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Mercury (Hg) is a globally abundant pollutant found 
in all major environmental reservoirs. Hg is mainly 
distributed through the atmosphere1, transporting Hg 
from emission sources (such as industrial centres) to 
remote aquatic and terrestrial ecosystems1–3. Thus, in 
2013, the Minamata Convention on Mercury was signed to 
curb anthropogenic Hg emissions and to reduce Hg risks 
to humans and the environment4. In 2015, an estimated 
2,000–3,000 Mg per year of Hg was emitted to the atmos-
phere by anthropogenic activities5. Approximately, an 
additional 200–600 Mg per year of Hg is emitted through 
biomass burning6–8, with another 1,000–1,600 Mg 
per year through terrestrial geogenic emissions8 and 
legacy emissions from soils and vegetation6,8–10. Indeed, 
legacy emissions are now considered to dominate global 
Hg emissions to the atmosphere, mostly emitted over 
oceans (about 2,700–3,400 Mg per year)6,8–11.

In terrestrial ecosystems, the dominant source of Hg is  
related to vegetation assimilation of atmospheric Hg  
and subsequent transfer to soils and watersheds through 
the washing of vegetation by precipitation (throughfall); 
when vegetation sheds leaves (litterfall)12,13; or when 
vegetation dies off. Additionally, plant roots take up 
Hg from soils, which impacts soil Hg availability and 
stabilizes Hg below ground (referred to as phytostabili-
zation)14–16. Hg-​contaminated soils have the potential to 
lead to enhanced Hg levels in crops and rice plants, so 

that control and remediation of contaminated sites is an 
important step to increase food safety17.

Recognition of the critical importance of vegetation 
for terrestrial Hg cycling began in the 1990s, when it was 
found that litterfall and throughfall Hg deposition in for-
ests exceeded direct open-​field wet deposition (by rain 
and snow) severalfold12,13,18–20. Since these early studies, 
it has been shown that vegetation impacts Hg cycling in 
all major Earth system compartments. For example, field 
deposition studies show that plant-​derived deposition 
dominates as a Hg source in ecosystems with high plant 
net primary productivity21. Atmospheric observations 
indicate that vegetation uptake of atmospheric Hg(0) — 
the gaseous, elemental and dominant type of Hg (>95%) 
in the atmosphere — modulates both its seasonality and 
concentrations in the boundary layer22,23. Moreover, soil 
and sediment studies show that vegetation shapes Hg 
loads across landscapes, with densely vegetated ecosys-
tems and productive watersheds exhibiting the highest 
Hg loads24–29. Hg assimilated by vegetation is subseque
ntly exported from watersheds via streams30–34, where 
it can dominate as a source of Hg in rivers and ocean  
sediments35,36, and is found to bioaccumulate in fish37–39.

In this Review, we discuss Hg uptake by vegetation and 
its impact on global Hg cycling. We compile published 
Hg concentration data in vegetation tissue from 440 
sites into a global database and analyze Hg distribution 
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patterns across ecosystem types, plant functional groups  
and plant tissues. We describe Hg uptake, transport 
within plants and isotopic fractionation; foliage– 
atmosphere exchange of Hg; and the representation of 
vegetation Hg dynamics in global models. The impor-
tance of vegetation uptake in atmospheric Hg fluxes is 
examined and further research priorities are detailed.

Hg in vegetation
To understand Hg dynamics in vegetation glob-
ally, we built a comprehensive database by collecting 
peer-​reviewed published data on Hg concentrations 
measured in vegetation tissues. Data stretch from 1976 
to 2020 and include 440 different sites, derive from 
230 scientific studies and consist of 2,490 reported 
data representing over 35,000 individual plant tissue 
measurements (Supplementary Information). Hg con-
centrations are separated into different tissue groups 
(including leaves, needles, roots, woody tissues including 
bole wood, bark and branches), plant functional types 
(including lichens, mosses and vascular plants such as 
grassland plants, shrubs and trees), species and geo-
graphic areas (Fig. 1). Currently available vegetation data 
are unevenly distributed globally (Fig. 1a, Supplementary 
Fig. 1), with most foliage and litterfall measurements 
taken in Europe (46.6%), followed by North America 
(23.0%), Asia (17.2%) and South America (13.1%). Most 
vegetation data stem from deciduous trees (77.9%) and 
coniferous trees (9.1%), whereas evergreen broadleaved 
trees (4.8%), grasslands (4.3%) and wetlands (3.9%) have 
been sampled less (Fig. 1b). Foliar data, which include 
leaves, needles and litterfall, represent about 78% of all 
available data (Fig. 1c). Less data are available from woody 
tissues, branches, bark and grassland plants, which, even 
combined, account for less than 9.8% of the data (Fig. 1c).

Foliage and litterfall Hg concentrations were high-
est in South America, followed by Europe and Asia, 
and were lowest in North America, with similar spatial 
patterns observed amongst the other tissues (Fig. 1a, 
Supplementary Fig. 2). Differences were pronounced 
in some tissues, with foliage Hg concentrations in 

South America (median: 54 μg kg−1 [interquartile range 
(IQR): 8–123 μg kg−1]) more than double the concen-
trations in North America (20 μg kg−1 [3–41 μg kg−1]). 
However, owing to large differences in investigated for-
est types, non-​random sampling procedures and some 
studies including regional (natural or anthropogenic) 
Hg contamination hotspots (Box 1), spatial compar-
isons are likely to be biased. Across unpolluted areas, 
median Hg concentrations derived from our database 
across functional groups and vegetation tissues varied 
in the following order: lichen (median: 78 μg kg−1, [IQR: 
10–180 μg kg−1]) > moss (51 μg kg−1 [2–165 μg kg−1]) > lit-
terfall (43 μg kg−1 [4–83 μg kg−1]) > foliage (20 μg kg−1 
[2–62 μg kg−1]) > bark (11 μg kg−1 [1–36 μg kg−1]) > branch 
(12 μg kg −1 [0.2–37 μg kg−1])  > root (7 μg kg−1 
[2–70 μg kg−1] > grass (5 μg kg−1 [1–31 μg kg−1]) > wood 
(2 μg kg−1 [0.1–6.8 μg kg−1]) (Fig. 1c). A similar order of 
Hg concentrations was observed for vegetation grown 
in polluted areas (Box 1; Supplementary Fig. 2). In this 
section, we discuss detailed pathways and mechanism 
of Hg uptake and transport behaviour within vegetation 
that explain these observed concentration patterns.

Vascular plants. Vascular plants uptake Hg through sto-
matal and cuticular uptake in foliage40–42, surface adsorp-
tion of atmospheric Hg to foliage43 and bark40,44, and soil 
uptake of Hg through roots42,45–48 (Fig. 2). There is strong 
evidence that most Hg originates from assimilation of 
atmospheric uptake in above-​ground tissues49. Many 
lines of evidence, including from flux measurements50–53 
and stable Hg isotope analyses54–61, show that approxi-
mately 90% of Hg in leaves and needles is derived from 
atmospheric uptake of gaseous Hg(0) and that transloca-
tion of Hg from soils to above-​ground tissues is limited. 
For example, 11% of Hg in a canopy originated from 
soils via xylem transport in boreal trees62 and less than 
5% of soil solution root Hg uptake was translocated to 
shoots in a variety of different plant species42,56,63. Most 
leaf Hg (90–96%) is integrated into internal tissues48 and 
a only minor part adsorbed to outer leaf surfaces61.

Inside leaves, Hg is incorporated in epidermal and 
stomatal cell walls, as well as in parenchyma cell nuclei64 
(Fig. 2). This Hg is present as divalent Hg(II), so there 
must be an oxidation step after leaf uptake of Hg(0), 
although it is currently unknown where and when the 
oxidation step occurs. Both stomatal and non-​stomatal 
uptake pathways in leaves have been proposed, although 
several studies point towards a dominance of stomatal 
uptake48,49,53,61,65, based on isotopically labelled Hg(0) 
exposures61,64,66, natural abundant Hg stable isotopes57,58, 
sequential leaf extractions48,67 and foliage–atmosphere 
exchange studies43,68. However, observed Hg(0) uptake 
at night also suggests that non-​stomatal, cuticular Hg(0) 
uptake occurs69–71. Stomatal Hg(0) uptake is likely con-
trolled by enzymatic processes (such as catalase activity), 
which has also been linked to Hg oxidation in leaves67. 
Hg species stored in leaves include sulfur nanoparticu-
late (β-​HgS) and dithiolate complexes (Hg(SR)2)72, and 
Hg binding to thiol ligands such as cysteine residues73,74.

Concentrations of Hg in vascular plants are highest 
in leaves and needles (Fig. 1c), and, because Hg is taken 
up from the atmosphere, these concentrations are highly 

Key points

•	In forest ecosystems, 60–90% of mercury (Hg) originates from vegetation uptake of 
atmospheric gaseous elemental mercury (Hg(0)), providing 1,180–1,410 Mg per year 
of terrestrial Hg deposition.

•	Vegetation uptake of atmospheric Hg(0) lowers the global atmospheric Hg burden by 
660 Mg and reduces deposition to global oceans, which would receive an additional 
Hg deposition of 960 Mg per year without vegetation.

•	Lichen and mosses show higher Hg concentrations than vascular plants, and, whereas 
Hg in above-​ground biomass is largely from atmospheric uptake, root Hg is from 
combined soil and atmospheric uptake.

•	The seasonality of atmospheric Hg(0) concentrations in the Northern Hemisphere is 
controlled by vegetation uptake. Simulations without vegetation show weak seasonal 
cycles and cannot reproduce observations.

•	Large knowledge gaps exist in understanding physiological and environmental 
controls of vegetation Hg uptake and transport within plants, limiting our mechanistic 
and molecular-​level understanding of vegetation Hg uptake.

•	Improved model parameterizations and harmonized observational data of vegetation 
Hg uptake, along with whole-​ecosystem Hg(0) exchange measurements, are needed 
to improve the assessment of vegetation impacts on global Hg cycling.

Legacy emissions
Re-​volatilization of past 
atmospheric deposition from 
anthropogenic and geogenic 
sources stored in surface 
reservoirs, such as soils  
and water.

Vascular plants
Group of plants with 
specialized tissues that  
include coniferous and 
flowering plants.
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sensitive to variations in atmospheric Hg concentrations. 
Growth chamber and laboratory studies have shown that 
atmospheric Hg(0) concentrations linearly and positively 
correlate with Hg concentrations in shoots, leaves and 
needles14,49,51–53,75,76. Similarly, field observations show 
significant positive correlations between Hg(0) concen-
trations in the atmosphere and foliage72,77. Based on our 
global database, we observed a significant positive linear 
correlation between leaf and needle Hg concentrations 
and atmospheric Hg concentrations across unpolluted 
sites (n = 33, r2 = 0.32, P < 0.01; Supplementary Fig. 3).

Other factors have been associated with variability 
in Hg accumulation in foliage, including underlying 
geology78, solar radiation (in particular, ultraviolet)79, 
temperature80, atmospheric turbulence81, leaf age57,82, 
specific leaf area48,53, number of stomata48 and leaf  
physiological parameters, such as stomatal conduct-
ance43,68, rate of net photosynthesis83, the presence of 
waxy cuticles84, catalase activity85 and ascorbic acid86. 
Many of these processes can be linked to stomatal control 
of Hg uptake (such as stomatal conductance, number of 
stomata, catalase activity), whereas others can be linked 
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Fig. 1 | Global distribution of foliar hg samples. a | Spatial coverage of foliar and litterfall mercury (Hg) samples from the 
database compiled here, including both background and Hg-​enriched areas, with concentration averaged by site. b | Box 
plots of Hg concentrations of foliage in background sites separated by biomes and/or plant community types. c | Box plots 
of Hg concentrations for various tissue types from background sites. Numbers in parentheses represent the number of 
data points per group. Boxes represent quartile ranges, lines mark medians and squares mark means. Whiskers show 
minimum and maximum values, and stars denote 1st and 99th percentiles. Different letters represent statistical differences 
among groups (P < 0.05). Corresponding data for Hg-​enriched sites are shown in Supplementary Fig. 2a.

Stomata
Apertures in leaves that control 
gas exchange (such as carbon 
dioxide and water vapour) 
between plants and the 
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Outer protective layers on 
epidermal cells of leaves,  
often consisting of waxy, 
water-​repellent substances.
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to non-​stomatal uptake pathways (such as waxy cuticles 
and specific leaf area). Hg concentrations in foliage 
have been consistently shown to increase with leaf age, 
both over a growing season48,87 and over multiple years 
in coniferous needles88–90. Higher concentrations have 
been reported in evergreen coniferous tissues than in 
broadleaf trees, owing to the multi-​year lifetime of conif-
erous needles47,91,92. When comparing foliage of the same 
age, however, coniferous needles exhibit lower Hg con-
centrations than deciduous leaves, which is attributed to 
a lower metabolic activity of needles87 and is consistent 
with reduced deposition on needles, as observed using 
dynamic flux bag measurements53,55,57,80,82,93. Although in 
our database we cannot account for leaf age, we, indeed, 
find significantly higher Hg concentrations in decidu-
ous leaves (median: 28 μg kg−1 [IQR: 2–70 μg kg−1]) com-
pared with coniferous needles (15 μg kg−1 [2–47 μg kg−1]), 
and the highest concentrations in tropical broadleaf 
evergreen leaves (56 μg kg−1 [7–131 μg kg−1]) (Fig. 1b).

In addition to varying amongst foliage, concen-
trations of Hg vary among woody tissues (Fig. 1c). The 
outermost bark, characterized by a high porosity and rel-
ative chemical inertness, lacks metabolic processes and, 
thus, likely absorbs airborne Hg via non-​physiological 

adsorption processes40,44. Across the bark, Hg concen-
trations markedly decrease from the outermost to the 
innermost layers (including the phloem)94, indicating 
little transport through the bark. Potential pathways for 
Hg in bole wood include root uptake and translocation 
through the xylem, foliage uptake and translocation by 
phloem transport, and transfer from the bark (Fig. 2). 
However, Hg uptake to bole wood, which is the tissue 
showing by far the lowest Hg concentrations (Fig. 1c; 
Supplementary Fig. 2), is considered to be dominated by 
translocation of foliage Hg to tree rings through phloem 
transport, whereas transport through translocation from 
roots and bark is likely negligible40–42. Notably, this trans-
port could enable the use of tree ring Hg to track historic, 
local, regional and global Hg exposures40,41,94–102.

Below ground, plant roots and excretions (chelators) 
can induce pH variations and redox reactions in soils, 
which, subsequently, lead to cation exchange of diva-
lent Hg and solubilization of Hg from nearly insoluble  
soil Hg precipitates103,104 (Fig. 2). Hg then likely pene-
trates into root cells as a hitch-​hiker using transporters 
for other elements105,106, as Hg is a non-​essential ele-
ment. Absorbed Hg is largely restricted to the cell walls 
of the outer layers of the root cortical cylinder, as well 
as to the central cylinder and parenchyma cell nuclei64. 
Accumulation in root cells can reduce the movement 
of Hg from the root into the xylem, and transport of 
Hg–phytochelatin complexes into vacuoles can restrict 
phloem mobility106,107. Low Hg translocation from soils 
to above-​ground tissues has been attributed to effective 
Hg retention in roots108. However, no specific trans-
port molecules involved in Hg uptake by roots and 
translocation in roots are known.

Root Hg concentrations have been shown to line-
arly correlate with soil concentrations14,75,109 and show 
low sensitivity to air Hg concentrations14, leading to 
the view that Hg in roots is derived primarily from soil 
uptake. However, exceptions have been reported in 
quaking aspen76 and wheat14,53 under very high atmos-
pheric Hg exposures (20–40 times ambient air con-
centrations). Moreover, stable Hg isotope studies have 
pointed to contrasting Hg origins in roots. For example, 
rice plants grown in contaminated soils showed root 
Hg with the same isotopic signature as the surrounding 
soil110, indicating root uptake. In contrast, substantial 
foliage-​to-​root Hg transport was observed in a forest, 
where atmospheric Hg(0) uptake via foliage accounted 
for 44–83% of Hg in tree roots111. In the latter study, large 
roots showed somewhat higher proportions of atmos-
pheric Hg(0) compared with small roots (59% versus 
64%)111, possibly related to lower surface areas and 
reduced absorptive potential of large roots108,112. The role 
of atmospheric uptake in root Hg merits further detailed 
investigations, as this phenomenon would substantially 
increase estimates of plant Hg uptake from the atmos-
phere due to high turnover rates of roots, which could 
equal that of leaf litterfall108.

Non-​vascular vegetation. Non-​vascular vegetation, 
including lichens and mosses (slow-​growing crypto-
gamic organisms without root systems or thick waxy 
cuticles), generally show much higher Hg concentrations 

Box 1 | the role of vegetation in hg-​enriched areas

In addition to anthropogenic mercury (Hg) contamination from urban and industrial, 
mining or smelting sites, natural Hg enrichments exist on the global mercuriferous 	
belts found along Earth plate margins, leading to large-​scale Hg mineralization zones: 
Circum-​Pacific, Mediterranean, Central Asia and Mid-​Atlantic ridges, with many Hg 
mines distributed along these zones250. When exposed to high soil and atmospheric 	
Hg levels, plant growth can be decreased due to Hg toxicity251–254. However, most plants 
grow normally under lightly to moderately polluted areas, but will show substantial 	
Hg enrichments in their tissues. In comparison with remote, non-​enriched sites, 	
median Hg concentrations of vegetation from Hg-​enriched areas in our database 	
show significantly higher Hg concentrations (P < 0.01) by factors of 1.2–5.7 across all 
tissues. Specific tissue responses are dependent on the type of exposure, with soil 	
Hg contamination resulting largely in elevated root Hg concentrations, while not 
significantly affecting above-​ground tissue concentrations. In turn, atmospheric Hg 
contamination significantly elevates Hg levels in above-​ground Hg concentrations 
(P < 0.01) but did not impact below-​ground tissues.
The potential use of plant Hg uptake has received interest as an alternative method 

for traditional physico-​chemical methods of remediation of Hg-​enriched sites, termed 
phytoremediation. In summary, there are three main approaches of Hg phytoremediation: 
phytostabilization, phytovolatilization and phytoextraction. Phytostabilization 
immobilizes Hg in soil through biochemical processes, either via Hg accumulation in 
roots or chelating Hg in the root zone. Candidate plants used for phytostabilization 
have extensive root systems, are tolerant to Hg toxicity and are adaptive to site-​specific 
environments251–254. Phytovolatilization refers to the uptake of elements by plant roots, 
translocation through the xylem and subsequent emission to the atmosphere15. 
Phytovolatilization is unique to Hg owing to its relatively high volatility; however, 	
there are few studies on phytovolatilization of Hg via vegetation, in part, because of 	
its inefficiency (<0.98% remediation)255, difficulties in monitoring volatilization fluxes 
and possibly related to concern over secondary contamination by emitting Hg to 	
the atmosphere.
Instead, most studies on phytoremediation have focused on phytoextraction, whereby 

Hg is removed from soil by harvesting vegetation that has taken up Hg from soils. No 
plant has been identified as a Hg hyperaccumulator, which are plants that are capable 
of growing under high contamination and take up metals via roots and bioconcentrate 
them in their shoots256. Vegetation known to show a potential to bioaccumulate Hg 
have been shown to remove less than 0.2% of the Hg in Hg-​enriched soils, even when 
chemically assisted257–260. Hence, in contrast to some other toxic trace metals where 
phytoextraction is highly efficient (such as 32.4–84.5% removal of soil cadmium by 
Sedum plumbizincicola)261, phytoextraction is considered of low efficiency for Hg.

Non-​vascular vegetation
Plants that do not have 
specialized vascular tissues, 
which include algae, mosses, 
livermorts and hornworts; 
lichen are often grouped into 
this category, although they 
are symbiotic partnerships 
between a fungus and an alga.
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compared with vascular plants (Fig. 1c; Supplementary 
Fig. 2). Hg bioaccumulation in mosses and lichens 
is controlled by numerous biotic and abiotic factors, 
including: species, whereby different moss and lichen 
species show large differences in Hg concentrations 
under the same exposures113–116; substrate and local 
soil117–119; growth rate and surface area120–122; exposure 
to pollution source49; temporal variation121; and chem-
ical composition of wet and dry deposition123,124. Metals 
accumulate in mosses and lichens through intracellu-
lar and extracellular processes, as a lack of thick waxy 
cuticles in lichens and mosses allows cations to diffuse 
readily through cell walls125. In the extracellular process, 
metals are intercepted and adsorbed and/or absorbed 
by exchange sites outside of cell walls and plasma mem-
brane surface. In the intracellular process, Hg is sub
sequently trapped as particles on the cell surface layer 
or translocated inside the cell117,126–128. In addition to 
surface deposition of oxidized atmospheric Hg (reactive 
gaseous Hg and particulate-​bound Hg), Hg(0) assimi-
lation could contribute to trapping and sequestering 
Hg in moss and lichen tissue, but the specific methods 
of uptake, binding and accumulation from the atmos-
phere are unknown. After uptake, Hg(0) is oxidized 
to Hg(II) and subsequently immobilized in moss and 
lichens for 4–5 weeks49,122,129. Lichens show significantly 
higher Hg concentrations (78 μg kg−1 [10–180 μg kg−1]) 
than mosses (51 μg kg−1 [2–165 μg kg−1]) in our data set 

(P < 0.05) (Fig. 1c). This difference is likely related to the 
different morpho-​physiological properties and abilities 
to intercept airborne particles of lichens and mosses122, 
as lichens often accumulate higher contents of atmos-
phile elements (derived from atmospheric sources), 
whereas mosses have shown higher contents of lithophile 
elements, such as dust130–132.

Staple isotope analyses indicate that atmospheric 
Hg(0) accounts for 76% and 86% in ground and tree 
mosses, with the remaining 24% and 14% originating 
from Hg(II) contribution111. Hence, where lichens and 
mosses represent a significant component of plant com-
munities, such as in the Arctic tundra, their high tissue 
concentrations are responsible for high atmospheric 
deposition loads via uptake of atmospheric Hg exceed-
ing Hg deposition by vascular plants2,58. Furthermore, 
Hg concentrations in mosses and lichens can maintain 
a state of dynamic equilibrium with atmospheric Hg 
concentrations133,134, and lichens and mosses increase 
Hg(0) uptake from the atmosphere when exposure is 
high115. Passive biomonitoring using lichens and mosses 
for atmospheric Hg could, hence, be cost-​effective and 
benefit from abundant distribution, structural simplic-
ity, rapid growth rate and ease of sampling125,128,135, but 
this application has shown limited success. For exam-
ple, there were weak correlations between atmospheric 
Hg deposition and Hg accumulation in moss and soils 
across large south-​to-​north gradients in Norway136. 
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In contrast, there was a lack of correlation between mod-
elled atmospheric Hg deposition and moss concentra-
tions across a large network of sites in Europe, and moss 
collected in Norway showed no distinct north-​to-​south 
patterns, in spite of expected gradients in atmospheric 
Hg pollution137. Therefore, and consistent with previous 
reviews122,125, we conclude that Hg concentrations in 
lichens and mosses are impacted by many environmen-
tal variables, which complicates its use as a biomonitor 
for atmospheric Hg concentrations and deposition.

Vegetation–atmosphere Hg exchange
Foliage and the atmosphere show dynamic and com-
plex exchanges of Hg, including via the following three 
pathways: bidirectional Hg(0) exchange at the interface 
of foliage and the atmosphere43,53,57,80–82,93,138–140; assimi-
lation of divalent Hg(II) wet and particle deposition 
(particulate-​bound Hg and reactive gaseous Hg) by foli-
age, followed by partial or full re-​emission to the atmos-
phere as Hg(0) after photochemical reduction55,60,140; 
and transpiration of Hg from soils to foliage, whereby 
Hg(0) is subsequently emitted, either directly or after 
photochemical reduction62,79,86,141,142. Several stud-
ies, however, have shown that soil Hg concentrations 
generally do not influence leaf–atmosphere exchange 
fluxes50,53,138,143,144, supporting the idea that there is lim-
ited root-​to-​atmosphere transport of Hg (such as via 
transpiration).

Most foliage flux studies show net uptake of Hg(0), 
providing evidence of foliar sinks of atmospheric 
Hg(0) (ref.145), but bidirectional exchanges of Hg(0) 
were also observed. For example, foliage was a net 
sink in broadleaved forest, coniferous forests and a 
wetland57,80,93,140, whereas other measurements (such as 
those taken in a salt marsh and a subtropical conifer-
ous forest) indicated vegetation was net Hg(0) sources 
to the atmosphere82,139. Some variability among studies 
could be explained by differences in solar radiation, 
as radiation favours photochemical re-​emissions, an 
observation further supported by diurnal flux variabil-
ity that shows net emissions during peak solar radiation 
at midday57,82. However, variability in flux directions 
over foliage could also be attributable to methodologi-
cal challenges, as these fluxes are small and difficult to 
measure146. Exposures to elevated Hg(0) concentrations 
generally increase net deposition to leaves43,53,81, and it 
has been proposed that foliage–atmosphere fluxes are 
dependent on atmospheric compensation points145,147. 
Most compensation points are reported to be near or 
lower than ambient atmospheric Hg concentrations, 
so that, under non-​contaminated conditions, net Hg 
deposition to foliage should dominate80,140. Canopies 
also shield soil surfaces from incident solar radia-
tion, which strongly reduces underlying soil Hg(0) 
emission145,148–150.

Studies of land–atmosphere Hg fluxes at the ecosys-
tem level are used to quantify dry gaseous component 
of Hg(0) deposition over land. Whole-​ecosystem Hg(0) 
exchange flux studies are largely based on micrometeoro-
logical tower techniques and commonly report net Hg(0) 
deposition during peak vegetation season2,70,71,80,151–156, 
supporting net Hg assimilation by vegetation. Although 

time-​extended measurements are rare, a few annual time 
series exist and show net annual deposition of gaseous 
Hg(0) between 2 and 29 μg m−2 per year over grassland 
and tundra ecosystems21,152,156. Studies over wetlands, in 
contrast, report net Hg(0) emissions (9.4–18.4 μg m−2 per 
year)69,157, as do forests impacted by regional pollution 
(58 and 2.6 μg m−2 per year)158. The dominance of net 
Hg(0) deposition measured during peak vegetation in 
upland, non-​polluted ecosystems is also in contrast with 
studies of agricultural and bare soil surfaces, in which 
net Hg(0) emissions dominated (55.3 ng m−2 h−1 over 
bare soil, corn and snow-​covered fields in Canada159, 
and 5.5–10.8 ng m−2 h−1 over bare soil, wheat and corn in 
agricultural fields in China160). Notably, though, a review 
of available terrestrial surface–atmosphere Hg(0) flux 
studies reveals that, based on the current measurements 
available, global assimilation by vegetation cannot be 
determined accurately, as global flux uncertainty over 
canopies ranges from a net deposition of 513 Mg to a net 
emission of 1,353 Mg per year145.

Hg stable isotopes provide a fingerprint of the 
sources and transformation processes in environ-
mental samples1,161,162. The seven stable isotopes of Hg 
undergo mass-​dependent fractionation (δ202Hg) and 
mass-​independent fractionation of odd-​mass (odd-​MIF, 
Δ199Hg and Δ201Hg) and even-​mass (even-​MIF, Δ200Hg 
and Δ204Hg) numbered isotopes. Even-​MIF is thought 
to be exclusively produced in the upper atmosphere, 
providing a conservative tracer for atmospheric Hg 
species deposited to the Earth surface163. Atmospheric 
Hg(0) and Hg(II) in rainfall are characterized by dis-
tinct isotope even-​MIF signatures (Fig. 3). Specifically, 
Δ200Hg of Hg(II) in rainfall exhibits positive anomalies 
of 0.2‰ (0.13‰ to –0.24‰ IQR, n = 115) and the cor-
responding pool of atmospheric Hg(0) slightly negative 
Δ200Hg values of −0.05‰ (−0.07‰ to −0.03‰ IQR, 
n = 117)2,21,164–171. Δ200Hg measured in foliage of −0.02‰ 
(−0.05‰ to 0.00‰ IQR, n = 120) is similar to the Δ200Hg 
of atmospheric Hg(0) (refs2,167,171–175), and a mass balance 
calculation based on Δ200Hg reveals that 88% (79–100% 
IQR) of Hg in vegetation originates from the uptake of 
atmospheric Hg(0).

Foliar uptake of Hg(0) discriminates against heav-
ier Hg isotopes (straight arrow in Fig. 3), resulting 
in the negative δ202Hg values (−1% to −3% relative to 
atmospheric Hg(0))2,58,155,163,167,171 typically observed in 
foliage2,58,167,171–176, depending on the plant species58 and 
proximity to anthropogenic Hg emission sources171. 
Indeed, foliar uptake fractionation factors of −2.6‰163 
and −4.2‰21 have been reported based on δ202Hg deple-
tion of atmospheric Hg(0). As a result of plant uptake 
of lighter Hg(0), corresponding enrichments of heav-
ier Hg(0) isotopes in the residual atmospheric Hg(0) 
pool of the boundary layer has been observed above a 
high-​altitude peat bog in Europe163, an Arctic tundra21 
and deciduous and evergreen forests in Southeast Asia71, 
as indicated by higher δ202Hg values (light red circles in 
Fig. 3). Vegetation activity, with foliar uptake resulting 
in higher residual δ202Hg values, and anthropogenic 
emissions have been identified as the two main drivers 
for spatial and temporal variation of atmospheric Hg(0) 
isotope compositions in the Northern Hemisphere177. 
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A global Hg isotope box model based on δ202Hg and 
Δ200Hg constraints178 also supports the findings that 
terrestrial dry Hg(0) deposition is a critical global flux, 
supporting a vegetation control on seasonal variation  
of atmospheric Hg(0) concentrations23 and in support of 
vegetation acting as a critical sink for atmospheric Hg(0).

Re-​emissions of Hg(0) from foliage from an ever-
green forest was associated with odd-​MIF, suggesting 
that Hg incorporated in the leaf structure is photochem-
ically reduced and results in a bidirectional flux of Hg(0) 
across stomata155. Similarly, small depletions in odd-​MIF 
Δ199Hg of approximately −0.1 ‰ in surface soils have 
been attributed to small losses by photochemical reduc-
tion in foliage and litterfall163,167. Overall, odd-​MIF val-
ues show small but consistent re-​emission signatures on 
foliar Hg (Supplementary Fig. 4), providing a promising 
tool for quantitative assessments of deposition and losses 
at the ecosystem scale in the future.

Deposition of atmospheric Hg(0) by means of litter-
fall constitutes the major source of Hg in plants, organic 
and mineral soils, and watershed runoff (Fig. 3). Average 
source contributions of atmospheric Hg(0) deposi-
tion to soils was 57–94% in North America167,175, 70% 
to Arctic tundra soils in Alaska in the USA2, 79% to a 
high-​altitude peatland in the Pyrenees in France, 90% 
to boreal forest soils in Sweden174 and 26% in surface 
soils of Tibetan wetlands in China179. Notably, the esti-
mate in Arctic tundra soils derived by stable Hg isotopes 
was almost identical to the contribution of Hg(0) to total 

deposition (71%) based on exchange and deposition 
measurements2. Global-​scale mass balance estima-
tions, based on Δ200Hg patterns, reveal contributions of 
atmospheric Hg(0)-​derived Hg of 62% (53–89% IQR) 
in organic soils2,167,174–176,180,181 and 84 % (70–92% IQR) in  
mineral soils (albeit when neglecting geogenic Hg 
sources)2,167,173–176,180,181. Similarly, in runoff of terrestrial 
ecosystems, 76% (60–92% IQR) of Hg is derived from 
deposition of atmospheric Hg(0) (refs36,176). The major 
role and isotope fractionation of foliar uptake of atmos-
pheric Hg(0) results in a characteristic terrestrial finger-
print, which is propagated to and found to be dominant 
in freshwater and coastal sediments and biota39,163,182–186.

Global impact of vegetation Hg uptake
Empirical evidence and model results strongly suggest 
that the dominant pathway of atmospheric Hg deposi-
tion in terrestrial ecosystems is dry Hg(0) deposition via 
vegetation uptake2,175,187–191. Moreover, the primary driver 
of Hg accumulation and storage in surface soils is veg-
etation uptake of atmospheric Hg(0) (refs26,179). In turn,  
plant Hg(0) uptake controls seasonal variations and 
global distribution of atmospheric Hg concentrations23. 
Climate-​change-​induced alterations in vegetation and 
human-​induced land use changes have substantial 
impacts on global Hg cycling1,179. Here, we review stud-
ies on the global impacts of vegetation Hg assimilation 
on environmental and ecosystem processes based on 
published empirical studies and modelling results.
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Fig. 3 | hg stable isotopes in foliage. Composition of atmospheric gaseous elemental mercury (Hg(0)) and divalent 
mercury (Hg(II)) sources, and sources of mercury (Hg) in vegetation and in terrestrial sinks (organic and mineral soils and 
runoff), plotted as even-​mass-​independent (Δ200Hg) versus mass-​dependent (δ202Hg) isotopes. The solid green arrow 
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Empirical studies. Global estimates of Hg uptake by 
vegetation are available based on field-​based litterfall 
and throughfall measurements. These studies show 
that forests are strong sinks of atmospheric Hg(0) 
(refs19,25,26,77,192), mainly driven by litterfall, which exceeds 
all other pathways of Hg inputs. Global Hg litterfall 
fluxes are estimated between 1,180 ± 710 Mg per year 
and 1,232 Mg per year — approximately cycling one-​
quarter of the total global atmospheric Hg pool each year 
(~4,400–5,300 Mg) — based on measurement from over 
90 forest sites187–190. Litterfall deposition has been pro-
posed to decrease along with primary productivity from 
tropical to temperate to boreal regions, with approxi-
mately 70% of global litterfall deposition estimated to 
occur in tropical and subtropical regions190. However, 
estimated annual mean Hg(0) dry deposition in terres-
trial ecosystems could be enhanced by up to 20% in the 
northern mid-​latitudes by 2050, owing to increases in 
plant productivity associated with CO2 fertilization193. 
Throughfall Hg deposition might be of similar magni-
tude as litterfall deposition and, although much more 
uncertain than the litterfall estimates, could globally 
account for 1,340 Mg per year179, contributing additional 
Hg deposition in the range of 90%, 75% and 143% of 
litterfall Hg deposition in China, Europe and North 
America, respectively77.

The sum of litterfall plus throughfall deposition rep-
resents a lower-​bound estimate of total vegetation Hg 
uptake because it does not account for Hg deposition 
via woody tissues, non-​vascular lichen and mosses, 
and whole-​plant die-​off (such as tree blowdown), nor 
does it account for direct soil uptake1. For example, 
studies report that Hg mass in tree wood is severalfold 
higher than the Hg mass contained in canopies194–197, 
and woody tissues (tree turnover) could account for 
60% of litterfall deposition198, in spite of relatively slow 
wood turnover rates. Indeed, analysis along a forest 
succession suggests that combined woody biomass, 
moss and throughfall deposition exceeds that of litter-
fall, thus, using litterfall deposition only would strongly 
underestimate Hg accumulation in forest soils179. If sub-
stantial amounts of root Hg are, indeed, also derived 
from atmospheric uptake111, root turnover will further 
increase atmospheric dry deposition. After plant-​bound 
Hg is transferred to soils and forest floors, the fate and 
mobility of Hg in soils and watersheds depends on 
litter decomposition and biogeochemical cycling of 
organic matter91,199–203. During litter decomposition, the 
total mass and concentrations of Hg increase, owing 
to relatively stronger losses of carbon compared with 
Hg and to continued absorption of Hg from precipi-
tation and throughfall during the initial stages of litter 
decomposition199,202,204. Stable Hg isotope studies suggest 
that microbial reduction and photoreduction also play a 
role in Hg losses from litter and soils174,203, possibly lead-
ing to large re-​evasion losses over long time periods. Still, 
large amounts of plant-​derived Hg are likely retained in 
soils, leading to large pools of soil Hg globally1,179,205.

Vegetation Hg uptake in models. In addition to empiri-
cal measurements, global models are used to investigate 
terrestrial–atmosphere Hg exchange processes146,188,206,207. 

The dry deposition of Hg, driven by advection–diffusion  
in air and heterogeneous uptake by surfaces208, is gen-
erally parameterized in models using an inferential 
approach (in other words, as the product of ambient 
Hg concentration and modelled dry deposition velo
city)10,209–213. Dry deposition velocities over vegetation 
canopies are estimated through a resistance analogy 
that includes aerodynamic, soil, stomatal and cuticle 
resistances214–217. Parameters for oxidized Hg(II) species 
deposition are selected based on similarity of solubility 
and reactivity of Hg with other well-​studied atmospheric 
compounds218. A wide range of Hg(0) dry deposition 
schemes have been implemented in models; early stud-
ies assumed small and constant deposition velocities 
over vegetated surfaces or neglected Hg(0) deposition 
altogether, whereas resistance-​based Hg(0) deposi-
tion schemes are commonly employed now219. Terrestrial 
Hg(0) emissions are parameterized as a function of envi-
ronmental conditions (including temperature, solar 
irradiance and leaf area index) and soil Hg content, and 
often include a fraction of recently deposited Hg to soils, 
vegetation and snow as prompt re-​emissions220–228.

A few bidirectional air–surface Hg exchange schemes 
have been developed and implemented in regional 
models206,220,229,230. For example, Hg exchange fluxes over 
canopies have been formulated as concentration gradi-
ents across air–foliage by defining dynamic compensa-
tion points based on partitioning coefficients229. This 
model was subsequently revised230 by updating surface 
resistances216,217,231 and implementing photochemi-
cal reduction of Hg in foliage232. In another example, 
Hg(0) compensation points over a variety of canopies 
and environmental conditions in North America were 
reviewed (range 0.5–33 ng m−3)206, and a bidirectional 
air–surface exchange model based on a dry deposi-
tion scheme216,217 and empirical compensation points 
was developed. However, dry deposition parameter-
ization is highly sensitive to resistance parameters, 
some of which are poorly constrained for Hg (refs61,233).  
In addition, bidirectional Hg exchange schemes depend 
on numerous ill-​constrained parameters and oversim-
plified chemistry206,229,230. Based on direct micromete-
orological measurements of Hg(0) fluxes, it has been 
recommended that current models should increase sto-
matal resistances to reduce overestimation of stomatal 
uptake of Hg(0) (for example, by a factor of 5–7) and 
simultaneously increase ground and cuticular uptake 
to mimic night-​time and wintertime Hg(0) deposition 
(by factors of 3–4 and 2–4, respectively)234. In general, 
there is a need for mechanistic bidirectional air–foliage 
Hg partitioning schemes that incorporate biome-​specific 
biomass data, plant physiology, redox chemistry and 
environmental variables (temperature, light, moisture, 
atmospheric turbulence)146,207.

Model simulations. We performed two global model sim-
ulations using the GEM-​MACH-​Hg model191,219,221,235–237 
to assess the impacts of vegetation Hg uptake on con-
temporary atmospheric Hg cycling (year 2015); one with 
and a second without the presence of vegetation (see 
details of the modelling approach in the Supplementary 
Information). The simulation without vegetation cover 

Physiology
The study of plant function and 
behaviour, including growth, 
metabolism, reproduction, 
defence and communication.
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was configured by replacing all biome types to desert, 
while keeping primary (geogenic and anthropogenic) 
and secondary (recycling of historic deposition) Hg 
emissions unchanged. These simulations allowed exam
ination of the impact of vegetation Hg uptake on the resi
dence time of Hg in the atmosphere and spatiotemporal 
distribution of Hg in air and Hg deposition to the Earth’s 
ecosystems (Fig. 4; Supplementary Table 1).

GEM-​MACH-​Hg simulations here estimate global 
annual total Hg deposition of approximately 6,400 Mg, 
with about 44% deposited to terrestrial ecosystems 
(~2,800 Mg per year, in line with the literature range of 
2,200–3,600 Mg per year)6,8,9. Global terrestrial wet dep-
osition is estimated to be in the range of 730–1,070 Mg 
per year, accounting for only 26–38% of total terrestrial 
deposition. Estimated dry Hg deposition (combined 
surface uptake and particulate gravitational settling)217 
dominates across terrestrial environments and is in the 
range of 1,730–2,070 Mg per year (62–74% of terrestrial 
deposition). Direct vegetation uptake accounts for the 
largest portion of this deposition (1,310–1,570 Mg per 
year). Hg(0) accounts for approximately 90% of foliage 
Hg uptake and represents the single largest terrestrial 
removal pathway of atmospheric Hg (1,180–1,410 Mg 
per year). Global oceans are a net sink for atmos-
pheric Hg, with annual net deposition (deposition  
minus emission) reported in the literature ranging from  
400 to 1,700 Mg per year6,8,9, and a GEM-​MACH-​Hg 
model estimate here of 1,300 Mg per year.

Comparison of GEM-​MACH-​Hg simulations with 
and without vegetation show that Hg uptake by vege-
tation reduces the residence time of atmospheric Hg(0) 
from 10 to 8 months (thus, reduces global atmospheric 
Hg(0) concentrations) (Fig. 5a,b) and lessens the global 

atmospheric Hg(0) burden from 5,120 to 4,460 Mg. 
The vegetation Hg sink notably reduces air concen-
trations of Hg(0) over forested regions, by 25% over 
eastern North America and by 35% over boreal forests 
in Europe, for example (Fig. 5a,b). Uptake of Hg trans-
ported out of the source regions by local and regional 
vegetation lowers the long-​range transport and depo-
sition of Hg in remote regions such as the Arctic and 
global oceans (Fig. 5c,d). In the absence of vegetation 
cover, the majority of emitted Hg would be removed 
from the atmosphere by wet deposition (over land and 
oceans), thereby, repartitioning the deposition between 
land (29%) and ocean (71%), and increasing the Hg 
deposition to global oceans by approximately 960 Mg 
per year (Fig. 5d).

Vegetation Hg uptake reduces the inter-​hemispheric  
gradient (Northern Hemisphere versus Southern 
Hemisphere) of Hg(0) from 1.8:1.1 ng m−3 to 1.5:1.0 ng m−3  
(Fig. 6a). Seasonal atmospheric Hg(0) concentrations 
are characterized by winter to early spring maxima 
and late summer to fall minima, especially over veg-
etated surfaces in the Northern Hemisphere (Fig. 6b 
and Supplementary Figs 5–8). In contrast, Southern 
Hemispheric locations lack systematic seasonal cycles 
(Fig. 6c; Supplementary Fig. 9). Our model analyses sug-
gest that Northern Hemispheric seasonal Hg(0) cycles 
over land are controlled by (in order of importance): 
vegetation uptake (summer and fall maximum); ter-
restrial soil and vegetation emissions (summer maxi-
mum); cryosphere re-​emissions (spring peak and fall 
minimum); and wildfire emissions (spring to summer). 
Continued deposition of Hg(0) to the biosphere into the 
fall results in hemispheric-​scale depletion of ambient 
Hg(0) concentrations in late summer to fall months. 

Terrestrial emissions (4,120 Mg per year) Terrestrial deposition 2,800 Mg per year (2,200–3,600) Ocean fluxes

Geogenic and
legacy soils and

vegetation Anthropogenic
Biomass
burning Vegetation

(76%)
Non-vegetation

(24%)

Dry (62–74%) 1,730–2,070 Net deposition
1,300 (400–1,700)

Wet (26–38%)

730–1,070

Evasion Deposition

1,300
(950–1,594)

2,220
(2,000–3,000)
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Fig. 4 | Global hg cycle. Mercury (Hg) emissions include natural, anthropogenic and legacy sources. Terrestrial 
deposition includes dry (62–74% of terrestrial deposition) and wet (26–38%) deposition, where dry deposition is 
separated further into vegetation Hg uptake (gaseous elemental mercury (Hg(0)) and divalent mercury (Hg(II))), which 
accounts for 76% of terrestrial uptake, and deposition to non-​vegetation surfaces (soils, snow and water; 24% of uptake) 
using GEM-​MACH-​Hg model simulations (this Review). GEM-​MACH-​Hg model estimates are in bold and peer-​reviewed 
literature ranges are in parentheses. Origins of literature fluxes are given in Supplementary Table 1. The units for the 
emission and deposition are in Mg Hg per year.

Nature Reviews | Earth & Environment

R e v i e w s



0123456789();: 

In the absence of Hg uptake by vegetation, atmos-
pheric Hg(0) concentrations increase and pronounced 
seasonal variations are lost (yellow lines, Fig. 6b and 
Supplementary Figs 4–7). In the Southern Hemisphere, 
more variable and less distinct seasonal cycles of Hg(0) 
are reported (Fig. 6c; Supplementary Fig. 9). These 
model results are consistent with a previous global 
analysis of atmospheric data that concluded that sea-
sonality in Hg(0) was strongly related to leaf area cover, 
and that summertime minima at remote sites in the 
Northern Hemisphere were best explained by seasonal 
vegetation uptake22.

Global Hg deposition is largest in areas of high 
atmospheric Hg concentrations associated with anthro-
pogenic emission regions (such as Southeast Asia) and 
areas of high biomass production (such as the Amazon 
region and the Congo Basin) (Fig. 5c). GEM-​MACH-​Hg 
estimates of annual (median) dry deposition Hg fluxes 
to major global biomes are as follows (see compari-
son with litterfall-​inferred values in Supplementary 
Table 2)190: tropical moist broadleaf forests: 27.3 μg m−2 
per year; tropical dry broadleaf forests: 24.6 μg m−2 per 
year; temperate broadleaf/mixed forests: 18.3 μg m−2 
per year; tropical grasslands: 16.4 μg m−2 per year, tem-
perate conifers: 14.3 μg m−2 per year; temperate grass-
lands: 9.2 μg m−2 per year; boreal forests: 8.3 μg m−2 
per year; and Arctic tundra: 4.2 μg m−2 per year.  
Underestimation of model deposition to vegetation 
in tropical forests might be linked to the adsorption 
of wet deposition on foliage55,140, as partitioning of Hg  
wet deposition between foliage and ground is currently  
not represented in models.

Moreover, there are uncertainties in the analyses 
here related to the representation of redox processes 
and heterogeneous Hg chemistry in terrestrial compo-
nents such as vegetation, soils and snow (reflected in the 
estimated range of fluxes), as well as legacy Hg cycling 
in soils (such as from past deposition), which was not 
examined. Overall, the impacts of vegetation on legacy 
Hg fluxes are complex and require further knowledge 
of terrestrial Hg accumulation, speciation and lifetime 
for formulations in three-​dimensional atmosphere– 
land–ocean biogeochemical models238,239 (Supplementary 
Information).

Summary and future perspectives
Vegetation uptake of atmospheric Hg is the most 
important Hg deposition pathway to the terrestrial 
environment. Studies based on Hg stable isotopes, 
enriched isotope tracer experiments, laboratory and 
ecosystem-​level flux measurements, and model simula-
tions consistently show that approximately 90% of Hg in 
foliage originates from the uptake of atmospheric Hg(0). 
Ultimately, atmospheric Hg taken up by vegetation and 
deposited to soils is transferred to downstream aquatic 
freshwater ecosystems and coastal seas, representing a 
major source of Hg for aquatic organisms.

A number of areas require further research in order 
to improve our understanding of the processes con-
trolling Hg uptake by vegetation and its implications to 
global Hg cycling. In particular, assessment of the impact 
of climate and land use changes on global Hg cycling 
are currently hampered by a series of shortcomings in 
process understanding, observational constraints and 
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model representations. For example, important knowl-
edge gaps exist with respect to the vegetation interfacial 
Hg exchange processes; a mechanistic and quantitative 
knowledge of heterogeneous biochemical processes of 
plant tissue and soil Hg uptake, considering physio-
logical and environmental drivers, is needed. Progress 
in these fields could be reached via extended use  
and interpretations of stable Hg isotopes, molecular and 
cellular-​level tracing experiments to determine trans-
port and biochemical behaviour of Hg in plant cells 
and tissues, high-​resolution mapping of Hg distribution 
within plant tissues and improved chemical speciation 
of Hg in plants, such as using synchrotron-​based X-​ray 
absorption spectroscopy techniques.

In order to allow better comparison of data, future 
field studies on Hg in vegetation should report detailed 
descriptions of the sampling, such as locations within 
the canopy, time of sampling and needle age in conif-
erous trees, and, ideally, follow standardized sampling 
protocols and report environmental exposures (atmos-
phere and soils). We call for the integration of Hg data 
in litterfall and throughfall deposition monitoring net-
works across all biomes, with a particular focus given to 
areas of high net primary production, such as tropical 
forests and biomes, where, currently, observational data 
are scarce, such as grasslands.

Although frequently taken, litterfall and through-
fall measurements alone are not sufficient to estimate 
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with the global hemispheric gradient, simulated by GEM-​MACH-​Hg for 2015 with and without vegetation cover present. 
Blue line represents model simulation with vegetation present, yellow line represents model simulation without vegetation 
present and red dots represent measurement observations. Model simulated lines represent averaged Hg(0) concentrations 
in 0.5° latitude bands including oceanic regions; observations represent sites mostly located over land and in North 
America and Europe. b | Average measured and simulated (by the GEM-​MACH-​Hg model at the observation sites) seasonal 
cycles of surface air Hg(0) concentrations in the Northern Hemisphere; coastal and urban sites were excluding from 
averaging in the Northern Hemisphere. Blue and yellow lines represent model simulations with vegetation present and 
without vegetation present, respectively, for 2015. Red line and shaded area represent median of available measurements 
between 2009 and 2018 and 5th–95th percentiles, respectively. c | Seasonal surface air Hg(0) concentrations in the 
Southern Hemisphere. Seasonal cycle is the average of two sites, Cape Point and Amsterdam Island.
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whole-​ecosystem Hg deposition, as they do not account 
for the deposition by woody tissues, translocation to roots, 
uptake by cryptogamic vegetation and direct sorption of 
Hg(0) to soils and forest floors. Hence, we recommend 
measurements of annual time series of ecosystem-​level 
Hg(0) deposition across all major representative global 
biomes to constrain their net sinks. Furthermore, sub-
stantial uncertainties exist in the model parameterizations 
of surface uptake processes of Hg species, preventing 
accurate determination of the relative roles of wet and 
dry deposition and elemental and oxidized Hg species in 
atmosphere–terrestrial Hg exchange processes.

Finally, amounts and geospatial distribution of soil 
Hg and secondary Hg emissions (legacy soil and wild-
fire emissions) are profoundly impacted by foliage Hg 
uptake, and changes in vegetation cover would alter 
these. Dynamically coupled Hg models of atmosphere, 
terrestrial and ocean environments are needed to sim-
ulate the effects of both direct and indirect changes in 
vegetation; measurement and modelling innovations 
providing mechanistic knowledge of Hg processes in 
terrestrial ecosystems is critical to achieving this goal.
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