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A B S T R A C T

Topology optimization has emerged as a popular approach to refine a component’s design and increase
its performance. However, current state-of-the-art topology optimization frameworks are compute-intensive,
mainly due to multiple finite element analysis iterations required to evaluate the component’s performance
during the optimization process. Recently, machine learning (ML)-based topology optimization methods have
been explored by researchers to alleviate this issue. However, previous ML approaches have mainly been
demonstrated on simple two-dimensional applications with low-resolution geometry. Further, current methods
are based on a single ML model for end-to-end prediction, which requires a large dataset for training. These
challenges make it non-trivial to extend current approaches to higher resolutions. In this paper, we develop
deep learning-based frameworks consistent with traditional topology optimization algorithms for 3D topology
optimization with a reasonably fine (high) resolution. We achieve this by training multiple networks, each
learning a different step of the overall topology optimization methodology, making the framework more
consistent with the topology optimization algorithm. We demonstrate the application of our framework on
both 2D and 3D geometries. The results show that our approach predicts the final optimized design better
(5.76× reduction in total compliance MSE in 2D; 2.03× reduction in total compliance MSE in 3D) than current
ML-based topology optimization methods.
1. Introduction

Over the past few decades, there has been an increased emphasis
n designing components with optimal performance, especially using
opology optimization (Orme et al., 2017; Liu and Ma, 2016). Topology
optimization (a subset of design optimization methods), initially devel-
oped by Bendsøe and Kikuchi (1988), refers to a set of numerical design
ptimization methods developed to find appropriate material distribu-
ion in a prescribed design domain to obtain geometric shapes with
ptimal performances. Here, the performance could be any physical
henomenon such as structural strength (or mechanical design), heat
ransfer, fluid flow, acoustic properties, electromagnetic properties,
ptical properties, etc. Sigmund and Maute (2013). The domain refers
to a 2D or 3D volumetric mesh representation of the CAD geometry,
typically used for finite element analysis. Among the different topology
optimization methods, some of the most prominent approaches are
solid isotropic material with penalization (SIMP) (Bendsøe, 1989),
level-sets (Wang et al., 2003), and evolutionary optimization (Das
et al., 2011; Xie and Steven, 1993). These approaches are used for

∗ Corresponding author.
E-mail addresses: jrrade@iastate.edu (J. Rade), baditya@iastate.edu (A. Balu), edherron@iastate.edu (E. Herron), jay.pathak@ansys.com (J. Pathak),

ishikesh.ranade@ansys.com (R. Ranade), soumiks@iastate.edu (S. Sarkar), adarsh@iastate.edu (A. Krishnamurthy).

several topological design problems where structural, acoustic, or op-
tical performance needs to be optimal (Eschenauer and Olhoff, 2001;
Sigmund and Maute, 2013) while removing the material to satisfy a
total material (or volume) constraint.

One of the main challenges in performing topology optimization
is the high computational cost associated with it. The performance
measure that is being optimized needs to be computed after each
iteration of the optimization process. These performance measures
are usually obtained from physics simulations (often using numerical
solution approaches, such as finite element analysis) that are typically
compute-intensive. Due to this computational challenge, performing
topology optimization for a fine (high resolution) topological mesh
could take a few hours to even days. This computational challenge has
inspired several researchers to develop deep learning-based topology
optimization to reduce or eliminate the need for numerical simulations.

Although deep learning has many diverse applications and has
demonstrated exceptional results in several real-world scenarios, our
focus in this paper is the recent application of deep learning to learn
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Fig. 1. Overview: The proposed deep learning-based topology optimization framework. The input to this framework is the compliance of the initial geometry along with the target
volume fraction. Unlike SIMP, the DLTO framework predicts the optimal density of the geometry without any requirement of iterative finite element evaluations. The predicted
optimal density of the geometry is then converted into triangular surface mesh representation using the marching cubes algorithm.
t
m
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the underlying physics of the system. There has been an increased
interest in learning physical phenomena with neural networks to reduce
the computational requirements and achieve better performance with
very little or no data (Pakravan et al., 2020; Zhang et al., 2019b;
Joshi et al., 2020; Teichert et al., 2019; Lu et al., 2019; Jagtap and
arniadakis, 2019; Pan and Duraisamy, 2019; Raissi et al., 2017;
hatnagar et al., 2019). A popular approach relies on modifying the
oss function to ensure that a set of physical constraints (boundary
onditions) are satisfied. This approach has been especially successful
n using deep learning to solve partial differential equations such as
urger’s equation, Navier–Stokes equation, and Cahn–Hilliard’s equa-
ion (Joshi et al., 2020; Lee et al., 2021; Lu et al., 2019; Jagtap and
arniadakis, 2019; Zhang et al., 2019b; Pan and Duraisamy, 2019).
hese approaches help the framework learn about the physical phe-
omena and make the learning consistent with the underlying physics.
t the same time, better performance has been achieved by aligning
he neural network architecture with the leaned phenomena (Xu et al.,
020). With this motivation, we propose an algorithmically consistent
eep learning framework for structural topology optimization.
A deep learning framework for the structural topology optimization

eed to (i) learn the underlying physics for computing the compliance,
ii) learn the topological changes that occur during the optimization
rocess, and (iii) produce results that respect the different geometric
onstraints and boundary conditions imposed on the domain. To sim-
lify the problem, we first discuss three essential elements that form
he backbone of any data-driven approach: (i) the data representa-
ion, (ii) training algorithms, and (iii) the network architecture. As
entioned before, aligning the deep-learning framework with existing
lgorithms can provide better results and improved performance. For
he framework to be algorithmically consistent, each of the three
lements must be consistent with the classical structural topology
ptimization algorithm. In this particular instance, we focus on topol-
gy optimization using the solid isotropic material with penalization
called SIMP (Bendsøe, 1989)) algorithm for our framework. Thus our
roposed framework is algorithmically consistent with SIMP topology
ptimization.
First, we align the data representation for the specific problem.

tructural topology optimization is an iterative process where the
esign is modified through several iterations until the objective func-
ion (total compliance) converges to an optimal value. Further, each
lement’s compliance is used in the sensitivity analysis for updating the
lement densities at each iteration. Thus, the element compliance is a
alid and consistent representation of the geometry compared to other
epresentations (such as voxel densities, strains, etc.) used in current
eep learning approaches. Therefore, in the proposed framework, we
se the element compliance as the CAD model representation of the
eometry, loading, and boundary conditions (as shown in Fig. 1). Note
hat, unlike the use of strain tensor and displacement tensor as proposed
y Zhang et al. (2019a), this representation is compact, leading to
etter scaling at higher resolutions.
2

Next, the training and inference pipelines need to be consistent with
he classical structural topology optimization pipeline. In our experi-
ents, we observe a non-trivial transformation of the densities from
he first iteration to the final converged one. Due to this non-trivial
ransformation, learning the mapping between the initial topology and
he final optimized topology is not a trivial one-step learning task.
Therefore, we use the intermediate densities obtained during data
generation to enhance the performance of our proposed framework
along with the initial compliance and target volume fraction as input
and the final optimal density as the target.

Finally, the framework should simultaneously satisfy two
constraints for structural topology optimization: the topological con-
straint of matching the target volume (often prescribed as a volume
fraction or percentage of volume removed) and the physical constraint
of minimizing the compliance. While computing the volume fraction is
trivial, calculating the compliance involves performing a finite element
solve. To avoid this computation, we propose developing a surrogate
model for learning the mapping of a given intermediate density to its
corresponding compliance.

In summary, we have developed two algorithmically consistent
frameworks for structural topology optimization, namely, the Density
Sequence (DS) prediction and the Coupled Density and Compliance Se-
quence (CDCS) prediction. The first approach uses a sequential predic-
tion model to transform the densities without compliance. In the second
approach, we add intermediate compliance to train a compliance-
predicting surrogate model to improve results. We compare the pro-
posed approaches with the baseline method, Direct Optimal Density
(DOD) prediction. DOD prediction is an end-to-end learning approach
where the final optimal density is directly predicted using just the
initial compliance and the target volume fraction. The DS framework
involves two convolutional neural networks (CNNs) for obtaining the
final prediction, while the CDCS uses three CNNs iteratively during
inference to predict the final optimal density.

In this paper, we develop a scalable, algorithmically consistent,
deep-learning framework for 2D and 3D structural topology optimiza-
tion. The main contributions are:

• Two novel algorithmically consistent deep learning based struc-
tural topology optimization frameworks.

• An algorithmically consistent representation for topology opti-
mization using the initial compliance of the design and the target
volume fraction.

• Using intermediate densities and compliance data from the differ-
ent optimization iterations obtained while generating the dataset
to enhance the performance of our framework.

• Performance comparison of our proposed networks on both 2D
and 3D geometries. We also validate and compare the perfor-
mance of our approaches with the baseline SIMP-based topology
optimization results.
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The rest of the paper is arranged as follows. First, we discuss the
ormulation and related works to this paper in Section 2. Next, we
xplain the deep learning methods proposed in our paper in Section 3.
e cover the details of the data generation process in Section 4, which
s used as training data for our proposed approaches. In Section 5, we
how the statistical results from our experiments and demonstrate the
erformance of our proposed methods on both 2D and 3D structural
opology optimization. Finally, we conclude this work with some future
irections of research in Section 7.

. Formulation and related work

.1. Formulation

Formally, topology optimization can be formulated as:

minimize: 𝐶(𝑈 )

subject to: 𝐊𝐔 = 𝐅
𝑔𝑖(𝐔) ≤ 0.

(1)

ere, 𝐶(𝑈 ) refers to the objective function of topology optimization. In
he case of structural topology optimization, this is the compliance of
he system,

= ∫𝛺∈
𝑏𝑢 𝑑𝛺 + ∫𝜏∈𝑑

𝑡𝑢 𝑑𝜏 (2)

here 𝑏 represents the body forces, 𝑢 displacements, 𝑡 surface traction,
nd 𝛺 and 𝜏 are volume and surface representations of solid. The
onstraint 𝑔𝑖(𝑈 ) includes a volume fraction constraint, 𝑔𝑖 = (𝑣∕𝑣0) − 𝑣𝑓 .
ince this optimization is performed at every element of the mesh, the
ombinatorial optimization is computationally intractable. An alterna-
ive solution is to represent the topology optimization equations as a
unction of density 𝜌 for every element.

Minimize: 𝐶(𝜌, 𝑈 )

subject to: 𝐊(𝜌)𝐔 = 𝐅
𝑔𝑖(𝜌,𝐔) ≤ 0

0 < 𝜌 ≤ 1

(3)

This design problem is relaxed using the SIMP algorithm, where the
tiffness for each element is described as, 𝐸 = 𝐸𝑚𝑖𝑛 + 𝜌𝑝(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛).
ere, 𝑝 is the parameter used to penalize the element density to be
lose to 1.0. A typical SIMP-based topology optimization pipeline is
hown in Algorithm 1. While this is a naive implementation, more
ophisticated methods for structural topology optimization such as
evel-set methods (Wang et al., 2003) and evolutionary optimization
ethods (Das et al., 2011; Xie and Steven, 1993) are also popularly
mployed. Despite several advancements in structural topology opti-
ization, a common challenge in all these approaches is that it requires

Algorithm 1: SIMP topology optimization (Bendsøe, 1989)
Input : , L, BC, 𝑉0
Output: 𝐷𝑓𝑖𝑛(set of all densities for each element, 𝜌)
Load design; apply loads and boundary conditions
Initialize: 𝐷0 → 𝑉0∕ ∫𝛺 𝑑𝛺
nitialize : 𝑐ℎ = inf
hile 𝑐ℎ < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
Assemble global stiffness matrix 𝐊 for element stiffness matrix
𝑘𝑒(𝜌𝑒)
Solve for 𝐔, using 𝐊, loads (L) and boundary conditions (BC)
Compute objective function, 𝐂 = 𝐔𝑇𝐊𝐔 =

∑𝑁
𝑒=1 𝜌

𝑝𝑢𝑇 𝑘𝑒𝑢
Perform sensitivity analysis, 𝜕𝑐

𝜕𝑒 = −𝑝𝜌(𝑝−1)𝑢𝑇 𝑘𝑒𝑢
Update the densities (𝐷𝑖) using a optimality criterion
𝑐ℎ = ||𝐷𝑖 −𝐷𝑖−1||

end
3

several iterations of the finite element queries to converge on the final
density distribution. Different optimization methods result in different
yet comparable, optimal solutions alluding to the fact that multiple
optimal solutions exist for the same topology optimization problem.
Deep learning-based methods are a natural fit for accelerating this task,
which has been explored previously, as described below.

2.2. Deep learning for topology optimization

Several deep learning-based topology optimization frameworks have
been proposed (Sosnovik and Oseledets, 2019; Banga et al., 2018; Yu
et al., 2019; Zhang et al., 2019a; Nie et al., 2020; Chandrasekhar
nd Suresh, 2020; Lin et al., 2018; Kollmann et al., 2020; Rawat and
Shen, 2019; Yu et al., 2018; Hamdia et al., 2019; Doi et al., 2019;
agaros et al., 2020; Oh et al., 2019; Li et al., 2019; Abueidda et al.,
020; Sasaki and Igarashi, 2018; Zhang et al., 2020; Oh et al., 2018;
Zhou et al., 2020; Guo et al., 2018; Lee et al., 2020; De et al., 2019;
Bujny et al., 2018; Takahashi et al., 2019; Qian and Ye, 2020; Jang
and Kang, 2020; Rodriguez et al., 2021; Poma et al., 2020). While
we enlist several deep learning based topology optimization, several
machine learning based methods without deep learning which have
been explored in the recent years (Mohammadzadeh and Hashemzadeh,
2015; Sabzalian et al., 2019; Kong et al., 2021). Further, there are
several metaheuristics based topology optimization methods to reduce
the computational time (Tejani et al., 2018; Alberdi et al., 2015;
Gholizadeh and Barati, 2014; Mortazavi et al., 2018).

Among the deep learning works, Banga et al. (2018) and Sosnovik
and Oseledets (2019) proposed to perform the fine refinement of the
design using deep convolutional autoencoders since the fine refinement
stage usually requires several finite element iterations during the op-
timization process. Sosnovik and Oseledets (2019) used the densities
obtained after five iterations of the SIMP-based structural topology
optimization as input to a deep learning network that directly predicts
the final density. Banga et al. (2018) extend this idea to 3D design
geometries, along with an additional input of the boundary conditions,
but for a very coarse geometric resolution (12 × 12 × 24). Yu et al.
(2019) developed a framework that takes the input design, boundary
conditions, and the prescribed volume fraction and predicts the final
target shape. They also create a generative framework where they gen-
erate several optimal designs. However, their research was restricted
to only one type of boundary condition. A more generic framework
to accommodate all possible boundary conditions using this method
would require an impractically large dataset.

Zhang et al. (2019a) developed an improved representation of
the geometry, loading conditions, and boundary conditions using the
strain tensor and displacement tensor as input. They demonstrate this
framework using 2D geometries and represent each component of the
strain tensor and displacement tensor as a different channel of the
2D image input. Using convolutional neural networks, they predict
the final density. While their results are an improvement over earlier
methods, this representation is not scalable to 3D. The strain tensor has
three more components in addition to the increase in overall data size
due to representing the geometry using 3D voxels, leading to several
computational challenges. Recently, Chandrasekhar and Suresh (2020)
proposed a topology optimization algorithm using neural networks
where the neural network is used for identifying the density for each
element at each iteration of the optimization process. This approach
produces faster convergence and results that are comparable to those
from SIMP. However, this approach’s main drawback is that some finite
element evaluations are still needed (although fewer than SIMP-based
structural topology optimization). To the authors’ best knowledge, very
few researchers consider using compliance and the intermediate den-
sities and compliances to improve the learning of structural topology
optimization. Further, most of the implementations and results in the
area have only been demonstrated in 2D or very low-resolution 3D
geometries. Therefore, a scalable 3D framework for structural topology
optimization using algorithmically consistent deep learning approaches
is needed.
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Fig. 2. Topology optimization pipeline: The traditional topology optimization performs several iterations of finite element analysis, followed by sensitivity analysis and filtering.
Using the filtered densities and compliance, we perform a density update. These iterations are performed several times till the density has converged. The DLTO approach replaces
the repetitive performance of finite element analysis using a compliance prediction network and the density update with density prediction network.
Fig. 3. Direct optimal density (DOD) prediction: This baseline model is used for comparing our proposed frameworks. The input in this approach is the initial compliance for
the geometry along with the target volume fraction initialized. Then we use a U-Net architecture for predicting the optimal density.
3. Algorithmically-consistent deep learning

A deep learning framework is algorithmically consistent if the data
representation, training algorithm, and network architecture are all
consistent with the underlying computational algorithm that the frame-
work is designed to learn. Our framework is algorithmically consistent
with the SIMP topology optimization. We first explain the baseline
deep learning approach, which we use to compare our results. We also
compare the performance of our proposed frameworks and the baseline
against the classical SIMP-based structural topology optimization. After
explaining the baseline, we explain the two proposed frameworks, the
density sequence (DS) prediction, and the coupled density and com-
pliance sequence (CDCS) prediction. Fig. 2 shows how our proposed
frameworks are algorithmically consistent with the SIMP topology
optimization.

3.1. Baseline direct optimal density prediction

Recently, U-Nets (Ronneberger et al., 2015; Çiçek et al., 2016)
have been known to be effective for applications such as semantic
segmentation and image reconstruction. Due to its success in several
applications, we chose a U-Net for this task. The input to U-Net is a
tuple of two tensors. The first is the initial compliance (represented
in the voxel or pixel space); the second is a constant tensor of the
same shape as the compliance tensor. Each element of the constant
tensor is initialized to the target volume fraction, which is a number
between [0, 1]. First, a block of convolution, batch normalization, is
applied. Then, the output is saved for later use for the skip-connection.
This intermediate output is then downsampled to a lower resolution for
a subsequent block of convolution, batch normalization layers, which
is performed twice. The upsampling starts where the saved outputs
of similar dimensions are concatenated with upsampling output for

creating the skip-connections followed by a convolution layer. This

4

Fig. 4. Data Augmentation: We show augmentation operations on 2D image including
90◦ clockwise and counter-clockwise rotation, 180◦ rotation and mirroring it vertically
and horizontally.

process is repeated until the final image shape is reached. At this point,
the network utilizes a final convolution layer before producing the final
density. The network architecture is shown in Fig. 3.

We preprocess the compliance to transform it to the [0, 1] range.
We first take the 𝑙𝑜𝑔10 of the compliance and then normalize it by
subtracting the minimum value and then dividing by the difference of
maximum and minimum values to scale the log values to [0, 1] range,
so all the inputs are in the same range. To train the neural network
model such that it is robust to the loads applied on the input geometry,
we augment the inputs by rotating the input tensor by 90◦ clockwise
and counter-clockwise, 180◦ around all three axes and by mirroring the
tensor along the X–Y plane, X–Z plane and, Y–Z plane. To understand
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Fig. 5. Density sequence (DS) prediction: In this framework, we perform the task in two phases as shown in Algorithm 2; phase 1 (left block) and phase 2 (right block). We
take the initial compliance and volume fraction initialization in the first phase to predict an initial density map. Using the initial density and the volume fraction initialization,
we predict a series of densities similar to the prediction from a SIMP topology optimizer to finally predict the optimal density. The details of the training process are covered in
the text.
L
I
C
𝐷
f

data augmentation visually, we illustrate these augmentation opera-
tions on 2D-image in Fig. 4. We threshold the final target density to
get a binary density value. The density value of 1 corresponds to the
element where the material is present, while the density value of 0
corresponds to the region where the material is absent or removed. We
do not use intermediate compliance or intermediate densities to train
this network. We use the Adam (Kingma and Ba, 2014) optimizer for
training, with an adaptive learning rate. To guide the optimizer, we
use the binary cross-entropy function to calculate the loss between the
predicted and the target density.

3.2. Density sequence prediction

For the data representation to be algorithmically consistent, we
learn the structural topology optimization from compliance of the
initial geometry. However, the compliance keeps evolving during the
iterations since the densities also change during optimization. There-
fore, the mapping between the original compliance and the final density
is not trivial and may not directly correlate with the final density. To
improve the performance, we develop the framework in two phases,
as shown in Fig. 5 and Algorithm 2. The first phase is called an
initial density prediction network (IDPN), which predicts the topology’s
initial density distribution based on the initial compliance per element
obtained for the original geometry. With initial density, we use the it-
erative density transformation information available from the topology
optimization process to transform the initially proposed density to the
final optimized density. We perform this transformation using another
network (density transformation network, DTN). The DTN does not
use any information about the compliances. Therefore, using IDPN and
DTN, we can predict the final densities for a given initial design and its
corresponding original compliances.

The two phases of the Density Sequence Prediction method require
two different network architectures, with each performing algorith-
mically consistent transformations of the given input information to
obtain the final optimized shape. The first architecture corresponds
to the first phase, where the task is to predict an initial density. The
second architecture corresponds to the second phase, where the density
obtained from phase 1 is transformed to a final density.

Phase 1: Initial Density Prediction: As a first phase of the method, the
IDPN uses the initial elemental compliances and initialized volume frac-
tion as input and predicts an initial density. We use U-Net (Ronneberger
et al., 2015; Çiçek et al., 2016) network architecture for this phase. The
architecture is similar to the architecture described in Section 3.1 and
is shown in Fig. 5 on the left.

For 2D phase 1 (IDPN), the initial compliance and the volume
fraction constraint are represented as a two-channel ‘‘image’’, and the
5

Algorithm 2: DS: Density sequence inference
Input : , L, BC, 𝑉0
Output: 𝐷𝑘, final optimized geometry
oad design; apply loads and boundary conditions
nitialize: 𝐷0 → 𝑉0∕ ∫𝛺 𝑑𝛺
ompute 𝐶0 using L, BC and 𝐷0

1 = 𝐼𝐷𝑃𝑁(𝐶0, 𝐷0) /* IDPN Inference */
or 𝑖 = 1 ∶ 𝑘 do

𝐷𝑖+1 = 𝐷𝑇𝑁(𝐷𝑖−1, 𝐷𝑖) /* DTN Inference */
end
return 𝐷𝑘

target is a one-channel ‘‘image’’ of the element densities obtained after
the first iteration of structural topology optimization. For 3D structural
topology optimization, the input is a four-dimensional tensor with two
3D inputs concatenated along the fourth axis, and the target is a 3D
element density. Data processing of the compliance (as described in
Section 3.1) is necessary for IDPN.

Phase 2: Density transformation: The training of phase 2 is more
involved than phase 1. We train a convolutional neural network (CNN)
with long short-term memory (LSTM), enabling learning from tempo-
ral data. In phase 2, there is a sequence of density transformations.
Given these transformations are non-linear, a short-term history is not
sufficient for robust prediction of the transformation. Capturing both
long-term and short-term temporal dependencies is one of the salient
features of LSTMs. Therefore, we use LSTMs and CNNs (traditionally
used for spatial data such as images) to transform the densities. The
architecture of the CNN-LSTM used for DTN is shown in Fig. 5 on the
right.

The CNN-LSTM architecture starts with a set of convolution, max
pooling, and batch normalization layers (called the encoder), which
transforms the image to a latent space flattened embedding used by
the LSTM. A sequence of LSTM layers is used to obtain a transformed
latent layer. A set of deconvolution and upsampling layers (called
Decoder) is used to obtain an image (representing the element densities
after one iteration of structural topology optimization). The LSTM is
unrolled for predicting a sequence in order to provide back-propagation
through time. So, the intermediate densities of the structural topology
optimization process are loaded as a sequence and processed to obtain
the transformed density during training.

For phase 2 (DTN), the intermediate densities (each represented as
a one-channel image) are used for performing the training. However,
all the iterations of topology optimization are not significant in the
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Fig. 6. Coupled density and compliance sequence (CDCS) prediction: In this framework, the initial compliance (see text for more details) and volume fraction initialization is
transformed by an iterative coupled prediction from a density prediction network (DPN) and compliance prediction network (CPN) as shown in Algorithm 3. Five iterations of this
process is performed to finally get the density and predicting the optimal density using a final density prediction network (FDPN). The details of the training process is covered
in the text.
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learning process. Therefore, we curate the intermediate densities to
only have unique densities (defined by a metric of 𝐿2 norm). This
uniquely curated set of densities are used for performing the training
of DTN. Since DTN only deals with densities, no processing is required.
To make the neural network more robust, we implement on-the-fly data
augmentation, as discussed in Section 3.1.

3.2.1. Training algorithms
For training IDPN, we use two different loss functions: (i) the mean-

squared error between the predicted and target densities and (ii) the
mean-squared error between the mean of the predicted and target
densities. The second loss function ensures that the volume fraction of
the target and predicted densities are the same. While training DTN, an
additional loss function is added. Since the final geometry cannot have
densities between (0.0, 1.0), the densities should belong to the set {0, 1}
ecause of solid isotropic material. To impose this condition, we use
he binary cross-entropy loss function and the two loss functions used
or IDPN. In addition to the loss functions, we use stochastic gradient
escent based optimizers such as Adam (Kingma and Ba, 2014) for
erforming the optimization.
Once the training is performed, the learned parameters for both the

etworks are joined such that an end-to-end inference scheme can be
erformed. This inference scheme only requires the initial compliance
nd the volume fraction constraint (input to IDPN). The output of IDPN
s used as input to DTN to get the final density without any additional
nformation required. This end-to-end scheme makes it applicable to any
eneric design.

.3. Coupled density and compliance sequence prediction

Inspired by the iterative SIMP method, we use deep neural networks
o develop a coupled density and compliance sequence prediction
ramework. In our dataset, we observed that the first five density
terations from the SIMP-based topology optimization method under-
ent more significant transformations compared to later iterations (also
eferred to as coarse and fine refinement by Sosnovik and Oseledets
2019)). We design three network architectures that use the inter-
ediate compliances and intermediate densities to predict the final
ptimal density. The first two networks, namely, compliance prediction
etwork (CPN) and density prediction network (DPN), feed their output
s an input to each other as coupled interaction, and the third network,
he final density prediction network (FDPN), uses the final output of
ensity prediction network to produce the final optimal density (similar
o the approach taken by Sosnovik and Oseledets (2019)).
The compliance prediction network predicts the elemental compli-

nce for a given iteration’s density. It uses initial elemental compliance
nd the current iteration density obtained from the DPN. For CPN, we
se Encoder–Decoder architecture. In the encoder, we use blocks of
wo convolutional layers followed by batch normalization. Similarly,
e use an upsampling layer, two convolutional layers, and batch-

ormalization blocks for the decoder. The encoder encodes the input

6

o the lower resolution latent space, and the decoder then decodes the
ncoded input to the next elemental compliance.
We use the current iteration elemental compliance and the current

teration density to predict the next iteration density for the density
rediction network. We use U-SE-ResNet (Nie et al., 2020) architecture
for the DPN. Adding SE-ResNet (Nie et al., 2020) blocks in the bottle-
eck region of U-Net architecture, in addition to the skip connections
f U-Net from the encoder to the decoder, builds the U-SE-ResNet.
he SE-ResNet block consists of two convolutional layers followed by
E(Squeeze-and-Excitation) block (Hu et al., 2018) with residual skip-
onnection from the input of the block. The encoder and decoder
f U-SE-ResNet are the same as used in CPN architecture. Refer to
ppendix E for more details on the architectures of U-SE-ResNet.
The final model in this method is FDPN. As mentioned earlier, the

lemental density has undergone a significant transformation during
he first five iterations. So, we avoid the iterative process to obtain the
inal density by taking advantage of the neural network. We only use
he fifth iteration density to predict the final optimal density directly.
or FDPN we implement U-Net (Ronneberger et al., 2015; Çiçek et al.,
016) architecture. The encoder and decoder part of the U-Net used
ere is the same as discussed in CPN architecture.
Compliance is preprocessed before feeding it to the neural networks.
e normalize the compliance values to be in the [0, 1] range. The
ethod for normalizing the compliance is explained in detail in Sec-
ion 3.1. In addition to this, we perform data augmentation discussed
n Section 3.1 for all three networks. More details on architectures
entioned in this section can be found in Appendix E.

.3.1. Training algorithms
All three networks are trained independently. During the training

hase, we use Adam (Kingma and Ba, 2014) optimizer for all three
etworks. For more efficient training, we use an adaptive learning rate.
he mean absolute error loss function is used for CPN. Moreover, for
PN and FDPN, the binary cross-entropy loss function is used to predict
he densities.
During inference, the first two networks are used iteratively (see

ig. 6 and Algorithm 3). We start with the initial compliance and initial

Algorithm 3: CDCS: Coupled density compliance sequence inference
Input : , L, BC, 𝑉0
Output: 𝐷𝑓𝑖𝑛, final optimized geometry
oad design; apply loads and boundary conditions
nitialize: 𝐷0 → 𝑉0∕ ∫𝛺 𝑑𝛺
ompute 𝐶0 using L, BC and 𝐷0
or 𝑖 = 0 ∶ 𝑘 do

𝐷𝑖+1 = 𝐷𝑃𝑁(𝐷𝑖, 𝐶𝑖) /* DPN Inference */
𝐶𝑖+1 = 𝐶𝑃𝑁(𝐷𝑖+1, 𝐶0) /* CPN Inference */

end
return 𝐷𝑓𝑖𝑛 = 𝐹𝐷𝑃𝑁(𝐷𝑘) /* FDPN Inference */



J. Rade, A. Balu, E. Herron et al. Engineering Applications of Artificial Intelligence 106 (2021) 104483
Fig. 7. 3D data generation pipeline: Each sample in the dataset if generated using this data generation pipeline. First we initialize the geometry (a cube with side length of
1 meter). This geometry is discretized into tetrahedrons to get the mesh. On this mesh, we define three non-collinear nodes to fix the mesh from any rigid body motion. Then we
apply randomly generated boundary conditions and loading conditions with different magnitude and direction.
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density, which is initialized with a volume fraction value as a tensor
with the same shape as the initial compliance tensor. Using the density
prediction network, we predict the subsequent iteration’s density and
feed it as input to the compliance prediction network, producing the
compliance corresponding to the new predicted density. This loop is
executed five times, so we get the fifth iteration’s density prediction
at the end of the loop. We use this predicted fifth iteration density as
input to the final density prediction network and directly predict the
final optimal density.

4. Data generation

4.1. 2D data generation

The data required for training the networks is obtained by perform-
ing several simulations of topology optimization on different designs
and volume fraction constraints. We represent each design using a 2D
mesh made up of quadrilateral elements. The nodes of the mesh form a
regular grid such that each element represents a square element. With
this representation, we can directly convert the elements of the mesh to
pixels of an image. Therefore, we represent the geometry as an image
such that the pixel intensity values represent the element compliances
and the element densities of the 2D mesh.

For training data, we need raw compliance values, the volume frac-
tion constraint, the intermediate element densities obtained during the
intermediate iterations of the structural topology optimization process,
and the final element densities. We generated 30,141 simulations of
the structural topology optimization with different randomly gener-
ated load values, loading directions, load locations, and a randomly
generated set of nodes in the mesh, fixed with zero displacements.
We performed each simulation for 150 iterations of SIMP-based struc-
tural topology optimization. All the relevant information from each
structural topology optimization simulation is stored for use during the
training process.

4.2. 3D data generation

The 3D data used for DLTO is generated using ANSYS Mechanical
APDL v19.2. We use a cube of length 1 meter in the form of 3D mesh
as an initial design domain (see Fig. 7). The mesh created has 31093
nodes and 154,677 elements, and each element consists of 8 nodes.
To ensure we sample a diverse set of topologies from the complete
distribution of topologies originating from the cube, we use several
available sets of boundary and load conditions in ANSYS software
such as Nodal Force, Surface Force, Remote Force, Pressure, Moment,
Displacement. First, we randomly sample three non-collinear nodes
on one side of the cube, and we define zero displacements for these
points; so they are fixed. This is necessary to avoid any rigid body
motion of the geometry. The next step is to randomly select the load
location, which is not close to the fixed support nodes. The nature
of the load (nodal, surface, remote, pressure, or moment), the value,
and direction is sampled randomly. The motivation behind the random
7

sampling is to ensure the generated dataset has a variety of shapes and
is independent of the type of load and its magnitude and direction.
We employ a rejection sampling strategy to ensure that each sampled
topology is unique. We obtained a total of 1500 configurations of load
and boundary conditions, and then by sampling the volume fraction,
we generated 13500 samples. In our dataset, the topology optimization
took an average of 13 iterations; the minimum number of iterations is
6, and the maximum is 72; this number depends on several factors such
as the mesh resolution, boundary conditions, and the target volume
fraction.

In ANSYS, we store the topology optimization output, the original
strain energy, and the intermediate results stored using the starting
mesh representation. We now need to convert the mesh representation
to a voxel representation for training 3D CNN models. This conversion
process first discretizes the axis-aligned bounding box into a regular
structured grid of voxels based on the grid’s grid size/resolution. We
compute the barycentric coordinates for each tetrahedron in the mesh
for each voxel center. Using the barycentric coordinates, we can esti-
mate if the grid point is inside the tetrahedron or not. If the grid point
is inside that tetrahedron, we now interpolate the field values (such
as density, strain energy, etc.) from the tetrahedron nodes to the voxel
centers. Through this process, we obtain the voxel-based representation
of the topology optimization data. Each sample’s voxelization takes
about 5–15 min, depending on the resolution and the number of
tetrahedral elements. We parallelize this process using GNU parallel to
complete this process in a few hours (depending on compute nodes’
availability). To calculate the element compliance, we multiply strain
energy obtained from ANSYS with the cube of the density to obtain
the compliance (𝐶 = 𝜌𝑝𝐮𝑘𝑒𝐮 = 𝜌𝑝 ∗ 𝑆𝐸, where 𝑝 is the penalty of the
SIMP approach, set to 3 in our data generation process, 𝑆𝐸 refers to
he elemental strain energy).
Once we obtain the voxel-based representation, we perform other

reprocessing steps, such as normalizing the compliance by the max-
mum compliance value and converting the compliances to log scale
or better learning. We even perform on-the-fly data augmentation by
otating the model in any of the six possible orientations. Thus we
inally get the data for training the neural network.

. Results

We split both datasets (i.e., 2D and 3D geometries) into two parts
or training the neural networks: training and testing dataset. Out of
ll data generated, we use 75% of the topology optimization data for
raining and the remaining 25% for testing. We use the testing dataset
o evaluate the performance of all three methods. We will discuss the
esults for 2D and 3D topologies in the following subsections.

.1. Results on 2D topology optimization

To compare the performance of our proposed methods with the
aseline DOD method, we start with the volume fraction (VF) con-
traint. We compute the predicted volume fraction of the final pre-
icted topology by averaging the density values over the whole design
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Table 1
Comparison of test loss metrics of our three methods on 2D test data.
Method VF TC Density

MSE MSE BCE MAE MSE

DOD 0.0035 15.1e+04 0.2354 0.1368 0.0737
DS 0.0068 2.35e+04 0.4421 0.1826 0.1206
CDCS 0.0027 2.62e+04 0.3146 0.1195 0.0812

Table 2
Comparison of correlation coefficient(R) for volume fraction and total compliance on
on 2D test data.
Method R for volume

fraction
R for total
compliance

DOD 0.8986 0.8403
DS 0.6883 0.9551
CDCS 0.8945 0.8926

Table 3
Statistics on the volume fraction and total compliance loss on 2D test data.
Statistics
method

MSE of volume fraction MSE of total compliance

Min. Median Max Min. Median Max

DOD 5.96e−08 1.30e−03 6.08e−02 5.33e−01 1.01e+05 1.76e+06
DS 6.47e−07 2.58e−03 1.23e−01 7.47e−06 1.13e+04 5.06e+05
CDCS 1.85e−08 7.74e−04 6.12e−02 2.87e−04 8.07e+03 6.41e+05

domain. We compute the mean-squared error (MSE) between the pre-
dicted VF and the actual VF on the test data. This metric is shown as
MSE of volume fraction in Table 1. We also plot the histogram for MSE
alues for VF from three methods in Fig. 9(a). Further, we plot the
correlation plot between the predicted and actual VF for all the three
methods in Fig. 8 and compute the Pearson’s correlation coefficient
between the predicted VF and actual VF for 2D test data in Table 2.

Next, we evaluate the performance of the methods using the physi-
al constraint of topology optimization: total compliance (TC). TC is the
IMP algorithm’s objective function value, which it tries to minimize
hile simultaneously satisfying the volume fraction constraint. We
ompute and compare the MSE between the predicted and simulated
C values. To determine the TC of the predicted final topology, we use
he compliance prediction network (CPN), part of the CDCS framework,
o predict the elemental compliance and take a sum of it over the
hole design domain. We sum the elemental compliance of the target
ptimal topology to get the simulated total compliance value; this is
he optimal minimum value achieved at the end of the SIMP method.
e compare the MSE for TC in Table 1 and also plot the histogram of
SE values from all three methods in Fig. 9(b). We also compute the
earson’s correlation coefficient between predicted total compliance
nd simulated total compliance values in Table 2 and the correlation
lots between these two values for each of the three methods is in
ig. 10.
We also compare the loss metrics like binary cross-entropy (BCE),
ean absolute error (MAE), and mean squared error (MSE) between
he density values of predicted topology and the ground truth optimal
opology. In addition, we also perform statistical analysis on MSE
oss between predicted and actual values of both topological con-
traints (VF) and physics constraints (TC). We summarize the minimum,
edian and maximum value of MSE for 2D test data in Table 3.
Apart from the numerical analysis, to further qualify the perfor-
ance of our method, we compare the visualizations of the predicted
inal topology, obtained by performing end-to-end prediction using all
hree methods, with ground truth final optimal topology in Fig. 11.
dditionally, we compute each sample’s total compliance value and
ompute the percentage deviation of predicted TC from simulated TC
n the visualization. In the ground truth column, we also show the
oundary and load conditions applied for each sample.
 r

8

Table 4
Comparison of test loss metrics using DOD and CDCS on 3D test data.
Method VF TC Density

MSE MSE BCE MAE MSE

DOD 0.0002 8.04e+05 0.1008 0.0648 0.0312
CDCS 0.0001 3.95e+05 0.1965 0.0875 0.0544

Table 5
Comparison of correlation coefficient(R) for volume fraction and total compliance on
on 3D test data.
Method R for volume

fraction
R for total
compliance

DOD 0.9966 0.9139
CDCS 0.9947 0.9578

Table 6
Statistics on the volume fraction and total compliance loss on 3D test data.
Statistics
method

MSE of volume fraction MSE of total compliance

Min. Median Max Min. Median Max

DOD 9.31e−10 4.80e−05 2.75e−02 4.64e−01 1.83e+05 3.26e+07
CDCS 9.31e−10 6.19e−05 8.97e−03 1.12e−01 7.63e+04 2.35e+06

Table 7
Comparison of different neural network architectures for each task of CDCS on 3D test
data.
Method
architecture

CPN DPN FDPN

MAE MSE BCE MAE MSE BCE MAE MSE

AE 0.0221 0.0009 0.2838 0.0211 0.0014 0.1140 0.0178 0.0026
U-Net 0.0286 0.0013 0.2810 0.0144 0.0005 0.1152 0.0145 0.0019
U-SE-ResNet 0.0294 0.0016 0.3157 0.0131 0.0006 0.1188 0.0155 0.0021

Table 8
Comparison of average time between traditional SIMP algorithm and deep-learning
based DOD and CDCS to obtain one optimized 3D topology.
Method Time (s)

SIMP 390
DLTO-DOD 0.233
DLTO-CDCS 0.102

We further evaluate the CDCS method by visualizing the evolution
of intermediate iteration densities and elemental compliance predicted
by the DPN and CPN, respectively. As discussed in Section 3.3, we feed
the actual initial and current iteration elemental compliance and the
density values to DPN and CPN to predict the next iteration quanti-
ties. We visualize this iteration-wise evolution of the topology and its
compliance in Fig. 12 and Fig. 13, respectively.

5.2. Results on 3D topologies

We perform a similar set of evaluations on the 3D data as discussed
in Section 5.1 to assess the performance of the CDCS method and
comparing it to the DOD method.

Comparing the MSE between the volume fraction (VF) and the
total compliance (TC) of predicted topology with actual final topology,
in Table 4. We plot the histogram of MSE values from DOD and
CDCS for both, VF and TC, in Fig. 15. We also compute the Pearson’s
correlation coefficient for the VF and TC values between the predicted
and actual final topology using both DOD and CDCS in Table 5 and
orrelation plots in Fig. 14 and Fig. 16, respectively.
We have summarized the different loss metrics like BCE, MAE, and
SE between the predicted and actual topology for both CDCS and
OD in Table 4. In Table 6, we summarize the statistical analysis of
he MSE value of both VF and TC on the 3D test data.
As discussed earlier, the CDCS method has three different neu-

al networks dedicated to learning the different aspects of structural
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Fig. 8. Correlation plots between predicted volume fraction and target volume fraction on 2D test data for: (a) DOD, (b) DS, (c) CDCS.
Fig. 9. Histogram of (a) total volume fraction loss and (b) total compliance loss on the 2D test data.
Fig. 10. Correlation plots between predicted total compliance and simulated total compliance on 2D test data for all three methods: (a) DOD, (b) DS, (c) CDCS.
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opology optimization. We have compared the performance of the
ifferent architectures for each task of TO. We have experimented with
hree architectures, which are: (i) Encoder–Decoder architecture, (ii)
-Net (Ronneberger et al., 2015; Çiçek et al., 2016) architecture, and
iii) U-SE-ResNet (Nie et al., 2020). For CPN, we compare MAE and
SE metrics, while for DPN and FDPN, we evaluate the performance
ased on the BCE, MAE, and MSE values on 3D test data. All these
etric values are summarized in Table 7. From the Table 7 we selected
he best of three for each task, like for CPN, we implemented Encoder–
ecoder, for DPN used U-SE-ResNet, and similarly, for FDPN, we used
-Net architectures.
We use marching cube methods to visualize the predicted and actual

ptimal topology shapes in 3D. As mentioned earlier in Section 5.1,
sing the end-to-end prediction, we obtain the predicted final topology.
e visualize some samples from the test data, which are in-distribution
amples and some out-of-distribution samples. As discussed in Sec-
ion 4.2 about the 3D data generation, the in-distribution dataset has
hree nodes with fixed support and one loading condition. On the other
and, we generated few samples with more than three fixed support
ocations and multiple loads such as four loads (torsional deformation)
 a

9

cting on the topology; we termed these samples as out-of-distribution
amples. We visualize some samples from the in-distribution test data
n Fig. 17 and the out-of-distribution samples in Fig. 18. The first
olumn shows the initial geometry, fixed support locations, and load in
oth figures, giving an approximate idea of the final optimal topology.
e also calculate the total compliance (TC) value and the percentage
eviation of predicted TC from simulated TC for each sample and
ention it under each topology.

. Discussion

In terms of the volume fraction (VF) constraint, if we compare
he histogram in Fig. 9(a) and the MSE values from Table 1, the
DCS method performs comparably to the DOD method and marginally
etter than the DS method. We observe comparable values of Pearson’s
orrelation coefficient for DOD (𝑅 = 0.8986) and CDCS (𝑅 = 0.8945)
ethod, while the DS (𝑅 = 0.6883) method performs poorly in satis-
ying the VF constraint. From Table 1, we observe almost 10× times
esser error value when we compare the MSE between the predicted
nd the simulated total compliance for both CDCS and DS with the
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Fig. 11. Visualization of test data in 2D: (i) Ground truth final topology shape with fixed supports and load locations (ii) Method 1: Baseline direct optimal density prediction,
(iii) Method 2: Density sequence prediction, (iv) Method 3: Coupled density and compliance sequence prediction. The results show the target design and the predicted design.
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DOD. The histogram in Fig. 9(b) shows that the CDCS has the maximum
number of test samples with an MSE value closer to zero. We can see
that both methods, CDCS and DS, predict the TC very close to the
predicted optimal TC minimum value. From Table 2, total compliance
of predicted topology by DS (𝑅 = 0.9551) and CDCS (𝑅 = 0.8926) is
highly correlated with simulated total compliance than the baseline
DOD (𝑅 = 0.8403) approach. The CDCS and DOD method’s performance
is comparable in terms of the different loss metrics used and is better
than the DS method, as shown in Table 1. In Table 3, we see that all
he three metrics listed have comparable values for DOD and CDCS and
re slightly better than the DS for volume fraction constraint. For the
SE values of total compliance, for 2D data, we see that both DS and
DCS perform much better than the DOD in all three statistics, and DS
nd CDCS have comparable median and maximum values. However,
S has a minimum loss value in all three methods.
Fig. 11 shows that the CDCS predicts the final shape significantly

loser to the ground truth, and also, the predicted total compliance
alue is much closer to the actual value. Although there are some
ases where the shape predicted by DOD and DS is slightly better
han the CDCS, the predicted total compliance value is much higher
han the actual value. To further evaluate the CDCS method, from
he visualizations in Fig. 12 and Fig. 13, it is evident that both DPN
nd CPN are efficient at predicting the next iteration density and
ompliance values. Also, it depicts the non-trivial transformation flow
f the initial topology shape towards the final optimal shape.
The results show that the CDCS method performs better than the

aseline DOD and the DS method on 2D topologies. Although DS satis-

ies the physics constraint (minimizing the TC) better, it does not satisfy D

10
he topological constraint (VF) to the same extent. On the other hand,
DCS accomplishes the best balance in satisfying the volume fraction
onstraint and achieving a total compliance value close to the actual
ptimal minimum value. Hence, we only extend the CDCS method to
he 3D dataset and compare it with the baseline DOD method.
From Table 4, we see that the MSE of VF using the CDCS method

s 2× lower than using the DOD method. From the histogram plots
n Fig. 15(a), we can infer that more samples have minimum MSE of
F using CDCS than the DOD. Comparing correlation plots in Fig. 14
nd Pearson’s correlation coefficient from Table 5, we notice that both
redicted and actual VF values are highly correlated. Comparing the
SE of total compliance(TC), DOD has 2× more error value than the
DCS, and from the histogram in Fig. 15(b), we see that most of the
amples have the lower MSE of TC value using CDCS. In Table 5,we
bserve that the TC value predicted by the CDCS (𝑅 = 0.9578) are
ighly correlated to actual TC values than the DOD (𝑅 = 0.9139).
e also observe this high correlation when we plot the correlation
lots in Fig. 16. In terms of MAE and MSE, both CDCS and DOD are
omparable, while DOD performs slightly better when comparing the
CE values from Table 4. But overall, like in the case of 2D, CDCS
chieves the balance of satisfying both topological (VF) and physical
TC) constraints on the 3D dataset. Table 6 shows that all the three
etrics values are comparable in the case of MSE of VF. We see better
erformance when we consider the MSE of TC. We notice that the
edian value using CDCS is 2× lower than the DOD method. Also, the
aximum value of MSE of TC using CDCS is 15× smaller than the DOD
alue, which affirms the greater performance of CDCS over the baseline

OD approach in satisfying the physics constraint (TC).
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Fig. 12. Visualizations of DPN predicting intermediate iterations density on 2D test data.
Fig. 13. Visualizations of CPN predicting intermediate iterations compliance on 2D test data.
Apart from the numerical analysis, we notice that the CDCS method
performs significantly better than the baseline DOD method when
we visualize the obtained shapes of test samples from in-distribution
test data in Fig. 17. Even on out-of-distribution samples, which have
more fixed supports and loads, the CDCS method predicts the shape
of final topology much closer to actual shape than DOD. The shapes
11
are smoother than the actual ground truth obtained by CDCS. We also
observe that the TC value of topology predicted using CDCS is very
close to the simulated TC value than using the DOD.

From the numerical analysis performed and supported by the visu-
alizations on both 2D and 3D datasets, we claim that the performance
of the CDCS is better than the baseline DOD and DS. With the multiple
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a

Fig. 14. Correlation plots between predicted volume fraction and target volume fraction on 3D test data for DOD and CDCS.
Fig. 15. Histogram of (a) total volume fraction loss and (b) total compliance loss on the 3D test data.
Fig. 16. Correlation plots between predicted total compliance and simulated total compliance on 3D test data for DOD and CDCS.
network setup proposed to learn different steps in SIMP, our method
predicts the final optimal topology and its compliance closer to the
topology simulated by SIMP. Additionally, with DPN and CPN, our
method can predict intermediate densities and compliances values,
respectively. Also, with the deep-learning-based methods proposed, we
can perform topology optimization significantly faster, and the speedup
is approximately by 3900× (see Table 8).

To get more insights on the network architectures of CPN, DPN,
nd FDPN used in CDCS, please refer to Appendix E. For training
performance results such as loss curves and histograms of different loss
metrics, please see Appendix D.
12
6.1. Limitations

While we show better performance of CDCS over the baseline
method and significant computational speedup over traditional SIMP-
based topology optimization approaches, our proposed approach has
some limitations. The primary limitation is that our framework con-
siders the initial geometry of a solid cube, and then different loads
and boundary conditions are applied. Naturally, more general designs
would not start with a cube’s initial geometry but a more generic ge-
ometry. This issue can be addressed by adding more data to the current
dataset with diverse examples with different initial geometries. Further,
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Fig. 17. Visualization of In-distribution test data in 3D: (i) Initial geometry with the fixed supports and load locations, (ii) Ground Truth final topology (iii) Method 1: Baseline
irect optimal density prediction, (iii) Method 3: Coupled density and compliance sequence prediction. The results show the target shape and the predicted shape.
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o capture key features in the initial and final geometry, we need to
xtend this framework to voxel resolutions beyond 32 × 32 × 32.
inally, the limitation of the data requirements for training is funda-
ental to this approach. Here, we would like to note that our approach
s amortized over the number of inferences we would be performing.
ur approach is beneficial if the number of inferences is an order of
agnitude higher than the number of samples generated.

.2. Future work

Future work includes 3D topology optimization performed on a
eneric 3D CAD model. Further, extending our framework to higher
esolutions such as 128 × 128 × 128 would be useful for more realistic
esigns with intricate features. Another avenue of future work is adding
anufacturability constraints on the fly during inference and the ca-
ability of generative design. Finally, approaches to reduce the data
equirements for training using information from structural mechanics
s priors would be an interesting direction to explore.

. Conclusions

In this paper, we explore the application of algorithmically con-
istent deep learning methods for structural topology optimization.
13
e developed two approaches (density sequence and coupled density
ompliance sequence models), consistent with the physics constraints,
opological constraints, and the SIMP topological optimization algo-
ithm. We generated datasets for topology optimization in both 2D and
D representations and then demonstrated the superior performance of
ur proposed approach over a direct density-based baseline approach.
inally, we visualize a few anecdotal topology optimization samples
o visually compare the three methods with the SIMP-based topology
ptimization process. We believe that our proposed algorithmically
onsistent approach for topology optimization provides superior qual-
ty results and can considerably speed up the topology optimization
rocess over existing finite-element-based approaches.
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ppendix A. Training details

Here, we will discuss more details of the methodology we used in
his paper along with few mathematical definitions and algorithms.
We begin by explaining the training procedure we used for training
he different networks for building the three frameworks. m

14
Algorithm 4 provides a general training procedure. We first load the
training dataset and the validation data. For several epochs and several
mini-batches of the dataset, we compute the loss and update weights
using SGD (and its variants, such as Adam) optimizer. In general,
we save the weights of the model with the least validation loss. We
run for 50 additional epochs (patience parameter) to check if the loss
reduces further. In the Fig. D.20, we see that at the 450th epoch, the
raining, and validation loss are very close to each other, and validation
oss is minimum. Yet, we still run for 50 more epochs to ensure that
he weights obtained are truly minimal and have good generalization
apability. Finally, we stop at the end of the 485th epoch because we
o not find any better weights with a lower validation loss.

ppendix B. Metrics used for comparison

To develop a baseline for our CDCS framework and further under-
tand the different elements, we use several statistical metrics that we
ill detail in this section.
Two major metrics used while comparing the results are: (i) the
ean-squared error (MSE) and (ii) the correlation coefficient (R). The
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mean-squared error is computed by:

𝑀𝑆𝐸 =
∑𝑘

𝑖 (𝑝1 − 𝑝2)2

𝑁

here 𝑝1 and 𝑝2 are two data scalar values to be compared. In the case
of vector comparison, the 𝑀𝑆𝐸 is also the 𝐿2 norm of the difference
vector. Similarly, the mean absolute error(𝑀𝐴𝐸) is defined as the 𝐿1
orm of the difference vector. For scalar values,

𝐴𝐸 =
∑𝑘

𝑖 |𝑝1 − 𝑝2|
𝑁

The correlation coefficient (more popularly known as Pearson Cor-
elation Coefficient, 𝑅), which was used for the comparison of the
esults is given by:

=
𝑐𝑜𝑣(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

,

where 𝑐𝑜𝑣(𝑥, 𝑦) is the covariance between 𝑥 and 𝑦 and 𝜎 is the stan-
dard deviation. A simpler formula used for computing the correlation

Algorithm 4: Training Algorithm
Input : Network Architecture
Initialize: Weights for all layers, 𝑊𝑙 , (𝑙 = 1, 2,… , 𝑚);
atience = 0
oad Data: Load training data D and validation data D𝑉
or (𝑖 = 0; 𝑖 ≤ 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠; 𝑖 + +) do
Randomly shuffle the data
Split D to D𝑗 , (𝑗 = 1, 2,… , 𝑛) mini-batches
for 𝑗 = 1 ∶ 𝑛 do

Predict outputs 𝑗 for mini-batch D𝑗
Compute loss (D𝑗 ,𝑗 , {𝑊 })
Update weights,{𝑊 } using Adam optimizer

end
Predict validation outputs 𝑉 for D𝑉
Compute Validation Loss (D𝑉 ,𝑉 , {𝑊 })
if Avg. Validation Loss not improving then

increment patience
end
else

patience = 0
end
if patience ≥ 30 then

Exit
end

end
15
Table B.9
Data convergence study using DOD on 3D test data.
Number of
samples

MSE of VF MSE of TC Accuracy BCE MAE MSE

500 0.0010 4.76e+06 91.90% 0.1832 0.1185 0.0570
1000 0.0004 3.07e+06 93.47% 0.1482 0.0943 0.0461
2500 0.0002 1.39e+06 94.57% 0.1241 0.0782 0.0385
5000 0.0002 9.82e+05 95.38% 0.1058 0.0672 0.0328
10000 0.0002 8.04e+05 95.61% 0.1008 0.0648 0.0312

coefficient is as follows:

𝑅 =
∑

(𝑥 − 𝑚𝑥)(𝑦 − 𝑚𝑦)
√

∑

(𝑥 − 𝑚𝑥)2
∑

(𝑦 − 𝑚𝑦)2
.

Here 𝑚𝑥 and 𝑚𝑦 represent the mean of vectors 𝑥 and 𝑦.
Apart from these metrics, another important metric we use is the

binary crossentropy (BCE) loss. Binary crossentropy loss denotes the log
likelihood of the predicted value for the target value. Mathematically,

𝐵𝐶𝐸 =
∑𝑘

𝑖 |𝑝1 × 𝑙𝑜𝑔(1 − 𝑝2) + 𝑝2 × 𝑙𝑜𝑔(1 − 𝑝1)|
𝑁

Finally, we use Accuracy to count the number of pixels/voxels
accurately classified. For this, we threshold the density values predicted
by 0.5 and count the voxels classified correctly.

Appendix C. Data convergence study

We conducted a data convergence study to confirm the sufficiency
of the dataset required for performing all the experiments mentioned in
the main paper. We use a separate test dataset and train the model with
different training samples to perform these experiments. The metrics
reported in Table B.9 are obtained by evaluating the trained networks
n the separate test dataset. For the sake of brevity, we show this only
or the 3D dataset and baseline DOD framework alone. We observe
hat the performance of the network increases with the increase in the
umber of samples used for training. However, this saturates after 5000
amples with very little improvement obtained with 10000 samples.
his demonstrates the sufficiency of the dataset.

ppendix D. Performance plots and histograms

In this section, we summarize different performance plots of training
he neural networks used in the three frameworks explored for both 2D
nd 3D data. Fig. D.19 shows the L2 and L1 loss plots when DOD is
sed to predict the first, second, fifth, tenth, and final densities of the
D dataset. In Fig. D.20, the left plot shows the training losses(L2 loss,
1 loss, and L2 loss of VF) of IDPN(Phase1 of DS), and similarly, the
Fig. D.19. Performance plots of intermediate density prediction networks while predicting first, second, fifth, tenth intermediate densities and final density. (a) 𝐿2 loss (b) 𝐿1 loss.
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Fig. D.20. Performance plots of two phases of Density sequence prediction method on 2D data. (a) DS Phase1:IDPN loss (b) DS Phase2: DTN loss.
Fig. D.21. Performance plots of (a) Compliance Prediction Network (CPN) and (b) Density Prediction Network (DPN) and (c) Final Density Prediction Network (FDPN). Each plot
shows different loss functions used in training with 2D data.
right plot is of training losses(L2 loss and L2 loss of VF) of DPN(Phase2
of DS). Fig. D.21 shows the training losses of all three networks of the
CDCS method on 2D data. Similarly for 3D dataset, Fig. D.22 has the
plot of training losses of DOD, Fig. D.23 has the loss plots for each of
the three networks of CDCS. From these loss plots, we see the losses
decrease as we progress in training.

We also plot the histograms of different loss metrics values, between
predicted and actual topology, like BCE, MAE and MSE loss for all
the methods on 2D and 3D test dataset in Fig. D.24 and Fig. D.25,
respectively. Based on these histograms of metrics, in the 2D dataset,
CDCS performs better than DOD and DS, while in the case of the 3D
dataset, CDCS and DOD have comparable performance.

Appendix E. Architectures

In this section, we provide details about the different architectures
used in the CDCS method. As mentioned earlier, we implemented
Encoder–Decoder for CPN, U-SE-ResNet for DPN, and U-Net for the
FDPN part.

The next architecture for FDPN is a U-Net (Ronneberger et al., 2015;
Çiçek et al., 2016) based network as shown in Fig. E.28. This architec-
ture is the modified version of the encoder–decoder architecture. As we
can see in Fig. E.27, the skip-connections are introduced from encoder
part to decoder part at each resolution level. These connections help
transfer the encoder’s contextual information to the decoder for better
localization (Ronneberger et al., 2015). The encoder and decoder of
U-Net are the same as in the encoder–decoder architecture discussed
above.

The Encoder–Decoder architecture is a simple convolution neural
network (CNN) consisting of two parts: the encoder and the decoder
16
Fig. D.22. Performance plots of Direct Optimal Density Prediction. Plot shows different
loss functions used in training with 3D data.

(Fig. E.26). The input is passed through the encoder and converted to a
lower-dimensional latent space, further expanding to the higher dimen-
sion required by the decoder. The encoder is a collection of encoding
blocks that consist of strided convolutional layers, followed by non-
linearity (ReLU) transformation and batch normalization. Similarly, the
decoder blocks of the decoder have an up-sampling layer, convolutional
layers, non-linearity(ReLU), and batch normalization. Finally, we use
the last convolution and non-linearity to get the output of the desired
shape.
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Fig. D.23. Performance plots of (a) Compliance Prediction Network (CPN) and (b) Density Prediction Network (DPN) and (c) Final Density Prediction Network (FDPN). Each plot
shows different loss functions used in training with 3D data.
Fig. D.24. Distribution of BCE, MAE, MSE losses on 2D test data.
Fig. D.25. Distribution of BCE, MAE, MSE losses on 3D test data.
Fig. E.26. Compliance Prediction Network (CPN) prediction: This CNN Encoder–Decoder model is used to predict the next iteration compliance.
U-SE-ResNet (Nie et al., 2020) is constructed using U-Net with ad-
dition of SE-ResNet blocks as shown in Fig. E.28. Each SE-ResNet block
is a combination of ResNet and Squeeze-and-Excitation(SE) blocks (Hu
et al., 2018). These blocks are introduced in the U-Net architecture
at the bottle-neck region between the encoder and decoder. SE block
enhances the network’s performance by recalibrating the channel-wise
features by explicitly weighing the inter-dependencies between chan-
nels. SE block consists of a pooling layer followed by fully connected
17
(FC) and ReLU transformation and again passing through the FC and
sigmoid transformation. In the end, the output of the sigmoid layer is
scaled by multiplying with the input of the SE block, with which we
get the same shape as the input of the SE block. In SE-ResNet, ResNet is
combined with SE block to improve the performance (Nie et al., 2020)
by adding the residual connection between the input to the output of
the SE block. Also, in this architecture, we use the same encoder and
decoder, as explained earlier.
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