are discretized using a standard time-

stepping approach as

+ =
+ +

+ +( )t
Q u , 0,

n k n
n k n k

1, 1 1
2 , 1

2 ,
(21)

+ =
+ +

+ +( )t
Q u , 0,

n k n
n k n k

1, 1 1
2 , 1

2 ,
(22)

in which Q( · , · ) represents a discretization of the linear advection term
on cell centers via an explicit piecewise parabolic method. More spe-
cifically, the xsPPM7-limited version described in [60,62] is employed.
Homogenous Neumann boundary conditions are enforced for ϕ and ψ
on ∂Ω using a standard ghost cell treatment [63].

4.2.2. Incompressible Navier–Stokes solver: Conservative and consistent
transport formulation

The conservative form of the incompressible Navier–Stokes equa-
tions Eqs. (1) and (2) are discretized as

2 For solid viscosity, we use =µ µs l following the recommendations described
in [47,61].
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1, 1 (23)

=+ +u· 0,h
n k1, 1 (24)

in which = 1FD for the FD/BP method and = 0FD for the FD/IB
method, i.e., the Eulerian constraint forces are included when solving
the INS momentum equation for the FD/BP method and ignored for the
FD/IB method. The reason for ignoring constraint forces in the FD/IB
method will become apparent later when we discuss its FSI algorithm.
Similarly, the specific value of the density ℘ field used to compute the
gravitational body force ℘g will be explained in the context of each
fluid-structure coupling algorithm.

Note that = ++ + + +L u L u L u( ) [( ) ( ) ]µ
n k

µ
n k

µ
n, 1 1

2
1, 11

2 is a semi-implicit
approximation to the viscous strain rate with

= +µL u u( ) ·[ ( ) ],µ
n

h
n

h h
T n making the above time-stepping scheme

with =n 2cycles resemble a combination of Crank–Nicolson for the vis-
cous terms and explicit midpoint rule for the convective term. The
newest approximation to viscosity + +µn k1, 1 is obtained via the two-stage
process described in Eqs. (19) and (20). The newest approximation to
density + +n k1, 1 and the discretization of the convective term +Cn k1, are
computed such that they satisfy consistent mass/momentum transport,
which is required to maintain numerical stability for air-water density
ratios. We briefly describe this approach in Appendix B and refer the
reader to Nangia et al. [47] for more details.

4.2.3. Fluid-structure coupling: FD/BP method
In the fictitious domain Brinkman penalization formulation, we

retain the constraint force in the momentum equation by setting
= 1FD . The constraint/penalization force enforcing the rigid body

motion is proportional to the difference between the desired structure
velocity and the fluid velocity. For the time-stepping scheme, it reads

=+ + + + + +
K

f u u( ),n k n k n k
c

1, 1
b

1, 1 1, 1
(25)

in which = H1 ,body H body is the regularized structure Heaviside
function (Eq. (18)) and K (10 )8 ; this is sufficiently small to enforce
the rigidity constraint in the structure domain, as described by prior
studies [35,54,64]. The rigid body velocity ub in Eq. (25)can be ex-
pressed in terms of the translational Ur and rotationalWr center of mass
velocities

= + ×+ + + + + + + +u U W x X( ).n k n k n k n k
b

1, 1
r

1, 1
r

1, 1
com

1, 1 (26)

The center of mass velocities can be obtained in two distinct ways:

1. Fully prescribed motion:
For some specified rigid body motion of the structure, i.e, the

translational and rotational velocities of the body are known a priori,
we can directly prescribe the velocity field at time step +n 1 as

= + ×+ + + + +u U W x X( ).n k n n n
b

1, 1
r

1
r

1
com

1 (27)

This algorithm can be used to simulate one-way FSI problems such
as flows over stationary bluff bodies or structures entering or exiting
fluid-gas interfaces with known velocity.

2. Free-body motion:
The rigid body velocity in this case can be obtained by integrating
Newton’s second law of motion

= +
+ +

+
t

U U gM M ,
n k n

n k
b

r
1, 1

r 1,
b (28)

=
+ +

+
t

I W W ,
n k n

n k
b

r
1, 1

r 1,
(29)

in which Mb is the mass, Ib is the moment of inertia, is the net
hydrodynamic force, is the net hydrodynamic torque and Mbg is
the net gravitational force acting on the body. Eqs. (28) and (29) are
integrated using a forward-Euler scheme to compute + +U ,n k

r
1, 1

+ +Wn k
r

1, 1 and + +Xn k
com

1, 1. In practice we employ quaternions to in-
tegrate Eq. (29) in the initial reference frame, which avoids re-
computing Ib as the body rotates in a complex manner in three
spatial dimensions.

We remark that since the gravitational force is included in the rigid
body equation of motion (28), it is not necessary to include the volu-
metric gravity term gs in the momentum Eq. (23). In fact, it is ad-
vantageous to just use ρflowg to avoid spurious velocity currents near
the fluid-solid interface due to high density gradients [47]. Similar
arguments hold for the prescribed motion case. Therefore, we use

=g gflow in Eq. (23) for the FD/BP method.
The hydrodynamic forces and torques acting on the body are

calculated by directly summing pressure and viscous forces from the
surrounding fluid on the areal elements of the body surface

= + ++ + + +p µ An u u n( ( ( ) )· ) ,n k

f

n k
f f h

n k
h

n k T
f f

1, 1, 1, 1,

(30)

=
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n k

f

n k

n k
f f h

n k
h

n k T
f f

1,
com

1,

1, 1, 1, (31)

In general, the surface boundary Sb does not conform to the underlying
Eulerian grid. Therefore, the above sums are evaluated by representing
the body’s surface in a stair step manner using the grid cells adjacent to
Sb. Fig. 3 depicts such a representation. More specifically, a grid face is

Fig. 2. Sketch of the two-stage process for prescribing the
material properties in the computational domain. (a) Density
and viscosity are first prescribed in the “flowing” phase based
on the liquid-gas level set function ϕ (—, black) and ignoring
the body’s level set function ψ (—, orange). (b) Density and
viscosity are then corrected in the solid phase.
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considered to be a part of the structure boundary if the two grid cells
containing it have structure level set ψ values of opposite sign; the
summation ∑f shown in Eqs (30) and (31) are over these particular grid
faces. This simplifies the hydrodynamic force and torque computations
significantly, since all of the required quantities are readily available or
can be interpolated (by simple averaging) onto the Cartesian cell faces
(e.g. face-centered pressure or viscosity μf). This is one of the main
advantages of fictitious domain methods over sharp interface methods:
the solution variables are valid on either side of the interface. The latter
methods require one-sided interpolations using computational geo-
metry constructs.

4.2.4. Fluid-structure coupling: FD/IB method
In the fictitious domain immersed boundary formulation, we ignore

the constraint forces in the momentum equation by setting = 0FD .
Therefore, the velocity field computed by the flow solver using
Eqs. (23) and (24) will not satisfy the rigid body motion constraints
placed in the structure domain. However, the velocity field will be
correct in the fluid domain. If + +un k1, 1 denotes the velocity solution
obtained by ignoring the constraint forces, then to correct the velocity
in Vb(t) to + +u ,n k1, 1 we carry out the following projection step [33]

=+ +
+ + + +

+ +
t

u u f .n k
n k n k

n k1, 1
1, 1 1, 1

c
1, 1

(32)

Similar to Brinkman penalization, the constraint force can be computed
using the difference between two velocity fields: the desired body ve-
locity and the interpolated uncorrected fluid velocity on the Lagrangian
mesh + +Ul m

n k
,

1, 1
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=

+ +
+ +

+ + +
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h
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h
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h
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1, 1 1
2 , 1, 1

1, 1 1
2 ,

b
1, 1 1

2 , 1, 1

(33)

which vanishes outside the structure domain. By correcting the fluid
velocity in this way, we ensure that the Eulerian velocity in Vb(t) ap-
proximately matches that of the solid’s Lagrangian velocity + +Un k

b
1, 1.

Combining the above two equations yields a simplified update equation
for the Eulerian velocity field

= ++ + + + + + + + + +( )u u X U X u .n k n k
h

n k n k
h

n k n k1, 1 1, 1 1
2 ,

b
1, 1 1

2 , 1, 1

(34)

We note that there is no guarantee that this corrected velocity will
satisfy the divergence-free condition discretely; it is likely that

+ +u· 0h
n k1, 1 . However, we have found that an additional divergence-

free velocity projection is not necessary to obtain physically accurate
results, corroborating previous investigations by Bhalla et al. [33].

To compute + +f ,n k
c

1, 1 we first determine + +Un k
b

1, 1 in the Lagrangian
frame. The rigid body velocity of each Lagrangian marker can be
written as (omitting the time superscripts)

= + ×U U W R( ) ,l m l mb , r r , (35)

in which =R X Xl m l m, , com is the radius vector pointing from the
center of mass to the Lagrangian marker position. Again considering the
two FSI scenarios:

1. Fully prescribed motion:
For problems in which the motion of the body is known a priori as a
function of time, we can directly prescribe the Lagrangian velocity
field at time step +n 1 as

= + ×+ + + + +U U W R( ) ,l m
n k n n

l m
n k

b ,
1, 1

r
1

r
1

,

1
2 ,

(36)

which can be used to update the positions of the Lagrangian markers

= ++ + + +tX X U( ) .l m
n k

l m
n

l m
n k

,
1, 1

, b ,

1
2 , 1

(37)

2. Free-body motion:
For fully coupled problems in which the body moves as a result of
the fluid-structure interaction, the Lagrangian velocity field at time
step +n 1 is determined by redistributing the linear and angular
momentum [28,33,53] in the structure domain

=+ + + + +( ) s sU X uM ,n k

V
h

n k n k

l mX
b r

1, 1
s

1
2 , 1, 1

,
1 2

l m b, (38)
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1, 1
s ,

1
2 , 1

2 , 1, 1

,
1 2

l m b,

(39)

The structure’s velocity and position are then updated via Eqs. (36)
and (37).

Note that for fully prescribed motion, the gravitational force does
not affect the body’s (specified) velocity. To avoid spurious flow cur-
rents near the fluid-structure interface (due to sharp density gradients)
we simply use =g gflow for prescribed motion FSI problems. The
free-body motion scenario requires special consideration. Because a
momentum redistribution procedure is employed to obtain Ur and Wr,
the algorithm assumes that the uncorrected fluid momentum u is ob-
tained by including all (including gravitational) body forces in the
momentum Eq. (23). Therefore, the gravitational body force should
account for the solid density and we use =g gfull for free-body
motion FSI problems. See [47] for more discussion.

The net hydrodynamic force and torque for the FD/IB method
can be computed as a post-processing step using the Lagrangian
quantities [46]

=+
+ +

t t
s s

U U U( ) ( )
,n

V

l m
n

l m
n

l m
n

X

1
s

b ,
1

b , ,
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l m b, (40)
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t t
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l m
n l m

n
l m
n

l m
n
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1
s ,

1 b ,
1

b , ,
1

1 2
l m b, (41)

in which the discrete approximations of the quantities on the right-hand
side are readily available during each time step.

Finally, we remark that the above methodologies assume that the

Fig. 3. Discrete, stair step representation of the body’s surface Sb on a Cartesian
grid. For two adjacent cells with structure level set ψ values of opposite sign, the
common face with normal vector nf and surface area ΔAf is used to evaluate the
hydrodynamic force and torque integrals.
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rigid-body degrees of freedom either are all fully prescribed (locked) or
all undergoing free-body motion (unlocked). In our practical im-
plementation, we are able to mix and match which degrees of freedom
are locked and unlocked. We make use of this flexibility in the nu-
merical examples presented in this work.

5. Comparison of the two fictitious domain methods

Below, we list some of the similarities and differences of the two
previously described FD algorithms:

• Both methods extend the fluid momentum equation into the solid
domain, which results in a valid solution on both sides of the
structure interface.
• Both methods formulate the constraint force in terms of a difference
between the desired body and fluid velocities. For a specific value of
permeability =K t/ , identical forms of the constraint force fc are
obtained 3

• The FD/BP method treats the constraint force implicitly, whereas
the FD/IB method treats it explicitly. The explicit treatment of fc
allows the use of an existing fluid solver without any modifications.
The implicit Brinkman penalization method necessarily requires
changes to an existing fluid solver infrastructure 4

• The fully Eulerian nature of the FD/BP method is an attractive
feature from a domain decomposition perspective, which can enable
parallel scalability. In contrast, special load-balancing techniques
must be employed to efficiently distribute Lagrangian and Eulerian
data used in the FD/IB method.
• The momentum redistribution step of the FD/IB method avoids the
need to compute hydrodynamic forces and torques on the immersed
surface explicitly (which is a requirement of the FD/BP algorithm).
The former approach requires Eulerian-Lagrangian interpolation
and spreading routines, which may become expensive for large vo-
lumetric bodies.
• The FD/IB method works best for volumetric forces that are defined
throughout the interior region of the structure. Incorporating point
forces and torques that act only at certain points of the body (e.g.
hinge forces or spring/damper forces) is not straightforward. Such
forces and torques can be easily incorporated in Newton’s law of
motion used in the FD/BP method.

6. Software implementation

The numerical algorithm described here is implemented within the
IBAMR library [65], which is an open-source C++ simulation software
focused on immersed boundary methods with adaptive mesh refine-
ment. All of the numerical examples presented here are publicly
available via https://github.com/IBAMR/IBAMR. IBAMR relies on
SAMRAI [66,67] for Cartesian grid management and the AMR frame-
work. Linear and nonlinear solver support in IBAMR is provided by the
PETSc library [68–70]. All of the example cases in the present work
made use of distributed-memory parallelism using the Message Passing
Interface (MPI) library. All of the example cases described in this sec-
tion were carried out using 72 processors on the Fermi cluster at SDSU.

7. Numerical examples

We begin by simulating the challenging case of a two-dimensional,
freely falling inclined wedge with three free degrees of freedom to
validate the FD/BP method. We have extensively validated FD/IB

implementations in previous work [33,39,40,46,47,71–73] in the con-
text of both two and three phase flows.

Next, we simulate water-entry and exit of a freely falling wedge and
cylinder in two-spatial dimensions, and compare the fluid-structure
dynamics obtained by the FD/BP and FD/IB methods. For these cases,
the only unlocked degree of freedom is the vertical (y) direction.

We use =n 2cycles for both methods. Two grid cells of smearing
=n 2cells are used to transition between different material properties on

either side of the interfaces. Water and air densities are taken to be
1000 kg/m3 and 1.2 kg/m3, respectively, and their respective viscos-
ities are taken to be 10 3 Pa · s and ×1.8 10 5 Pa · s. Surface tensions
effects are neglected. No-slip boundary conditions are imposed along
∂Ω.

7.1. Water-entry of a free falling inclined wedge

In this section, we consider the case of an inclined, 2D wedge-
shaped object impacting an air-water interface. The wedge is initially
rotated counterclockwise through a heel angle of 5° as shown in Fig. 4.
The isosceles triangle body has length =L 0.61 m and a deadrise angle
of 20°. Its mass and moment of inertia are 124 kg and 8.85 kg · m2,
respectively. The structure’s dimensions and material properties are
chosen to match the experimental study conducted by Xu et al. [74].
Additionally, this case has been studied numerically using a weakly
compressible smoothed particle hydrodynamics (SPH) method by Oger
et al. [75], and an artificial compressibility method combined with a
Chimera grid-based Navier–Stokes solver by Nguyen et al. [76]. That is,
the prior numerical studies [75,76] simulate the compressible version
of the Navier–Stokes equation in the low Mach number regime in
contrast to the incompressible Navier–Stokes solver used in the present
study.

The computational domain is taken to be = ×L L[0, 4 ] [0, 2.62 ],
which is discretized by uniform grids. The initial distance between the
bottom vertex of the wedge (point O in the Schematic 4) and the air-
water interface is = 0.61s m. We note that the domain dimensions and
the depth of the initially quiescent water are not mentioned in prior
experimental and numerical 5 investigations [74–76]. Therefore as a
preliminary test case, four different water depths are considered:

= 0.13d m, 0.225 m, 0.35 m, and 0.45 m and the results are compared
to the experimental data of Xu et al. [74]. The domain is discretized by
a 488× 320 grid (medium resolution), and a constant time step size of

= ×t 2.5 10 5 is used. Fig. 5 shows the time evolution of vertical ac-
celeration (normalized by =g 9.81 m/s2) and angular acceleration for
varying water depths. Note that the peak linear acceleration decreases
with increased water depth [77]. Based on Fig. 5, it is evident that the
best agreement with mean experimental data is achieved when simu-
lating this problem using a water depth of = 0.13d m. However, the
wedge itself has a height of 0.11 m, making this value of water depth
inadequate for simulating long-term dynamics. In particular, experi-
mental data are available up to a final time of around =t 0.45 s; the
wedge will impact the bottom of the domain around this time if the
simulation water depth is chosen too small. Therefore, we choose to use

= 0.225d m for the remaining cases in this section. Finally we note
that although the peaks in our simulated angular accelerations match
well with experimental data (Fig. 5(b)), there are some differences over
the time interval =t 0.37 s to =t 0.4 s. We attribute these differences to
three possibilities:

1. Compressibility effects during initial impact. Chen et al. [78] found
that it can be important to consider compressibility of the water
phase for problems involving substantial impact forces. Since our
solver assumes incompressibility of flowing phases, fluid oozes from
the sides of the object more quickly (compared to a compressible3 For practical water-entry and water-exit problems, =K t/ l is (10 )8 .

4 It is also possible to treat fc explicitly in the FD/BP method without re-
quiring modification of an existing fluid solver. We have not yet analyzed the
accuracy and stability of explicit FD/BP methods, however. 5 Only the domain length of 2.62L is mentioned in [75,76].
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fluid), which may explain the faster angular dynamics observed in
our simulations.

2. Minor differences in problem set up (such as domain boundaries or
initial water depth) could also explain deviations from the experi-
mental data.

3. Unlike the linear acceleration data, which are reported as a mean of
two experiments with a significant standard deviation, the angular
acceleration data are reported from a single trial in Xu et al. [74]. It
is unclear how repeatable these results are (i.e. multiple trials could
exhibit large variability in results). In spite of some differences in
the angular acceleration, we obtain an excellent match with the
experimental data for angle of heel (see Fig. 6(a)).

For a fixed water depth = 0.225d m, we now simulate this problem
with three different mesh resolutions; a coarse grid (244× 160 with

= ×t 5 10 ),5 a medium grid (488× 320 with = ×t 2.5 10 5) and a
fine grid (814×534 with = ×t 1 10 5) are considered. Fig. 6(a)
and (b) show time evolution of the wedge’s heel angle and vertical
velocity, respectively, for all three mesh resolutions. For both quantities
the solutions on the finest grid are in excellent agreement with the
experimental data of Xu et al. [74], and grid convergence towards these
data is also seen. In particular, a medium grid resolution that corre-
sponds to approximately 120 grid cells per wedge length is adequate to
resolve the FSI dynamics of a free-falling wedge. In Fig. 6(c) and (d), we
show the dimensionless vertical acceleration and angular acceleration
for the finest grid resolution as a function of time. Although the max-
imum vertical acceleration from the FD/BP method is slightly smaller
than seen in experiments, the overall trend and values away from this
peak match reasonably well. It is evident that the numerical simulations
presented in Oger et al. [75] and Nguyen et al. [76] suffer from the

same mismatch in peak linear acceleration. The peaks in angular ac-
celeration are in decent agreement with the experimental study, al-
though we again observe some differences in the trend over the time
interval =t 0.37 s to =t 0.4 s even at the finest grid resolution. This
implies that a converged solution for angular acceleration has been
achieved for our simulations. The simulations from Oger et al. and
Nguyen et al. are in much better agreement with the experiment, which
we attribute to the fact that these authors considered compressibility
effects in their numerical schemes. Finally in Fig. 7, we show the con-
vergence of hydrodynamic vertical force and torque for three different
grid resolutions. As expected, large impulses are seen as the wedge
slams into the water just before =t 0.4 s.

Fig. 8 shows the evolution of fluid-structure interaction along with
the vorticity generated by the inclined wedge for the medium and fine
grid resolutions. As the wedge falls through the air phase, vortical
structures are shed from the top corners. Upon impact these large scale
vortices retain their structure on the medium grid, while they break
down into smaller, satellite vortices on the fine grid. However, the
overall trend of the vortex dynamics remains the same for the two grid
resolutions. Asymmetric splashes emanate from the air-water interface
at later times, as the fine grid resolves the small scale droplets. Note
that the fine grid is able to capture emanating spray droplets better than
the medium grid, which tends to dissipate them. The measured FSI
quantities (heel angle, vertical velocity, and hydrodynamic moments)
do not vary significantly between the grids, however. The overall dy-
namics are in relatively good agreement with the other numerical re-
sults in literature [75,76].

Finally, Fig. 9 shows the dimensionless pressure field =C p gL/( )p l
as the wedge slams into the air-water interface. Immediately following
impact, high pressures are seen at the bottom tip of the wedge. This

Fig. 4. Schematic of a free falling wedge with an initial heel angle of 5°. G is the center of mass location for the unrotated wedge, while O is the initial location of the
bottom vertex of the wedge. The length =O G 0.216 m is the distance between the wedge tip and its COM point. Sketch is not to scale.

Fig. 5. Temporal evolution of (a) di-
mensionless vertical acceleration, and (b)
angular acceleration for a 2D inclined
wedge freely falling into water. (—)
Present FD/BP simulation data for varying
water depths; (–■–, green) experimental
data from Xu et al. [74]. (For interpretation
of the references to colour in this figure
legend, the reader is referred to the web
version of this article.)
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high pressure region shifts towards the left side of the body, which has
more surface area covered with water. The results are in excellent
agreement with the simulations shown in Nguyen et al. [76]. With this
example, we have validated the accuracy the FD/BP method for simu-
lating complex, high inertia FSI. Hereafter, we focus our attention on

comparing and contrasting the FD/BP and FD/IB methodologies.

7.2. Water-entry/exit of a free falling wedge

Next, we consider the problem of a wedge-shaped object impacting

Fig. 6. Temporal evolution of (a) heel angle, (b) vertical velocity, (c) dimensionless vertical acceleration, and (d) angular acceleration, for a 2D inclined wedge freely
falling into water. (—, yellow) Present FD/BP simulation data for a fine grid resolution 814× 534; (—, blue) Present FD/BP simulation data for a medium grid
resolution 488×320; (—, red) Present FD/BP simulation data for a coarse grid resolution 244× 160; (–■–, green) experimental data from Xu et al. [74]; (—,
purple) 2D simulation data from Oger et al. [75]; (—, grey) 2D simulation data from Nguyen et al. [76]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Temporal evolution of hydrodynamic (a) vertical force, and (b) torque for a 2D inclined wedge freely falling into water. (—, yellow) Present FD/BP simulation
data for a fine grid resolution 814×534; (–‐, blue) Present FD/BP simulation data for a medium grid resolution 488×320; (—, red) Present FD/BP simulation data
for a coarse grid resolution 244×160. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Vorticity generated by a 2D inclined wedge freely falling into water at three different time instances using the FD/BP method on medium and fine grids. The
plotted vorticity is in the range 300 to 300 s 1.
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a pool of water. A 2D triangular body with top length =L 1.2 m is
placed within a computational domain of size = ×L L[0, 10 ] [0, 2.5 ].
The wedge is oriented with one of its vertices pointing downwards,
making a 25° deadrise angle with the horizontal. Water occupies the
bottom third of the domain, while air occupies the remainder of the
tank. The bottom point of the wedge is placed with initial position

=X Y L L( , ) (5 , 23 /12)0 0 and the wedge has a density of = 466.6s kg/m3.
The free fall height of wedge is =s L13 /12.

The 2D domain is discretized by a 1200× 300 uniform grid, which
corresponds to 120 grid cells per wedge length. This grid resolution was
found sufficient to resolve the FSI dynamics of a free-falling wedge in
the previous section. A constant time step size of = ×t 6.25 10 5 s is

used. Fig. 10 shows the time evolution of center of mass vertical posi-
tion and velocity. The results are in good agreement with prior nu-
merical [79] and experimental studies [8]. The wedge reaches a peak
velocity in the air phase just before impacting the water surface. The
vertical velocity keeps descending as it penetrates further into water.
Eventually the buoyancy forces reverse the wedge’s velocity and it
begins to exit the pool. Additionally, the hydrodynamic forces on the
wedge in the vertical direction are compared. As seen in Fig. 10(c), the
FD/IB method produces smooth forces compared to the FD/BP method.
This is because evaluation of hydrodynamic forces for the FD/IB
method is done in an extrinsic manner (Eqs. (40) and (41)). In contrast,
the FD/BP method computes the forces in an intrinsic manner through

Fig. 9. Dimensionless pressure field =C p gL/( )p l around a 2D inclined wedge freely falling into water at seven different time instances using the FD/BP method on
fine grid.
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direct stress evaluation involving derivatives of the velocity field. This
is known (see Bergmann and Iollo [35]) to produce spurious oscillations
in the force evaluation. In our prior work (Nangia et al. [46]) we pro-
posed a moving control volume approach to obtain smooth forces by
converting intrinsic integrals to extrinsic integrals over a moving Car-
tesian box. Others (Verma et al. [64] and Patel et al. [80]) have pro-
posed to evaluate stress derivatives on a “lifted” surface that is two cells
distance away from the original surface to avoid small scale oscillations
for the FD/BP method.

Table 1 compares the time and velocity of impact obtained from FD/
BP, FD/IB and Newton’s second law of motion. Aerodynamic air re-
sistance is neglected from Newton’s law of motion. Both methods are in
reasonable agreement with each other and also agree with the analy-
tically predicted impact time and velocity. Fig. 12 compares the initial
interfacial dynamics of wedge impact with prior experimental [81] and
numerical studies [76]; decent agreement is seen. Fig. 11 shows the
evolution of fluid-structure interaction along with the vorticity gener-
ated by the two methods. Upon impact, the FD/IB method sheds two

counter-rotating vortices that are oriented inwards, whereas the FD/BP
method, upon impact, sheds them in a slightly outward orientation (see
time panel =t 0.5625 s of Fig. 11). This is attributed to the differences in
the impact forces and velocities predicted by the two methods. Another
difference is in the fluid-structure interface handling in the two
methods. This can also have some minor effects on the vortex shedding
dynamics at high Reynolds numbers. There is also a slight delay in the
vortical dynamics of the FD/BP method compared to the FD/IB method
which can be explained by considering the lag in the impact time
predicted by the former method. Similarly, the higher impact force of
the FD/IB method as seen in Fig. 10(c) can be attributed to a higher
impact velocity as compared to the FD/BP method.

7.3. Water-entry/exit of a free falling cylinder

In this section, we investigate the problem of a half-buoyant cy-
linder freely falling in water. This case has been studied numerically by
Sun et al. [82] using a weakly compressible smoothed particle hydro-
dynamics (SPH) method, and by Patel and Natarajan [61] using an
incompressible volume of fluid (VOF) solver. A circular cylinder of
diameter =D 0.11 m and density = 500s kg/m3 is placed in a two
dimensional computational domain of size = ×D D[0, 20 ] [0, 12 ] with
initial center position =X Y D D( , ) (10 , 8.05 )0 0 . The domain is filled from

=y 0 to =y D3 with water; the remainder of the tank from =y D3 to
=y D12 is filled with air. The cylinder has a free fall height of

=s D4.55 . The domain is discretized using a 880×528 uniform grid,
which corresponds to 44 cells per diameter. This grid resolution was
found sufficient in our prior work for similar water-impact cases [47]. A

Fig. 10. Temporal evolution of (a) vertical position, (b) vertical velocity, and (c) vertical force on a 2D wedge freely falling in water. (°, black) experimental data from
Yettou et al. [8]; (⋄ blue) 3D simulation data from Pathak and Raessi [79]; (—, red) present FD/BP simulation data; (—, green) present FD/IB simulation data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Water impact time and velocity of a free falling 2D wedge in air, computed
using FD/BP, FD/IB, and Newton’s second law of motion.

Method timpact (s) vimpact (m/s)

FD/BP 0.5253 4.7409
FD/IB 0.5189 4.8347
Newton’s law =s g2 / 0.5148 =gt 5.0502impact
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constant time step size =t 10 5 s is used.
We again compare the rigid body dynamics of the cylinder obtained

from the two methods. Fig. 13(a) and (b) show the time evolution of the
center of mass vertical position and velocity, respectively. The hydro-
dynamic forces in the vertical direction obtained from the two methods
are plotted in Fig. 13(c). Fig. 13(d) compares the variation of the depth
of penetration as time progresses with the prior numerical stu-
dies [61,82]. An excellent agreement is found between the FD/BP and
SPH methods for most of the times. The FD/IB method gives slightly
reduced penetration depth at later times compared to the FD/BP
method. However, FSI results obtained from both FD implementations
fall in the range of prior numerical studies.

Table 2 compares the time and velocity of impact obtained from FD/
BP, FD/IB, prior numerical studies, and Newton’s second law of motion.
Again, both methods are in reasonable agreement with each other and
also agree well with the analytically predicted impact time and velo-
city. The impact time simulated by Patel and Natarajan underpredicts
the expected value of timpact. Sun et al. release the cylinder with an
initial velocity of vimpact (as predicted by Newton’s law) at the air-water
interface and do not simulate the free-fall motion of the cylinder in the
air phase. Fig. 14 shows the time evolution of interfacial dynamics
using the two methods. The impacting cylinder produces distinct water
jets while moving downward into the liquid. The initial impact of the
cylinder produces ragged and non-smooth deformations in the

Fig. 11. Vorticity generated by a free falling 2D wedge at four different time instances using the FD/BP and FD/IB methods. The plotted vorticity is in the range 300
to 300 s 1.

A.P.S. Bhalla, et al. Applied Ocean Research 94 (2020) 101932

14



separated water layer, as seen distinctly at =t 0.465 s. These deforma-
tions are also observed in the weakly compressible SPH simulations of
Sun et al. [83] and the incompressible VOF simulations of Patel and
Natarajan [61]. Sun et al. attribute these deformations to negative
pressure regions created in the receded water layer and numerically
“fix” them by zeroing out the negative pressure. They refer to this fix as
a numerical model of water repellent coating on the cylinder surface. At
around =t 0.52 s, the cylinder reverses its direction of motion and
pushes a layer of liquid along its surface as it rises up at =t 0.735 s.
Eventually, two opposite traveling waves on either side of the cylinder
are formed when the cylinder enters back into the water for the second
time. This can be distinctly seen at =t 1.365 s. The slightly stronger
water jets produced by the FD/IB method (compared to the FD/BP
method) at the initial impact affects the interfacial dynamics at even
later times. They also cause slight asymmetries on opposite sides of the
cylinder at later times. In contrast, the FD/BP method maintains in-
terfacial symmetry for most of the times shown.

8. Comparison of computational costs

Finally, we briefly discuss and compare the computational costs
associated with both methods. We consider the same two-dimensional
test case described in the previous section: a half buoyant cylinder
falling into an air-water interface. We discretize the problem on a
coarser mesh of size 440×263 so that the problem can be run rela-
tively quickly on a single processor. A constant time step size of

= ×t 1 10 5 is used. This test problem is simulated for 60 time steps
with both the FD/IB and FD/BP methods. The wall-clock time is mea-
sured for the final 50 time steps of each simulation, and three experi-
mental trials are conducted (and averaged) for each method. All of the
solver options are identical across each trial. The total wall-clock time is
broken up into four categories:

1. ‘INS Solver’, which corresponds to the operations required to solve
the discrete fluid flow equations described by Eqs. (23) and (24) in
Section 4.2.2.

2. ‘Level Set Update’, which corresponds to the operations required to
discretely advect the level set variables (Eqs. (21) and (22) in
Section 4.2.1, and reinitialize them to signed distances functions
(see Appendix A).

3. ‘BP FSI Correction’ or ‘IB FSI Correction’, which correspond to the
operations required to correct the fluid velocity in the domain oc-
cupied by the structure (described in Section 4.2.3 for the FD/BP
method and in Section 4.2.4for the FD/IB method.

4. ‘Other’, which corresponds to any operations not covered by the
previous three descriptors. This includes allocation and deallocation
of data structures and various pre- and post-processing function
calls.

Fig. 15 shows the computation breakdown for each method. It is
clear that discretely solving the fluid flow equations is by far the
costliest operation, taking over 95% of the total computation time for
both methods. In contrast, the level set advection and reinitialization
routines take very little wall-clock time; this is unsurprising since there
are no Krylov iterative solvers employed in computing and +n 1 – the
update is purely explicit in nature. Finally, we note that the FSI cor-
rection for each method is incredibly fast, each taking only a fraction of
a percent of total computation time. These results show that the present
strong FSI coupling schemes are extremely efficient.

Table 3 shows the average wall-clock time (in CPU units) required
to compute each major component of the FD/BP and FD/IB algorithms.
Unsurprisingly, the level set update takes approximately the same
amount of time for both methods. Moreover, it is clear that the FSI
coupling for the FD/BP method is more expensive than the FD/IB
method. This can be attributed to the fact that the Brinkman penali-
zation approach requires additional computations of hydrodynamic
forces and torques (e.g. Eqs. (30) and (31)) and setting the matrix en-
tries of the modified implicit fluid solver. Finally, it can be seen that the
fluid solver for the FD/BP method is computationally more expensive
than for the FD/IB method. This is because of the additional term
present in the discrete INS equations due to the Brinkman penalization
formulation ( = 1FD in Eq. (23)). This term is treated implicitly, which

Fig. 12. Visual comparisons of density and free surface: (a) and (d) experimental photographs from Greenhow and Lin [81]; (b) and (e) simulation snapshots from
Nguyen et al. [76]; (c) and (f) simulation snapshots from the present the FD/BP method. Results from the FD/IB method are similar. (a) and (d) are reproduced from
[81] with permission from MIT. (b) and (e) are reproduced from [76] with permission from Elsevier.
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changes the underlying discrete operator (and hence the linear solver
convergence properties). For this particular example, the fluid solver
for the FD/IB method converged in 1 2 iterations each time step,
while the fluid solver for the FD/BP (using the same solver settings)
converged in 2 4 iterations, explaining the disparity in wall-clock
time.

We expect that the computational cost results would be similar for
the other two cases described in this work. The FD/IB method outper-
forms the FD/BP method because the two-dimensional Lagrangian
meshes considered in the present work are relatively simple and small.
Moreover, we should note that the implementation of the IB transfer
operators (e.g. spreading and interpolation) is quite mature; these
computations have been well optimized and vectorized over the past
two decades or so [65]. In contrast, the FD/BP has been recently im-
plemented in IBAMR and we have not fully investigated speedup

efforts. In particular, we believe that development of special multigrid
smoothers (or other solver settings) for the implicit Brinkman penali-
zation equations would help to reduce the number of Krylov iterations.
These could make the computational cost of the FD/BP method com-
parable to the FD/IB method even for these small-scale 2D problems.
We note that a more fair comparison of computational cost would be to
compare timing data between the FD/IB method and an explicit version
of the FD/BP method. The multigrid smoothers and an explicit FD/BP
method will be explored in future endeavors.

For full, 3D engineering geometries (such as a wave energy con-
verter device), we expect a critical problem size to exist at which the
FD/BP method would outperform the FD/IB method. This is especially
true when considering distributed memory parallelism; when two se-
parate meshes exist (i.e. Lagrangian and Eulerian), two different do-
main decompositions must be maintained and mapped onto one an-
other to achieve an efficient and scalable method. Even though the
implicit FD/BP method will in general require more Krylov iterations,
we expect that its purely Eulerian formulation will be advantageous for
large engineering problems requiring scalable load balancing. The run
time ratios and trends described in Fig. 15 and Table 3 would not ne-
cessarily hold for large, multi-processor runs. This will be the subject of
future investigations.

9. Conclusions

In this study, we described two implementations of the fictitious
domain method capable of simulating water-entry/exit problems. One

Fig. 13. Temporal evolution of (a) vertical position, (b) vertical velocity, and (c) vertical force on a half-buoyant cylinder freely falling in water. (—, red) present FD/
BP simulation data; (—, green) present FD/IB simulation data; (°, black) SPH simulation data from Sun et al. [82]. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 2
Water impact time and velocity of a free falling cylinder in air computed by FD/
BP, FD/IB, Patel and Natarajan [61], Sun et al. [82], and Newton’s second law
of motion.

Method timpact (s) vimpact (m/s)

FD/BP 0.3187 3.0690
FD/IB 0.3287 2.8936
Patel and Natarajan [61] 0.2997 N/A
Sun et al. [82] 0.3194 3.1337
Newton’s law =s g2 / 0.3194 =gt 3.1337impact
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algorithm, based on the immersed boundary method, relied on an
Eulerian description of the fluid variables and a Lagrangian re-
presentation of the immersed structure. The second algorithm, based on
Brinkman penalization, was a purely Eulerian approach that imposed
constraint forces implicitly rather than explicitly. We demonstrated that
both methods can adequately resolve complex floating and splashing
dynamics that are ubiquitous in practical marine engineering problems.

They provide a good alternative to overset mesh based methods for
simulating complex FSI problems.

For both methods, standard level set machinery was used to track
air-water interfaces and the surface of the immersed body. The simi-
larities and differences between the FD/BP and FD/IB methods were
discussed, and several advantages and disadvantages of each technique
were also described in Section 5. An efficient method for computing

Fig. 14. Splash dynamics generated by a half-buoyant cylinder freely falling in water at four different time instances using the FD/BP and the FD/IB methods. Lighter
blue color represents the air phase whereas darker blue color represents the water phase. The solid phase is shown in orange shade. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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hydrodynamic forces and torques was detailed as a part of the FD/BP
solution algorithm. We compared the techniques using two standard
test cases: a half-buoyant, free-falling wedge and cylinder impacting an
air-water interface. Both methods produced results that are in reason-
able agreement with each other and compared favorably with prior
results shown in literature.

The techniques described here have been implemented within the
open-source IBAMR library. IBAMR is a flexible software infrastructure
that provides support for several versions of the immersed boundary
and fictitious domain methods. We are actively working on extending
these methods to solve more complex problems. Future work includes
implementation of a RANS or LES turbulence model and computational
geometry algorithms to initialize and transport level set functions of
more sophisticated solid geometries.
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Appendix

A. Level set reinitialization

It is well-known that the signed distance property of ϕ and ψ is disrupted under linear advection, Eqs. (7) and (8). Letting +n 1 denote the flow
level set function following a single time step of transport through the interval +t t[ , ],n n 1 we need a procedure that reinitializes the field into a signed
distance function . This can be achieved by computing a steady-state solution to the Hamilton-Jacobi equation

+ =+sgn( )( 1) 0,n 1
(A.1)

= = +x x( , 0) ( ),n 1 (A.2)

which will yield a solution to the Eikonal equation = 1 at the end of each time step. More details on the specific discretization of Eqs. (A.1)
and (A.2), which employs second-order ENO finite differences combined with a subcell-fix method described by Min [84], and an immobile interface
condition described by Son [85], can be found in [52].

Since we consider simple geometries in this work, the solid level set +n 1 is analytically calculated by using the new location of center of mass at
+tn 1. For more complex structures, computational geometry techniques can be employed to compute the signed distance function.

B. Discretization of the convective term: consistent mass/momentum transport

We use an explicit cubic upwind interpolation (CUI-limited) scheme [86–88] to approximate the +Cn k1, nonlinear term in the momentum
Eq. (23). A discretized mass balance equation is integrated directly on the faces of the staggered grid to obtain the newest approximation to density

+ +n k1, 1 in Eq. (23) from the previous time step and level set synchronized density field ρn (obtained after averaging ϕn and ψn onto faces):

= tR u( , ),n n n(1)
adv lim (B.1)

= + tR u3
4

1
4

1
4

( , ),n(2) (1)
adv
(1)

lim
(1)

(B.2)

= ++ + tR u1
3

2
3

2
3

( , ).n k n1, 1 (2)
adv
(2)

lim
(2)

(B.3)

Fig. 15. Breakdown of computing time spent for the (a) FD/IB and (b) FD/BP methods. Note that the fraction of time spent for the FSI coupling computations is
barely visible at this scale. All runs were carried out on a single processor.

Table 3
Average ( =n 3) wall-clock time required to compute each major component of
the FD/BP and FD/IB algorithms. All runs were carried out on a single pro-
cessor.

Method INS Solver (CPU
units)

Level Set Update (CPU
units)

FSI Coupling (CPU
units)

FD/BP 541.79 2.82 0.79
FD/IB 229.57 2.73 0.38
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A third-order accurate strong stability preserving Runge–Kutta (SSP-RK3) time integrator [89] is employed for the above update. Here
R u u u( , ) ( ·( )) , ( ·( ))i j i jadv lim adv lim , adv lim ,1

2
1
2

is an explicit CUI-limited approximation to the linear density advection term; ϱ is either ρ or .

To clarify the various approximations to the density field, we make a distinction between , the density vector obtained via the SSP-RK3 integrator,
and ρ, the density vector that is set from the level set fields. The subscript “adv” indicates the interpolated advective velocity on the faces of face-
centered control volume, and the subscript “lim” indicates the limited value. Readers are referred to Nangia et al. [52] for details on obtaining
advective and flux-limited fields. Notice that this density update procedure is occurring within the overall fixed-point iteration scheme.

In the SSP-RK3 update, we note that u(1) is an approximation to +u ,n 1 and u(2) is an approximation to +un 1
2 . Moreover, (1) is an approximation to

+ ,n 1 and (2) is an approximation to +n 1
2 . We obtain these intermediate velocity and density approximations by using suitable interpolation and

extrapolation procedures. For example, for the first cycle ( =k 0), the velocities are

=u u u2 ,n n(1) 1 (B.4)

=u u u3
2

1
2

.n n(2) 1
(B.5)

For all remaining cycles (k>0), the velocities are

= +u u ,n k(1) 1, (B.6)

= ++u u u u3
8

3
4

1
8

.n k n n(2) 1, 1
(B.7)

To ensure consistent transport of mass and momentum fluxes, the convective derivative in Eq. (23) is given by

u

v
C u u

u

u
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( ·( ))

( ·( ))
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i j

i j
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lim
(2)

lim
(2)
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(2)

lim
(2)

lim
(2)

,
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(2)

lim
(2)

lim
(2)

,

1
2

1
2 (B.8)

which uses the same velocity uadv
(2) and density lim

(2) used to update +n 1 in Eq (B.3). This is the key step required to strongly couple the mass and
momentum convective operators.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.apor.2019.101932.
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