
Inverse Problems

PAPER

On iteratively regularized predictor–corrector
algorithm for parameter identification*

To cite this article: Alexandra Smirnova and Anatoly Bakushinsky 2020 Inverse Problems 36 125015

 

View the article online for updates and enhancements.

You may also like
Automatic two-channel sleep staging using
a predictor–corrector method
S Riazy, T Wendler and J Pilz

-

Goal oriented adaptivity in the IRGNM for
parameter identification in PDEs: II. all-at-
once formulations
B Kaltenbacher, A Kirchner and B Vexler

-

An optimized linearization-based predictor-
corrector algorithm for the numerical
simulation of nonlinear FDEs
Zaid Odibat and Nabil Shawagfeh

-

This content was downloaded from IP address 131.96.247.29 on 20/12/2021 at 23:17

https://doi.org/10.1088/1361-6420/abc530
/article/10.1088/1361-6579/aaa109
/article/10.1088/1361-6579/aaa109
/article/10.1088/0266-5611/30/4/045002
/article/10.1088/0266-5611/30/4/045002
/article/10.1088/0266-5611/30/4/045002
/article/10.1088/1402-4896/ab7b8a
/article/10.1088/1402-4896/ab7b8a
/article/10.1088/1402-4896/ab7b8a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvLSoudl7tuqHgMkuwakN_oGWnUk7aMXImOcdtawyq40KSqXY6sUXtyw_6F7sEPnYUhMXYYCttkWSI_tzBVsEZ9nECQzX6XjVHF7zt1OczKy-eycxO9isLF9_7EdNCd-PjTbtRgOLu5UO89WimWr1UsrNM2k4NPpmP-VHOxGTDl6MpDba3d16GJXVhVxYRuHGFWXm98wr3ktJPVTKzi-UxwqU51nRpVht_YE-Cx7LtQ3qO6t8nlrU_Gu1b5e5GBVteoL-QvziVvtcQTQPHemWgAnerPuiMJURE&sig=Cg0ArKJSzAD3CVoBGheU&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Inverse Problems

Inverse Problems 36 (2020) 125015 (30pp) https://doi.org/10.1088/1361-6420/abc530

On iteratively regularized
predictor–corrector algorithm for
parameter identification

∗

Alexandra Smirnova1,∗∗ and Anatoly Bakushinsky2

1 Department of Mathematics and Statistics, Georgia State University, Atlanta,
United States of America
2 Federal Research Center, ‘Computer Science and Control’ of Russian Academy of
Sciences, Mari State University, Russia

E-mail: asmirnova@gsu.edu and bakush@isa.ru

Received 24 June 2020, revised 14 October 2020
Accepted for publication 27 October 2020
Published 8 December 2020

Abstract
We study a constrained optimization problem of stable parameter estimation
given some noisy (and possibly incomplete) measurements of the state obser-
vation operator. In order to find a solution to this problem, we introduce a
hybrid regularized predictor–corrector scheme that builds upon both, all-at-
once formulation, recently developed by B. Kaltenbacher and her co-authors,
and the so-called traditional route, pioneered by A. Bakushinsky. Similar to
all-at-once approach, our proposed algorithm does not require solving the con-
straint equation numerically at every step of the iterative process. At the same
time, the predictor–corrector framework of the newmethod avoids the difficulty
of dealing with large solution spaces resulting from all-at-oncemake-up, which
inevitably leads to oversized Jacobian and Hessian approximations. Therefore
our predictor–corrector algorithm (PCA) has the potential to save time and
storage, which is critical when multiple runs of the iterative scheme are car-
ried out for uncertainty quantification. To assess numerical efficiency of novel
PCA, two parameter estimation inverse problems in epidemiology are consid-
ered. All experiments are carried out with real data on COVID-19 pandemic in
Netherlands and Spain.
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(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Scope

The topic of this research has been inspired by numerous challenges of stable parameter esti-
mation in epidemiology. However, similar inverse problems arise in acoustic sensing, signal
and image processing, biomedical imaging, gravitational sounding, hydrology, and other fields
[1, 5, 8]. Therefore in what follows we present our proposed algorithm in a general framework
of constrained least squares problems in Hilbert spaces.

Real-time reconstruction of disease parameters for an emerging outbreak helps to provide
crucial information for the design of public health policies and control measures. Regardless
of a particular disease, fitting model predictions for an invading pathogen to reported incidence
series yields an ill-posed problem due to excessive noise propagation coupled with unavoid-
able delays in processing of epidemic data. In order to solve this ill-posed problem in a stable
manner, regularized Gauss–Newton or Levenberg–Marquardt algorithms [3, 4, 14, 18, 22, 26,
27, 29, 32] are commonly used to minimize the cost functional. Oftentimes, the biological
model (which may be a system of nonlinear ordinary or partial differential equations), con-
straining the function minimization problem, does not have a closed form-solution and has
to be solved numerically at every step of the iterative process. This can noticeably increase
the computational complexity of parameter estimation, while at the same time making it even
more sensitive to the presence of noise in the input data. The goal of this paper is to construct
a regularized predictor–corrector algorithm (PCA) that will mitigate excessive computational
cost of a quasi-Newton step and, by doing so, incorporate extra layer of stability in the iterative
process.

1.2. Constrained least squares problem

To achieve this goal, we consider a general problem of stable parameter estimation from an
operator equation connecting the unknown parameter, θ, to a state variable, u,

G(θ, u) = g, G : X × Y →Z , (1.1)

given some noisy (and possibly incomplete) measurements of the state observation
operator, B:

B(u) = d, ‖d − dδ‖ � δ, B : Y →H, (1.2)

withX , Y ,Z , andH being some Hilbert spaces. Thus our goal is to solve the constrained least
squares problem (CLSP)

minimize
1
2
‖B(u)− d‖2 with respect to u

subject to G(θ, u) = g. (1.3)

An all-at-once formulation of CLSP (1.3), as recently introduced by Kaltenbacher and her
co-authors in [15–17], is to solve the combined equation

F(q) = f , q :=

(
θ
u

)
, F(q) :=

(
G(θ, u)
B(u)

)
, (1.4)
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f :=

(
g
d

)
, F : X × Y →Z ×H, (1.5)

by some regularized computational method. This is an alternative to a more traditional
approach, which consists in reducing (1.1) and (1.2) to the operator equation (or to the
corresponding least squares) over the parameter space only:

J(θ) = d, J : X →H. (1.6)

To arrive at (1.6), one solves equation (1.1) for the parameter-to-state map, u = u(θ), and then
substitutes it into (1.2). Once (1.6) has been derived, θ is computed by a regularized opti-
mization algorithm but over a smaller solution space as compared to the solution space in
all-at-once formulation. Thus in (1.6), J is the composition of the parameter-to-state map,
u = u(θ), satisfying

G(θ, u(θ)) = g, u : X →Y , (1.7)

and the observation operator, B, acting between Y and H. That is, J(θ) :=B(u(θ)). As men-
tioned above, it is not always possible to solve (1.1) for u analytically. Therefore, in many cases,
one has to find uk = u(θk) numerically for each current value, θk, of the unknown parameter.

1.3. Proposed algorithm

In this paper, we propose a hybrid method that builds upon both all-at-once and traditional
strategies. It employs a predictor–corrector kind of algorithm, where one updates θ while

freezing u, and then u is modified while θ is kept unchanged. More specifically, given

(
θk
uk

)
,

one transitions from θk to θk+1 by applying one step of the modified iteratively regularized
Gauss–Newton (MIRGN) procedure [3, 4, 18, 26, 27]:

θk+1 = θk − [G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1

× {G′∗
θ (θk, uk)(G(θk, uk)− g)+ αkT

∗T(θk − θ̄)}. (1.8)

Then, given

(
θk+1

uk

)
, one computes uk+1 using classical Gauss–Newton scheme [19]

uk+1 = uk − [G′∗
u (θk+1, uk)G

′
u(θk+1, uk)+ B′∗(uk)B

′(uk)]
−1

× {G′∗
u (θk+1, uk)(G(θk+1, uk)− g)+ B′∗(uk)(B(uk)− dδ)}. (1.9)

Note that MIRGN scheme (1.8) originates from variational regularization [29, 33] in the form

min
θ∈X

{
1
2
‖G(θ, uk)− g‖2 + αk

2
‖T(θ − θ̄)‖2

}
. (1.10)

For iteration (1.8) to be well-defined, we assume that T is surjective linear operator between
two Hilbert spaces, X andW , satisfying the condition [27]: for any h ∈ X ,

(T∗Th, h) � λ‖h‖2, λ > 0. (1.11)

Method (1.9), on the other hand, is the classical Gauss–Newton algorithm applied to the
nonlinear minimization problem

min
u∈Y

{
1
2
‖G(θk+1, u)− g‖2 + 1

2
‖B(u)− d‖2

}
, ‖d − dδ‖ � δ. (1.12)
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Gauss–Newton procedure (1.9) does not need to be regularized, since minimizing the func-
tional ‖G(θk+1, u)− g‖2 with respect to u ∈ Y is not, generally, an ill-posed problem: it may
be a forward problem in ordinary or partial differential equations, for example.

1.4. Convergence results

In order to proceed with our convergence analysis, we make the following assumptions.

ConditionA. Let the operatorG(θ, u) in (1.1) be Fréchet differentiable inOη(q̂) with respect
to u and

s := sup⎛
⎝θ
u

⎞
⎠∈Oη (̂q)

‖(G’∗
u (θ, u)G

’
u(θ, u))

−1‖ < ∞. (1.13)

Suppose also that for any

(
θ
u1

)
and

(
θ
u2

)
∈ Oη(q̂), the operator G′

u(θ, u) is bounded and

Lipschitz-continuous in u. That is, there is C > 0, such that

‖G′
u(θ, u1)‖ � C and ‖G′

u(θ, u1)− G′
u(θ, u2)‖ � C‖u1 − u2‖,

(
θ
u1

)
,

(
θ
u2

)
∈ Oη(q̂).

(1.14)

Here q̂ :=

(
θ̂
û

)
∈ X × Y is a solution to (1.1) and (1.2), which is not necessarily unique, and

Oη(q̂) := {q ∈ X × Y : ‖q− q̂‖ � η} with radius η > 0 specified in (2.2) below.

Naturally, for any

(
x
y

)
∈ X × Y , we define

∥∥∥∥
(
x
y

)∥∥∥∥
2

X×Y
:= ‖x‖2X + ‖y‖2Y . (1.15)

ConditionB. Let the operatorG(θ, u) in (1.1) be Fréchet differentiable inOη(q̂) with respect

to θ andG′
θ(θ, u) be Lipschitz-continuous in both θ and u. That is, for any

(
θ1
u

)
,

(
θ2
u

)
,

(
θ
u1

)
,

and

(
θ
u2

)
∈ Oη(q̂)

‖G′
θ(θ1, u)− G′

θ(θ2, u)‖ � C‖θ1 − θ2‖ and ‖G′
θ(θ, u1)− G′

θ(θ, u2)‖ � C‖u1 − u2‖.

(1.16)

Condition C. Let the operator B(u) in (1.2) be Fréchet differentiable and Lipschitz-
continuous in Oη(q̂). That is, there is C > 0, such that

‖B′
u(u1)− B′

u(u2)‖ � C‖u1 − u2‖ for any

(
θ
u1

)
,

(
θ
u2

)
∈ Oη(q̂). (1.17)

Condition D. Let for the regularization sequence, {αk}, the following assumptions are met

αk � αk+1 > 0, a := sup
k=0,1,2,...,

√
αk
αk+1

< ∞, lim
k→∞

αk = 0. (1.18)
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In section 2, using the above four conditions, we justify local convergence of algorithm (1.8)
and (1.9), first, in the noise-free case (theorem 2.5) and, second, for noise-contaminated
input data (theorem 2.7). In the noise-free case, for θ0 and u0 sufficiently close to θ̂ and û,
respectively, it is proven in theorem 2.5 that there are positive constants, l1 and l2 such that

‖θk − θ̂‖ � l1
√
αk and ‖uk − û‖ � l2αk, k = 1, 2, . . . (1.19)

For noise-contaminated data, as shown in theorem 2.7, a priori stopping rule (2.46) yields the
following convergence rates:

‖θK(δ) − θ̂‖ = O(
√
δ) and ‖uK(δ) − û‖ = O(δ) (1.20)

with K(δ)→∞ as δ → 0.

1.5. Related Work and outline of the paper

In a well-posed case, the idea of hybrid algorithms goes back to Newton–Gauss–Seidel iter-
ative process [19, 21]. In this process, the Newton step, pk, which needs to be found from
a system of linear equations for every k, is calculated approximately by Gauss–Seidel iter-
ative scheme [21]. Of course, for nonlinear optimization, Newton’s method can be replaced
with Gauss–Newton or BFGS algorithms. On the other hand, the linear system for pk can be
solved by Landweber, conjugate gradient, or some other iterative procedure. In the ill-posed
case, inner iterations, apart from solving the linear system or equations, have also been used
to (iteratively) regularize a Newton-type scheme [13, 18, 20].

The manner in which iterations are constructed in predictor–corrector algorithm (1.8) and
(1.9) is different from the Newton–Gauss–Seidel process (NGSP). First, algorithm (1.8) and
(1.9) is coupled with iterative regularization [4, 18], which makes it stable with respect to noise
in the input data. Second, unlike NGSP, method (1.8) and (1.9) is not a combination of primary
(nonlinear) and secondary (linear) iterations. Instead, the two alternating iterative sequences
are generated in such a way that allows to simultaneously minimize the cost functional and
to approximate a solution to the (non)linear constraint equation. Therefore, like in the case of
all-at-once approach [15–17], the proposedmethod (1.8) and (1.9) does not require solving the
constraint equation at every step, k, of the iterative process. For PDE constraints, encountered
in various applied problems, the need to solve (1.1) for uk = u(θk) can be a major bottleneck
in practical implementation of the ‘traditional’ regularized procedure. On the other hand, in
epidemiology, the constraining ODEs are often stiff and hard to solve in a stable manner. Thus,
an ability to eliminate the computation of uk = u(θk) from (1.1)may be of significant advantage
in many cases. At the same time, the predictor–corrector framework of algorithm (1.8) and
(1.9) avoids the difficulty of dealingwith large solution spaces resulting from all-at-oncemake-
up, which inevitably leads to oversized Jacobian and Hessian approximations. Thus our new
method (1.8) and (1.9) has the potential to save time and storage,which is critical whenmultiple
runs of the iterative scheme are carried out for uncertainty quantification.

The paper is organized as follows. In section 2, some auxiliary lemmas are formulated and
proven, and the main convergence results, theorems 2.5 and 2.7, are stated and justified. In
theorem 2.5, a noise-free case is studied, while in theorem 2.7 an a priori stopping rule for
iterative process (1.8) and (1.9) with noise-contaminated data is given leading to convergence
rates in both u and θ. Numerical experiments on stable parameter estimation and forecasting in
epidemiology with real data on COVID-19 pandemic in Netherlands and Spain are presented
in section 3. Conclusions and future plans are outlined in section 4.

5
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2. Proofs of main results

2.1. Auxiliary lemmas

In this subsection, as a preliminary step, we carry out the convergence analysis of algorithm
(1.8) and (1.9) under the assumption that the data is clean, i.e., d = dδ . We begin with the
following lemma.

Lemma 2.1. Suppose conditionsA and B, and (1.11) are met, the point

(
θk
uk

)
∈ Oη(q̂), and

the test function, θ̄, is selected in such a way that

T∗T(θ̂ − θ̄) = G′∗
θ (θ̂, û)v, v ∈ Z , ‖v‖ � ε. (2.1)

Then for {θk} defined in (1.8), one has

θk+1 − θ̂ = −[G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1G′∗
θ (θk, uk){B(θk, θ̂, uk, û)+ αkv}

− αk[G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1{G′
θ(θ̂, û)− G′

θ(θk, uk)}v, (2.2)

where

‖B(θk, θ̂, uk, û)‖ � C‖uk − û‖+ C
2
‖θk − θ̂‖2, (2.3)

and the following estimate holds

‖θk+1 − θ̂‖ � 1
2
√
λαk

[
C‖uk − û‖+ C

2
‖θk − θ̂‖2 + αkε

]

+
Cε
λ
(‖uk − û‖+ ‖θk − θ̂‖). (2.4)

Proof. Taking into account condition B, one derives

G(θ̂, uk)− g = G(θk, uk)− g+ G′
θ(θk, uk)(θ̂ − θk)+ B1(θk, θ̂, uk), (2.5)

‖B1(θk, θ̂, uk)‖ � C
2
‖θk − θ̂‖2. (2.6)

From identity (2.5) coupled with condition A, one concludes

G(θk, uk)− g = G(θ̂, uk)− g+ G′
θ(θk, uk)(θk − θ̂)− B1(θk, θ̂, uk)

= G(θ̂, û)− g+ B2(θ̂, uk, û)+ G′
θ(θk, uk)(θk − θ̂)− B1(θk, θ̂, uk),

(2.7)

‖B2(θ̂, uk, û)‖ � C‖uk − û‖. (2.8)

Since G(θ̂, û)− g = 0, representation (2.7) implies

θk+1 − θ̂ = −[G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1G′∗
θ (θk, uk)B(θk, θ̂, uk, û)

− αk[G
′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1T∗T(θ̂ − θ̄), (2.9)

6
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where B(θk, θ̂, uk, û) is defined as

B(θk, θ̂, uk, û) := − B1(θk, θ̂, uk)+ B2(θ̂, uk, û). (2.10)

Equalities (2.9) and (2.10) together with source condition (2.1) yield (2.2) and (2.3). This
completes the first part of the proof. Following the same argument as in [27], one obtains

[G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1 = (T∗T)−1/2[A∗
kAk + αkI]−1(T∗T)−1/2, (2.11)

where Ak :=G′
θ(θk, uk)(T

∗T)−1/2. Therefore by assumption (1.11),

‖[G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1G′∗
θ (θk, uk)‖

� ‖(T∗T)−1/2[A∗
kAk + αkI]−1(A∗

kAk)
1/2‖

� 1√
λ

sup
t∈σ(A∗kAk)

√
t

t + α
� 1

2
√
λαk

. (2.12)

In (2.12), σ(A∗
kAk) ⊆ [0, ‖Ak‖2] is the spectrum of the self-adjoint operatorA∗

kAk. Additionally,
it follows from (2.11) that

αk‖[G′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1‖ � 1
λ
. (2.13)

Combining (2.1), (2.2) with (2.12) and (2.13), one gets

‖θk+1 − θ̂‖ � 1
2
√
λαk

[
C‖uk − û‖+ C

2
‖θk − θ̂‖2 + αkε

]
+

ε

λ
(‖G′

θ(θ̂, û)− G′
θ(θk, uk)‖).

(2.14)

Inequality (2.14) along with the representation

G′
θ(θ̂, û)− G′

θ(θk, uk) = [G′
θ(θ̂, û)− G′

θ(θ̂, uk)]+ [G′
θ(θ̂, uk)− G′

θ(θk, uk)] (2.15)

imply that estimate (2.4) is true as claimed.
In order to derive the upper bound for ‖uk+1 − û‖, we now prove the following three

lemmas.

Lemma 2.2. Suppose conditions A–C are met, and

(
θk
uk

)
and

(
θk+1

uk

)
∈ Oη(q̂). Then for

{uk} defined in (1.9), one has

uk+1 − û = −[G′∗
u (θk+1, uk)G

′
u(θk+1, uk)+ B′∗(uk)B

′(uk)]
−1
{
G′∗
u (θk+1, uk)

= [G′
θ(θk, uk)(θk+1 − θ̂)+ P(θk, θk+1, θ̂, uk, û)]+ B′∗(uk)L(uk, û)

}
, (2.16)

where

‖P(θk, θk+1, θ̂, uk, û)‖ � C

{
‖uk − û‖2

2
+

‖θk+1 − θ̂‖2
2

+ (‖θk − θ̂‖+ ‖uk − û‖) ‖θk+1 − θ̂‖
}
,

‖L(uk, û)‖ � C
2
‖uk − û‖2. (2.17)

7



Inverse Problems 36 (2020) 125015 A Smirnova and A Bakushinsky

Proof. Condition A yields

G(θk+1, û)− g = G(θk+1, uk)− g+ G′
u(θk+1, uk)(û− uk)+ E1(θk+1, û, uk), (2.18)

‖E1(θk+1, û, uk)‖ � C
2
‖uk − û‖2. (2.19)

From expression (2.19) and condition B, one obtains

G(θk+1, uk)− g = G(θk+1, û)− g+ G′
u(θk+1, uk)(uk − û)− E1(θk+1, û, uk)

= G(θ̂, û)− g+ G′
θ(θ̂, û)(θk+1 − θ̂)+ E2(θk+1, θ̂, û)

+ G′
u(θk+1, uk)(uk − û)− E1(θk+1, û, uk), (2.20)

‖E2(θk+1, θ̂, û)‖ � C
2
‖θk+1 − θ̂‖2. (2.21)

Since

(
θ̂
û

)
∈ X × Y is a solution to (1.1) and (1.2), one gets

G(θk+1, uk)− g = G′
u(θk+1, uk)(uk − û)+ G′

θ(θ̂, û)(θk+1 − θ̂)− E1(θk+1, û, uk)

+ E2(θk+1, θ̂, û) = G′
u(θk+1, uk)(uk − û)+ G′

θ(θk, uk)(θk+1 − θ̂)

+ (G′
θ(θ̂, û)− G′

θ(θ̂, uk))(θk+1 − θ̂)+
(
G′

θ(θ̂, uk)

− G′
θ(θk, uk)

)
(θk+1 − θ̂)− E1(θk+1, û, uk)+ E2(θk+1, θ̂, û). (2.22)

If one introduces the notation:

P(θk, θk+1, θ̂, uk, û) := (G′
θ(θ̂, û)− G′

θ(θ̂, uk))(θk+1 − θ̂)+
(
G′

θ(θ̂, uk)

− G′
θ(θk, uk)

)
(θk+1 − θ̂)− E1(θk+1, û, uk)+ E2(θk+1, θ̂, û), (2.23)

and takes into account that û is a solution to (1.2), then one concludes

G′∗
u (θk+1, uk)(G(θk+1, uk)− g)+ B′∗(uk)(B(uk)− d)

= G′∗
u (θk+1, uk)

[
G′
u(θk+1, uk)(uk − û)+ G′

θ(θk, uk)(θk+1 − θ̂)

+ P(θk, θk+1, θ̂, uk, û)
]
+ B′∗(uk)[B

′(uk)(uk − û)+ L(uk, û)] (2.24)

withP andL satisfying (2.17). Identities (1.9) and (2.24) imply (2.16), and the proof of lemma
2.2 is complete. Expression (2.16) brings us to the key part of the convergence analysis, which
is the estimate of ‖G′

θ(θk, uk)(θk+1 − θ̂)‖. This estimate is established in the following lemma.

Lemma 2.3. Let conditionsA,B, (1.11), and (2.1) be met, and

(
θk
uk

)
and

(
θk+1

uk

)
∈ Oη(q̂).

Then for {θk} defined in (1.8), one has

‖G′
θ(θk, uk)(θk+1 − θ̂)‖ � C

2
‖θk − θ̂‖2 + αkε+

Cε
2

√
αk
λ
(‖uk − û‖+ ‖θk − θ̂‖). (2.25)

8
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Proof. From lemma 2.1, one derives

G′
θ(θk, uk)(θk+1 − θ̂) = −G′

θ(θk, uk)[G
′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1G′∗
θ (θk, uk)

= {B(θk, θ̂, uk, û)+ αkv} − αkG
′
θ(θk, uk)

[
G′∗

θ (θk, uk)

× G′
θ(θk, uk)+ αkT

∗T
]−1{G′

θ(θ̂, û)− G′
θ(θk, uk)}v, (2.26)

and therefore

‖G′
θ(θk, uk)(θk+1 − θ̂)‖ � ‖G′

θ(θk, uk)[G
′∗
θ (θk, uk)G

′
θ(θk, uk)+ αkT

∗T]−1G′∗
θ (θk, uk)‖

× {‖B(θk, θ̂, uk, û)‖+ αkε}+ αkε‖G′
θ(θk, uk)

[
G′∗

θ (θk, uk)

× G′
θ(θk, uk)+ αkT

∗T
]−1‖‖G′

θ(θ̂, û)− G′
θ(θk, uk)‖. (2.27)

Using representation (2.11) and the definition of Ak introduced in lemma 2.1, one arrives at the
following inequality

‖G′
θ(θk, uk)(θk+1 − θ̂)‖ � ‖(A∗

kAk)
1/2[A∗

kAk + αkI]−1(A∗
kAk)

1/2‖{‖B(θk, θ̂, uk, û)‖

+ αkε}+ αkε‖(A∗
kAk)

1/2[A∗
kAk + αkI]

−1(T∗T)−1/2‖,

× ‖G′
θ(θ̂, û)− G′

θ(θk, uk)‖. (2.28)

Estimate (2.28) together with (1.11), (2.3), and (2.15) yield (2.25), which concludes the proof
of lemma 2.3.

Summarizing the above results, we prove the last lemma of this section, which provides the
upper bound for ‖uk − û‖.

Lemma 2.4. Let assumptions of lemmas 2.1–2.3 be fulfilled. Then

‖uk+1 − û‖ � C
√
s

2
‖θk − θ̂‖2 + 3C

√
s

4
‖uk − û‖2 + C

√
s

2
‖θk+1 − θ̂‖2

+ C
√
s(‖θk − θ̂‖+ ‖uk − û‖) ‖θk+1 − θ̂‖

+
Cε
2

√
sαk
λ

(‖uk − û‖+ ‖θk − θ̂‖)+
√
sαkε. (2.29)

Proof. In light of lemma 2.2, one has

‖uk+1 − û‖ = ‖[G′∗
u (θk+1, uk)G′

u(θk+1, uk)+ B′∗(uk)B′(uk)]−1G′∗
u (θk+1, uk)‖

×
{
‖G′

θ(θk, uk)(θk+1 − θ̂)‖+ ‖P(θk, θk+1, θ̂, uk, û)‖
}

+ ‖
[
G′∗
u (θk+1, uk)G′

u(θk+1, uk)

+ B′∗(uk)B′(uk)
]−1

B′∗(uk)‖ ‖L(uk, û)‖, (2.30)

Conditions (2.11) and (1.13) imply

‖[G′∗
u (θk+1, uk)G′

u(θk+1, uk)+ B′∗(uk)B′(uk)]−1G′∗
u (θk+1, uk)‖

= ‖(G′∗
u (θk+1, uk)G′

u(θk+1, uk))−1/2[C∗
kCk + I]−1

× (G′∗
u (θk+1, uk)G

′
u(θk+1, uk))

−1/2G′∗
u (θk+1, uk)‖,

9
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where Ck :=B′(uk)(G′∗
u (θk+1, uk)G′

u(θk+1, uk))−1/2. Thus applying polar decomposition to the
linear operator G′

u(θk+1, uk), one obtains

‖[G′∗
u (θk+1, uk)G′

u(θk+1, uk)+ B′∗(uk)B′(uk)]−1G′∗
u (θk+1, uk)‖

� ‖(G′∗
u (θk+1, uk)G′

u(θk+1, uk))−1/2[C∗
kCk + I]−1‖ �

√
s sup
t∈σ(C∗

kCk )

1
t + 1

=
√
s, (2.31)

σ(C∗
kCk) ⊆ [0, ‖Ck‖2]. Furthermore,

‖[G′∗
u (θk+1, uk)G′

u(θk+1, uk)+ B′∗(uk)B′(uk)]−1B′∗(uk)‖

= ‖(G′∗
u (θk+1, uk)G′

u(θk+1, uk))−1/2[C∗
kCk + I]−1

(G′∗
u (θk+1, uk)G′

u(θk+1, uk))−1/2B′∗(uk)‖

= ‖(G′∗
u (θk+1, uk)G

′
u(θk+1, uk))

−1/2[C∗
kCk + I]−1C∗

k‖

�
√
s sup
t∈σ(C∗

kCk )

√
t

t + 1
=

√
s
2
. (2.32)

Combining (2.25), (2.30)–(2.32), one arrives at (2.29). Thus estimate (2.29) is true as claimed.

2.2. Convergence analysis in the noise-free case

In the next two subsections, we use the above four lemmas to establish our main convergence
results, theorems 2.5 and 2.7. To that end, we prove by induction that for θ0 and u0 sufficiently
close to θ̂ and û, respectively, there are positive constants, l1 and l2, such that

‖θk − θ̂‖ � l1
√
αk and ‖uk − û‖ � l2αk, k = 1, 2, . . . (2.33)

Indeed, assume that θ0 and u0 are chosen to satisfy (2.33) when k = 0, and let (2.33) be fulfilled
for any j = 1, 2, . . . , k. Then by (1.18), (2.4) and by induction assumption, one concludes

‖θk+1 − θ̂‖ � 1
2
√
λαk

[
C‖uk − û‖+ C

2
‖θk − θ̂‖2 + αkε

]
+
Cε
λ
(‖uk − û‖+ ‖θk − θ̂‖)

�
{

a

2
√
λ

[
Cl2 +

C
2
l21 + αkε

]
+
Cεa
λ

(l2
√
α0 + l1)

}
√
αk+1. (2.34)

To ensure that the right-hand side of (2.34) does not exceed l1
√
αk+1, one has to select l1 in

such a way that

Ca

4
√
λ
l21 −

[
1− Cεa

λ

]
l1 + a

[
Cl2

(
1

2
√
λ
+

ε
√
α0

λ

)
+

ε

2
√
λ

]
� 0.

For example, one can take

l1 :=
2(λ− Cεa)√

λCa
(2.35)

as long as

λ

Ca
� ε+

√
λ

[(
1
2
+ ε

√
α0

λ

)
l2 +

ε

2C

]
. (2.36)

10
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Likewise, from (2.29), it follows that for ‖uk+1 − û‖ to be less than l2αk+1, the constant l2
must satisfy the inequality

3C
√
sα0a2

4
l22 −

[
1− C

√
sα0a

(
l1 +

εa

2
√
λ

)]
l2 +

C
√
s

2
(a+ 1)2l21

+
C
√
sa2ε

2
√
λ

l1 +
√
sεa2 � 0. (2.37)

Substituting (2.35) into (2.37), one obtains

3C
√
sα0a2

4
l22 −

[
1−

√
α0s
λ

(
2(λ− Cεa)+

εa2C
2

)]
l2

+
2
√
s(a+ 1)2(λ− Cεa)2

λCa2
+

√
saε(λ− Cεa)

λ
+
√
sεa2 � 0. (2.38)

Condition (2.38) is fulfilled when

l2 :=
2√
s −

√
α0
λ
(4(λ− Cεa)+ εa2C)

3Cα0a2
, (2.39)

and the following inequality holds

√
λ

sα0
� 2(λ− Cεa)+

εa2C
2

+
√
3{2(a+ 1)2(λ− Cεa)2 + Ca3ε(λ− Cεa)+ Ca4λε}.

(2.40)

Finally, plugging in the value of l2 into estimate (2.36), one derives

√
λ

C
� εa√

λ
+

√√√√(
1+ 2ε

√
α0
λ

){
2√
s −

√
α0
λ (4(λ− Cεa)+ εa2C)

}
+ 3εα0a2

6Cα0
.

(2.41)

Summarizing the above, we arrive at the following theorem.

Theorem 2.5 (Noise-free case). Let conditions of lemmas 2.1–2.4 be satisfied with

η :=
√
l21α0 + l22α

2
0 (2.42)

and with l1 > 0 and l2 > 0 defined in (2.35) and (2.39), respectively. Suppose that regular-
ization sequence, {αk}, is chosen according to (1.8) and

‖θ0 − θ̂‖ � l1
√
α0 and ‖u0 − û‖ � l2α0. (2.43)

Assume that λ in (1.1), ε in (2.1), and α0 and a in (1.8) are such that inequalities (2.40) and
(2.41) hold. Then in the noise-free case, for {θk}, generated by (1.8), and for {uk}, generated
by (1.9), estimates (2.33) are fulfilled.

Remark 2.6. Note that inequality (2.40) is satisfied when λ− Cεa and ε are small, and
inequality (2.41) will always be true for sufficiently large α0.

11
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2.3. Convergence rates in case of noise-contaminated data

Now consider the case of noisy data. That is, suppose that in (1.2), ‖d − dδ‖ � δ with δ > 0.
Then (2.16) takes the form

uk+1 − û = −[G′∗
u (θk+1, uk)G′

u(θk+1, uk)+ B′∗(uk)B′(uk)]−1

×
{
G′∗
u (θk+1, uk)[G

′
θ(θk, uk)(θk+1 − θ̂)+ P(θk, θk+1, θ̂, uk, û)]

+ B′∗(uk) (L(uk, û)+ d − dδ
}
. (2.44)

Let δ be chosen in such a way that

δ � να0, for some ν > 0, (2.45)

and let iterations (1.8) and (1.9) be terminated when k = K(δ), where

K(δ) = max{k = 0, 1, 2, . . . : δ � ναk−1}. (2.46)

Then for any k � K(δ), estimate (2.29) becomes

‖uk+1 − û‖ � C
√
s

2
‖θk − θ̂‖2 + 3C

√
s

4
‖uk − û‖2 + C

√
s

2
‖θk+1 − θ̂‖2

+ C
√
s(‖θk − θ̂‖+ ‖uk − û‖)‖θk+1 − θ̂‖

+
Cε
2

√
sαk
λ

(‖uk − û‖+ ‖θk − θ̂‖)+
√
sαk

(
ε+

ν

2

)
(2.47)

and in place of (2.38) one gets

3C
√
sα0a2

4
l22 −

[
1−

√
α0s
λ

(
2(λ− Cεa)+

εa2C
2

)]
l2

+
2
√
s(a+ 1)2(λ− Cεa)2

λCa2
+

√
saε(λ− Cεa)

λ
+
√
s
(
ε+

ν

2

)
a2 � 0. (2.48)

As the result, we state the following theorem.

Theorem 2.7 (The case of noise in the data). Suppose all conditions of theorem 2.5
are met with (2.40) replaced with√

λ

sα0
� 2(λ− Cεa)+

εa2C
2

+

√
3
{
2(a+ 1)2(λ− Cεa)2 + Ca3ε(λ− Cεa)+ Ca4λ

(
ε+

ν

2

)}
,

and suppose that in (1.2), ‖d − dδ‖ � δ with δ > 0. Then if assumptions (2.45) and (2.46) are
fulfilled, one has

‖θk − θ̂‖ � l1
√
αk and ‖uk − û‖ � l2αk, k = 1, 2,..,K(δ), (2.49)

the number K(δ) is admissible, i.e., limδ→0 K(δ) = ∞, and the following convergence rates
hold

‖θK(δ) − θ̂‖ = O(
√
δ) and ‖uK(δ) − û‖ = O(δ). (2.50)

12
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3. Numerical study of inverse problems in epidemiology

3.1. Parameter estimation and forecasting from modified Richards equation

In this section we illustrate advantages and limitations of our proposed method (1.8) and (1.9)
using parameter estimation inverse problems in epidemiology. All experiments are carried out
with real data on COVID-19 pandemic provided by Dr. Gerardo Chowell from Georgia State
University School of Public Health. In our first study, we employ the modified Richards (MR)
epidemic model, based on four parameters, p, K, a, and r [30, 31]:

dC
dt

= rCp

[
1−

(
C
K

)a]
. (3.1)

These four parameters, characterizing the spread of the virus, are reconstructed numerically
by the new PCA. Once recovered, they are used to quantify the natural capacity of the disease
and to forecast future incidence cases.

Over the past fewmonths, several compartmentalmodels have been used to study the spread
ofCOVID-19 virus and to examine the impact of control and prevention [2, 12, 28]. Thesemod-
els are based on differential equations that track progression of individuals between different
epidemiological states or risk levels. While compartmental models remain the kernel of rich
epidemic theory [2, 12], a critical underlying assumption is that random mixing governs the
interaction between individuals in population.Consequently, these models exhibit exponential-
growth during the early epidemic phase in the absence of significant depletion of susceptible
individuals and intervention measures [7]. However, recent findings revealed a diversity of
early epidemic growth profiles across infectious diseases, highlighting the presence of sub-
exponential and higher than exponential growth, which contrast with traditional assumption
of exponential epidemic spread [7, 9]. In case of COVID-19, substantial heterogeneity in
susceptibility and infectivity of the host population can significantly distort the contact net-
work structure [7, 9]. Thus, epidemic models that capture various growth rates during the first
few generations of the outbreak are needed to better characterize the COVID-19 transmission
dynamics. For this reason, in order to assess an early stage of COVID-19, we use phenomeno-
logical model (3.1). By its very design, this modified logistic equation, originating from the
field of ecology, is able to capture a diversity of early growth profiles for a variety of epidemics,
leading to more accurate parameter estimation and more reliable forecasting trajectories
[9, 30, 31].

In (3.1),C(t) and dC
dt are cumulative number of cases and the number of new incidence cases

at time t, respectively. The deceleration of growth parameter, p, modulates different growth
patterns in case incidence [9], r is the intrinsic growth rate, a measures the extent of deviation
from the S-shaped dynamics of the classical logistic growth model [30], and K represents the
epidemic final size, defined as the total number of infections throughout the outbreak. When
p = 1, (3.1) is known as the Richards model [31] and its analytical solution for the cumulative
number of cases is given by

C(t) =
K[

1+ a e−ar(t−τ )
]1/a , (3.2)

with τ being the inflection point of C. If p 
= 1, the solution to (3.1) is an infinite series [30],
which cannot be written in the closed form. If one differentiates both sides of (3.1) with respect
to t and equates them to zero, then one obtains the cumulative number of cases at the disease

13
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inflection point, τ :

C(τ ) = K

(
p

a+ p

) 1
a

. (3.3)

Substituting (3.3) into the right-hand side of (3.1), one derives

C′(τ ) =
raKp

p

(
p

a+ p

)1+ p
a

,

the maximum incidence in the modified Richards model. Estimation of K, C(τ ), and C′(τ ) for
an emerging disease provides crucial information needed for adequate intervention and control
measures to be put in place. Assume that a wave of an outbreak originates on day (week) t1
and ends on day (week) B (which is unknown at the early stage of disease transmission). Let
the incidence data, dδ , be reported at t = t1 < t2 < · · · < tn with tn being much smaller than
B. In that case, given limited data, dδ , at the start of a new wave one has to solve the following
ODE-constrained minimization problem

min
C

∥∥∥∥dCdt − dδ

∥∥∥∥
2

= min
C

n∑
j=1

(
dC
dt

(t j)− dδ(t j)

)2

, (3.4)

subject to
dC
dt

= rCp

[
1−

(
C
K

)a]
, C(t1) = C(1). (3.5)

It has been observed in [25], that estimation of the unknown parameters, p, r, a, and K, from
problem (3.4) and (3.5) in a ‘traditional way’ given early incidence data, dδ , that is, minimizing
‖ dC

dt − dδ‖2 with respect to p, r, a, andKwhile solving equation (3.5) numerically at every step
of the iterative process, is extremely unstable in K, leading to very inaccurate predictions of
disease capacity. Therefore, in this subsection, we use our newly proposed PCA (1.8) and
(1.9) in order to approximate a solution to (3.4) and (3.5) in a stable manner for t ∈ [t1, tn] with
tn < B.

Suppose that t = A is one day (week) before the first case is reported, i.e., C(A) = C′(A)
= 0. Denote E(t) := dC

dt and discretize E(t) using Fourier approximation:

E(t) = A0 +

N∑
j=1

{
Aj cos

(
2π j

t −A
B −A

)
+ Bj sin

(
2π j

t −A
B −A

)}
. (3.6)

To ensure that E(A) = E(B) = 0, where B is an estimated last day (week) of the current
epidemic wave, we set A0 = −

∑N
j=1 Aj, and conclude

E(t) =
N∑
j=1

{
Aj

[
cos

(
2π j

t −A
B −A

)
− 1

]
+ Bj sin

(
2π j

t −A
B −A

)}
. (3.7)

Then one obtains

C(t) =
∫ t

A
E(s) ds =

N∑
j=1

{
Aj

[
B −A
2π j

sin

(
2π j

t −A
B −A

)
− (t −A)

]

−Bj
B −A
2π j

[
cos

(
2π j

t −A
B −A

)
− 1

]}
. (3.8)
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Introduce the notations:

u := [A1, . . . ,AN ,B1, . . . ,BN]T, and θ1 := p, θ2 :=K, θ3 := a, and θ4 := r. (3.9)

The discrete approximation of E(t) allows us to define B(u) in (1.3) as a linear operator from
R

2N to Rn (with n being the number of data points) such that

Bi(u) :=
N∑
j=1

{
u j

[
cos

(
2π j

ti −A
B −A

)
− 1

]
+ uN+ j sin

(
2π j

ti −A
B −A

)}
, i = 1, 2, . . . , n.

(3.10)

Furthermore, based on (3.5), in minimization problem (1.3) we define

Gi(θ, u) :=Bi(u)− θ4C
θ1
i (u)

[
1−

(
Ci(u)
θ2

)θ3
]
, G : R4 × R

2N → R
n, and g :=0,

(3.11)

where

Ci(u) =
N∑
j=1

{
u j

[
B −A
2π j

sin

(
2π j

ti −A
B −A

)
− (t−A)

]

+ uN+ j
B −A
2π j

[
cos

(
2π j

ti −A
B −A

)
− 1

]}
.

Expressions (3.10) and (3.11) enable us to easily calculate Fréchet derivatives of B(u) and
G(θ, u) with respect to u and the derivative of G(θ, u) with respect to θ, and to implement
algorithm (1.8) and (1.9) for estimating θ = [p,K, a, r]T from (3.4) and (3.5). Given a con-
siderable gap in the levels of magnitude between K and the rest of the parameters, in all our
simulations T∗T in (1.8) is a diagonal matrix with entries selected to scale initial values of the
unknowns [27]:

T∗T =

⎡
⎢⎢⎣
w2 0 0 0
0 w2

K 0 0
0 0 w2 0
0 0 0 w2

⎤
⎥⎥⎦ . (3.12)

Without scaling (that is, with T = I) the process turns out to be divergent for all initial approx-
imations tested. To study the efficiency of predictor–corrector scheme (1.8) and (1.9), we take
COVID-19 incidence case data for Netherlands and Spain, two countries with different size of
the population (17 134 872 and 46 754 778 people in 2020, respectively) and different scope of
the pandemic (47 335 and 283 941 total cases as of June 7, 2020, respectively).

As our first experiment, we reconstruct u and θ from full incidence data set for Netherlands.
As full data set, we consider COVID-19 incidence data from February 28, 2020, when the first
case was reported in Netherlands, till May 24, 2020, the time this experiment was conducted
(87 data points). To initiate the algorithm, we assume p0 = a0 = 1, r0 = 0.1, andK0 = 60 000.
To get the initial guess for u, we solve (3.1) analytically on the interval [1, 87] with p = a = 1,
r = 0.5, K = 60 000, and C(1) = 1 (the number of cases reported on February 28, 2020), and
then (numerically) calculate the Fourier series expansion coefficients for rCp

[
1−

(
C
K

)a]
.
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Figure 1. Netherlands: reconstructed incidence and cumulative cases from a full data
set.

The initial values ofC(t) andC′(t) together with their Fourier approximations are illustrated
in figure 1. Even though C0(t) and C′

0(t) are far from accurate, algorithm (1.8) and (1.9) is
still convergent for a suitable choice of control elements. As θ̄, we take [0.550 0000.50.5]T. In
(3.7), for the full data set N is equal to 30 (i.e., the number of base functions is 60), though a
very similar result can be obtained with a much smaller N. The value of B is estimated as 100.

Sincewe expectK and the rest of the parameters to be about 5 or 6 orders ofmagnitude apart,
in (3.12) we take wK = 0.32 and w = 104. The regularization sequence is chosen to be αk =
α0/k

4 with α0 = 1 to ensure the most aggressive convergence rate that can be achieved while
still keeping the process stable. The iterations are stopped when k = 15 and α = 1.98× 10−5.
This stopping time is determined by the goodness of fit (with no overfitting) to the data for
both, the reconstructedC(t) and C′(t) and for C(t) and C′(t) obtained from (3.1) with recovered
parameters p, K, a, and r. For Netherlands full data set, we obtain

p= 0.830 30, K = 47 351, a = 0.526 96, and r = 0.841 20.

The next phase of our experiment is to forecast future incidence cases given 20, 30, and 50 data
points for Netherlands. After p, K, a, and r have been recovered from early epidemic data, 100
additional bootstrap curves are generated by adding Poisson error structure to the daily series
of reported cases [8, 10, 11] in order to quantify uncertainty in the recovered parameters. The
histograms in the upper row (figures 2–4) show the approximate values for the components
of θ along with the 95% confidence intervals, while the collection of curves at the bottom of
the figure demonstrates the accuracy of forecasting. The forecasting curves are computed by
solving ODE (3.1) on the entire interval [A,B] with parameters p, K, a, and r recovered from
early available data using algorithm (1.8) and (1.9). The brown solid vertical line in figures 2–4
separates the calibration and forecasting periods.

In figure 2, one can see forecasting results for Netherlands from the first 20 incidence data
points. While the forecasting curves show a very accurate turning time, the number of cases is
clearly underestimated. The uncertainty of future projections is rather high as expected for such
an early prognosis. To recover θ from limited data, we use p0 = a0 = r0 = 1, andK0 = 60 000.
To get the initial guess for u, we solve (3.1) analytically with p = a = 1, r = 0.5, K = 60 000,
and C(1) = 1 and then calculate the Fourier series expansion coefficients for rCp

[
1−

(
C
K

)a]
.

We take θ̄ = [0.5 20 000 0.5 1.5]T. As extra regularization tool, we reduce the size of the solu-
tion space for u from60 (N = 30 in (3.7)) to 10 (N = 5), since the process becomes increasingly
more unstable with less data. The regularization sequence is still αk = α0/k

4, and α0 is chosen
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Figure 2. Netherlands: forecasting from 20 days of incidence data.

Figure 3. Netherlands: forecasting from 30 days of incidence data.

to be 2× 10−2. The iterations are stopped when k = 9 and αk = 8.33× 10−6. This stopping
time is determined by the goodness of fit to the first 20 data points.

Forecasting curves for 30 data points (figure 3) show that 10 extra days can make a big
difference and it is worth recomputing future projections every day (week) if forecasting is
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Figure 4. Netherlands: forecasting from 50 days of incidence data.

done in real time. For the first 20 days of the forecasting period, the daily number of new cases
is overestimated, which is not a surprise given the sharp upward trend in the available data at
the end of the calibration window. The next two weeks of projected data (from day 50 to 62)
are adequately covered by the bundle of forecasting curves. For this experiment, we take the
same initial values for p, K, a, and r as before and compute u0 in the same manner. The number
of base functions used to discretize C′(t) is also the same, 10. The regularization sequence,
αk = α0/k

4, while α0 = 1 and iterations are stopped when k = 14 (αk = 2.60× 10−5).
Forecasting after the turning time (figure 4) is less useful from practical standpoint, but it is

still important as we examine the efficiency of the algorithm.With 50 data points, we set p0 =
a0 = 1, r0 = 0.1, K0 = 60 000, and θ̄ = [0.5 50 000 0.5 0.5]T. The regularization sequence
αk = α0/k

4 withα0 = 50. The iterations are stoppedwhen k = 17 andαk = 5.99× 10−4. This
stopping time is determined by the goodness of fit to the data used for training (the first 50 data
points). As expected, the forecasting results in this case are accurate with low uncertainty.

In figure 5, one can see the results of numerical simulations with full data set for Spain. This
data set covers the period from February 20, 2020, the day when the first case was reported
in Spain, till June 7, 2020, the time this experiment was carried out (109 data points). We
assume that B, the length of the epidemic wave, is equal to 120. To initiate the algorithm,
we take p0 = a0 = 1, r0 = 0.1, and K0 = 200 000. In order to obtain the initial guess for u,
we solve (3.1) analytically on [1, 109] with p = a = 1, r = 0.5, K = 200 000, and C(1) = 2
(the number of cases reported on February 20, 2020), and then calculate the Fourier series
expansion coefficients for rCp

[
1−

(
C
K

)a]
. The initial values for C(t) and C′(t) together with

their Fourier approximations are illustrated in figure 6. Clearly, these initial values are not
close to the solution, and nevertheless algorithm (1.8) and (1.9) is convergent for a broad range
of control elements. The reference vector, θ̄, is chosen to be [0.53000000.50.5]T, while the
number of base functions for the full data set is 60 (i.e., N = 30 in (3.7)), the same as in the
case of Netherlands. With fewer base functions, the results of the experiment are very similar.

For Spain, we expectK and the rest of the parameters to be about 6 or 7 orders of magnitude
apart. Thus in (3.12), we takewK = 0.1 andw = 31 623. The regularization sequence is chosen
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Figure 5. Spain: reconstructed incidence and cumulative cases from a full data set.

Figure 6. Spain: forecasting from 30 days of incidence data.

to be αk = α0/k
3 with α0 = 30 to accelerate convergence without jeopardizing stability. The

iterations are stopped when k = 15 and αk = 0.0089. This stopping time is determined by the
goodness of fit to the data for both, the reconstructed C(t) and C′(t) and for C(t) and C′(t)
obtained from (3.1) with recovered parameters p, K, a, and r. For the full set of COVID-19
data in Spain, we get

p= 0.913 78, K = 286 559, a = 0.213 66, and r = 0.899 43.

Figures 6 and 7 illustrate histograms with parameter values and the bundles of curves showing
projected case incidence given 30 and 45 days of COVID-19 data in Spain. For every partial
data set, 100 additional bootstrap curves are generated by adding Poisson error structure to the
daily series of reported cases [10] in order to quantify uncertainty in the approximate values
of the parameters. The forecasting curves are computed by solving ODE (3.1) on the entire
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Figure 7. Spain: forecasting from 45 days of incidence data.

interval [A,B] with parameters p,K, a, and r recovered from each bootstrap curve by algorithm
(1.8) and (1.9).

In figure 6, forecasting results for Spain with 30 data points are given. The projected case
incidence is remarkably accurate for the first 20 days of forecasting interval. The forecasting
curve bundle does not, however, cover the rest of the data showing a clear need to recom-
pute the anticipated values as more information becomes available. The uncertainty of future
projections is rather high, but reasonable, considering a relatively short calibration period.
For parameter estimation, we use p0 = a0 = 1, r0 = 0.1, and K0 = 100 000. To obtain u0, we
solve (3.1) analytically with p = a = 1, r = 0.5, K = 100 000, and C(1) = 2 and then calcu-
late the Fourier series expansion coefficients for rCp

[
1−

(
C
K

)a]
. As we move from full to

partial data, the number of base functions for C(t) and C′(t) is reduced from 60 (N = 30 in
(3.7)) to 10 (N = 5) (similar to how it was done for Netherlands), since the process becomes
increasingly more unstable with less data. The regularization sequenceαk = 1/k4, and the ref-
erence vector θ̄ = [0.5 50 000 0.5 0.5]T. The iterations are stopped when k = 15 and αk =
1.98× 10−5. This stopping time is determined by the goodness of fit to the first 30 data
points.

In figure 7, one can see parameter values and future projections of COVID-19 incidence
cases in Spain, estimated from 45 data points. The figure illustrates forecasting results at the
very pick of the incidence curve. The forecasting bundles do not account for a sharp unexpected
drop in incidence cases following the end of the calibration period. But in a long run, the
prognosis is accurate with virtually no uncertainty. With 45 data points, we set p0 = a0 = 1,
r0 = 2,K0 = 500 000, and θ̄ = [0.5 350 000 0.5 0.5]T. The Fourier coefficients comprising u0
get calculated from the analytic solution to (3.1) with p = a = r = 1, and K = 500 000. The
regularization sequenceαk = α0/k

3 withα0 = 10. The iterations are stoppedwhen k = 10 and
αk = 0.01. This stopping time is determined by the goodness of fit to the first 45 data points
used for training.
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3.2. Application of SIRD model

Apart from forecasting curves with quantified uncertainty, the reproductive capacity of an out-
break and the underlying transmission rate are important tools, which allow to assess the effi-
ciency of public health policies.Whereas other system parameters, i.e. incubation and recovery
rates, are less dependent on intervention measures, the effective reproduction number and the
transmission rate of a disease are directly influenced by control and prevention. Having the
tools needed to recover these two parameters (call themR(t) and β(t), respectively) allows for
the real-time analysis of the effectiveness of intervention measures, for the ability to determine
themost powerful response and, finally, for the conceivablymore accurate projections of future
incidence cases.

In this subsection we present our numerical results on stable estimation of R(t) and β(t)
from COVID-19 incidence data using a version of SIRD model introduced in [2]:

dS
dt

= −β(t)
S(t)

N − D(t)
I(t) (3.13)

dI
dt

= β(t)
S(t)

N − D(t)
I(t)− γI(t) (3.14)

dR
dt

= (1− ν)γI(t) (3.15)

dD
dt

= νγI(t). (3.16)

Equations (3.13)–(3.16) follow the progression of individuals in a populationof sizeN between
four different states: S, susceptible to the COVID-19 virus, I, infected with COVID-19 (both
symptomatic and asymptomatic), R, recovered and no longer contagious, and D, deceased. In
this model we assume that as agents move to category R, they acquire immunity to the disease
for at least three months, which is the time frame considered in our experiments.

The parameter γ, called recovery rate, governs the evolution of infected people from state I
to statesR orD. Based on the severity of the disease, the value of γ is estimated to be somewhere
between 1/4 and 1/14, which corresponds to the infectious period from 4 to 14 days [2]. In
line with [2], we use γ = 1/5.

The second parameter, ν, is the fatality rate of the virus. Estimating the fatality rate is very
difficult, since COVID-19 cases are believed to be substantially underreported (in part, due to
a large number asymptomatic cases, especially among children and young adults). While early
measurements from limited data for an emerging COVID-19 outbreak suggested ν to be as
high as 1.2%, the more recent estimates based on antibody testing point toward a much lower
value of 0.2% (though it does increase markedly with age and risk factors) [2]. Still, even with
ν = 0.012, the model grossly underestimates the actual number of deaths as shown by our
numerical simulations below.

The transmission rate, β(t), is defined as probability of infection given a contact between an
infectious and susceptible individual multiplied by the average rate of contacts between these
groups. It is the defining rate in disease progression and one of the two components in the
effective reproduction number,R(t), the rate at which susceptible agents get infected divided
by the recovery rate of infected individuals at time t, i.e.,

R(t) =
β(t)
γ

S(t)
N − D(t)

. (3.17)
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The effective reproductionnumber of a disease varies in time and it is directly affected by social
response and public health guidelines, aimed at eventually bringing it under 1 for a sustained
period of time needed to stop the chain of transmission. Below we demonstrate how iterative
scheme (1.8) and (1.9) can be used to reconstruct these two important parameters, R(t) and
β(t). Previously, a time-dependent transmission rate, β(t), has been approximated for various
diseases from a similar (SEIR) compartmental model [24]. Numerous challenges faced by the
authors while solving this parameter estimation problem motivated the development of new
PCA (1.8) and (1.9), introduced in the current paper.

Let incidence data, dδ, be reported on days t1, t2, . . . , tn, whereA < t1 < t2 < · · · < tn < B.
According to the model, the daily number of new incidence cases is equal to β(t) S(t)I(t)N−D(t) =
dI
dt + γI(t). Therefore one has to solve the following constrained minimization problem

min
I

∥∥∥∥dIdt + γI(t)− dδ

∥∥∥∥
2

= min
I

n∑
i=1

(
dI
dt
(ti)+ γI(ti)− dδ(ti)

)2

, (3.18)

subject to (3.13)–(3.16) and initial conditions S(t1) = N− I(1), I(t1) = I(1), R(t1) = 0,
D(t1) = 0. The goal of our experiment is to estimate the disease transmission rate, β(t), by
solving minimization problem (3.13)–(3.16), (3.18) with PCA (1.8) and (1.9) over the interval
[t1, tn], and then to use the reconstructed function β(t) to calculateR(t) by formula (3.17).

To discretize I′(t), we employ the same Fourier expansion as the one used in the previous
subsection for discretizing dC

dt :

W(t) := I′(t) =
N∑
j=1

{
Aj

[
cos

(
2π j

t −A
B −A

)
− 1

]
+ Bj sin

(
2π j

t −A
B −A

)}
. (3.19)

This discrete approximation will guarantee thatW(A) = W(B) = 0. For I(t), one obtains

I(t) =
∫ t

A
W(s)ds =

N∑
j=1

{
Aj

[
B −A
2π j

sin

(
2π j

t −A
B −A

)
− (t−A)

]

−Bj
B −A
2π j

[
cos

(
2π j

t −A
B −A

)
− 1

]}
. (3.20)

If one introduces the notation:

u := [A1, . . . ,AN ,B1, . . . ,BN]T, (3.21)

then one can define B(u) in (1.3) as a linear operator from R
2N to Rn (with n being the number

of data points) such that

Bi(u) :=W[u](ti)+ γI[u](ti), i = 1, 2, . . . , n. (3.22)

Furthermore, to recover the shape of β(t), we project the transmission rate onto a finite subset
spanned by the shifted Legendre polynomials of degree 0, 1, . . . ,m− 1, which are orthogonal
on the interval [A,B] with respect to L2 inner product, defined recursively as follows

x =
2t−A− B

B −A , P0(x) = 1, P1(x) = x, t ∈ [A,B],

( j+ 1)Pj+1(x) = (2 j+ 1)xP j(x)− jP j−1(x), j = 1, 2, . . . ,m− 2.
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This yields the following finite dimensional approximation of the transmission rate:

β(t) =
m−1∑
j=0

θ j+1Pj(t). (3.23)

Representation (3.23) enables us to cast Gi(θ, u) in (1.3) as an operator from R
m × R

2N

→ R
n:

Gi(θ, u) :=Bi(u)− β[θ](ti)
N − I[u](ti)− γU[u](ti)

N − νγU[u](ti)
I[u](ti) and g := 0, (3.24)

with U(t) defined in terms of A1, . . . ,AN,B1, . . . ,BN as follows

U(t) :=
∫ t

A
I(s)ds =

N∑
j=1

{
Aj

[
− (B −A)2

(2π j)2

{
cos

(
2π j

t −A
B −A

)
− 1

}

− (t−A)2

2

]
− Bj

B −A
2π j

[
B −A
2π j

sin

(
2π j

t −A
B −A

)
− (t −A)

]}
. (3.25)

Given (3.22) and (3.24), one can easily calculate Fréchet derivatives of B(u) and G(θ, u) with
respect to u and the derivative of G(θ, u) with respect to θ, and implement algorithm (1.8) and
(1.9) for estimating β(t) from (3.18) subject to (3.13)–(3.16). Considering the nature of θ, we
do not scale any components in the penalty term of (1.8) and in all our simulations T∗T = I,
the identity operator in Rm [27].

We use a parametric bootstrap approach [7, 8, 11] to generate uncertainty bounds for recon-
structed coordinates of θ, assuming Poisson error structure. We refit the model to each of the
M = 100 additional data sets, generated by the bootstrapmethod, resulting inM best-fit param-
eter sets that are used to construct the 95% confidence intervals for each θj, j = 1, 2, . . . ,m. To
ensure an unbiased choice of the initial guess for β(t), we randomly select a constant θ0 from
the uniform distribution on [0.1, 1], and take [θ0, 0, 0, . . . , 0]T to serve as initial approximation
for the transmission rate expansion coefficients at every bootstrap iteration. Note that with this
choice of θ, β0(t) = θ0. To find an initial guess for u, we spline the approximation of dI

dt (tk):

dI
dt
(tk) ≈ dδ(tk)− γ exp(−γtk)

k∑
j=1

exp(γt j)dδ(t j),

and compute its Fourier expansion coefficients A0
1, . . . ,A

0
N ,B

0
1, . . . ,B

0
N . We then set

u0 := [A0
1, . . . ,A

0
N ,B

0
1, . . . ,B

0
N]

T.

For our numerical experiments, we use the same incidence data sets for COVID-19 virus in
Netherlands and Spain as the sets used in the previous subsection. For Netherlands, in figure 8
and in table 1, the values of the reconstructed parameters, θj, j = 1, . . . , 10, and the correspond-
ing 95% confidence intervals (CIs) are presented. In figure 9 (right), a bundle of reconstructed
values of the disease transmission rate, β(t), can be seen along with randomly selected initial
values for 100 bootstrap iterations. In figure 9 (left), the reconstructed incidence curves are
illustrated. Figure 10 shows what our findings imply for the effective reproduction number,
R(t). It starts off with a rather high level at the onset of the outbreak. Then about 47 days into
the process (and shortly after the incidence curve peaks), the values ofR(t) drop under 1, gen-
erating a declining flow of cases. The reproduction curve does, however, have a relapse toward
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Figure 8. Netherlands: reconstructed values of Legendre coefficients for β(t).

Table 1. Netherlands: 95% confidence intervals for the reconstructed Legendre
coefficients.

θ1 = 0.32(95%CI : [0.28, 0.58]) θ2 = −0.38(95%CI : [−1.1,−0.25])
θ3 = 0.4(95%CI : [0.22, 1.4]) θ4 = −0.37(95%CI : [−1.5,−0.15])
θ5 = 0.42(95%CI : [0.19, 1.5]) θ6 = −0.4(95%CI : [−1.3,−0.2])
θ7 = 0.34(95%CI : [0.19, 0.96]) θ8 = −0.25(95%CI : [−0.62,−0.15])
θ9 = 0.13(95%CI : [0.079, 0.31]) θ10 = −0.0098(95%CI : [−0.067, 0.014])

Figure 9. Netherlands: reconstructed incidence cases (left) and transmission rate (right).

the end of our study period, hinting that the second wave of the disease may be imminent. That
prediction proved to be accurate [35].

In figure 11, the reconstructed functionsS(t), I(t),R(t), andD(t) are given. The actual number
of COVID-19-related deaths in Netherlands on May 24, 2020, was reported to be 5,811 [35],
which is much higher than what the model projects. We face the same problem with D(t)
estimates in Spain (figure 12): the actual number of COVID-19-related deaths in Spain on June
7, 2020, was reported to be 28 323 [35], while the model projects slightly under 3,500. In the
future, the model needs to be adjusted to include a percentage of reported cases as additional
unknown parameter (due to a large number of unreported asymptomatic andmild cases) and/or
to account for a time-dependent death rate whose magnitude is the highest at the early stages
of the pandemic.
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Figure 10. Netherlands: reconstructed values of effective reproduction number, R(t).

Figure 11. Netherlands: reconstructed values of S(t), I(t), R(t), and D(t).

In the case of Netherlands, for every bootstrap iteration, we take α0 = 10−5, but a wide
range of values from α0 = 10−3 to α0 = 10−8 can be used to get the results that are almost
identical. The convergence rate for {αk} is chosen to be αk = α0/k, the rate that gives rise to
the most stable iterative process. Iterations are terminated once αk has reached the value of
6.67× 10−7. We discretize dI

dt (t) and β(t) with 16 and 10 base functions, respectively (that is,
N = 8 and m = 10).

Figure 13 and table 2 illustrate the values of the reconstructed parameters, θj, j = 1, . . . , 10,
and the corresponding 95% confidence intervals (CIs), given COVID-19 incidence data for
Spain. In figure 14 (right), a bundle of reconstructed values of the disease transmission rate,
β(t), is shown along with randomly selected initial values for 100 bootstrap iterations. In
figure 14 (left), the reconstructed incidence curves are presented. In figure 15, the effective
reproduction number, R(t), for the Spain data is demonstrated. Like in the case of Nether-
lands, it starts off with a rather high level at the onset of the outbreak. Between days 25 and
100, the effective reproduction number for Spain decreases from 2 to 0.5. Then it begins to
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Figure 12. Spain: reconstructed values of S(t), I(t), R(t), and D(t).

Figure 13. Spain: reconstructed values of Legendre coefficients for β(t).

Table 2. Spain: 95% confidence intervals for the reconstructed Legendre coefficients.

θ1 = 0.43(95%CI : [0.41, 0.45]) θ2 = −0.73(95%CI : [−0.79,−0.67])
θ3 = 0.92(95%CI : [0.84, 1]) θ4 = −1(95%CI : [−1.1,−0.92])
θ5 = 1.1(95%CI : [0.99, 1.2]) θ6 = −0.97(95%CI : [−1,−0.89])
θ7 = 0.92(95%CI : [0.86, 0.98]) θ8 = −0.59(95%CI : [−0.62,−0.54])
θ9 = 0.31(95%CI : [0.29, 0.33]) θ10 = −0.08(95%CI : [−0.089,−0.071])

grow and reaches the level of 1.4 toward the end of the study period suggesting a possibility
of the second wave. Again, this prognosis proved to be accurate [35].

For Spain incidence data, we use α0 = 10−10 at every bootstrap iteration (a range of values
from 10−5 to 10−12 results in very similar solutions). The convergence rate for {αk} is chosen
to be αk = α0/k. The process is terminated once αk has reached the value of 2× 10−11, i.e.,
after 5 iterations. We discretize both dI

dt (t) and β(t) with 10 base functions (that is, N = 5 and
m = 10). This rather aggressive discretization of the state variable allows to reduce the value of
α0 as compared to our previous experiment, where N = 8 and dI

dt (t) is discretized with 16 base
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Figure 14. Spain: reconstructed incidence cases (left) and transmission rate (right).

Figure 15. Spain: reconstructed values of effective reproduction number, R(t).

functions. It also allows to reduce the number of iterations form 15 to 5, and to recoverβ(t) and
R(t) with very low uncertainty (see figures 14 and 15). On the other hand, if one uses N � 8
with Spain incidence data, then, regardless of the value of α0, uncertainty in the recovered β(t)
tends to be rather high near the end points.

Numerical simulations presented in this subsection demonstrate another important advan-
tage of our proposed algorithm (1.8) and (1.9). Indeed, if one solves (3.18) subject to
(3.13)–(3.16) in a traditional way [24], then one has to evaluate the operator J(θ) :=B(u(θ)),
which is a composition of the parameter-to-state map, u = u(θ), satisfyingG(θ, u(θ)) = g, and
the observation operator, B = B(u). That is, J(θ) :=B(u(θ)). As it is clear from (3.13)–(3.16),
u is a nonlinear function of θ, which implies that J(θ) is also nonlinear. On the other hand,
our PCA does not require solving G(θ, u) = g for u, and the operator G(θ, u) is linear with
respect to θ (though nonlinear with respect to u), which results in much simpler iterations for
θk as compared to the traditional approach (without any increase in the solution space for this
unknown parameter).

4. Conclusions and discussion

New PCA (1.8) and (1.9) has been theoretically justified for nonlinear minimization problem
(1.3). Numerical simulations have been carried out for two inverse problems in epidemiol-
ogy, aimed at parameter estimation and forecasting of future incidence cases. The experiments
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Figure 16. The state of Georgia, USA, COVID-19 incidence data.

have shown that our new method is accurate and stable for a broad range of initial values
and regularization sequences. As compared to the ‘traditional’ approach [25], which con-
sists in minimizing ‖ B(u)− dδ ‖2 with respect to θ, while solving the equation G(θ, u) = g
numerically at every step of the iterative process, for the two inverse problems considered,
method (1.8) and (1.9) is more time efficient andmore reliable in its estimation of the unknown
parameters.

From theoretical standpoint, one of the main assumptions of the convergence theorems is
condition (1.3) on the well-posedness of the forward problem. Our numerical experiments
confirm that this assumption is reasonable and that iterations (1.9), indeed, do not require any
regularization except for the discrete approximation of a state variable.

An important topic that needs to be studied next is the extension of the modified Richards
model to the case of elaborate epidemic trajectories aggregating multiple asynchronous sub-
epidemics, since a large number of COVID-19 incidence data curves do not have a simple bell-
shape behavior (see COVID-19 data for the state of Georgia, USA, in figure 16, for example
[6]). In [7, 23], a complex outbreak structure comprised of M overlapping sub-epidemics is
modeled as

dCi
dt

= rAi(t)C
p
i (t)

[
1− Ci(t)

Ki

]
, (6.1)

where Ci(t) is the cumulative number of infections in sub-epidemic i (i = 1, . . . ,M), Ki is the
size of the ith sub-epidemic, and the growth rate r and the scaling parameter p are the same
across allM sub-waves [7]. The timing of onset for each consecutive sub-epidemic is modeled
in such a way that the (i+ 1)th sub-epidemic is triggered when the cumulative case count
of sub-epidemic i, Ci(t), exceeds a certain threshold, Cthr. The (i+ 1)th sub-epidemic begins
before the ith sub-epidemic reaches its extinction. The size of sub-epidemic i is modeled as
Ki = K0e−q(i−1).

It is our expectation that model (6.1) could help to overcome some shortcomings of MR
equation (3.1) and, combined with algorithm (1.8) and (1.9), could give rise to a robust
forecasting tool that will be used to assess future viral infections.

As a long term goal, it would be of great interest to consider a machine learning (ML)
formulation of the optimization problem [34], where the explicit form of G(θ, u) is unknown
and onewould like to ‘learn’ it. In this framework, onemodelsG(θ, u) as a deep neural network,
and θ consists of network parameters from multiple layers. ‘Training’ neural network, i.e.,
minimizing the functional

∑N
i=1 ‖B(u(gi; θ))− di‖2 with respect to θ, subject to G(θ, u) = gi,
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is very data demanding, since one needs a set of initial values {gi} and the corresponding
trajectories {u(gi; θ)}. Havingmultiple gi can be difficult in epidemiology, in general.However,
with the abundance of COVID-19 data and with the virus being so widespread, one can take
gi as the initial condition of the ith outbreak in a particular country (or state) with di being
incidence data for this country (state). ‘Learning’ the full model would be of huge advantage,
since all compartmental and phenomenological models are simplifications, which are, in fact,
also unknown to some degree.
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