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In our recent companion paper [Fedderke et al. Phys. Rev. D 104, 075023 (2021)], we pointed out a
novel signature of ultralight kinetically mixed dark-photon dark matter. This signature is a quasimono-
chromatic, time-oscillating terrestrial magnetic field that takes a particular pattern over the surface of Earth.
In this work, we present a search for this signal in existing, unshielded magnetometer data recorded by
geographically dispersed, geomagnetic stations. The dataset comes from the SuperMAG Collaboration and
consists of measurements taken with one-minute cadence since 1970, with Oð500Þ stations contributing in
all. We aggregate the magnetic field measurements from all stations by projecting them onto a small set of
global vector spherical harmonics (VSH) that capture the expected vectorial pattern of the signal at each
station. Within each dark-photon coherence time, we use a data-driven technique to estimate the broadband
background noise in the data, and search for excess narrow-band power in this set of VSH components; we
stack the searches in distinct coherence times incoherently. Following a Bayesian analysis approach that
allows us to account for the stochastic nature of the dark-photon dark-matter field, we set exclusion bounds
on the kinetic-mixing parameter in the dark-photon dark-matter mass range 2 × 10−18 eV≲mA0 ≲ 7 ×
10−17 eV (corresponding to frequencies 6 × 10−4 Hz≲ fA0 ≲ 2 × 10−2 Hz). These limits are comple-
mentary to various existing astrophysical constraints. Although our main analysis also identifies a number
of candidate signals in the SuperMAG dataset, these appear to either fail or be in tension with various
additional robustness checks we apply to those candidates. We report no robust and significant evidence for
a dark-photon dark-matter signal in the SuperMAG dataset.
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I. INTRODUCTION

Over an enormous range of scales from the dwarf galactic
to the cosmological, there is overwhelming evidence for the
existence of dark matter (DM) via its gravitational effects.
However, despite a broad and decades-long experimental
program to detect the effects of any nongravitational
interactions which the dark matter may possess, either in
the laboratory or via astrophysical probes, the identity of the
dark matter remains elusive. The difficulty of the search for

the nature of dark matter stems in part from its extremely
broad range of allowed masses, spanning some ∼80 orders
of magnitude, from ultralight fuzzy dark matter around
10−21 eV [1–5], up to macroscopic primordial black hole
dark matter around 1056 eV [6]. Moreover, the various
possible DM candidates that populate this allowed mass
range give rise to a diverse array of potential phenomeno-
logical effects that cannot all be searched for using a single
experimental approach. In the past decade or so, there has in
particular been a rapid growth of interest in novel exper-
imental techniques aiming to detect bosonic DM candidates
that admit a classical wave description,1 of which one
well-motivated example is the kinetically mixed [7] dark
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1To be precise, we mean here that given the local galactic
abundance of the DM, ρDM ∼ 0.3 GeV=cm3, excitations of the
bosonic dark-matter quantum field have expected local occupancy
numbers (i.e., number of particles per cubic deBrogliewavelength)
in the vicinity of Earth that are greater than 1. This occurs for DM
masses lighter than ∼10 eV assuming vDM ∼ 10−3.
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photon [8], sometimes also referred to as the “hidden
photon”; see, e.g., Refs. [9–24]. Such dark-photon dark
matter (DPDM) can be produced in the early Universe in a
variety of model-dependent and -independent ways; e.g.,
Refs. [25–41].
In a recent companion paper [42], we pointed out the

existence of a new signature of ultralight kinetically mixed
DPDM: a spatially and temporally coherent, oscillating,
terrestrial magnetic field signal that is narrow band in fre-
quency, and that takes a particular vectorial field pattern over
the whole surface of Earth. This signal arises because of the
same photon–dark-photon mixing effects responsible for
the generation of the signal in, e.g., DM Radio [13]. In
Ref. [42], we provided a high-level summary and the results
of an experimental search for this novel signal thatwe under-
took using a publicly available geomagnetic field data-
set maintained by the SuperMAG Collaboration [43–45].
This dataset, which exists primarily for geophysical
metrology and solar activity research purposes, consists
of time-series magnetic field measurements obtained
with unshielded three-axis magnetometers located at
Oð500Þ ground stations that are widely dispersed over
the surface of Earth and that, collectively, have been
recording data continuously since the early 1970s with a
sampling rate of (at least) once per minute [43–45]. We
reported no significant evidence for the existence of a
robust dark-photon dark-matter signal in these data in
the dark-photon mass range 2 × 10−18 eV≲mA0 ≲ 7 ×
10−17 eV corresponding to frequencies 6 × 10−4 Hz≲
fA0 ≲ 2 × 10−2 Hz. We thus placed direct observational
bounds on the kinetic-mixing parameter ε that are
complementary to various existing astrophysical con-
straints [46–50]. In this paper, we supplement Ref. [42]
by providing a detailed technical description of this
experimental search.
The remainder of this paper is structured as follows: In

Sec. II, we briefly summarize the main features of the
signal we described in detail in Ref. [42]. We then give a
description of the SuperMAG dataset in Sec. III, before
giving a high-level description of our analysis strategy for
this dataset in Sec. IV. With this high-level overview as a
guidepost, we give a detailed technical description of the
analysis in Sec. V. The results of this analysis in the form of
exclusion bounds on dark-photon dark-matter parameter
space are shown at Fig. 4 and discussed in Sec. VG.
Our analysis in Sec. V also identifies a number of naive
signal candidates in the SuperMAG data, in addition to
placing bounds on parameter space; we test these candi-
dates for robustness in Sec. VI. On the basis of those tests
and other indicia, we find no naive signal candidate for
which there is robust evidence of a real signal, although a
handful of these candidates would be of potential interest to
examine in follow-up work. We discuss our results and
conclude in Sec. VII. There are a number of appendixes that
provide additional information, conventions, or details.

Appendixes A and B give our conventions for the
Fourier transform and vector spherical harmonics, res-
pectively. Appendix C gives some additional technical
details of the signal as it appears in the SuperMAG dataset
in our analysis construction. Appendix D contains some
derivations of important statistical results used in our
analysis construction in Sec. V. Finally, Appendix E con-
tains a series of detailed validation checks on the data-
driven noise estimation procedures applied in our analysis.

II. SIGNAL

In our recent companion paper [42], we showed that
kinetically mixed DPDM generates a coherent magnetic
field signal across the surface of Earth of the form

BðΩ; tÞ ¼
ffiffiffi
π

3

r
ðεmA0 ÞðmA0RÞ

× Re

�X1
m¼−1

A0
mΦ1mðΩÞe−2πiðfA0−fdmÞt

�
; ð1Þ

as measured in the rotating Earth-fixed frame, where Ω ¼
ðθ;ϕÞ is the location on the surface of Earth [in the
geographic coordinate system referenced to true geo-
graphic north (TGN)], ε is the kinetic-mixing parameter
(as defined in Ref. [42]), mA0 ≡ 2πfA0 is the DPDM mass
(with fA0 being the corresponding cycles-per-second fre-
quency),2 R is the radius of Earth, A0

m are the (complex)
amplitudes describing the (amplitude and phase of the)
three different polarization modes of the dark photon in the
vicinity of Earth (as measured in a nonrotating fixed inertial
frame),3 Φlm are vector spherical harmonics (see
Appendix B for conventions), and the additional frequency
fd ¼ ðsidereal dayÞ−1 appears in the m ¼ �1 modes
owing to the rotation of Earth [42].
As discussed in detail in Ref. [42], Eq. (1) is a good

description of the signal within a single DM coherence time
Tcoh ∼ 2π=ðmA0v2DMÞ ∼ 106f−1A0 , where we have taken
vDM ∼ 10−3 to be a representative value for the galactic

3As discussed in Ref. [42], the A0
m technically describe the

amplitudes of the polarization modes of the sterile component (in
the interaction basis) of the DPDM, as measured in the vicinity of
Earth but well outside the atmosphere, and in the inertial frame.
Our convention for the A0

m is such that A0
� ¼∓ 1ffiffi

2
p ðA0

x ∓ iA0
yÞ so

that the Cartesian components (in the inertial frame) of the dark
vector potential are given by

A0
x ¼ −

1ffiffiffi
2

p ðA0þ −A0
−Þ; A0

y ¼ −
iffiffiffi
2

p ðA0þ þA0
−Þ; A0

z ¼ A0
0:

We employ the shorthand A0
� ≡ A0

�1.

2We work in natural units where ℏ ¼ c ¼ 1. The mass-
frequency conversion is thus fA0 ≈ 24 mHz × ðmA0=10−16 eVÞ.

FEDDERKE, GRAHAM, JACKSON KIMBALL, and KALIA PHYS. REV. D 104, 095032 (2021)

095032-2



DM velocity dispersion. Within that coherence time, the
complex amplitudes A0;� characterizing the local DM field
remain approximately constant, but in general they evolve
significantly from one coherence time to the next.4 Indeed,
since the local DPDM field can be thought of as being
comprised of the sum of a large number of independent
plane waves with frequencies f ∼ fA0 ½1þOðv2DMÞ�, each
with its own random phase, within a single coherence time
each of the real and imaginary parts of the A0

m can by virtue
of the central limit theorem be described as a random draw
from a zero-mean normal distribution with standard
deviation

ffiffiffiffiffiffiffiffiffi
ρDM

p
=ð ffiffiffi

3
p

mA0 Þ, such that together they satisfy

1

2
m2

A0 hjA0j2i ¼ ρDM; ð2Þ

where

jA0j2 ¼
X1
m¼−1

ðRe½A0
m�2 þ Im½A0

m�2Þ; ð3Þ

the angle-brackets h� � �i describe an average over times τ
much longer than the coherence time, τ ≫ Tcoh, and ρDM is
the average local (to Earth) dark-matter mass density,
which we will take to be fixed at ρDM ¼ 0.3 GeV=cm3

throughout this paper.
We pause to note that there is some discussion in the

literature regarding the appropriate treatment of the DPDM
polarization state; see, e.g., discussion in Refs. [28,51]. We
have assumed above, and will continue to do so throughout
this paper, that the DPDM field is a sum of plane waves
with random individual phases and randomly oriented
individual polarization states; this guarantees that the
overall polarization state will necessarily randomize over
a coherence time. However, certain production mechanisms
(e.g., misalignment) may possibly give rise to a polarization
state that does not evolve (significantly) in time today,
because every individual mode is produced in the early
Universe with the same (or similar) polarization; provided
that structure formation and interactions with matter do not
spoil this, the DPDM field today would then consist of a
sum of plane waves with individual random phases but all
the same (or similar) polarization states. Such a DPDM
field would still exhibit phase decoherence over a

coherence time and thus amplitude fluctuations from one
such time to the next, but the polarization state would of
course not randomize significantly from one coherence
time to the next.
A crucial feature of the signal is the factor of ðmA0RÞ

in Eq. (1), which encodes that the signal suffers a
suppression in the ratio of the radius of Earth to the
(Compton) wavelength of the DM. Naively, however,
one might be tempted to think that the depth of the
atmosphere Latmos ≪ R would instead be the relevant
length scale governing this suppression (see, e.g., brief
comments in Ref. [46]), which would have implied that
this factor would instead be replaced by a factor of
mA0Latmos ∼ 10−2mA0R, dramatically weakening the signal
prediction. We discuss at length in Ref. [42] why this is not
in fact the case.
Numerically, the signal Eq. (1) is expected to have an

amplitude on the order of

B ∼ 0.7 nG ×

�
ε

10−5

�
×

�
mA0

4 × 10−17 eV

�
; ð4Þ

where we assumed for the purposes of this rough estimate
that jA0j ∼ ffiffiffiffiffiffiffiffiffiffiffi

2ρDM
p

=mA0 with ρDM ¼ 0.3 GeV=cm3, and
evaluated the maximum value of the field on Earth’s
surface. While this signal is very small in amplitude (many
orders of magnitude smaller than the static geomagnetic
field, which is of order B⊕ ∼ 0.5 G [52]), it is at nonzero
frequency, effectively monochromatic with a long coher-
ence time and has a very particular global field pattern over
the surface of Earth; it can thus be meaningfully distin-
guished from many noise sources via techniques that are
tailored to search for the specific spatial and frequency
structure of the signal.
The magnetic field amplitude of the signal Eq. (4) is also

potentially much smaller than the individual point-in-time,
single-station, single-field-component digital measurement
resolution of the magnetic field stations that contribute to
SuperMAG, which are typically in the 10–100 pT ≈
100–1000 nG range [53–61]. However, given that the
instantaneous fluctuating random noise in the detectors
greatly exceeds5 this measurement resolution [43–45] (see
generally Sec. V C and Appendix E), the fact that the signal
amplitude is sub-readout-resolution does not degrade the
sensitivity for our signal search. This can be understood
from the following intuitive argument: Suppose the station
digital measurement readout resolution is ρ, and the signal
has amplitude A in some given field component. If A < ρ,
then on average only a fraction ξ ∼A=ρ of single-station,

4Generically, this implies that the “dark electric field”
E0 ∼mAA0 of the DPDM is not simply a vector of fixed direction
in 3D space with an amplitude oscillating at frequency fA0.
Instead, each of the components of E0 executes oscillations at
frequency fA0, which implies that E0 has a periodic (with period
TA0 ¼ f−1A0 ) variation of both its instantaneous amplitude and its
direction in 3D space. In the generic case, jE0j does not vanish
instantaneously at any moment in time, and the tip of the unit
vector Ê0 traces out a closed periodic curve with period f−1A0 ; that
curve evolves secularly on characteristic timescales of order the
coherence time.

5Of course, the single-station instantaneous noise aver-
ages down dramatically when considering the whole time series
of the data over the hundreds of stations; we can thus detect a
signal that is much smaller than the instantaneous single-detector
noise.

SEARCH FOR DARK-PHOTON DARK MATTER IN THE … PHYS. REV. D 104, 095032 (2021)

095032-3



single-field-component measurements will be impacted by
the signal being present. This is because only that fraction
of point-in-time noise realizations lies close enough to the
break point in the digital readout rounding for the presence
of the signal to alter the reading of the magnetometer.
However, for those fraction ξ of measurements, the readout
is changed by a full resolution unit ρ > A, which is ρ=A ∼
1=ξ larger than the signal amplitude A. These two effects
thus effectively cancel out. And indeed, we have verified
numerically as well in simple cognate examples that, in the
presence of the readout digitization noise, a narrow-band
signal of subresolution amplitude added to superresolution
instantaneous random noise remains narrow band and
visible in the finite-resolution data, provided of course
that the signal amplitude is larger than the averaged-down
noise level.

III. SUPERMAG DATA

We now turn to a general description (Sec. III A) of the
magnetic field dataset we have analyzed in this paper to
search for the signal shown at Eq. (1), before turning to a
more extensive discussion of various salient details in
Secs. III B–III D.

A. Overview

The SuperMAG Collaboration [44,45] maintains and
makes available for research purposes a large archival
dataset of three-axis geomagnetic field measurements
sourced from around Oð500Þ individual measurement
stations6 which are geographically dispersed across the
surface of Earth; see Fig. 1. These data are presented in a
common format, in a well-defined coordinate system [45],
with common temporal measurement resolution and syn-
chronization, and (where relevant) are preprocessed in a
common manner.
The data product in which wewill be primarily interested

in this paper is their “low fidelity” dataset, which encom-
passes measurements made with one-minute resolution,
beginning in 1970 [43,45]. The SuperMAG Collaboration
has also recently released a “high fidelity” dataset of
measurements taken by Oð100Þ stations with one-second
temporal resolution in the time frame 2012–2020 [43]. We
defer analysis of the one-second resolution data to
future work.
While various individual stations contributing to this

dataset have come on-line and/or gone off-line since 1970,
and even otherwise operational stations do not have 100%
uptime (so that data from individual stations are unavailable
during certain periods of time), the cumulative number of
stations in this dataset for which at least some amount of

data are available and analyzed in this work is 494, and
the number of stations operational in recent years has
fluctuated between around 150 and 250 at any given
time [43,45]; see Fig. 2. Note however that for technical
reasons,7 we restrict our attention to the 48 years of data
taken starting at the beginning of 1972 and concluding at
the end of 2019.

B. SuperMAG coordinate system

The three-axis magnetic field measurements supplied by
SuperMAG are reported for every station in locally well-
defined coordinate systems whose definitions vary from
station to station [45]. As described in this subsection, these
local coordinate systems must be rotated to obtain the
magnetic field components in the global geographic coor-
dinate system that we will require for our analysis.

FIG. 1. Locations of SuperMAG geomagnetic observa-
tories whose data are included in the analysis in this
paper [43–45]. World map (equirectangular projection) created
using CARTOPY [62].

FIG. 2. Number of stations in the SuperMAG dataset [43–45]
reporting as a function of the date. We discuss the manifest annual
trends in Sec. III D.

6These stations are maintained either by SuperMAG
member organizations or national scientific bodies; see, e.g.,
Refs. [53–59] and references therein.

7Insufficiently many stations are operative in 1970 and 1971
for our analysis to be applied; see also footnote 39 for a similar
point.
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As discussed in detail in Ref. [45], SuperMAG assumes
that each station has correctly reported the orientation of the
vertical component (i.e., the component radially directed at
the center of Earth) Bz of their field, into the ground being
positive. However, owing to a proliferation of possible
conventions in use by individual station operators to report
the two orthogonal components of the field in the plane
perpendicular to the vertical (“the horizontal plane”),
SuperMAG undertakes a data-driven procedure to rotate
the horizontal field components reported by every station
into a coordinate system whose orthogonal basis vectors are
oriented along the local magnetic north (LMN) and local
magnetic east (LME); the corresponding magnetic field
components along these directions are BLMN and BLME,
respectively.
The instantaneous rotation angle about the vertical axis

that would be required to perform this transformation is
obtained in an unambiguous way from the field data
themselves by demanding that the “typical value” (as
defined in Ref. [45]) of BLME in a sliding 17-day window
period centered on the observation time is zero by defi-
nition [45]; the rotation angles that are actually applied to
the data are smoothed versions of these instantaneous
rotation angles, where the smoothing is performed over
the same 17-day period [45,63].
For the purposes of the discussion here, it is only relevant

to note that the 17-day (∼1.5 × 106 s) timewindows used in
these procedures are much longer than the intrinsic time-
scales associated with the oscillation of the DPDM in our
mass range of interest: 6 × 10−4 Hz≲ fA0 ≲ 2 × 10−2 Hz,
corresponding roughly to 2×10−18 eV≲mA0≲7×10−17 eV.
Since our analysis procedure will construct an observable
linear in the magnetic field, the principle of superposition
implies that the rotation procedure cannot induce or mask
signals that are in-band.8

While the local coordinate systems described above have
the advantage of being unambiguous, their definitions are
inherently local and time dependent. In order to obtain the
field components in the rigid, time-independent, global
geographic coordinate system required for our analysis, the

field components in these local coordinate systems must be
rotated to the global frame using the per-station time-
dependent true magnetic declination angles9 δðΩ; tÞ. The
SuperMAG data products include the time-dependent
declination angles δðΩ; tÞ for each station, assuming
the International Geomagnetic Reference Field model of
the appropriate epoch [45,63]; these declination angles
again vary only on timescales that are out of band for our
DPDM mass range of interest. A simple 2D rotation about
the vertical axis can thus be applied to yield the magnetic
field components BTGN and BTGE reported along the
directions of TGN and true geographic east (TGE),
respectively:

�
BTGN

BTGE

�
¼

�
cos δ − sin δ

sin δ cos δ

��
BLMN

BLME

�
: ð5Þ

Finally, note that the field components in the global
geographic (i.e., Earth-fixed) coordinate system ðr̂; θ̂; ϕ̂Þ
are related to those discussed above byBθ ¼ −BTGN (recall,
θ̂ points to the geographic south pole), Bϕ ¼ BTGE, and
Br ¼ −Bz (r̂ points locally out of the ground,

10 whereas the
SuperMAG convention is to measure Bz positive when
pointing down).

C. Postprocessing by SuperMAG

In addition to the 17-day windowing procedure outlined
in Sec. III B that is used to obtain field components in the
SuperMAG coordinate system, the default SuperMAG data
product magnetic field measurements have also been
postprocessed to remove a “baseline” field component
consisting of a sum of time-varying diurnal and slower
annual components (as well as a constant offset irrelevant
for the purposes of searching for a time-dependent signal,
as here).
The procedure used to perform this subtraction is

detailed in Ref. [45]; for the present purposes we simply
note that the procedure utilized to remove the diurnal
component involves examining magnetic field data in
discrete coarse-grained intervals of 30 min in length.
While this diurnal baseline subtraction can result in the
removal of even quite monochromatic signals with periods
longer than 30 min (see, e.g., Fig. 6 of Ref. [45], where a
strong six-hour signal is removed from the BLMN data
from a single station), the coarse graining of the data into
30-min intervals implies that this procedure should not
significantly impact any frequencies somewhat higher than

8One might however also naively be concerned that, even if
this procedure might not induce or mask in-band signals, it might
somehow impact the coherence of the DPDM signal over
timescales longer that 17 days (provided that Tcoh > 17 days).
This is however not the case: We remind the reader the statement
that the coherence time Tcoh ∼ 106TA0 (where TA0 ¼ 1=fA0 ) is
simply the statement that the width of the DPDM signal peak in
Fourier space is ∼10−6 of the carrier frequency fA0 set by the
DPDM mass. For our range of interest, 6 × 10−4 Hz≲ fA0≲
2 × 10−2 Hz, and the above considerations imply that all the
information regarding the signal coherence is similarly restricted
to (approximately) the same frequency range. On the other hand,
the 17-day smoothing and rotation effects discussed here will
only impact frequencies at or below ð17 daysÞ−1 ∼ 7 × 10−7 Hz.
As such, these modifications do not impact the coherence of the
signal in the data.

9Conventionally δ is defined as the angle between TGN
and LMN, with the sign convention chosen such that δ is posi-
tive when the direction of LMN lies eastward (i.e., clockwise
on a compass vane) of TGN, and is negative when LMN lies
westward (i.e., counterclockwise on a compass vane) of TGN.

10We assume an exactly spherical surface for Earth throughout
this paper; this approximation is accurate at the 0.3% level [64].

SEARCH FOR DARK-PHOTON DARK MATTER IN THE … PHYS. REV. D 104, 095032 (2021)

095032-5



ð30 minÞ−1 ∼ 5 × 10−4 Hz, although it could impact
frequencies around or below this. Since the lower end of
our frequency range of interest is fA0 ∼ 6 × 10−4 Hz, the
effects of this diurnal baseline subtraction are mostly out of
band for the DPDM mass range of greatest interest to us.
We have explicitly rerun our analysis pipeline on the non-
baseline-subtracted dataset that is also available from
SuperMAG [43] and verified that the diurnal subtraction
is not observed to remove any DM-likeline features in the
results near our frequency range of interest.
The annual baseline subtraction procedure makes use of

data which are aggregated using the same 17-day sliding
window that was employed to determine the coordinate
system rotations, and is thus also well out of band.
Therefore, it would be consistent to use the data either
with or without these two time-dependent baseline sub-
tractions for the purposes of our analysis. However, in order
to determine the appropriate data-driven weighting to give
the measurements from each station in our analysis [see
Eqs. (13) and (14) below], it is more appropriate to utilize
the data with the time-dependent baseline subtracted, as this
disregards some noise below our frequency range of
interest.
Later in our analysis treatment we also assume that a

station that is not reporting data reports exactly zero field
(instead of the mean field). For consistency with this
treatment, we must work with data whose mean dc value
is zero in order to avoid introducing artificial discontinu-
ities of order the size of the mean field. Therefore, we will
work with the fully baseline subtracted data throughout.

D. Temporal features in SuperMAG data

It is typical for the number of stations that are active to
change significantly at the beginning of a calendar year; see
Fig. 2. This is likely due to a tendency for stations to report
data associated with specific calendar years. Importantly
for us, this means that the amount of available data
fluctuates relatively little within a calendar year, but may
fluctuate significantly between calendar years. In our
noise analysis, we will therefore compute separate noise
spectra for each calendar year. This, of course, assumes
that the noise level remains relatively constant within a
calendar year. We assess the validity of this assumption in
Appendix E 1.

IV. ANALYSIS STRATEGY

We now turn to a high-level description of the analysis
procedures we have utilized in order to search for the signal
(described in Sec. II) in the SuperMAG data (described in
Sec. III). Details of the implementation of this analysis
follow in Sec. V.
Station i located at geographic coordinates Ωi ¼

ðθi;ϕiÞ reports a time series of three-axis magnetic field
measurements; we denote the field measured at time tj as

BiðtjÞ. We denote the set of sampling times at which station
i reports valid measurements as T i. As already described,
the T i vary among stations, making a straightforward
analysis of the individual stations fairly complicated.
Two possible analysis approaches suggest themselves:

(A) from the predicted signal Eq. (1), one could construct
the expected per-station signals Bsignal

i ðtjÞ at every time
tj ∈ T i. One could then perform a simultaneous joint
search in the observed Bobserved

i ðtjÞ over all stations for
the correlated signal predictions in all the stations, and
thereby extract a signal or limits on the value of ε as a
function of mA0 , or (B) one could exploit the observation
that our signal Eq. (1) is predicted to be in only a small
number of global vector spherical harmonics (VSH).
Therefore, one could instead first extract from all the
individual station measurements Bobserved

i ðtjÞ a small num-
ber of time series that give the projections of the entire
collection of station measurements onto the field compo-
nents of the independent global vector spherical harmonic
modes of interest. One could then perform a search on these
distilled VSH component time series for the signal Eq. (1)
and thereby extract a signal or limits on the value of ε as a
function of mA0 . For technical reasons, we find it simpler to
utilize approach (B).
Our analysis strategy will thus be to first identify the

appropriate global VSH components of interest to find a
signal of the form Eq. (1); we find that there are five such
components of interest, which we denote Xð1Þ;…; Xð5Þ.
We will then combine all station measurements BiðtjÞ
available at a given time tj to extract the values of
Xð1ÞðtjÞ;…; Xð5ÞðtjÞ, which are the distilled time series
of the VSH components previously mentioned. As noted,
the signal Eq. (1) is very narrow in frequency, so it is most
appropriate to search for the signal in the frequency
domain; however, since the total duration of the data-taking
for the available SuperMAG data is in many cases
significantly longer than the signal coherence time, a
straightforward Fourier transform of the full time series
would in general result in a nonmonochromatic peak in
frequency space if a DM signal were present; extracting a
rigorous limit or signal amplitude estimate would
then require knowledge of the exact shape of this peak,
which is a fairly nontrivial problem that relies on detailed
knowledge of the velocity dispersion of the DM (see, e.g.,
Refs. [65–71] on this and related points applicable to dark-
photon and axionlike dark matter). In order to avoid this
issue, whenever the coherence time of the signal is shorter
than the available data-taking duration, we instead break up
our full time series Xð1ÞðtjÞ;…; Xð5ÞðtjÞ into a number of
shorter subseries, each of which has a duration of (approx-
imately; see next section) a single coherence time for the
frequency of interest. We then Fourier transform each of
these subseries to the frequency domain, and because the
signal is then coherent in each of the subseries by

FEDDERKE, GRAHAM, JACKSON KIMBALL, and KALIA PHYS. REV. D 104, 095032 (2021)

095032-6



construction, we can conduct independent searches for a
monochromatic (i.e., single frequency bin) signal in the
frequency-domain subseries. As a second step, we then
incoherently stack the results obtained from the searches
on subseries into a single result for the frequency of
interest, which we do taking into account that the signal
phase and DM amplitude vary stochastically from one
coherence time to the next. The requisite estimates for the
noise in the VSH time series are obtained in a data-driven
fashion within each coherence time, as detailed in the next
section.
We utilize a Bayesian analysis framework: Assuming a

reparametrization-invariant (Jeffreys) prior on ε at each
mass mA0 , we use the SuperMAG data to extract the fully
marginalized Bayesian posterior distribution on ε, from
which we extract upper limits on ε at each mass mA0 ; see
Refs. [69,72] for a similar approach.
In the cases where our search indicates the possible

existence of a signal at some threshold significance in the
full dataset, we first verify that it has the appropriate
frequency-domain width for a DM signal. If the candidate
peak passes this test, we then perform subsampling checks
to test whether or not the full-dataset signal is consistent
with being the expected global DM signal, or whether
the degree either of geographical variation in the signal
between different random selections of stations, or of
temporal variation in the signal between different disjoint
subsets of the data broken up over time, are too great to be
consistent with the DM interpretation, perhaps indicating
that the signal is being driven by some large noise
fluctuation in a small number of stations, or for some
finite duration of time.

V. ANALYSIS DETAILS

In the previous section, we provided a high-level over-
view of our analysis strategy; in this section wewill provide
a detailed description of the analysis. We begin in Sec. VA,
with a discussion of the selection of the five time series
Xð1ÞðtjÞ;…; Xð5ÞðtjÞ and the procedure by which we
combine the different station measurements into these
five time series. Additionally, we discuss the breaking of
these time-series data into single-coherence-time subseries.
In Sec. V B, we discuss how the same procedure affects a
hypothetical signal Eq. (1), as this will determine the
expectation values of the XðnÞðtjÞ that enter in the like-
lihood function we utilize to construct the posterior dis-
tribution on ε. A noise estimate is also required to construct
the likelihood function; in Sec. V C, we outline our data-
driven noise estimation procedure (with validation checks
discussed in Appendix E). In Sec. V D, we construct the
likelihood function, and then derive the posterior distribu-
tion on ε given the observed SuperMAG data. Finally, in
Sec. V E, we address a technical point related to the choice
of frequencies in our analysis and the way in which they
relate to an approximation we make for the coherence time
of the signal of interest.

For the convenience and reference of the reader, we
collect in Table 1 a variety of the analysis variables we will
define in this section, a cross-reference to where they are
defined, and a brief description of each.

A. Time series

1. Selection of VSH components

The first point to address is the selection of the
appropriate time-series VSH components on which to
perform our analysis. We would like to extract a set of
variables defined on the available magnetic field measure-
ments which keep only the information in the measured
fields which could have a spatial overlap11 with the signal;
that is, the dot product BðΩi; tjÞ · BiðtjÞ of the expected
signal BðΩi; tjÞ and the observed fields BiðtjÞ should form
the basis of the information we wish to extract. The signal
Eq. (1) is proportional to the expression BðΩi; tjÞ ∝
Re½Pm a0mðtjÞΦ1mðΩiÞ� for some complex a0mðtjÞ that
are related to A0

m. Now, noting that the BiðtjÞ are real, it
is easy to see that

BðΩi; tjÞ · BiðtjÞ ∝ Re

�X
m

a0mðtjÞΦ1mðΩiÞ · BiðtjÞ
�
: ð6Þ

TABLE I. A selection of analysis variables we define in Sec. V,
a cross reference to the location in the text where they are defined,
and a brief summary description. This table is provided for the
reference and convenience of the reader.

Variable Cross references Description

XðnÞ
i ðtjÞ Equations (7)–(11) nth type of projection of the

magnetic field measured at
station i onto a specific VSH
component at time tj

XðnÞðtjÞ Equation (12) Weighted sum of the XðnÞ
i ðtjÞ

over all stations i

XðnÞ
k ðtÞ Section VA 3 XðnÞðtÞ restricted to times

during the kth coherence time

 Xk
Equation (16) 15-dimensional analysis vector

consisting of the Fourier
transforms of the XðnÞ

k ðtÞ at
frequencies fA0 ; fA0 � f̂d

h  Xki Section V B,
Appendix C

Expected value of  Xk in the
presence of the signal Eq. (1)

xðmÞðtjÞ Section V C Hypothetical realization of the
data XðmÞðtjÞ over a duration
τ contained entirely within a
calendar year a

11The temporal overlap is considered by going to the frequency
domain later.
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Using the explicit expressions for the Φ1mðΩiÞ VSH that
are displayed at Eqs. (B9)–(B11), it can be shown that this
sum can be written as a linear combination of the variables

Xð1Þ
i ðtjÞ≡ sinϕi · Bθ

i ðtjÞ
∝ Re½Φθ

11ðΩiÞ · Bθ
i ðtjÞ�; ð7Þ

Xð2Þ
i ðtjÞ≡ cosϕi · Bθ

i ðtjÞ
∝ Im½Φθ

11ðΩiÞ · Bθ
i ðtjÞ�; ð8Þ

Xð3Þ
i ðtjÞ≡ cosϕi cos θi · B

ϕ
i ðtjÞ

∝ Re½Φϕ
11ðΩiÞ · Bϕ

i ðtjÞ�; ð9Þ

Xð4Þ
i ðtjÞ≡ − sinϕi cos θi · B

ϕ
i ðtjÞ

∝ Im½Φϕ
11ðΩiÞ · Bϕ

i ðtjÞ�; ð10Þ

Xð5Þ
i ðtjÞ≡ sin θi · B

ϕ
i ðtjÞ

∝ Re½Φϕ
10ðΩiÞ · Bϕ

i ðtjÞ�: ð11Þ

These XðnÞ
i ðtjÞ hold all the information about the observed

fields at station i that could possibly spatially overlap with
the expected signal we wish to constrain or observe, and we
can thus structure our analysis around these variables.

2. Combination of stations

To combine the results from all the stations into a small
number of time series, we simply take the weighted
averages over all stations of these projections on the
VSH components:

XðnÞðtjÞ ¼
1

WðnÞðtjÞ
X

fijtj∈T ig
wðnÞ
i ðtjÞXðnÞ

i ðtjÞ; ð12Þ

where the notation “fijtj ∈ T ig” indicates that the sum is
over the set of stations i such that there is a valid field
measurement from station i at time tj.

12 The weights

wðnÞ
i ðtjÞ we choose for the station at location Ωi will be

taken to be constant within the time span over which we
will assume stationarity of the noise distributions (one
calendar year; see Secs. III D and V C), so that the noise
distributions we estimate from the data are informed
entirely from the magnetic field noise and from the
fluctuations in which stations are reporting, and we do
not inject additional temporal variation via explicitly time-
dependent weights.

The choice of weights for each period of assumed noise
stationarity (i.e., one calendar year) could in principle
be arbitrary; however, a reasonable assumption is to take
the weights to be informed by the per-station white noise
levels, assuming the noise between stations is uncor-
related (see discussion in Sec. V C below). That is, we
will take wðnÞ

i for n ¼ 1, 2 to be the inverse of the station-i

white noise level in Bϕ
i over a given year, while wðnÞ

i for
n ¼ 3, 4, 5 will be taken to be the inverse of the station-i
white noise level in Bθ

i over a given year. More specifically,
for all t within year a, we take

wðnÞ
i ðtÞ ¼

�
1

Na
i

X
tj∈T a

i
½Bϕ

i ðtjÞ�2
�
−1

½n ¼ 1; 2�; ð13Þ

wðnÞ
i ðtÞ ¼

�
1

Na
i

X
tj∈T a

i
½Bθ

i ðtjÞ�2
�
−1

½n ¼ 3; 4; 5�; ð14Þ

where T a
i is the subset of T i [see Sec. IV and below

Eq. (12)] contained entirely within year a, and Na
i is the

corresponding number of samples in T a
i . The normalizing

total weight is then simply defined by

WðnÞðtjÞ ¼
X

fijtj∈T ig
wðnÞ
i ðtjÞ; ð15Þ

note that even though in our analysis all the wðnÞ
i ðtjÞ are

themselves constant within a year, WðnÞðtjÞ may still
change on more rapid timescales because the number of
stations reporting generically changes over time.

3. Coherent-signal data subsets

The XðnÞðtjÞ time series contain all the relevant infor-
mation we need to proceed with our data analysis in Sec. V.
However, as we have already explained in Sec. IV, the
coherence time of the signal can be shorter than the full
duration of available SuperMAG data, and wewish to avoid
having to search for signals that have a resolvable width in
frequency space, as this complicates the analysis signifi-
cantly (and depends in part on the exact DPDM line shape).
Instead, we will perform our search over total durations
that are longer than the intrinsic signal coherence time by
first analyzing the data coherently within each separate,
disjoint coherence time, and then incoherently combining
the results from these single-coherence-time searches. By
way of concrete example, we mean that if we are con-
fronted with searching for a signal with a six-year coher-
ence time (fA0 ∼ 5.3 mHz for vDM ∼ 10−3), we would
separate the total 48 years of available SuperMAG data
into eight separate consecutive data subsets. We then
perform eight independent fully coherent searches for
the signal, one in each of these subsets; finally, we stack
these search results incoherently to obtain a final search
result.

12We could equivalently formulate this as saying that the sum
is over all stations i, but that the weights are zeroed out at all times
when a station is not reporting valid data: wðnÞ

i ðtj ∉ TiÞ ¼ 0.
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To this end, let us denote by XðnÞ
k the subseries of the time

series XðnÞ that contains only the data from the kth disjoint
interval ½k ¼ 1;…; K� of duration T within the full
SuperMAG data-taking duration. As we discuss below in
some detail in Sec. V E, we will take T to be approximately
equal to the coherence time for the signal: T ≈ Tcoh ∼
106f−1A0 ∼ 2π=ðmA0v2DMÞ, assuming vDM ∼ 10−3.13

We will analyze each of the subseries XðnÞ
k independently

in the frequency domain; we denote the Fourier transform

(FT) of the subseries XðnÞ
k ðtÞ by X̃ðnÞ

k ðfÞ. We can see from
Eq. (1) that a signal in the data would contribute power not
only at the cycles-per-second frequency corresponding to
the DPDM mass, fA0 ¼ mA0=ð2πÞ; to the extent that the
data contain a signal spatially oriented such that there is
some m ¼ �1 contribution, there will also be power
at f ¼ fA0 � fd where, as before, fd ¼ ðsidereal dayÞ−1.
Therefore it will be relevant to consider the Fourier trans-

forms X̃ðnÞ
k ðfÞ at f ¼ fA0 and at f ¼ fA0 � fd.

14

Actually, since we obtain the FT of a time-domain signal
of total duration T and discrete sampling cadence Δt (for a
total of N ¼ T=Δt samples) via the discrete Fourier trans-
form (DFT) [or, more precisely, by the fast Fourier trans-
form (FFT) implementation of the DFT], we only obtain
independent frequency information at a discrete set of
predetermined frequencies fk ¼ kΔf whereΔf ¼ 1=T and
k ¼ 0;…; N − 1. We are thus not generically able to obtain
(at least not within the context of the FFT) the FT value

X̃ðnÞ
k ðfÞ at exactly all the frequencies fA0 and fA0 � fd.

Instead, we will consider the FT at fA0 , which we will
always by construction take to be an exact DFT frequency
(fA0 ¼ mΔf for some integer m; see Sec. V E), and at
fA0 � f̂d, where f̂d is the closest multiple of Δf to fd (i.e.,
f̂d ≡ nΔf for the integer value of n such that jnΔf − fdj is
minimized). We note that a refinement of this approach, in
particular one that considers the full line shape in the
Fourier domain, would likely be possible at additional
computational expense.
With this in mind, we define a new 15-dimensional

“analysis vector”  Xk that contains the values of the

FT X̃ðnÞ
k ðfÞ for n ¼ 1;…; 5 at frequencies f ¼ fA0 and

f ¼ fA0 � f̂d:
15

 Xk ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

X̃ð1Þ
k ðfA0 − f̂dÞ

X̃ð2Þ
k ðfA0 − f̂dÞ

X̃ð3Þ
k ðfA0 − f̂dÞ

X̃ð4Þ
k ðfA0 − f̂dÞ

X̃ð5Þ
k ðfA0 − f̂dÞ
X̃ð1Þ
k ðfA0 Þ

X̃ð2Þ
k ðfA0 Þ

X̃ð3Þ
k ðfA0 Þ

X̃ð4Þ
k ðfA0 Þ

X̃ð5Þ
k ðfA0 Þ

X̃ð1Þ
k ðfA0 þ f̂dÞ

X̃ð2Þ
k ðfA0 þ f̂dÞ

X̃ð3Þ
k ðfA0 þ f̂dÞ

X̃ð4Þ
k ðfA0 þ f̂dÞ

X̃ð5Þ
k ðfA0 þ f̂dÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð16Þ

These analysis vectors  Xk are the central objects we use
in Sec. V D to construct the likelihood function on which
our analysis is based; we will consider them to be
multivariate Gaussian variables, an assumption we validate
in Appendix E 3. As such we will need to know their
expectation values given an injected signal (Sec. V B) and
their covariance matrices (Sec. V C).

B. Signal

Having described the general procedures we utilize to
search for signals appearing in the relevant VSH compo-
nents of the SuperMAG data in the previous subsection, in
this subsection we will derive the expected values of the  Xk
variables which arise under the dark-photon dark-matter
signal model, Eq. (1); we denote the expected  Xk under the
signal hypothesis with parameter ε by h  Xki.
In principle, this derivation amounts to simply sub-

stituting Eq. (1) into the definitions of the time series in
Eqs. (7)–(11); however, it is useful to examine intermediate
results here, so we will develop this section pedagogically.
As a first step, it is useful to more explicitly understand

the signal Eq. (1) in the case where the DPDM is polarized
along any of the three inertial Cartesian axes [i.e., the set of
rigid, mutually orthogonal axes fixed in space with respect
to the (average) positions of a field of distant stars, not the
body-fixed axes rigidly attached to rotating Earth]. To this
end, we define variables ci which define the orientation of
the DPDM field along the inertial i axis for i ¼ x, y, z:

13Unless more precision is required to avoid confusion, in
order to avoid the repetitive incantation of “approximate coher-
ence time” and other such caveats, we will hereinafter simply
refer to the duration of time T as “the coherence time,” and to any
such time period of duration T as a “coherence time,” with this
approximation implicitly understood.

14Note however that it is possible that some of the X̃ðnÞ
k ðfÞ we

thus consider are identically zero for a signal; we compute the
expected X̃ðnÞ

k ðfÞ assuming a signal is present in Sec. V B.
15Here, and throughout, we use  x to denote a vector x with 15

components, and y to indicate a vector y with three (usually
spatial) components.
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ci ≡
ffiffiffi
2

p
πfA0A0

iffiffiffiffiffiffiffiffiffi
ρDM

p ; ð17Þ

or, in terms of the A�;0, we have

cx ¼ −
πfA0 ðA0þ − A0

−Þffiffiffiffiffiffiffiffiffi
ρDM

p ; ð18Þ

cy ¼ −
iπfA0 ðA0þ þ A0

−Þffiffiffiffiffiffiffiffiffi
ρDM

p ; ð19Þ

cz ¼
ffiffiffi
2

p
πfA0A0

0ffiffiffiffiffiffiffiffiffi
ρDM

p : ð20Þ

These are normalized such that for a (hypothetical) linearly
polarized DPDM signal that is oriented along the unit
vector n̂ (in the inertial frame) and that satisfies
1
2
m2

A0 jA0j2 ¼ ρDM, we would have ci ¼ n̂i where i ¼ x,
y, z and n̂i denotes the ith Cartesian component of n̂.
Expanding Eq. (1) in terms of these variables, we can write

B≡ Re½cx� · Bx
R þ Im½cx� · Bx

I ;

þ Re½cy� · By
R þ Im½cy� · By

I ;

þ Re½cz� · Bz
R þ Im½cz� · Bz

I ; ð21Þ

where we have defined

Bx
RðΩ; tÞ ¼ πεfA0R

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ðsinð2πfdtþ ϕÞθ̂þ cosð2πfdtþ ϕÞ cos θϕ̂Þ cosð2πfA0tÞ; ð22Þ

Bx
I ðΩ; tÞ ¼ πεfA0R

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ðsinð2πfdtþ ϕÞθ̂þ cosð2πfdtþ ϕÞ cos θϕ̂Þ sinð2πfA0 tÞ; ð23Þ

By
RðΩ; tÞ ¼ πεfA0R

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ð− cosð2πfdtþ ϕÞθ̂þ sinð2πfdtþ ϕÞ cos θϕ̂Þ cosð2πfA0tÞ; ð24Þ

By
I ðΩ; tÞ ¼ πεfA0R

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ð− cosð2πfdtþ ϕÞθ̂þ sinð2πfdtþ ϕÞ cos θϕ̂Þ sinð2πfA0tÞ; ð25Þ

Bz
RðΩ; tÞ ¼ −πεfA0R

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
sin θ cosð2πfA0tÞϕ̂; ð26Þ

Bz
IðΩ; tÞ ¼ −πεfA0R

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
sin θ sinð2πfA0 tÞϕ̂: ð27Þ

Here Ω≡ ðθ;ϕÞ denotes the spherical coordinates of the
observation point on the surface of Earth, and θ̂ and ϕ̂ are
the associated unit vectors (recall: θ, ϕ, θ̂, and ϕ̂ are all
defined in the body-fixed frame that an observer corotating
with the surface of Earth would naturally use).
Substituting these expressions for B into Eqs. (7)–(11)

and Fourier transforming yields the contribution of each
polarization to h  Xki.

We define several auxiliary time-dependent functions
HðnÞðtjÞ [n ¼ 1;…; 7] which will allow us to more com-
pactly express our results provided that the per-station

weights are taken to be16 wðnÞ
i ≡ wðθÞ

i for n ¼ 1, 2 and

wðnÞ
i ≡ wðϕÞ

i for n ¼ 3, 4, 5:

Hð1ÞðtjÞ ¼
1

WðθÞðtjÞ
X

i∶tj∈T i

wðθÞ
i ðtjÞ cos2 ϕi; ð28Þ

Hð2ÞðtjÞ ¼
1

WðθÞðtjÞ
X

i∶tj∈T i

wðθÞ
i ðtjÞ sinϕi cosϕi; ð29Þ

Hð3ÞðtjÞ ¼
1

WðϕÞðtjÞ
X

i∶tj∈T i

wðϕÞ
i ðtjÞ cos2 θi; ð30Þ

Hð4ÞðtjÞ ¼
1

WðϕÞðtjÞ
X

i∶tj∈T i

wðϕÞ
i ðtjÞ cos2 ϕi cos2 θi; ð31Þ

Hð5ÞðtjÞ ¼
1

WðϕÞðtjÞ
X

i∶tj∈T i

wðϕÞ
i ðtjÞ sinϕ cosϕ cos2 θi; ð32Þ

Hð6ÞðtjÞ ¼
1

WðϕÞðtjÞ
X

i∶tj∈T i

wðϕÞ
i ðtjÞ cosϕi sin θi cos θi; ð33Þ

Hð7ÞðtjÞ ¼
1

WðϕÞðtjÞ
X

i∶tj∈T i

wðϕÞ
i ðtjÞ sinϕi sin θi cos θi; ð34Þ

16From Eqs. (7)–(11), we see that the XðnÞ
i for n ¼ 1, 2 depend

only on Bθ
i , while the XðnÞ

i for n ¼ 3, 4, 5 depend only on Bϕ
i .

Therefore, since we use per-station data-driven estimates for the
station weights (see Sec. VA 2), it stands to reason that the
weights applied for XðnÞ

i for n ¼ 1, 2 should be common, while
those for XðnÞ

i for n ¼ 3, 4, 5 should also be common, but with the
latter common value distinct from the former.
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where WðθÞ and WðϕÞ are defined as in Eq. (15). Armed with these functions, we are in a position to write down the
contributions to h  Xki. For instance, in the case that the signal is a dark photon oriented entirely in the z direction (and has a
phase such that cz ∈ R), we have

h  XkiB¼Bz
R
¼ −πεfA0R

ffiffiffiffiffiffiffiffiffi
ρDM
2

r

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0

H̃ð6Þ
k ð−f̂dÞ þ H̃ð6Þ

k ð2fA0 − f̂dÞ
−H̃ð7Þ

k ð−f̂dÞ − H̃ð7Þ
k ð2fA0 − f̂dÞ

1̃kð−f̂dÞ − H̃ð3Þ
k ð−f̂dÞ þ 1̃kð2fA0 − f̂dÞ − H̃ð3Þ

k ð2fA0 − f̂dÞ
0

0

H̃ð6Þ
k ð0Þ þ H̃ð6Þ

k ð2fA0 Þ
−H̃ð7Þ

k ð0Þ − H̃ð7Þ
k ð2fA0 Þ

1̃kð0Þ − H̃ð3Þ
k ð0Þ þ 1̃kð2fA0 Þ − H̃ð3Þ

k ð2fA0 Þ
0

0

H̃ð6Þ
k ðf̂dÞ þ H̃ð6Þ

k ð2fA0 þ f̂dÞ
−H̃ð7Þ

k ðf̂dÞ − H̃ð7Þ
k ð2fA0 þ f̂dÞ

1̃kðf̂dÞ − H̃ð3Þ
k ðf̂dÞ þ 1̃kð2fA0 þ f̂dÞ − H̃ð3Þ

k ð2fA0 þ f̂dÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð35Þ

≈ − πεfA0R

ffiffiffiffiffiffiffiffiffi
ρDM
2

r

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0

H̃ð6Þ
k ð−f̂dÞ

−H̃ð7Þ
k ð−f̂dÞ

1̃kð−f̂dÞ − H̃ð3Þ
k ð−f̂dÞ

0

0

H̃ð6Þ
k ð0Þ

−H̃ð7Þ
k ð0Þ

1̃kð0Þ − H̃ð3Þ
k ð0Þ

0

0

H̃ð6Þ
k ðf̂dÞ

−H̃ð7Þ
k ðf̂dÞ

1̃kðf̂dÞ − H̃ð3Þ
k ðf̂dÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

≡ ε  μzk: ð36Þ

Here,HðmÞ
k represents the subseries ofHðmÞ consisting of the same sampling times as the subseries XðmÞ

k of XðmÞ, and H̃ðmÞ
k is

its Fourier transform. The series 1k is a series of 1’s at these same sampling times, and 1̃k its Fourier transform.17

17Therefore typically 1̃kð0Þ ¼ T. However, we do adjust this to account for the situation in which no stations report valid
measurements for some subset of times within the kth coherence time, or the analysis duration for any one k happens to be shorter than T
(e.g., for the last interval).
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Note that we have made the approximation in moving
from Eq. (35) to Eq. (36) that H̃ðmÞ

k decays rapidly with
increasing frequency, so that we may discard high-
frequency contributions (i.e., those at f ¼ 2fA0 , and
f ¼ 2fA0 � f̂d). We verified that, with our choices of
weightings, this is a valid approximation: For instance,

H̃ðmÞ
k ð2fA0 � f̂dÞ=H̃ðmÞ

k ð�f̂dÞ is typically of order a few

percent, and H̃ðmÞ
k ð2fA0 Þ=H̃ðmÞ

k ð0Þ is typically ∼10−5. This
approximation has the computational advantage that we

need only know the Fourier transforms of the HðmÞ
k ðtjÞ at

three frequencies, and so we can avoid performing an FFT.
Under this same assumption, it is not difficult to see that

if the signal is oriented along the z direction but with
icz ∈ R, we have

h  XkiB¼Bz
I
≈ −iε  μzk: ð37Þ

We may likewise define  μxk and  μyk as the contributions to

h  Xki coming from the x and y polarizations, and an exact
analog of Eq. (37) holds for these too; the full expressions
for  μxk and  μyk are shown in Appendix C.
It follows immediately that the full expression for the

expectation value of the  Xk under the signal hypothesis
Eq. (1) can be written in terms of the  μik (i ¼ x, y, z) as

h  Xki ¼ ε · ðc�xk  μxk þ c�yk  μyk þ c�zk  μzkÞ; ð38Þ
where the cik (i ¼ x, y, z) encode the inertial-frame
polarization state of DPDM during the kth coherence time,
and � denotes complex conjugation.

1. Signal in other VSH modes

The signal Eq. (1) was derived in Ref. [42] under the
assumption of an exactly spherical geometry, i.e., assuming
that the spherical ionosphere acts as the outer boundary for
the lower atmospheric cavity in which the dark-photon
signal is sourced. In this case, the dark photon sources only
a Φ1m component of the magnetic field. However, as we
discussed at length in Sec. II B of Ref. [42], details of the
ionosphere call this assumption into question, and suggest
that the aspherical magnetopause may instead act as the
outer boundary of the geometry. We showed in Sec. III C of
Ref. [42] that when the spherical ionospheric outer boun-
dary assumption is relaxed, the signal Eq. (1) in general
receives additional contributions from other VSH (e.g.,
Ψlm and Ylm contributions; see Appendix B for defini-
tions); however the Φ1m component shown at Eq. (1)
remains correct to leading order in an mA0Rð≪ 1Þ
expansion.
In principle, these additional field contributions are

distinguishable from the Φ1m component at Eq. (1) due
to the global orthogonality of the VSHs; see Eq. (B8). If the
station locationsΩi were uniformly distributed over Earth’s

surface and the weights were taken to be wðnÞ
i ðtjÞ ¼ 1 at all

stations i and times tj, then the definition of XðnÞ in Eq. (12)
would approximate a uniform integral over the sphere in the
limit of many stations. This would project out any Ψlm or
Ylm contributions to the observed magnetic field BiðtjÞ,
leaving only the contributions from Eq. (1). Following the
analysis through, this would imply that Eq. (38) would give
the exact signal expectation for the  Xk. However, due to the
nonuniformity of the station distribution, differing noise
levels among stations, and variations in the number of
stations reporting at a given time, Eq. (12) for XðnÞ deviates
from approximating a uniform integral over the sphere.
This implies that field contributions from other VSHmodes
arising from the magnetospheric asphericity could give
unsuppressed contributions to the time series XðnÞ; we
estimate that this “leakage” of other VSH components into
XðnÞ could be at the level of tens of percent. However, while
such contributions in principle enter the XðnÞ in such a way
that the expected h  Xki in the presence of the full signal that
includes these other VSH modes would deviate from
Eq. (38) at the level of an Oð1Þ factor, it would require
a highly unlikely environmental fine-tuning for these
modifications to completely cancel the signal contribution
Eq. (38) that we search for. For instance, the asphericity in
the magnetopause is variable with solar activity as its shape
is strongly sculpted by the radial outflow of the variable
solar wind, and other solar activity (coronal mass ejection
events, etc.); Earth also rotates inside of it. It would be
exceedingly surprising for some conspiracy between the
stochastically varying DPDM field and the evolving
magnetopause shape in which Earth rotates to somehow
engineer cancellation of all three components of the
vectorial signal Eq. (1) as it enters the XðnÞ at Eq. (12),
and for that cancellation to be maintained precisely for
Oð50Þ years when considered over allOð500Þ stations that
switch on and off over time and have varying noise levels
completely uncorrelated with the DPDM signal.
While a more refined future analysis may hope to deal

with these signal additional contributions more precisely,
we are satisfied that these considerations imply that our
search is still accurate at the level of (at worst)Oð1Þ factors
even when they are present and not explicitly accounted for.

C. Noise spectra

The statistical analysis of the SuperMAG magnetic field
dataset—as expressed in terms of the variables  Xk (see
Sec. VA)—in order to search for a signal of the form h  Xki
(see Sec. V B) requires a quantitative estimate of the noise;
we utilize a data-driven noise estimation procedure, which
we detail in this subsection.
Our analysis is constructed around the assumptions that

the noise in the data time series  Xk is (1) Gaussian, and
(2) statistically stationary within each calendar year. We
quantify the extent to which (1) and (2) are acceptable
assumptions in detail in Appendix E.
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Let xðmÞðtjÞ ½m ¼ 1;…; 5� represent a single hypotheti-
cal realization of the data time series which we have
denoted as XðmÞðtjÞ, taken over some time span of duration
τ contained entirely within a single calendar year a.
Assume the data are taken with a measurement cadence
Δt, such that τ≡ NΔt with N ∈ Z and, here, tj ¼ jΔt for
j ¼ 0;…; N − 1; additionally, we consider xðmÞðtjÞ to be
obtained under the assumption that no DPDM signal is
present in the data.18 Then, xðmÞðtjÞ is simply a single
hypothetical duration-τ realization of the noise in the data
time series XðmÞðtÞ in year a. We define the two-sided cross-
power spectral density of the noise for year a by

hx̃ðmÞðf0pÞx̃ðnÞðf0qÞ�iε¼0 ≡ τSamnðf0pÞδpq; ð39Þ

where h� � �iε¼0 denotes the expectation taken over all
possible noise realizations (i.e., with no signal, ε ¼ 0),
x̃ðmÞðfÞ is the DFT of xðmÞðtjÞ evaluated at one of the set of
DFT frequencies f0p;q (see below for discussion and
definition of f0p), and δpq is the Kronecker delta.
Our data-driven noise estimate of year a is constructed

from SamnðfÞ, which we wish to estimate from our single
realization of the actual data time series, XðmÞðtÞ. One of
our fundamental analysis assumptions is that the noise
properties of the data are statistically stationary within each
calendar year period; see Appendix E 1 for validation of
this assumption. Therefore, we divide each calendar year of
data XðmÞðtÞ (with t entirely within year a) into many
temporal “chunks,” each of duration τ, and treat each chunk
as an independent noise realization [that is, we convert the
ensemble average in Eq. (39) over hypothetical noise
realizations to a straight average over chunks of the actual
data, under the assumption of noise stationarity].
Since the length of calendar years varies between leap

and nonleap years and we wish to use as much of our data
as possible, we do not fix the length of τ universally, but
instead choose a universal minimum value τmin, and divide
each individual calendar year evenly into chunks whose
durations exceed τmin. We choose the shortest such duration
that allows us to evenly divide the entire year. Namely for a

year of length Ta, we use Nchunks chunks of length τ,
where

Nchunks ≡
�
Ta

τmin

�
; τ ¼

�
Ta

Nchunks

�
; ð40Þ

and where the second expression assumes a unit of time
measurement of minutes (i.e., the “floor function” notation
in the second expression is abused to mean “round this
result to the nearest minute”).
Generically, computing the DFT of a time series of

duration τ can be computationally difficult if the number
of sample points in theduration τ is not a power of 2 (since the
measurement cadence of SuperMAG data is Δt ¼ 1 min,
thismeans that τ itself should be a power of 2whenmeasured
in minutes). We therefore pad our time series xðmÞ with zeros
to extend the number of data points in the chunk to the next
power of 2 [i.e., we add additional values of xðmÞðtjÞ ¼ 0 at
assumed sample times tj ¼ jΔt with j ¼ N;…; 2p − 1 for
some p ∈ Z].19 We therefore find it convenient to choose
τmin to be a power of 2, and thus take the extended, padded
chunk duration to be 2τmin.

20 The frequencies f0p atwhich the
DFT x̃ðmÞ is computed will thus be multiples of ðΔfÞ0 ¼
1=ð2τminÞ. We find τmin ¼ 16384 min ¼ 214 min to be an
adequate choice. [This implies τ ¼ 16425 min for nonleap
years and τ ¼ 16470 min for leap years. Additionally, the
DFT frequencies f0p will be multiples of ðΔfÞ0 ¼
1=ð32768 minÞ ∼ 5 × 10−7 Hz.] We justify this choice in
Appendix E 2, and show that our results do not depend
strongly on the specific choice we have made.
For the ith chunk of actual data XðmÞ in year a, we

compute the quantity21

18Note that even if any truedark-photon signalwerepresent in the
data, it would have to be very large to invalidate this approach. The
DPDM signal line has a width of order σf ∼ 10−6fA0. However, the
spacing of the DFT frequencies in Eq. (39) is approximately
ðΔfÞ0 ∼ 1 × 10−6 Hz if τ ¼ 16834 min. Because our frequency
range of interest is 6 × 10−4 Hz≲ fA0 ≲ 2 × 10−2 Hz, this means
that ðΔfÞ0 lies in the range 1700≳ ðΔfÞ0=σf ≳ 50. A true DPDM
signal would thus have to be huge, at least 50 times larger than the
noise level in neighboring bins, tomake even anOð1Þ impact on the
noise estimate. For signals smaller than this, the estimate we have
outlined here is acceptably accurate. For a large signal, the noise
estimate outlined here would be formally incorrect; however, we
would still see an obvious signal candidate in this case, but further
analysiswould be required to extract an accurate noise estimate; see,
for instance, our signal injection analysis in Sec. VI C and Fig. 6.

19With an appropriate rescaling of the normalization of the power
spectral density (PSD) computed from the padded data (see foot-
note 20), the ensemble average of the renormalized PSD from the
paddeddataand theensembleaverageof thePSDfromtheunpadded
data agree statistically with their respective standard deviations of
the mean. This step is purely for computational advantage.

20Naive application of the definition of the PSD at Eq. (A6)
taking the padded duration and padded number of data points
yields the incorrect normalization for the desired PSD in this case
because of the dead time associated with the padding. However,
since we pad in such a way as to maintain the same Δt in both the
padded and unpadded data, the normalization of the FFT given at
Eq. (A5) is correct, and the only modification we must make is to
rescale the PSD computed per Eq. (A6) by a factor of ð2τminÞ=τ;
cf. Eq. (41) and the comments in footnote 21.

21The value of τ appearing in the denominator of Eq. (41) is
actually taken to be τ≡ Ni

dataΔt, where Ni
data is the number of

data sampling points within chunk i for which at least one station
has a valid measurement to allow the construction of xðmÞ (which
necessarily is none of the points that have been padded with
zeros). Generically, there is at least one station reporting at every
time throughout the ith chunk, and this procedure has no effect,
yielding a value for τ that matches the value discussed in the main
text; however, for the small number of cases where no stations
happen to report data for some duration of the ith chunk, τ as
appearing in Eq. (41) is proportionally rescaled to a smaller value.

SEARCH FOR DARK-PHOTON DARK MATTER IN THE … PHYS. REV. D 104, 095032 (2021)

095032-13



Sa;imnðf0pÞ≡ x̃ðmÞðf0pÞx̃ðnÞðf0pÞ�
τ

; ð41Þ

and average over all M chunks within year a in order to
estimate SamnðfÞ:

Samnðf0pÞ ≈
1

M

XM
i¼1

Sa;imnðf0pÞ: ð42Þ

This process allows us to estimate Samnðf0pÞ at the discrete
frequencies f0p ¼ pðΔfÞ0 for p ∈ Z. However, in the
course of analyzing the data over durations longer than
2τmin, we will have access to a finer frequency spacing than
ðΔfÞ0, and so we really need access to SamnðfÞ sampled over
this finer frequency range; since it is not possible to directly
estimate SamnðfÞ on that finer grid with only our single data
realization, our analysis interpolates the Samnðf0pÞ estimated
as at Eq. (42) to intermediate frequencies. Although this is
approximate, there is no obvious superior approach.
Armed with the estimate Eq. (42) for the noise cross-

power spectra Samnðf0pÞ, which yields the covariances

between X̃ðmÞ within a given year, we then compute the
covariances of the analysis variables  Xk as defined at
Eq. (16). Suppose that Na

k is the number of data points

in the subseries XðmÞ
k which were obtained in year a, so thatP

a N
a
k ≡ ℵ where ℵ is the number of data points in the

subseries XðmÞ
k , then we have

hX̃ðmÞ
k ðfÞX̃ðnÞ

k ðfÞ�iε¼0 ¼
X
a

Ta
k · S

a
mnðfÞ; ð43Þ

where Ta
k ¼ Na

kΔt is the duration of time corresponding to

the number of data samples in the subseries XðmÞ
k in year a,

assuming a measurement cadence of Δt, such that in
turn we have

P
a T

a
k ¼ T, the total duration of the kth

coherence time (except for the situations already noted in
footnote 17, which are also handled appropriately here);
see also Sec. VA 3 and the more detailed discussion in
Sec. V E.
We may then write the covariance matrix for the  Xk

schematically as

Σk ≡ Covð  Xk;  XkÞ ¼

0
BBB@

P
a
Ta
k · S

a
mnðfA0 − f̂dÞ P

a
Ta
k · S

a
mnðfA0 Þ

P
a
Ta
k · S

a
mnðfA0 þ f̂dÞ

1
CCCA; ð44Þ

for the appropriate values of m and n in the relevant
locations; this matrix takes a block diagonal form because
we assume the DFT results at distinct frequencies are
uncorrelated variables, and  Xk is constructed in such a way
that the successive blocks of entries all refer to the same
frequency.

D. Bayesian statistical analysis

In the previous two subsections, we computed the
expected  Xk under the signal hypothesis Eq. (1), and
discussed our data-driven noise estimation procedure.

We can now synthesize these developments to construct
a likelihood function for our model in terms of the expected
signal vectors  μik and the estimated covariance matrix Σk.
We can then use that likelihood function to construct the
marginalized Bayesian posterior for ε given the data.

1. Likelihood function

Up to normalization, the likelihood function for the kth
coherence time given the signal hypothesis Eq. (1) with a
kinetic-mixing parameter ε is (we set the normalization
factor for the likelihood to 1 arbitrarily)22

− lnLkðε; ckj  XkÞ ¼
�
 Xk − ε

X
i

c�ik  μik

�†
Σ−1
k

�
 Xk − ε

X
i

c�ik  μik

�
; ð45Þ

where ck is the 3-vector with entries cik for i ¼ x, y, z [i.e.,
the variables defined in Eq. (38) which specify the arbitrary
phase and spatial orientation of the DPDM polarization
vector in the inertial frame for the kth coherence time].
Assuming that all coherence times are treated as indepen-
dent “experiments,” the full likelihood function L over all

22The normalization of the rhs of this equation (that is the
normalization of lnLk, not Lk) cannot be chosen arbitrarily. It is
set by demanding that h  Xk

 X†
ki ¼ Σ, or equivalently that  Yk as

defined by Eq. (47) satisfies h  Yk
 Y†
ki ¼ 1.
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the available data will be taken to be the product of theseLk
over all k, or

L≡Y
k

Lk: ð46Þ

Before proceeding to utilize this likelihood to construct a
Bayesian posterior on ε, it will be advantageous and
simplifying to make some changes of notation. Since Σk
is by construction a Hermitian, positive-definite matrix, it is
possible to decompose it as Σk ¼ AkA

†
k, for some invertible

Ak. If we then define

 Yk ¼ A−1
k

 Xk; ð47Þ

 νik ¼ A−1
k  μik ½i ¼ x; y; z�; ð48Þ

it can be shown that Eq. (45) can be expressed as

− lnLkðε;  ckj  YkÞ ¼
				  Yk − ε

X
i

c�ik  νik

				2: ð49Þ

Now, let Nk be the 15 × 3 matrix whose first, second,
and third columns take entries equal to the corresponding
components of  νik for i ¼ x, y, z, respectively.
Equation (49) can then be rewritten as

− lnLkðε; ckj  YkÞ ¼ j  Yk − εNkck�j2: ð50Þ

The singular value decomposition of Nk can be written as
23

Nk ¼ UkSkV
†
k; ð51Þ

where Uk is a 15 × 3 matrix with orthonormal columns (so
that, specifically, U†

kUk ¼ 13), Sk is a real 3 × 3 diagonal
matrix, and Vk is a 3 × 3 unitary matrix. We also define the
3-vector variables

dk ¼ V†
kc

�
k; Zk ¼ U†

k
 Yk: ð52Þ

We can then rewrite Eq. (50) as

− lnLkðε; ckj  YkÞ ¼ j  Yk − εUkSkV
†
kc

�
kj2 ð53Þ

¼ jZk − εSkdkj2 þ ðj  Ykj2 − jZkj2Þ; ð54Þ

where to obtain the second expression we have expanded
out, used U†

kUk ¼ 13, added and subtracted jZkj2, and
simplified.

Our immediate goal now is to use Eq. (54) to define a
likelihood function in terms of the variables Zk, which will
be central to our analysis going forward.
To this end, consider the following preparatory argument.

ThematrixPk ¼ UkU
†
k is an orthogonal projection operator:

P2
k ¼ Pk ¼ P†

k, so let us write  Yk ≡  Ak þ  Bk, where we

define  Ak ≡ Pk
 Yk and  Bk ≡ ð115 − PkÞ  Yk. It follows that

j  Ykj2 ¼ j  Akj2 þ j  Bkj2. Now, we also haveU†
kPk ¼ U†

k since
U†

kUk ¼ 13, so it also follows thatU
†
kð115 − PkÞ ¼ 0, and so

U†
k
 Bk ¼ 0. Therefore, Zk ≡U†

k
 Yk ¼ U†

k
 Ak; i.e., Zk depends

on  Ak, but is independent of  Bk. Moreover, it is easy to show
that jZkj2 ¼ j  Akj2.
Armed with that knowledge, consider now the term in

ð� � �Þ brackets in Eq. (54). This term is (a) independent of
the parameters ε and ck, and (b) equal to j  Ykj2 − jZkj2 ¼
j  Ykj2 − j  Akj2 ¼ j  Bkj2ð¼ j  Yk −UkU

†
k
 Ykj2Þ; it thus does not

depend on Zk. These observations imply, respectively, that
(a0) the ð� � �Þ term can simply be dropped from Eq. (54) in
constructing a likelihood for ε and ck in terms of the Zk:

− lnLkðε; dkjZkÞ≡ jZk − εSkdkj2; ð55Þ

where we dropped an additional irrelevant constant offset,
and (b0) the resulting likelihood at Eq. (55) is still also
interpretable in the usual way (again up to a constant offset)
as the probability density for the Zk given the parameters,
which we will see is necessary for our arguments in
Sec. VI.24

Physically, what has happened here is that the full
15-dimensional analysis vectors  Xk that we constructed
at Eq. (16) hold much more information about the mea-
sured magnetic fields than just the pieces necessary to find
the signal Eq. (1), as is clear from the fact that the signal
expectations hXki are expressible as a sum over only three

23Our convention is that of Ref. [73]; an alternative convention
would take Uk to be a square unitary matrix (here, 15 × 15),
and Sk to be rectangular diagonal (here, 15 × 3).

24Indeed, for the purposes of Sec. Vonly, observation (a) would
have sufficed. This is because Eq. (54) gives a likelihood, which
is a function of parameters for fixed data, and we only use this in
Sec. V to construct a marginalized posterior on ε in Eq. (63)
below. Any term in Eq. (54) that is a function of the data only and
independent of the parameters gives no useful information about
those parameters, and constitutes a piece of the parameter-
independent normalization constant for that marginalized pos-
terior, but the structure of that parameter-independent normali-
zation constant is irrelevant, since the posterior gets renormalized
to a give a unit integral. This leads to conclusion (a0). The reason
that this argument is insufficient is that in Sec. VI we again
interpret the likelihood Eq. (55) [or, really, the marginalized
likelihood Eq. (60)] expressed in terms of the Zk as the
probability density for Zk to be observed given the parameters.
Naturally, this is usually exactly what a likelihood like Eq. (45) is,
by definition: Lkðε; ckj  XkÞ≡ α · pð  Xkjε; ckÞ with α a numerical
constant. However, had we dropped a parameter-independent but
Zk-dependent term in Eq. (54), we could no longer make the
cognate identification for Eqs. (55) or (60). As such, it is
important for the arguments in Sec. VI that observation (b) is true.
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linearly independent vectors in the 15-dimensional space;
see Eq. (38). What the foregoing mathematical manipu-
lations have succeeded in identifying is the relevant part of
the data  Xk to keep in the likelihood, Zk, and the part that is
superfluous to the signal search,  Bk.
The cognate full likelihood combining all the coherence

times (assuming they are independent experiments) is
given by

Lðε; fdkgjfZkgÞ≡
Y
k

Lkðε; dkjZkÞ: ð56Þ

2. Marginalized likelihood function

Our goal is to construct the posterior distribution for ε in
a Bayesian analysis framework. In constructing this pos-
terior however, we must account for the fact that our model
for the DPDM field is such that we may not treat the dk
simply as arbitrary model parameters which can be speci-
fied by us: Instead, the statistical behavior of the DPDM
field that emerges from the field being the sum of a large
number of interfering plane waves (see discussion in Sec. II
and Ref. [42]) dictates that the individual dk should
themselves be treated as random variables that must be
drawn from the appropriate distribution; see, e.g.,
Refs. [66,67,69,70,72]. Within the Bayesian framework,
the appropriate procedure to fold that information into the ε
posterior is to marginalize the combined likelihood Eq. (56)
over the dk.
In this subsection we discuss the appropriate likelihood

that describes the distribution of the dk, and then construct
the marginalized combined likelihood.
Given the discussion in Sec. II [in particular Eq. (2)], and

the definitions of the ck in Eqs. (18)–(20), both the real and
imaginary parts of ck are independent normally distributed
variables with mean zero which satisfy hjckj2i ¼ 1. Since
Vk is a unitary matrix, the same is true for the derived dk:
hjdkj2i ¼ 1. Therefore, the appropriate auxiliary likeli-
hoods for the dk should be taken to be

LkðdkÞ ¼ exp ð−3jdkj2Þ; ð57Þ

up to an irrelevant overall normalization.25

The combined auxiliary likelihood for the dk is thus

LðfdkgÞ ¼
Y
k

LkðdkÞ; ð58Þ

again assuming that the polarization vectors in distinct
coherence times are independent random draws.
The marginalized combined likelihood defined as

LðεjfZkgÞ≡
Z �Y

i;k

dðRe dikÞ · dðIm dikÞ
�

× Lðε; fdkgjfZkgÞLðfdkgÞ ð59Þ

is thus given by (see Appendix D 1 for a detailed derivation)

LðεjfZkgÞ ∝
Y
i;k

1

3þ ε2s2ik
exp

�
−

3jzikj2
3þ ε2s2ik

�
; ð60Þ

where zik is the ith component of Zk, and sik is the diagonal
ði; iÞ element of the matrix Sk (i.e., the ith singular value of
Nk); in both cases, i ¼ 1, 2, 3.

3. Priors and posteriors

Bayes’ theorem constructs themarginalized posterior for ε
denoted by pðεjfZkgÞ from the marginalized likelihood
given by Eq. (60), and the prior on ε denoted by pðεÞ:

pðεjfZkgÞ ∝ LðεjfZkgÞ · pðεÞ: ð61Þ

We must thus specify a choice of prior on ε. Following
Ref. [69], we will take the (reparametrization-invariant)
objective Jeffreys prior [74] for ε; in a similar context, this
choice of prior has the additional feature that it yields limits
from a Bayesian analysis which are broadly in agreement
with an alternative, frequentist approach [69].

The Jeffreys prior is defined formally in terms of the
Fisher information matrix [74]; applying the formal def-
inition, we show in Appendix D 2 that, for our analysis, this
prior takes the form

pðεÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;k

4ε2s4ik
ð3þ ε2s2ikÞ2

s
: ð62Þ

The posterior for ε is thus

pðεjfZkgÞ≡N ×

�X
i;k

4ε2s4ik
ð3þ ε2s2ikÞ2

�1
2

×
Y
i;k

1

3þ ε2s2ik
exp

�
−

3jzikj2
3þ ε2s2ik

�
; ð63Þ

where N is a normalization factor. We can without loss of
generality26 restrict ε ≥ 0, and demand that N is set such

25The numerical factor of 3 in the exponent arises from
assuming that the probability density function for each of the
Re dik and Im dik for i ¼ 1, 2, 3 takes the (common) form of a
zero-mean normal distribution with unknown width, fðxÞ ∝
exp½−αx2� for x ¼ Re d1k; Im d1k;…; Im d3k, and then finding the
value of α such that the normalization condition hjdkj2i ¼ 1 is
satisfied. See also footnote 22.

26Since the kinetic-mixing term is the only term in the
Lagrangian (see Ref. [42]) that is odd in A0 (in the interaction
basis), a trivial field definition A0 → −A0 maps ε → −ε.
Moreover, both the prior and posterior are even in ε.
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that
R
∞
0 dεpðεjfZkgÞ ¼ 1.27 With the appropriately nor-

malized posterior, we can then set upper bounds on ε; for
instance, the 95% credible upper limit (local significance) ε̂
will be given by solving

Z
ε̂

0

dεpðεjfZkgÞ ¼ 0.95: ð64Þ

E. Coherence time approximation and
choice of frequencies

Our analysis to this point has been constructed to obtain
a bound at a single frequency fA0, but we have not yet
specified how this frequency was chosen. One would
ideally simply scan this frequency in some range.
However, computationally we require the use of an FFT
which can only evaluate bounds at discrete frequencies, and
the specific set of frequencies depends on the duration of
data we choose to analyze coherently. We discuss these
issues further in this subsection.
In this subsection, we will be more precise about our

usage of the term coherence time; cf. footnote 13. Let T
refer to the length of the data subseries analyzed in a
coherent fashion under the analysis procedures thus far
outlined in Sec. V, and denote by

TcohðfA0 Þ ¼ min
�

1

fA0v2DM
; T tot

�
; vDM ∼ 10−3 ð65Þ

the shorter of the actual DPDM signal coherence time, and
the total duration T tot ¼ 48 yr of SuperMAG data available
for analysis.
For the following reasons, it has been implicit in our

analysis construction to this point that T ≈ TcohðfA0 Þ:
(1) beginning in Sec. VA 3 we split the SuperMAG data

into subseries of length T, and assumed for the
purposes of constructing the likelihood in Sec. V D
that the polarization of the signal was constant for
the duration of each [i.e., that dk for each k was a
single random draw from the expected distribution,
Eq. (57)]. For that to be a consistent assumption,
each signal subseries must not extend beyond a
single actual DPDM coherence time, because the

polarization wanders randomly on the latter time-
scale T ≲ TcohðfA0 Þ, and

(2) in Sec. V D, we explicitly constructed the joint
likelihood over all the duration-T intervals by
treating the polarization in each interval as having
a distinct random orientation uncorrelated with that
in the neighboring intervals, if any [i.e., each of the
dk is a distinct random draw from the distribution
defined by Eq. (57), uncorrelated with previous or
future draws]. Because we additionally analyze
our data in contiguous blocks of duration T, this
is only a good assumption if the duration of each
block is long enough that, at the start of the
subsequent block, the polarization has effectively
been randomized by phase drifts. That latter time
period is however again simply the definition of the
DPDM coherence time, so we have T ≳ TcohðfA0 Þ.28

Since both T ≲ TcohðfA0 Þ and T ≳ TcohðfA0 Þ are needed,
we have to take T ≈ TcohðfA0 Þ for consistency.29

Temporarily setting aside that TcohðfA0 Þ itself is only
known approximately (because the DM velocity profile
is not known exactly, and the entire concept of the DPDM
coherence time arises precisely because of the velocity
dispersion in the interfering constituent plane waves), there
is a computational problem in assuming T ¼ TcohðfA0 Þ
exactly: It makes the duration of the signal to be analyzed
an explicit function of the frequency at which the analysis is
being performed [at least for all frequencies such that
1=ðfA0v2DMÞ < T tot]. That would preclude the application,
necessary here owing to the multigigabyte volume of the
full SuperMAG dataset, of the FFT algorithm to process
the analysis of many frequencies simultaneously, because
the FFT relies on having a fixed-duration signal to trans-
form. Having to either perform the slow DFT for each
frequency, or indeed having to reperform the FFT for every
frequency of interest, would be computationally prohibitive
given available resources.
At a high level, our solution to this computational issue

seeks a trade-off between implementing the condition

27Note that in the kinetically mixed basis in which
L ⊃ − 1

4
F2 − 1

4
ðF0Þ2 − 1

2
ϵFF0, there is a bound on jϵj < 1 for

the physical region of parameter space that is smoothly connected
to ϵ ¼ 0; at ϵ ¼ �1, one or other of the two linear combinations
F � F0 becomes a nonpropagating degree of freedom (i.e., the
kinetic term vanishes). However, in the interaction basis we use in
this work, we have ε ¼ ϵ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, so ε is unbounded above in

the physical region of parameter space. Note however that our
computation of the signal Eq. (1) is only valid for ε ≪ 1 [i.e., we
have neglected terms at Oðε2Þ] [42]. However, our posterior
distributions have little support for ε≳ 1; our results are thus self-
consistent.

28We note that if our analysis were over noncontiguous blocks,
the criterion is simply that the start times of consecutive subseries
are spaced by at least TcohðfA0 Þ, and not that the subseries’
durations themselves must be at least TcohðfA0 Þ long. However,
we have mandated that there is no gap between consecutive
subseries in order to maximize data usage, so the criterion for
our analysis as constructed is indeed as stated in the text.

29Technically, without additional assumptions, only point
(1) holds for the case where 1=ðfA0v2DMÞ≳ T tot, such that
TcohðfA0 Þ ¼ T tot per Eq. (65). In that case, for point (2) to hold,
the necessary assumption is simply that we wish to analyze all the
available data to maximize the statistical power of the search; we
implement this assumption by analyzing the whole dataset
coherently with T ¼ T tot in this case. Since we define TcohðfÞ
such that max½TcohðfÞ� ¼ T tot, this case is automatically handled
correctly by the discussion in the main text.
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T ≈ Tcoh,
30 and still being able to exploit the computational

speed-up of the FFTalgorithm to process many frequencies
simultaneously. We will break up our full range of
frequencies of interest into some small number of narrower
frequency ranges indexed by n, and perform our analysis
for the frequencies in each such range n using a fixed
duration of the data subseries, T ¼ Tn. We chose Tn to be
independent of frequency within each individual frequency
range n (but varying for different n) such that Tn ≈ Tcoh is
satisfied, up to some fixed tolerance (which we take to be
3%), for all of the frequencies that lie within range n.
Since Tn is fixed within each frequency range n, we can
then utilize the FFT algorithm to obtain results simulta-
neously for the whole set of FFT frequencies that lie within
range n, ffnig (where the fni are multiples of 1=Tn; see
below). As wewill not actually require too many different n
(indeed we need only 56 such ranges) to cover our
whole frequency range of interest in this way, this strategy
allows us to construct results under the assumption that
T ≈ TcohðfÞ up to some known controllable tolerance,
while also exploiting the FFT computational speed-up, at
only the modest cost of having to run the FFT algorithm
56 times.
More precisely, we choose Tn to be31

Tn ≈
T tot

ð1þ qÞ2n ; ð66Þ

where q ¼ 0.03 fixes the aforementioned 3% tolerance, and
the consecutive set of integers n ¼ 0;…; 55 is chosen such
that Tn ranges from T tot down to approximately 106

minutes [i.e., the coherence time, assuming vDM ¼ 10−3,
corresponding to the sampling rate of the SuperMAG data,
which is 1=ð1 minÞ].
The set of frequencies ffnig that we will consider to fall

within range n will be fni ¼ i=Tn for i ¼ imin
n ;…; imax

n . For
n ≠ 0, we take imin

n ¼ b106=ð1þ qÞc, while for the spe-
cial case n ¼ 0 (i.e., when the entire dataset is treated
coherently), we have imin

n ¼ 0. The value of imax
n is

defined iteratively starting with the highest-frequency
set, and for each n is taken to be the largest integer
such that max½ffnig� < min½ffnþ1;ig�; this means that,

approximately, imax
n ≈ b106ð1þ qÞc.32 Because imax

n must
be iteratively constructed beginning with the set of frequen-
cies containing the highest frequency, we must specify the
highest frequency in the construction: This is taken to be
one DFT frequency bin below the SuperMAG sampling
frequency (i.e., twice the Nyquist frequency), such
that imax

55 ¼ T55=ð1 minÞ − 1.
Defined this way, the individual sets of frequencies ffnig

cover nonoverlapping ranges of frequencies. Moreover, for
frequencies fni such that TcohðfniÞ < T tot, we have				Tn − TcohðfniÞ

TcohðfniÞ
				 ¼

				 i
106

− 1

				 ð67Þ

≤
				 imax

n

106
− 1

				 ð68Þ

≤ q: ð69Þ

Meanwhile it is easy to show that frequencies with
TcohðfniÞ ¼ T tot necessarily have n ¼ 0 and so TcohðfniÞ ¼
Tn trivially by Eq. (66). Therefore, we indeed approximate
the coherence time (or total data duration) to within a fixed
percentage for every frequency fni within every range n.
We show a graphical representation of this approxima-

tion scheme in Fig. 3.

FIG. 3. Graphical representation of the scheme used to approxi-
mate TcohðfÞ as outlined in Sec. V E. The solid black line shows
the values of Tn employed in the analysis, as a function of the
frequency. The solid red line shows the approximate coherence
time ðfv2DMÞ−1 for the DPDM signal, while the red shaded band
gives a 3% tolerance around this approximate value; note
importantly that for all f such that ðfv2DMÞ−1 < T tot, Tn lies
within this tolerance of ðfv2DMÞ−1. The dotted green line shows
the total duration of the dataset: Note that once ðfv2DMÞ−1 > T tot,
Tn ¼ T tot is assumed (i.e., the data are all analyzed in a single
coherent block).

30Note that, in some sense, this solution exploits the existing
inherent uncertainty in the exact length of the DPDM coherence
time to our advantage: We are not honor bound to implement an
inefficient analysis strategy to obtain T ¼ TcohðfA0 Þ exactly when
the latter is only approximately known. We have some freedom to
instead design an efficient analysis strategy that obtains
T ≈ TcohðfA0 Þ.

31LetM be the number of data points corresponding to the time
interval Tn. For computational purposes in the FFT, it is
preferable for all the prime factors of M to be small. Therefore,
we actually choose Tn such that M is the integer within 10 of the
estimate implied by Eq. (66) that has the minimal largest prime
factor.

32While the FFT algorithm run on each duration-Tn dataset
will also generally yield results for frequencies fni with i outside
the range shown in the text, for those frequencies the coherence
time approximation tolerance will not be satisfied. We thus
discard those results and utilize a different n for the construction
of the results at the corresponding frequencies.
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F. Correction for finite signal width

Our analysis construction to this point has operated on
the assumption that the dark-photon signal is exactly
monochromatic within a coherence time, so that the
entirety of the signal power appears in a single DFT
frequency bin; in order words, we assumed exact coherence
of the signal for a full coherence time Tcoh ∼ ðfA0v2DMÞ−1.
Indeed, in the preceding subsection we matched the DFT
frequency bin width to the coherence time to within 3%
over the entire frequency range we consider in order to
preserve this property.33 However, this is a slight over-
simplification of the situation: The DPDM signal is actually
σf ∼ 1=Tcoh wide in frequency space, so while we do
expect the majority of the signal power to appear in the
DFT bin corresponding to fA0 , some power will appear in
the neighboring (few) bins as well. Given the way our
analysis is constructed, if we did not account for this, we
would set limits that are too aggressive.
While a more sophisticated approach to this analysis

would have considered this spreading of the signal power
from the beginning of the analysis construction, we leave
such an improvement to future work. Instead, precisely
because we have matched the DFT bin width to the
signal width to high accuracy over the whole frequency
range, we can apply a simple frequency-independent
rescaling factor to approximately correct for this in a
post hoc fashion. That is, we proceed by simply
degrading the limit on the kinetic-mixing parameter from
Eq. (64):

ε̂ → ε̂0 ≡ ζ · ε̂; ð70Þ

with ζ > 1. In all of our results to follow, we pre-
sent the degraded limits ε̂0 unless otherwise explic-
itly noted.
It remains to estimate ζ. For the purposes of this

estimate, we ignore the vectorial nature of the DPDM
field, and focus only on the frequency-space spreading (this
is equivalent to considering each vectorial component of

the DPDM field independently); see Sec. VI C for the
cognate signal injection that accounts for the vectorial
nature of the signal and that validates this approach.
Assume that the DPDM field (component) is a sum of a

large number of plane waves (see, e.g., Sec. II A of
Ref. [42]):

A0ðtÞ ∼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mA0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p

×
XN
n¼−N

exp
h
imA0 t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2n

q
þ iϕn

i
; ð71Þ

where vn are samples drawn from an assumed galactic-
frame Maxwellian velocity distribution with an rms speed
v0 ∼ 10−3, and ϕn is a random phase. Now analyze this
field in the Fourier domain via the DFT, and let the largest
single-bin value of the resulting PSD be S�.

34 Let the sum
over the whole PSD of this field (i.e., the total signal power)
be ΣS. Because our analysis is very roughly constructed so
as to compare single-bin signal power to single-bin noise
power, and because the PSD of the resulting magnetic
field signal Eq. (1) arising from the DPDM is proportional
to ε2, the appropriate degradation factor would then be
ζ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
ΣS=S�

p
. Averaging over 100 distinct random realiza-

tions of DPDM fields of this type constructed from sums of
2N þ 1 ¼ 5001 plane waves, we estimate numerically that
the degradation factor would be ζ ∼ 1.24ð1Þ. We therefore
set ζ ¼ 1.25 as the degradation factor.

This 25% degradation factor is comparable to the
uncertainties on many of our noise properties (see
Appendix E), and so proceeding in this way is consistent
with the overall accuracy of our full analysis.
We discuss this degradation factor further in Sec. VI C,

where we verify that an injected signal would be correctly
reconstructed.

G. Results

We now have in place all the relevant tools to set
upper bounds on the kinetic-mixing parameter ε; the
results of our analysis are shown as the blue band in

33For fA0 ≲ 6.4 × 10−4 Hz, preservation of this property be-
gins to fail because the signal coherence time begins to exceed
(3% more than) the available data duration; see left edge of
Fig. 3. As the frequency is decreased further, the coherence time
further exceeds the data duration, and the signal therefore begins
to become much narrower than a single DFT bin. This concen-
tration of signal power in a single bin more closely matches our
analysis construction, which implies that the degradation factor
should be smoothly tapered to 1 (i.e., no degradation) for
fA0 ≪ 6.4 × 10−4 Hz. However, the lowest frequency that we
explicitly present limits for in this work (see Fig. 4) is
fA0 ¼ 6 × 10−4 Hz; at this frequency, the coherence time is still
within 10% of the available data duration, and so we find it
unnecessary to implement any such tapering of the degradation
factor in presenting our results.

34Note that the average frequency of the DPDM field con-
structed in this fashion is 2πfA0 ¼mA0 h

ffiffiffiffiffiffiffiffiffiffiffi
1þv2

p
i≈mA0 ð1þv20=2Þ,

which differs from the standard relationship we have employed to
this point, 2πfA0 ¼ mA0 , by a frequency shift of order (half) the
DFT bin spacing. The correct way to interpret this shift is to
identify the physical mean frequency of the DPDM field with the
frequency at which we set limits, and consider this shift to be a
modification to the relationship between fA0 and mA0 ; the
correction is however negligible everywhere except for the
frequency-mass identification. This procedure guarantees that
the highest-power DFT bin is (except for fluctuations) the bin
centered on fA0 . See the discussion in Sec. VI C.
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Fig. 4 as 95% credible upper limits (local significance) on ε
as a function of the dark-photon mass mA0 . These
constraints are complementary to the existing astro-
physical limits also presented in Fig. 4, which arise from

dark-photon heating of gas in the interstellar medium
in the Milky Way (dotted orange) [46], the interga-
lactic medium around the time of helium reionization
(short-dashed red) [48], and in the Leo T dwarf galaxy

FIG. 4. Exclusion bounds on the kinetic-mixing parameter ε of the dark-photon dark matter as a function of the dark-matter
mass mA0 (frequency fA0 ). The darker blue line (appearing as a band owing to frequency-to-frequency limit fluctuations) shows
our 95% credible upper limit (local significance) [cf. Eqs. (64) and (70)] on the kinetic-mixing parameter ε as a function of the
dark-photon dark-matter mass (corresponding Compton frequency noted on upper axis), assuming that the dark photon
constitutes all of the local dark-matter density, ρDM ¼ 0.3 GeV=cm3, but taking into account the stochastic variations expected
for classical-field dark matter (see, e.g., Refs. [66,67,69,70,72]). These limits include the effect of the 25% degradation factor
discussed in Sec. V F. To guide the eye and give a sense of the relative density of stronger vs weaker limits in narrow frequency
bands, we also show as the lighter blue solid line the sliding average of the limit taken over the neighboring �25000 frequencies.
Various sharply rising narrow spikes in our limits provide a variety of potential candidate signals; we examine these in detail in
Sec. VI, where we conclude that none constitute robust evidence for a real signal. The various other lines show a variety of
existing astrophysical limits arising from dark-photon dark-matter heating of gas in a number of astrophysical environments: the
ionized interstellar medium in the Milky Way (dotted orange) [46], the intergalactic medium around helium reionization (short-
dashed red, labeled “Heþþ”) [48], and gas in the Leo T dwarf galaxy (dot-dashed purple) [49]. A DM-depletion limit from
nonresonant dark-photon–photon conversion [48] is also shown (long-dashed green, labeled “Δρcdm”). Our limits are
complementary to these existing bounds as they arise from terrestrial experimental data (analogous to “direct detection”),
and are thus subject to completely different sources of systematic uncertainty as compared to the other bounds shown (which are
analogous to “indirect detection”).
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(dash-dotted purple) [49],35,36 or from dark-photon–photon
conversion depleting dark matter (long-dashed green) [48].
Future bounds based on 21 cm observations are expected to
become strong in this mass range [50], but we do not show
current limits or projections here in light of the EDGES
global 21 cm anomaly [78].
We note the existence of some clearly visible sharp peaks

in the exclusion bounds shown in Fig. 4. These peaks are
among some 30 naive signal candidates that we identify in
the data. We discuss these naive signal candidates in detail
in the next section, where we conclude that none of them
clearly survive robustness checks on their consistency with
the expected signal properties. Because we dismiss all these
signal candidates, we can reasonably also plot in Fig. 4 as a
guide to the eye a smoothed version of our limits (light blue
solid line) that is obtained by averaging our limits over the
�25000 neighboring frequency bins.
Finally, we note that for mA0 ≲ 3 × 10−17 eV our limits

scale with increasing massmA0 faster thanm−1
A0 [cf. Eq. (1)],

which is a manifestation of the decreasing noise at higher
frequency in the SuperMAG magnetic field data. This
trend is only terminated at the upper end of the plotted
mass range owing to decreased sensitivity around and
above the Nyquist frequency (fNyq corresponds to a mass
mA0 ∼ 3 × 10−17 eV). This observation is highly encour-
aging because, assuming that this noise trend were to be
maintained in the higher-cadence (i.e., one-second)
SuperMAG data currently being released, it is plausible
that this search method would allow access to kinetic-
mixing parameter space at higher frequency that is cur-
rently unconstrained by astrophysical observations; we
have not however undertaken any analysis of the higher-
cadence data to check whether this is the case—this is
deferred to future work. In any event, we note that even our
existing limits are subject to completely independent
systematics as compared to the existing astrophysical
constraints in the mass range where we have presented
limits in Fig. 4, and are already therefore complementary.

VI. CANDIDATES, VALIDATION,
AND REJECTION

Our results in Sec. V G are phrased as exclusions (upper
bounds) on the value of the parameter ε as a function of
the DPDM mass. However, our analysis would be incom-
plete without also considering whether there are any

indicia in the data of nonzero DPDM signals; indeed,
this is the logical prior step. Even casual observation of
Fig. 4 indicates the existence of multiple “peaks” in the
limits: frequencies at which the bounds are considerably
weaker than those at neighboring frequencies. While this
behavior may be the product of statistical fluctuations or
other real non-DM-signal features in the data, it would
also be expected behavior for the upper limit on ε to
fluctuate upward for any specific frequency or frequencies
at which a real DPDM signal(s) were present in the data
(with a “true” value of ε somewhat smaller than the value
of the limit we have placed on ε for the respective
frequencies).
In this section, we therefore complete our analysis by

first developing in Sec. VI A formal criteria for identifying
what we call “naive signal candidates”: We find 30 such
candidates in the data. Then, in Sec. VI B, we develop and
apply tests to analyze whether or not the identified
candidates are fully consistent with the expected properties
of a DPDM signal, Eq. (1): On the basis of the discussion
there, we conclude that none of the 30 naive signal
candidates can be considered robust evidence for a real
DPDM signal in the SuperMAG data. Finally, we show in
Sec. VI C that a mock signal of the form Eq. (1) injected
into the (partially processed) SuperMAG data would be
identified by our analysis, and not rejected by the robust-
ness tests we develop, which validates our analysis
approach. We offer discussion in Sec. VI D.

A. Naive signal candidates

We begin by developing the formal criterion for declar-
ing a feature in the data to be a naive signal candidate.
As a first step, we must determine the statistical

significance of any such feature under the zero-signal, null
hypothesis: ε ¼ 0. We work with the quantities zik defined
in Sec. V D 2, whose (marginalized) likelihood for a given
ε is given by Eq. (60).
From Eq. (60), we can see that under the null hypothesis

(zero signal; ε ¼ 0), the real and imaginary parts of the
quantities zik are described by a zero-mean multivariate
normal distribution. Therefore to determine which frequen-
cies in our original analysis are inconsistent with the absence
of a signal, we can simply compute the χ2 statistic37

Q0 ¼ 2
X
i;k

jzikj2; ð72Þ

and its p-value

p0 ¼ 1 − Fχ2ð6K0Þ½Q0�; ð73Þ

where Fχ2ðνÞ is the cumulative distribution function (CDF)
of the χ2 distributionwith ν degrees of freedom, andK0 is the

35Per Ref. [75], the limits in Ref. [49] are mildly weaker than
those in the arXiv v1 and v2 preprints of that paper, on account of
inter alia updated gas metallicity measurements of Leo T that
were incorporated in the published version of Ref. [49].

36Limits similar to those in Ref. [49] appear also in Ref. [47].
The latter reference also gives a stronger preliminary bound based
on a gas cloud of anomalously low (and disputed) temperature,
which we do not show here; see the discussion in Refs. [47,76,77]
and our comments in Ref. [42].

37Arguments similar to those advanced in footnotes 22 and 25
dictate the inclusion of the numerical factor of 2 here.
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number of duration-T subseries into which we partitioned
the full time series (i.e., the number of values through which
the index k ranges; see Sec. VA 3). The relevant number of
degrees of freedom is 6K0 since each of the three Cartesian
components of Zk has independent real and imaginary parts;
note that we have made no correction for parameter estima-
tion to the naive number of degrees of freedom. Figure 5
shows the value of p0 for each frequency in the range of
interest, as well as a histogram of allp0-values taken over the
whole range of frequencies we analyze.
We consider a data feature at a certain frequency to be a

naive signal candidate (with 95% confidence) if p0 is below
the threshold pcrit defined by

ð1 − pcritÞNf ¼ 0.95; ð74Þ
where Nf is the number of frequencies we consider in the
range of interest; i.e., this threshold takes into account a
trials factor, so the 95% confidence is global. For the
frequency range of interest, 6 × 10−4 Hz < fA0 <
½ð1 minÞ−1 − 6 × 10−4� Hz,38 we have Nf ∼ 3.3 × 106,
and the corresponding threshold is pcrit ¼ 1.6 × 10−8; this
threshold is shown as the horizontal (respectively, vertical)
orange line in the left (right) panel of Fig. 5.

Using the criterion Eq. (74), we identify 30 naive DPDM
candidates in our frequency range of interest; see Table II.
All of these naive candidates are sufficiently narrow (i.e.,
they are only one to two frequency bins wide, consistent
with Δf=fA0 ∼ v2DM ∼ 10−6) to be a potential DPDM
signal. However, we cannot yet declare any of these naive
candidates to be a DPDM signal, as we must first verify that
they pass further checks on their spatial and/or temporal
characteristics.

B. Tests of candidates

Having identified 30 naive signal candidates (see Table II)
on the basis of the criterion specified in Sec. VI A, it is
important to develop tests for the robustness of those naive
candidates.Candidateswhich fail these robustness checks can
be rejected as being inconsistent with a real DPDM signal.
In particular, although the naive signal candidates are

indeed real magnetic field signal patterns in the data that
have strong overlap with the VSH field pattern expected
from a DPDM signal, it must also be the case that a DPDM
signal should be present in all stations, and at all times.
Therefore, reanalysis of any subdivision of the SuperMAG
dataset should, for a real signal, yield parameter determi-
nations consistent with the analysis of the full dataset. If, on
the other hand, analysis of subdivisions of the full dataset
yield inconsistent DPDM parameter determinations, that is
strong evidence that the naive signal candidate is not a real
DM candidate; instead, this could be evidence for strong in-
band local (in time or space) fluctuations driving the
identification of the naive candidate.
In this subsection, we develop these resampling tests and

apply them to the 30 signal candidates we have identified.
Our first task is to identify the appropriate subdivisions

of the full dataset to analyze independently for this
resampling analysis. We perform two types of divisions
of the data: by geographical location of the station, and by
epoch of data acquisition. For the geographical division, we
randomly partition the stations into four disjoint subsets.39

FIG. 5. Left panel: the (local) p0-values (blue) for every frequency bin analyzed in our range of interest, computed per Eq. (73). The
threshold value for declaring a naive candidate signal at 95% confidence pcrit ≈ 1.6 × 10−8 [see Eq. (74)] is shown by the horizontal
dashed orange line; this threshold takes into account a trials factor (i.e., the significance is global). We identify 30 naive signal candidates
in the range 6 × 10−4 Hz < fA0 < ½ð1 minÞ−1 − 6 × 10−4� Hz (see text). We investigate these naive signal candidates in Sec. VI B.
Right panel: histogram of all of the p0-values that are shown in the left panel, showing the expected smoothly falling distribution with
the identified signal candidates as clear outliers above the threshold pcrit, which is shown by the vertical dashed orange line.

38The lower limit here is the lower end of our frequency range
of interest. The upper limit is its reflection across the Nyquist
frequency.

39Because we require each disjoint subset to have at least three
active stations at all times in order to construct five linearly
independent time series XðnÞ ½j ¼ 1;…; 5� for each subdivision,
we are forced for this part of the analysis only to ignore the first
six years of available data: insufficiently many stations are
continuously operative during this time. Thus, for the geographi-
cal subdivisions in this resampling analysis, we analyze only the
last 42 years of data available.
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For the temporal division, we divide the full dataset into
four consecutive, nonoverlapping temporal intervals, each
with a duration of 12 years.
For each subset of data, we reperformed the analysis

described in Sec. V for the frequencies corresponding to
each of the 30 naive signal candidates only. In performing
this analysis, our choice of the time interval T described at
length in Sec. V E is however inherited from the analysis of
the full dataset instead of being readjusted on the basis
of the subdivided data. Note however that this does mean
that the number of duration-T intervals, Kj, in each
subdivision j of the data may be different from the number
of such intervals in the analysis of the full dataset, K0.

For the analysis of each division of the data j ¼ 1;…; 8
(with j ¼ 1;…; 4 being the temporal splits and j ¼ 5;…; 8
being the geographical splits), this reanalysis procedure
yields the quantities zik;j and sik;j; these have the same
definitions as the zik and sik in Sec. V, with the exception
that they are evaluated only on the jth subdivision of the
data. For a kinetic-mixing parameter of size ε, Eq. (60)
indicates that the relevant test statistic to compute on the
data in each subdivision j is the following χ2 statistic:

QjðεÞ ¼
X
i;k

6jzik;jj2
3þ ε2s2ik;j

: ð75Þ

TABLE II. Naive signal candidates and their various associated p-values. p0 indicates the local p-value significance of the candidate
in the original analysis under the null hypothesis of zero signal (see also Sec. VI A and Fig. 5); also shown is the equivalent one-sided,
global Gaussian-standard-deviation significance of the signal candidate [Eq. (80)]. The values p1;…; p4 indicate the significances of the
candidate in the individual subdivisions of the data on the basis of the temporal splitting outlined in Sec. VI B; likewise, p5;…; p8

indicate the significances of the candidate in the individual geographical subdivisions discussed in the same location in the text. For
j ¼ 1;…; 8, the pj are weighted by the posterior on ε from the analysis of the full dataset; see Eq. (77). Moreover, pj for j ¼ 1;…; 8 that
lie either close to 0 or close to 1 indicate disagreement with the original analysis. ptime (respectively, pgeo) is the combined significance
of the temporal (geographical) split of the data in the resampling analysis. pfull is the overall combined significance in the resampling
analyses. We discuss these results at length in the text.

No. f (mHz) p0 σðp0Þ p1 p2 p3 p4 ptime p5 p6 p7 p8 pgeo pfull

1 2.777776 1.5 × 10−15 5.7 0.96 0.94 0.10 0.00 7.5 × 10−4 0.90 0.39 0.12 1.00 9.1 × 10−4 6.9 × 10−6

2 2.777779 2.6 × 10−11 3.8 0.94 0.90 0.21 0.00 0.015 0.99 0.06 0.18 0.99 2.7 × 10−3 3.2 × 10−4

3 3.321727 7.0 × 10−12 4.1 0.97 0.62 0.01 0.01 2.3 × 10−3 0.59 0.84 0.49 0.18 0.79 0.026
4 3.333330 1.2 × 10−9 2.7 0.98 0.78 0.11 0.00 3.8 × 10−3 0.03 0.09 0.01 0.44 0.023 6.7 × 10−4

5 3.333333 2.6 × 10−38 11.7 0.97 0.57 0.01 0.00 4.2 × 10−5 0.07 0.00 0.00 0.79 3.3 × 10−5 1.9 × 10−8

6 3.344939 3.9 × 10−18 6.7 0.99 0.78 0.46 0.01 0.034 0.61 0.51 0.36 0.28 0.97 0.27
7 4.166664 2.4 × 10−11 3.8 0.39 0.35 0.57 0.05 0.62 1.00 0.01 0.17 0.38 1.1 × 10−3 9.7 × 10−3

8 4.432841 1.5 × 10−9 2.6 1.00 0.84 0.56 0.14 0.051 0.47 0.73 0.81 1.00 0.091 0.023
9 4.999999 4.9 × 10−32 10.4 0.99 0.71 0.08 0.00 9.0 × 10−5 0.10 0.12 0.00 0.98 3.6 × 10−3 3.7 × 10−6

10 5.011607 2.2 × 10−17 6.4 0.97 0.83 0.75 0.00 3.1 × 10−3 0.94 0.41 0.09 0.81 0.25 6.6 × 10−3

11 5.555552 5.2 × 10−9 2.1 0.17 0.98 0.27 0.01 0.031 0.25 0.88 0.09 1.00 3.5 × 10−4 1.1 × 10−4

12 5.555557 2.9 × 10−16 6.0 1.00 0.59 0.35 0.00 1.0 × 10−3 1.00 0.10 0.88 1.00 3.7 × 10−4 4.0 × 10−6

13 6.655058 2.0 × 10−11 3.8 1.00 0.44 0.90 0.49 0.058 0.74 0.96 0.59 0.98 0.11 0.031
14 6.666665 1.9 × 10−36 11.3 1.00 0.94 0.10 0.00 2.0 × 10−5 0.99 0.02 0.02 0.86 2.8 × 10−3 7.1 × 10−7

15 6.944447 1.8 × 10−10 3.2 1.00 0.34 0.60 0.03 1.7 × 10−3 0.98 0.98 0.86 1.00 8.4 × 10−7 2.3 × 10−8

16 8.321724 5.2 × 10−14 5.1 0.98 1.00 0.07 0.11 1.1 × 10−4 0.88 0.94 1.00 0.94 5.6 × 10−3 6.6 × 10−6

17 8.333325 4.5 × 10−11 3.6 0.82 0.61 0.39 0.03 0.36 0.43 0.54 0.17 0.90 0.67 0.55
18 8.333333 2.1 × 10−32 10.5 0.99 0.59 0.83 0.00 1.2 × 10−3 1.00 0.42 0.79 1.00 6.8 × 10−5 9.5 × 10−7

19 8.333342 4.5 × 10−11 3.6 0.82 0.61 0.39 0.03 0.36 0.43 0.54 0.17 0.90 0.67 0.55
20 8.344942 5.2 × 10−14 5.1 0.98 1.00 0.07 0.11 1.1 × 10−4 0.88 0.94 1.00 0.94 5.6 × 10−3 6.6 × 10−6

21 9.722222 5.7 × 10−17 6.2 1.00 0.14 0.64 0.00 2.5 × 10−5 0.99 0.95 0.94 1.00 1.0 × 10−6 4.1 × 10−10

22 9.999996 4.6 × 10−19 7.0 1.00 0.99 0.40 0.03 2.2 × 10−4 1.00 0.01 0.11 0.44 7.5 × 10−3 1.7 × 10−5

23 10.00001 1.3 × 10−14 5.3 1.00 0.88 0.45 0.16 5.0 × 10−5 0.64 0.47 0.04 0.95 0.25 2.2 × 10−4

24 10.01160 5.7 × 10−9 2.1 0.98 0.47 0.98 0.80 0.062 0.86 0.42 0.95 0.98 0.076 0.023
25 11.11111 1.4 × 10−20 7.5 1.00 0.36 0.07 0.00 7.5 × 10−6 1.00 0.39 0.81 1.00 1.2 × 10−4 1.3 × 10−8

26 11.65507 9.3 × 10−13 4.5 1.00 1.00 0.99 0.56 3.7 × 10−7 1.00 0.61 0.97 1.00 5.4 × 10−7 3.7 × 10−12

27 11.66667 2.6 × 10−25 8.8 1.00 0.89 0.22 0.00 1.1 × 10−4 0.01 0.19 0.04 1.00 2.0 × 10−3 2.4 × 10−6

28 11.67827 3.9 × 10−13 4.7 0.92 0.99 0.97 0.10 10.0 × 10−3 0.99 0.88 0.31 0.48 0.12 7.5 × 10−3

29 13.33334 1.5 × 10−14 5.3 1.00 0.98 0.71 0.00 3.2 × 10−4 0.31 0.34 0.43 0.99 0.34 1.5 × 10−3

30 13.88889 7.8 × 10−20 7.2 0.98 0.98 0.26 0.00 4.1 × 10−6 0.67 0.02 0.71 1.00 3.6 × 10−7 2.5 × 10−11
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Given a fixed value of ε, it is easy to compute the p-value
for this test statistic: It is simply found from the CDF of the
χ2 distribution as40

pjðεÞ ¼ Fχ2ð6KjÞ½QjðεÞ�; ð76Þ
where Fχ2ð6KjÞ is again the CDF for a χ2 distribution with
6Kj degrees of freedom [see below Eq. (73)]; we have once
again made no correction for parameter estimation to the
naive number of degrees of freedom.
As we wish to test for consistency of the subdivisions of

the data with analysis of the full dataset, we then weight
these p-values by the posterior on ε computed in the
analysis of the full dataset pðεjfzikgÞ as defined in Eq. (63).
That is, we assign to subdivision j the p-value

pj ¼
Z

dεpðεjfzikgÞ · pjðεÞ: ð77Þ

We utilize Fisher’s method [79–82] to combine the pj
into a single p-value for the resampling checks. That is, we
construct a joint test statistic over all the data subsamples
by summing of the logarithms of the pj, and then compare
it to a χ2 distribution. Our tests here must however be two
tailed as both large and small pj indicate disagreement with
the original analysis. Therefore, the appropriate quantity
whose logarithm must be summed is the minimum of pj

and 1 − pj, rather than just pj. In other words, we will
combine these pj into the single test statistic

Qfull ¼ −2
X8
j¼1

ln ð2 · minfpj; 1 − pjgÞ; ð78Þ

which has the corresponding joint p-value for n ¼ 8 tests:

pfull ¼ 1 − Fχ2ð2nÞðQfullÞ ½n ¼ 8�; ð79Þ

with the relevant number of degrees of freedom in Fisher’s
method being 2n [79–82]. We additionally examine the
p-values that arise from considering the temporal-only and
geographical-only splits, ptime and pgeo, respectively; these
are defined in the same fashion as pfull, but with the
appropriate restriction on the sum over the data subsets j in
Eq. (78) in each case, and the number of χ2 degrees of
freedom in Eq. (79) set to be 2n ¼ 8 and not 2n ¼ 16 since
there are only n ¼ 4 tests in each case. All of these p-values
for each of the 30 naive signal candidates are shown in
Table II, along with the p0-value for each candidate [see
Eq. (73)], and its equivalent one-sided global Gaussian-
standard-deviation significance,

σðp0Þ≡
ffiffiffi
2

p
erfc−1½2ð1 − ð1 − p0ÞNfÞ�; ð80Þ

where Nf ≈ 3.3 × 106; see discussion below Eq. (74).
Before proceeding to the interpretation of these p-values,

we note an important caveat. The procedure for the
construction of pfull (but not for ptime or pgeo) given above
is approximate in the following sense. Each data subset
j ¼ 1;…; 4 from the temporal split of the data is fully
independent of each of the other distinct data subsets
from the temporal split, and the same is true of the subsets
j ¼ 5;…; 8 from the geographic split. However, the
temporal-split data subsets j ¼ 1;…; 4 are not fully inde-
pendent of the geographical-split data subsets j ¼ 5;…; 8.
For instance, the j ¼ 1 data subset consists of data at all
available stations for a fixed temporal duration, while the
j ¼ 5 data subset consists of data at all available times over
a fixed subset of stations; this obviously implies that data
from some station that is considered in the set of stations in
j ¼ 5 and that were taken during a time that is included in
the temporal duration considered for j ¼ 1, will appear
in both the j ¼ 1, 5 data subsets. If the data were exactly
evenly distributed among data subsets, this would mean
that there is an approximately 1=16th overlap between each
temporal-spatial pair of data subsets; of course, the tem-
poral split yields unevenly distributed data subsets (see
Fig. 2), so this is only a rough estimate. Naturally, the
overlap of data in the different data subsets correlates their
pj-values in some complicated way, although given the
relatively modest data overlap that we estimate, we do not
expect this effect to be large. A detailed accounting for this
effect would, given the complexity of the SuperMAG
dataset and the nontrivial analysis manipulations we apply
to it, however likely require significant Monte Carlo
modeling, which we consider to be beyond the scope of
this work.
The preceding caveat notwithstanding, we proceed as

follows. In the absence of the correlation in the data
subsets, we would reject any naive signal candidate with
pfull < 0.05 (95% confidence); because we expect that the
correlation effect is mild, we will continue to automatically
reject any naive signal candidate with pfull < 0.01 ≪ 0.05.
This automatically rejects 23 of the 30 candidates in
Table II. For the remaining seven candidates that are not
automatically rejected, we find that four have 0.01 <
pfull < 0.05 (candidates numbered 3, 8, 13, and 24 in
Table II). We consider these to be in strong tension with the
robustness checks; they are likely ruled out, but we cannot
give a definitive statement absent a quantitative accounting
for the correlation caveat noted above. The remaining three
candidates have pfull > 0.05 (candidates numbered 6, 17,
and 19 in Table II); these are not formally excluded, but
they too have issues that put them in tension with an
interpretation as a robust DPDM signal.
We discuss all seven of the candidates that are not

automatically excluded in detail.

40In contrast to the definition of p0 in Eq. (73), we define pjðεÞ
without the “1−”; in light of the usage of pjðεÞ in Eqs. (77) and
(78), a definition of pjðεÞ with the same 1− as in Eq. (73) would
be equivalent.
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(i) Candidate 3—This candidate is in strong tension
with the combined temporal and geographical ro-
bustness test (pfull ¼ 0.026), but cannot be ruled out
definitively on these grounds. It is however severely
excluded by the temporal robustness test alone:
ptime ¼ 2.3 × 10−3. We reject this candidate.

(ii) Candidates 8, 13, and 24—All three of these
candidates are also in strong tension with the
combined temporal and geographical robustness
test, but again cannot be definitively ruled out:
0.01 < pfull < 0.05. Examining the temporal and
geographical robustness tests separately, none of
these candidates is clearly rejected by either alone:
0.05 < ptime; pgeo < 0.11. We note however that
these candidates only exhibit moderate global sig-
nificances: σðp0Þ ¼ 2.6, 3.8, and 2.1, respectively.
We consider these to be weak candidates which are
heavily disfavored by our resampling analysis.

(iii) Candidate 6—This candidate is perhaps the most
interesting of the seven. It has a strong global
significance, with σðp0Þ ¼ 6.7, and is in good
agreement both with the combined robustness
test (pfull ¼ 0.27), and the geographical robustness
test (pgeo ¼ 0.97). It is however in tension (but not
definitively) with the temporal robustness test:
ptime ¼ 0.034. Because of this tension, we do not
believe that there is clear or robust evidence that this
candidate constitutes a signal; however it may
warrant follow-up, for instance, in an analysis of
the higher-cadence SuperMAG data.

(iv) Candidates 17 and 19—While these candidates are
in good agreement with the combined robustness
test, as well as the separate temporal and geographi-
cal tests, we note that they lie exactly one DFT
frequency bin above and below the Nyquist fre-
quency for a one-minute data cadence. Although not
dispositive, this constitutes good reason to believe
that these peaks are systematic artifacts of the
analysis. Future analysis of the higher-cadence data
would settle this point definitively, as the Nyquist
frequency for the one-second data would differ.

We conclude that none of the 30 naive signal candidates
should be considered to be a robust dark-photon dark-
matter candidate signal, but that definitive exclusion of
candidate 6 would require follow-up work.
Having already reached this conclusion, we have termi-

nated our checks at this point; however, additional checks
would have been possible had any candidate survived
without demonstrating tension or inconsistency with the
existing checks. For instance, we could also check whether
the signal shows evidence of enough variation in the
DPDM field from one coherence time to the next. The
idea here would be to first perform parameter estimation to
fix ε and mA0 for the signal using the full dataset. Then, we
would examine subsets of the data with duration equal to
the signal coherence time, and for each such data subset, we

would estimate (1) the DPDM polarization state and (2) the
DPDM field amplitude. We would then test whether the
polarization state indeed randomizes on coherence-time
timescales (i.e., whether the polarization state is too highly
correlated between coherence times), and whether the
DPDM field amplitude shows the appropriate distribution
for a true DPDM field consisting of a sum of plane waves
with random phases; see, e.g., Eq. (81) below. Of course,
because of Earth’s rotation, a reorientation of the DPDM
field polarization state in the galactic frame not only causes
a change to the vectorial orientation of the magnetic field to
be expected at each station, but it also shifts the relative
power of the signal between the three frequencies
f ¼ fA0 ; fA0 � fd; both effects are of course captured in
Eq. (1), but one could additionally specifically test to
ensure that the variation in the extracted DPDM polariza-
tion state is occasioned by the expected shift in the relative
amount of the signal power at each of these frequencies,
holding mA0 fixed.

C. Validation of analysis pipeline

In order to confirm that our analysis would identify and
not reject a true DPDM signal in the data, we injected a
mock physical DPDM signal with the expected spatial and
temporal coherence properties into the SuperMAG dataset,
and tested whether our analysis pipeline would correctly
reconstruct it. We confirm that (a) the extracted limit curve
on the kinetic-mixing parameter ε is unaffected at frequen-
cies other than in the expected vicinity of the injected signal
frequency, (b) the limit on ε at the injection frequency is
close to the value used to construct the mock signal (up to
expected deviations owing to idealized assumptions in our
pipeline), and (c) our resampling analysis that tests for
signal robustness on the basis of spatial and temporal
coherence of the signal correctly does not reject the
injected mock-signal candidates that appear at the injection
frequency.
As we discussed in Ref. [42], the dark-photon vector

potentialA0 canbe considered to be a sumover a collectionof
plane waves with random vectorial orientations (although
see also Ref. [51] for discussion on this point) and phase
offsets, and frequencies centered on fA0 ¼ mA0=ð2πÞ, but
with a linewidth∼fA0v20, wherev0 ∼ 10−3 is theDMvelocity
dispersion in the Milky Way (MW). Because the exact
line shape of this quasimonochromatic DPDM signal in the
Fourier domain is actually not known as it depends on the
detailed properties of the collection of plane waves being
summed over (e.g., the exact velocity distribution in the
MW), we choose to construct a straw-man artificial injected
DPDM signal as follows.
Let cjðtÞ½j ¼ x; y; z� denote the time-dependent orienta-

tion of the DPDM signal as defined in Eqs. (18)–(20) but
with A0

m ¼ A0
mðtÞ now time dependent. Write cðtÞ as the

3-vector those jth component is cjðtÞ. We construct cðtÞ as
follows:
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cðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
XN
n¼−N

ân þ ib̂nffiffiffi
2

p eiϕn

× exp
h
2πiξfA0 t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2n

q i
; ð81Þ

where N ≫ 1 is a large number of random plane waves
(see Table III), ân and b̂n are randomly selected real unit
3-vectors specifying the polarization state of each such
plane wave, ϕn is a random phase, fA0 is the physical
average frequency of the signal, vn is a 3-velocity selected
from an isotropic Gaussian velocity distribution with
a single-velocity-component standard deviation σv ¼
vDM=

ffiffiffi
3

p
such that the root-mean-square DM speed is

vDM ¼ 10−3 (note: we neglect the difference between the
Earth/Solar System and galactic frames for this purposes of
this construction), and ξ ≈ 1 − v2DM=2þOðv4DMÞ is an
otherwise-negligible correction factor to the mass-fre-
quency relationship chosen such that hξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
i≡ 1, with

the average taken over the velocity distribution (i.e., we
inject a signal with a slightly corrected mass mA0 ¼ 2πξfA0

such that fA0 is the average signal frequency; this is done
for the technical reason that we wish to inject the signal on
average at an exact DFT frequency, and not shifted upward
by order of a DFT bin half-width; see also footnote 34).
These cðtÞ have the appropriate normalization [i.e.,
hjcðtÞj2i ¼ 1 with the average being an ensemble average
over random phases, orientations, and velocities, or, equiv-
alently, a temporal average over times much longer than the
coherence time] and coherence properties for a realistic
DPDM signal (technically, in the galactic rest frame),
assuming a nontruncated standard halo model (see, e.g.,
Ref. [83]) for the DM velocity distribution. Note that the
injected signal Eq. (81) has a frequency-space “width” of
order σf ≡ fA0v2DM.
As in Sec. V B, we can express the effect of a DPDM

signal on the data time series XðnÞðtjÞ [as defined in
Eqs. (7)–(11)] using various combinations of the time

series HðnÞðtjÞ [as defined in Eqs. (28)–(34)] weighted by
the time-dependent orientations ciðtjÞ. Specifically, we
inject our mock DPDM signal into the partially processed
SuperMAG time-series dataset by making the following
substitution:

X j → X j − πε�f�R
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
Re

� X
i¼x;y;z

ciðtjÞYðiÞ
j

�
; ð82Þ

where

YðxÞ
j ≡

0
BBBBBBBB@

ðHð1Þ − 1Þ cosð2πfdtjÞ −Hð2Þ sinð2πfdtjÞ
−Hð2Þ cosð2πfdtjÞ −Hð1Þ sinð2πfdtjÞ
Hð5Þ sinð2πfdtjÞ −Hð4Þ cosð2πfdtjÞ

Hð5Þ cosð2πfdtjÞ þ ðHð4Þ −Hð3ÞÞ sinð2πfdtjÞ
Hð7Þ sinð2πfdtjÞ −Hð6Þ cosð2πfdtjÞ

1
CCCCCCCCA
;

ð83Þ

YðyÞ
j ≡

0
BBBBBBBB@

Hð2Þ cosð2πfdtjÞ − ð1 −Hð1ÞÞ sinð2πfdtjÞ
Hð1Þ cosð2πfdtjÞ −Hð2Þ sinð2πfdtjÞ
−Hð5Þ cosð2πfdtjÞ −Hð4Þ sinð2πfdtjÞ

ðHð3Þ −Hð4ÞÞ cosð2πfdtjÞ þHð5Þ sinð2πfdtjÞ
−Hð7Þ cosð2πfdtjÞ −Hð6Þ sinð2πfdtjÞ

1
CCCCCCCCA
;

ð84Þ

YðzÞ
j ≡

0
BBBBBB@

0

0

Hð6Þ

−Hð7Þ

1 −Hð3Þ

1
CCCCCCA
; ð85Þ

X j ≡ ðXð1Þ; Xð2Þ; Xð3Þ; Xð4Þ; Xð5Þ ÞT
			
t¼tj

; ð86Þ

with T denoting transpose; see Eq. (36) and Eqs. (C1)–(C2)
for similar expressions for the Fourier transform of the
signal. We refer to the dataset consisting of the SuperMAG
data plus this injected mock signal as the “mock-signal
dataset”; the injected signal parameters are shown in
Table III along with other relevant data.
We rerun the full analysis detailed in Secs. V, VI A,

and VI B on the mock-signal dataset. The exclusion
bounds resulting from this analysis are shown in red in
Fig. 6, with our exclusion bound from Fig. 4 derived
from the SuperMAG dataset superimposed in blue. As
expected, the exclusion bounds derived from the mock-
signal dataset and the unadulterated SuperMAG dataset

TABLE III. Parameters used to generate the mock signal
injected into the SuperMAG data for the purposes of analysis
pipeline validation; parameters are defined in detail in the text
(see Sec. VI C). Also shown for comparison is the value of Δf,
the DFT frequency spacing corresponding to the value of the
approximate coherence time used in the vicinity of f� (see
discussion in Sec. V E).

Parameter Symbol Value

Central frequency f� 7.5 × 10−3 Hz
Signal width (≡f�v2DM) σf 7.5 × 10−9 Hz
Kinetic-mixing parameter ε� 10−3

Number of plane waves summed 2N þ 1 1001
DFT frequency spacing at f ¼ f� Δf 7.45 × 10−9 Hz
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agree well everywhere except in the vicinity of the injected
frequency,41 and at its reflection across the Nyquist
frequency ð1 minÞ−1 − f�; there are strong narrow-band

peaks in the exclusion bounds at those two frequencies,
which are diagnostic of a signal.
We note that the exclusion bound which is set at the

injected frequency actually appears slightly weaker than the
value of the kinetic-mixing parameter used to construct
the signal; cf. Table III and Fig. 6. This is of course the
expected behavior for an upper limit in the presence of a
signal and additive noise. Note however that the degrada-
tion factor of ζ ¼ 1.25 that was discussed in Sec. V F
proves crucial in obtaining this result; indeed, one can
clearly see in the inset plot of Fig. 6 that injected signal
power has appeared in more than one DFT bin, in line with
our arguments in Sec. V F. The limit set at the Nyquist
reflection is slightly stronger than the injected signal value
of ε�, but this is traceable to the fact that the Nyquist
reflection of the signal appears not at an exact DFT
frequency bin, and so more signal power leaks to neighbor-
ing bins than is the case for the signal at the injected
frequency; we have not degraded the limits so significantly
as to account for this effect, as our limits are to be formally
interpreted as correct only for injected signals that lie at
exact DFT frequencies.
As a separate check, we also verified that when injecting

into our analysis pipeline an idealized exactly monochro-
matic signal (at an exact DFT frequency, so that spectral
leakage effects can be ignored; see, e.g., Refs. [84,85]) with
A0 aligned to Earth’s rotational axis, the limit on ε correctly
appears slightly weaker than the injected signal size, even
without the ζ ¼ 1.25 degradation factor applied.
Taken together, these checks confirm that the analysis

operates correctly for the exactly monochromatic signal it is
formally constructed to search for without any post hoc
correction, and that the amplitude of the post hoc correction
applied in Sec. V F for a real signal with the appropriate
frequency-space width is of an appropriate magnitude.
We also point out that our validation here has been

phrased entirely in terms of exclusion bounds; formally, we
should perform parameter estimation on the mock signal to
estimate the recovered frequency and kinetic-mixing
parameter. However, since the injected signal is assumed
to have a large SNR in our tests, that level of detail in this
validation analysis would be unwarranted.
Additionally, we reran the resampling analysis detailed

in Secs. VI A and VI B on the mock-signal dataset to ensure
that we both identified candidate peaks at the injected
signal frequency, and did not reject them on the basis of the
robustness tests. All 30 of the already-discussed candidate
peaks listed in Table II appear again when we analyze the
mock-signal dataset, with the same p0-values as in the
original analysis. We also identify 15 additional naive
signal candidate peaks: Two of these are clustered at
f� þ fd, five at f�, and one at f� − fd; the remaining
seven peaks appear clustered around the reflections of
these peaks across the Nyquist frequency with two
at ð1 minÞ−1 − ðf� þ fdÞ and five at ð1 minÞ−1 − f�.

FIG. 6. The results presented in red as exclusion bounds on the
kinetic-mixing parameter ε as a function of the dark-photon mass
mA0 of our analysis pipeline as applied to mock-signal dataset
consisting of an injected signal added to the SuperMAG data, as
described in Sec. VI C. Overlaid in blue, and mostly obscuring
the mock-signal exclusion bounds, are the exclusion bounds
obtained using the unadulterated SuperMAG dataset; see Fig. 4.
In both cases, these limits account for the degradation factor ζ ¼
1.25 discussed in Sec. V F. The presence of strong peaks in the
exclusion bounds from the mock-signal dataset at the injected
signal frequency f� ¼ 7.5 × 10−3 Hz, and at its reflection across
the Nyquist frequency ð1 minÞ−1 − f� ¼ 9.2 × 10−3 Hz (both
indicated by the vertical dashed green lines) show that the
analysis reconstructs the injected signal at the appropriate
frequencies, but that the exclusion bounds are otherwise largely
unaffected away from the vicinity of these peaks. The inset axes
show an enlarged view of the peak at f ¼ f�, with the gray
shaded region corresponding to f� � 2σf; the width of the region
of the weakened exclusion bounds near f ¼ f� is clearly
consistent with our choice of σf ¼ 10−6f� ∼ Δf. Moreover,
the exclusion bounds at the frequencies where these strong peaks
appear are close to the injected signal size ε� ¼ 10−3 (indicated
by the horizontal dashed green line), as expected.

41The attentive reader will note from the inset axes in Fig. 6
that even at some significant distance (as compared to σf) from
the strong signal peaks in the mock-signal dataset (but still in its
vicinity), the exclusion bounds from the two datasets do not agree
exactly. This is because the noise level that is used to set the
exclusion bounds at any one frequency is estimated in a data-
driven way using all the data, including any injected signal, in
some nearby frequency range; see Sec. V C and Appendix E. As a
result, the bounds away from the region f ¼ f� � ðfewÞ · σf that
are derived using the mock-signal dataset are weakened slightly
as compared to the unadulterated dataset, owing to the higher
noise estimate in the former. A refinement of this approach would
be possible, but we note from Fig. 6 that even an injected signal
with a very high signal-to-noise ratio (SNR) weakens the
exclusion bounds in the vicinity of that signal by a factor of
only Oð1Þ. See also footnote 18.
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Our resampling analysis correctly rejects (pfull < 0.01) all
five of the naive signal candidates at f� � fd and
ð1 minÞ−1 − ðf� � fdÞ, along with one at f�. All the other
naive signal candidates that appear around f� and its
Nyquist reflection at ð1 minÞ−1 − f� are not rejected,
indicating that the resampling analysis correctly does not
rule out potential signals with the correct spatial and
temporal properties. We stress that this nonrejection of
multiple naive signal candidates around f� (and around its
reflection through the Nyquist frequency) should not be
read to indicate that our pipeline identified some unex-
pected multipeaked structure; rather, this is an expected
result given that σf ∼ Δf and the SNR of the injected signal
is large. Specifically, the nonrejected candidates all appear
in contiguous ranges of DFT frequencies; see the inset of
Fig. 6. It is to be expected that, evaluated on a bin-by-bin
basis, some number of consecutive DFT bins (with widths
similar to the signal width parameter) in the immediate
vicinity of a large injected signal would each contain
sufficient signal power in their own right to qualify as
candidates and not be rejected, since they have the
appropriate signal properties.
The results in this subsection validate that our analysis

pipeline functions as expected.

D. Discussion

In this section, we examined in detail the 30 naive signal
candidates that we identified in the data that exceed a
95% confidence global significance threshold. Applying a
resampling analysis to temporal and spatial subsets of the
data to test for the robustness of these candidates and their
consistency with the expected persistent global nature of
the signal, we found that we could automatically reject 23
of the 30 candidates on the grounds of their failing by a
large margin the combined temporal and spatial checks. Of
the remaining seven candidates, one fails the temporal
check severely, three weak candidates are in strong tension
with the combined robustness test (but cannot be definitely
ruled out owing to the unaccounted-for correlation issue
discussed in Sec. VI B), two pass all formal robustness tests
and are reasonably globally significant, but they appear
respectively one DFT frequency bin above or below the
Nyquist sampling frequency, and must therefore be viewed
with appropriate skepticism with regard to analysis sys-
tematics, and the final candidate is statistically significant
globally, and passes the combined test and the spatial test,
but is in strong tension with the temporal test. As such, we
do not consider any of these naive signal candidates to be
robust candidates for a real DPDM signal in the data on the
basis of the analysis of the one-minute SuperMAG dataset
presented in this work. Nevertheless, it would be worth-
while for future work to perform an analysis of the higher-
cadence SuperMAG data, as this would likely definitively
settle some questions regarding those candidates that were

not automatically rejected on the basis of the formal
statistical criteria we applied here.
In this section we also presented a validation of our

analysis pipeline by showing that a fake signal injected at
the level of the XðnÞ variables defined at Eq. (12) is
(a) recovered by the analysis at (b) the appropriate
frequency with (c) an appropriate value of the kinetic-
mixing parameter (up to expected deviations; see discus-
sion in Sec. VI C), and that (d) this injected signal survived
the spatial and temporal robustness checks we apply to
naive signal candidates. This verifies that our analysis
pipeline performs as expected, and would correctly identify
and not reject a real signal in the data.
In conclusion, we find no robust statistical evidence for

the existence of the DPDM signal in the SuperMAG data,
and we are confident that our analysis pipeline would have
identified such a signal had it been present.

VII. CONCLUSION

In this work, we presented the details of our analysis of the
one-minute-cadence SuperMAG geomagnetic field dataset
[43–45] for the quasimonochromatic (fractional linewidth
σf=f ∼ 10−6) global magnetic field signal of DPDM that we
recently proposed in a companion paper [42]. Because the
size of the magnetic field signal is B ∝ εmA0R

ffiffiffiffiffiffiffiffi
ρDM

p
,

suffering only a geometrical suppression by the radius of
Earth R, we were able to place competitive limits on
the parameter space for kinetically mixed DPDM. These
limits are shown in Fig. 4, and cover the mass
range 2 × 10−18 eV≲mA0 ≲ 7 × 10−17 eV corresponding
to frequencies 6 × 10−4 Hz≲ fA0 ≲ 2 × 10−2 Hz, with the
upper end of this mass reach being limited by the one-minute
sampling cadence of the SuperMAG data. Our analysis made
use of a Bayesian framework (using a Jeffreys prior on our
kinetic-mixing parameter ε) [69,72] in order to incorporate
the effects of the statistically varying local dark-photon dark-
matter field amplitude, which assumes values of A0 such
that hρDMi ∼ 0.3 GeV=cm3 only on average; this is a
conservative value for the DM density (recent ADMX limits
[86] assume a value 50% larger; see also Ref. [87]).
In the course of our search, we initially identified 30

naive signal candidates for DPDM that exceeded a global
95% confidence threshold on the basis of our main
analysis. In order to ensure that we did not miss a signal,
we performed robustness cross-checks on these candidates,
testing them for both the spatial and temporal coherence
characteristics we expected from our signal. On the basis of
these cross-checks and other indicia, we concluded that
none of these signal candidates provide robust evidence for
the existence of a DPDM signal in the data.
We also verified our analysis pipeline by injecting both

(a) an exactly monochromatic signal aligned along Earth’s
rotational axis and appearing exactly at one of the DFT
frequency values where we set limits, and (b) a signal with
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the correct statistical properties for a dark-photon dark-
matter signal whose phase and polarization coherence are
fixed by DM velocity dispersion (i.e., the σf=f� ∼ 10−6

linewidth of the signal). In the former case, we correctly
recovered a limit at the expected value of the kinetic-mixing
parameter without any post hoc degradation to our results.
In the latter case, without any correction factor applied, we
would have recovered limits slightly stronger than the
injected signal owing to a mild violation of the assumptions
used in the construction of the analysis by a signal with the
full coherence properties of the dark-photon dark-matter
signal [e.g., our analysis assumed an exactly monochro-
matic signal with exact phase coherence for a full coher-
ence time, which in reality is only approximately true as the
phase and polarization of the signal actually evolves
fractionally by Oð1Þ over a full coherence time]. We
applied a 25% degradation to our limits to compensate
for this in a post hoc fashion. The resulting degraded limits
correctly fail to exclude the injected signal, as expected. We
also verified in both cases that the temporal–spatial robust-
ness checks we used to dismiss naive signal candidates in
the real data did not dismiss these injected signals.
The dark-photon dark-matter exclusion bounds we set in

Fig. 4 are complementary to existing astrophysical bounds
in the same mass range that arise from gas heating in
various astrophysical settings [46,48,49], and a DM-
depletion bound arising from nonresonant dark-photon–
photon conversion [48]. Importantly, as we noted in
Ref. [42], the scaling of our limits with mass is steeper
than m−1

A0 owing to falling noise in the SuperMAG dataset
as a function of increasing frequency; this raises the
prospect, assuming that this falling noise trend continues
to hold, that higher-cadence magnetic data would allow the
search for this signal to access currently unconstrained
dark-photon dark-matter parameter space. SuperMAG is
currently in the process of releasing one-second-cadence
data, and we defer analysis of those data to future work
(such an analysis would also provide a separate check on
our dismissal of the naive signal candidates that we
identified near the Nyquist frequency in the one-minute-
cadence data).
Additionally, we set our limits under the assumption of a

standard halo model (see, e.g., Ref. [83]) DM velocity
abundance and dispersion. If streamlike structures actually
dominate the local DM abundance (see, e.g., Refs. [88–93]),
then the signal would be narrower and the DM abundance
increased; these effects would make a signal more easily
discernible in the data.
Finally, we note that while the analysis approach we

presented here exploits the power of this large dataset well,
it is not necessarily optimal. We leave to future work
refinement and optimization of the analysis.
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APPENDIX A: FOURIER TRANSFORM
CONVENTIONS

In this appendix, we give our conventions for the
continuous FT and DFT.
The continuous FT F̃ðωÞ [alternatively, F̃ðfÞ with

ω ¼ 2πf] of a continuous signal FðtÞ is defined by

FðtÞ ¼
Z

∞

−∞
dfF̃ðfÞeþ2πift ¼

Z
∞

−∞

dω
2π

F̃ðfÞeþiωt; ðA1Þ

F̃ðωÞ ¼
Z

∞

−∞
dtFðtÞe−iωt; ðA2Þ

F̃ðfÞ ¼
Z

∞

−∞
dtFðtÞe−2πift: ðA3Þ

The DFT F̂ðfkÞ [k ¼ 0;…; N − 1] of the signal with N
samples in the time domain FðtnÞ [n ¼ 0;…; N − 1] that
are equally spaced and taken with a cadence Δt for a total
duration T ≡ NΔt is defined by

FðtnÞ ¼
1

T

XN−1

k¼0

F̂ðfkÞeþ2πikn=N; ðA4Þ

F̂ðfkÞ ¼
T
N

XN−1

n¼0

FðtnÞe−2πikn=N; ðA5Þ

where tn ≡ nΔt ¼ nT=N, and fk ≡ kΔf ≡ k=T. The (dis-
crete) two-sided PSD is defined in terms of the DFT:

ŜFðfkÞ≡ 1

T
jF̂ðfkÞj2: ðA6Þ

Note that a monochromatic signal with frequency
fm ≡m=T (0 ≤ m ≤ N − 1;m ∈ Z),

FðtnÞ ¼ fA0 cosð2πfmtnÞ; n ¼ 0;…; N − 1 ðA7Þ

has a DFT given by

F̂ðfkÞ ¼
T
2
fA0 ½δk;m þ δk;ðN−mÞmod N �; ðA8Þ

where k ¼ 0;…; N − 1; the corresponding two-sided
PSD is

ŜFðfkÞ ¼
T
4
jfA0 j2½δk;m þ δk;ðN−mÞmod N �2: ðA9Þ

APPENDIX B: VECTOR
SPHERICAL HARMONICS

This appendix, which serves only to define the con-
ventions used in this work and in Ref. [42], is reproduced
from Ref. [42] with minor modifications for the conven-
ience of the reader.
The vector spherical harmonics are defined in terms of

the scalar spherical harmonic Ylm by the relations

Ylm¼Ylmr̂; Ψlm ¼ r∇Ylm; Φlm¼ r×∇Ylm; ðB1Þ

where r̂ is the unit vector in the direction of r. Thus Ylm
points radially, while Ψlm and Φlm point tangentially.
Some of their relevant properties (and our phase conven-
tions) are

Yl;−m ¼ ð−1ÞmY�
lm; ðB2Þ

Ψl;−m ¼ ð−1ÞmΨ�
lm; ðB3Þ

Φl;−m ¼ ð−1ÞmΦ�
lm; ðB4Þ

Ylm ·Ψlm ¼ Ylm ·Φlm ¼ Ψlm ·Φlm ¼ 0; ðB5Þ
Z

dΩYlm · Y�
l0m0 ¼ δll0δmm0 ; ðB6Þ

Z
dΩΨlm ·Ψ�

l0m0 ¼
Z

dΩΦlm ·Φ�
l0m0

¼ lðlþ 1Þδll0δmm0 ; ðB7Þ
Z

dΩYlm ·Ψ�
l0m0 ¼

Z
dΩYlm ·Φ�

l0m0

¼
Z

dΩΨlm ·Φ�
l0m0 ¼ 0: ðB8Þ

The explicit expressions for the spherical harmonics which
are relevant to this work [see Eq. (1)] are

Φ1;−1ðrÞ ¼
ffiffiffiffiffiffi
3

8π

r
e−iϕðiθ̂þ cos θϕ̂Þ; ðB9Þ
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Φ10ðrÞ ¼ −
ffiffiffiffiffiffi
3

4π

r
sin θϕ̂; ðB10Þ

Φ11ðrÞ ¼
ffiffiffiffiffiffi
3

8π

r
eiϕðiθ̂ − cos θϕ̂Þ; ðB11Þ

where θ̂ and ϕ̂ are unit vectors in the directions of increasing θ and ϕ.
Note that, as written here, the spherical coordinate ϕ coincides with the definition of longitude; however, the spherical

coordinate θ is not the latitude: θ increases from θ ¼ 0 at the geographic north pole (latitude þ90°), to
θ ¼ π=2 on the equator (latitude 0°), to θ ¼ π at the geographic south pole (latitude −90°).
Figure 7 shows the real and imaginary components of the nonzero θ̂ and ϕ̂ components of Φ11 and Φ10.

FIG. 7. Shaded contour plots of the real and imaginary parts of all the nonzero θ̂- and ϕ̂-components of the vector spherical harmonics
Φ11 andΦ10; the cognate plots forΦ1;−1 can be read from those ofΦ11 using Eq. (B4). Red (blue) indicates positive (negative) values,
with the color range for each plot independently normalized to span the range of values plotted. Overlaid are the outlines of Earth’s
continents (white), and the locations of the SuperMAG stations (green points); see also Fig. 1.
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APPENDIX C: OTHER CONTRIBUTIONS TO h  Xki
The full expressions for the contributions to h  Xki coming from the x and y polarizations are

h  XkiB¼Bx
R
≈ ε  μxk ≡ πεfA0R

ffiffiffiffiffiffiffiffiffi
ρDM
8

r

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1̃kðfd − f̂dÞ − H̃ð1Þ
k ðfd − f̂dÞ þ iH̃ð2Þ

k ðfd − f̂dÞ
H̃ð2Þ

k ðfd − f̂dÞ þ iH̃ð1Þ
k ðfd − f̂dÞ

H̃ð4Þ
k ðfd − f̂dÞ − iH̃ð5Þ

k ðfd − f̂dÞ
−H̃ð5Þ

k ðfd − f̂dÞ þ iH̃ð3Þ
k ðfd − f̂dÞ − iH̃ð4Þ

k ðfd − f̂dÞ
H̃ð6Þ

k ðfd − f̂dÞ − iH̃ð7Þ
k ðfd − f̂dÞ

2 · Re½1̃kðfdÞ − H̃ð1Þ
k ðfdÞ� þ 2 · Im½H̃ð2Þ

k ðfdÞ�
2 · Re½H̃ð2Þ

k ðfdÞ� þ 2 · Im½H̃ð1Þ
k ðfdÞ�

2 · Re½H̃ð4Þ
k ðfdÞ� − 2 · Im½H̃ð5Þ

k ðfdÞ�
−2 · Re½H̃ð5Þ

k ðfdÞ� þ 2 · Im½H̃ð3Þ
k ðfdÞ − H̃ð4Þ

k ðfdÞ�
2 · Re½H̃ð6Þ

k ðfdÞ� − 2 · Im½H̃ð7Þ
k ðfdÞ�

1̃kðf̂d − fdÞ − H̃ð1Þ
k ðf̂d − fdÞ − iH̃ð2Þ

k ðf̂d − fdÞ
H̃ð2Þ

k ðf̂d − fdÞ − iH̃ð1Þ
k ðf̂d − fdÞ

H̃ð4Þ
k ðf̂d − fdÞ þ iH̃ð5Þ

k ðf̂d − fdÞ
−H̃ð5Þ

k ðf̂d − fdÞ − iH̃ð3Þ
k ðf̂d − fdÞ þ iH̃ð4Þ

k ðf̂d − fdÞ
H̃ð6Þ

k ðf̂d − fdÞ þ iH̃ð7Þ
k ðf̂d − fdÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðC1Þ

h  XkiB¼By
R
≈ ε  μyk ≡ −πεfA0R

ffiffiffiffiffiffiffiffiffi
ρDM
8

r

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

H̃ð2Þ
k ðfd − f̂dÞ − i1̃kðfd − f̂dÞ þ iH̃ð1Þ

k ðfd − f̂dÞ
H̃ð1Þ

k ðfd − f̂dÞ − iH̃ð2Þ
k ðfd − f̂dÞ

−H̃ð5Þ
k ðfd − f̂dÞ − iH̃ð4Þ

k ðfd − f̂dÞ
H̃ð3Þ

k ðfd − f̂dÞ − H̃ð4Þ
k ðfd − f̂dÞ þ iH̃ð5Þ

k ðfd − f̂dÞ
−H̃ð7Þ

k ðfd − f̂dÞ − iH̃ð6Þ
k ðfd − f̂dÞ

2 · Re½H̃ð2Þ
k ðfdÞ� − 2 · Im½1̃kðfdÞ − H̃ð1Þ

k ðfdÞ�
2 · Re½H̃ð1Þ

k ðfdÞ� − 2 · Im½H̃ð2Þ
k ðfdÞ�

−2 · Re½H̃ð5Þ
k ðfdÞ� − 2 · Im½H̃ð4Þ

k ðfdÞ�
2 · Re½H̃ð3Þ

k ðfdÞ − H̃ð4Þ
k ðfdÞ� þ 2 · Im½H̃ð5Þ

k ðfdÞ�
−2 · Re½H̃ð7Þ

k ðfdÞ� − 2 · Im½H̃ð6Þ
k ðfdÞ�

H̃ð2Þ
k ðf̂d − fdÞ þ i1̃kðf̂d − fdÞ − iH̃ð1Þ

k ðf̂d − fdÞ
H̃ð1Þ

k ðf̂d − fdÞ þ iH̃ð2Þ
k ðf̂d − fdÞ

−H̃ð5Þ
k ðf̂d − fdÞ þ iH̃ð4Þ

k ðf̂d − fdÞ
H̃ð3Þ

k ðf̂d − fdÞ − H̃ð4Þ
k ðf̂d − fdÞ − iH̃ð5Þ

k ðf̂d − fdÞ
−H̃ð7Þ

k ðf̂d − fdÞ þ iH̃ð6Þ
k ðf̂d − fdÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ðC2Þ

We have again neglected subdominant Fourier contributions; see the discussion below Eq. (36).
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APPENDIX D: LIKELIHOOD DETAILS

In this appendix, we give some additional technical
details and derivations of the likelihood function and priors
that we utilized in Sec. V D.

1. Marginalized likelihood

In this subsection, we supply more details of the
derivation of the marginalized likelihood in Eq. (60). For
notational simplicity, we define dk ¼ ak þ ibk, and denote
by zik, dik, aik, and bik the components of Zk, dk, ak, and bk,

respectively. Moreover, we denote by sik the diagonal
elements of Sk (i.e., the singular values of Nk). From
Eqs. (56), (58), and (59), it is clear that the marginalized
combined likelihood function factorizes over coherence
times k,

LðεjfZkgÞ≡
Y
k

LkðεjZkÞ; ðD1Þ

where, noting that dk (and thus ak and bk) is a 3-vector, we
have

LkðεjZkÞ ¼
Z

d3akd3bkLkðε; dkjZkÞLkðdkÞ ðD2Þ

¼
Z

d3akd3bk exp

�
−
X
i

ðjzik − εsikdikj2 þ 3jdikj2Þ
�

ðD3Þ

¼
Y
i

Z
daikdbik exp½−ð3þ ε2s2ikÞða2ik þ b2ikÞ þ 2εsikRe½zik�aik þ 2εsikIm½zik�bik − jzikj2� ðD4Þ

¼
Y
i

Z
daikdbik exp

�
−ð3þ ε2s2ikÞ

�
aik −

εsikRe½zik�
3þε2s2ik

�
2

− ð3þ ε2s2ikÞ
�
bik −

εsikIm½zik�
3þε2s2ik

�
2

− 3jzikj2
ð3þε2s2ikÞ

�
ðD5Þ

∝
Y
i

1

3þ ε2s2ik
exp

�
−

3jzikj2
3þ ε2s2ik

�
; ðD6Þ

where at Eq. (D5) we completed the square in the exponent
to obtain Gaussian integrals, and simplified. Up to an
arbitrary normalization, Eq. (60) follows.

2. Jeffreys prior

In this subsection, we derive the Jeffreys prior, Eq. (62).
The Fisher information matrix I is defined as [74]

I i;jð  ΘÞ≡ E

�� ∂
∂Θi

logL
�� ∂

∂Θi
logL

�				  Θ
�
; ðD7Þ

where  Θ is the parameter vector, E½� � � j  Θ� is the expectation
value over data realizations drawn assuming the values of
the parameters  Θ, and L ¼ Lð  ΘjfxgÞ is the likelihood
considered as a function of the model parameters given the
data realization fxg.
The Jeffreys prior is the unique reparametrization-invariant

prior, and is defined in terms of I [74]:

pð  ΘÞ ∝ ½det Ið  ΘÞ�1=2: ðD8Þ

For the case of a one-dimensional parameter vector, as is our
case after marginalizing over the dk, this simplifies

pðεÞ ∝
ffiffiffiffiffiffiffiffi
IðεÞ

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

�� ∂
∂ε logL

�
2
				ε
�s
; ðD9Þ

for notational simplicity, we leave the “jε” implicit in what
follows. Therefore,

½pðεÞ�2 ∝ E

�� ∂
∂ε

X
i;k

�
−

3jzikj2
3þ ε2s2ik

− lnð3þ ε2s2ikÞ
��

2
�

ðD10Þ

¼E

��X
i;k

2εs2ikð3jzikj2−3− ε2s2ikÞ
ð3þ ε2s2ikÞ2

�
2
�
: ðD11Þ

Interpreting the likelihood L given by Eq. (60) via its
definition as the probability density function of the data
given the model parameter ε (see discussion in footnote 24),
we see that (when viewed as random variables rather than as
the specific data realizations we have) the real and imaginary
parts of the zik are all independent, zero-mean normally
distributed variables satisfying hjzikj2i ¼ 1þ ε2s2ik=3.
Therefore the expectation values of all the cross terms (i.e.,
those with differing i and k) in Eq. (D11) vanish since they
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factor into two quantities, each with expectation value zero.
The only remaining terms are thus thosewhere i and k are the
same for both factors. Therefore,

½pðεÞ�2 ¼
X
i;k

E

��
2εs2ikð3jzikj2 − 3 − ε2s2ikÞ

ð3þ ε2s2ikÞ2
�

2
�

ðD12Þ

¼
X
i;k

4ε2s4ik
ð3þ ε2s2ikÞ2

; ðD13Þ

where we used42 E½jzikj4� ¼ 2E½jzikj2�2. The expression for
the Jeffreys prior at Eq. (62) follows.

APPENDIX E: NOISE VALIDATION

In this section, we validate some of our assumptions
about the noise in the SuperMAG data, and our analysis of
that dataset. Specifically, we validate three assumptions:
(1) The noise can be treated as constant over the course of
one calendar year, (2) our choice of τmin is sufficiently
large, and (3) the variables zik are sufficiently Gaussian.

1. Noise variation within a calendar year

Our analysis in Sec. V C computed noise spectra
SamnðfpÞ associated with particular calendar years, under
the assumption that the noise remained statistically sta-
tionary within a calendar year. We evaluate this assumption
by computing the same quantity SamnðfpÞ on timescales
shorter than a full year and comparing the results to the
full-year estimate. In particular, we divide a given year
evenly into four quarters and recompute SamnðfpÞ as in
Sec. V C using the data from each quarter (again taking
τmin ¼ 16384 min). Due to the finite number of samples
used in Eq. (42), the estimate SamnðfpÞ that we compute has
a large variance from one frequency to the next. For the
purposes of this comparison it is useful to examine and
compare the moving average of SamnðfpÞ taken over a range
of frequency bins in a sliding window centered on each
frequency. That is, we compute

S̄amnðfpÞ ¼
1

2wþ 1

Xpþw

q¼p−w
SamnðfqÞ; ðE1Þ

where we take the window half-width to be w ¼ 512,
corresponding to a top-hat sliding window with width
5.2 × 10−4 Hz. Likewise it is useful to compute the
standard deviation of the values of SamnðfpÞ within the
sliding window as a statistic to quantify the spread:

σamnðfpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2wþ 1

Xpþw

q¼p−w
jSamnðfqÞ − S̄amnðfqÞj2

vuut : ðE2Þ

In Figs. 8 and 9, we compare the quarterly estimates of
SamnðfpÞ to the full-year moving average S̄amnðfpÞ for
diagonal (m ¼ n) and off-diagonal (m ≠ n) elements,
respectively. Specifically, in the top panels of Fig. 8, we
show shaded bands that span the range of values S̄amnðfpÞ �
σamnðfpÞ for each of the four quarters in a chosen year,
along with the corresponding full-year average result
S̄amnðfpÞ in solid black; in the bottom panels, we show a
histogram of the quarterly estimates SamnðfpÞ that appear in
Eq. (E1) for a few representative frequencies. In Fig. 9, on
the other hand, we show scatter plots of the quarterly
estimates SamnðfpÞ that appear in Eq. (E1), along with their
corresponding 68% coverage ellipses; the full-year average
S̄amnðfpÞ is marked by a black cross. The variety of years,
components m, n, and frequencies fp displayed in Fig. 9
are broadly representative. It is clear that for a wide range of
frequencies and component choices (both diagonal and
off diagonal), the full-year average is consistent with the
distribution of quarterly estimates, indicating (within
the precision of the shorter-timescale estimates) that the
assumption of statistical stationarity is satisfied. We do
however note that there is variation in the degree to which
the individual quarterly results are consistent with each
other within a year [e.g., the 1989 results for the ðm; nÞ ¼
ð5; 5Þ component show some mild tension between the first
and third quarters; whereas, e.g., the 2007 results for the
ðm; nÞ ¼ ð4; 2Þ component are in better agreement]. It is
possible that a more sophisticated analysis than that
presented here could account for this.

2. Choice of τmin

Our analysis in Sec. V C has one arbitrary parameter:
τmin, the lower bound for the duration of the chunks of data
that are used in our noise analysis. There is a trade-off in the
selection of this parameter: It should be as small as possible
to allow for more independent chunks, and thus a better
overall statistical estimate of the noise. On the other hand,
taking the chunks’ length too short would increase the
relative impact of possible correlations between data points
near the edges of consecutive chunks, which could sys-
tematically bias our noise estimate as the chunks would no
longer be sufficiently statistically independent. It is there-
fore important to understand the dependence of SamnðfpÞ on
τmin, and to select τmin large enough that the dependence of
SamnðfpÞ on that parameter becomes subdominant to the
uncertainty on the estimate of SamnðfpÞ itself.
To quantify this, we recompute SamnðfpÞ as in Sec. V C,

but using several different choices of τmin. For each choice
of τmin, we compute the frequency-space moving average
spectrum S̄amnðfpÞ as in Eq. (E1). The results are shown in

42Note that this result is distinct from the one-dimensional real-
variable result E½x4� ¼ 3E½x2�2 that would be expected for a
single zero-mean normally distributed real x.
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Fig. 10: The panels on the left of Fig. 10 show the full
spectra S̄amnðfpÞ obtained using values of τmin ¼ 2j min for
various integers j ¼ 11;…; 15, again for various represen-
tative choices of the year a and components m, n. The
panels on the right in Fig. 10 show the dependence of
S̄amnðfpÞ on τmin for the same years and components at three
particular representative frequencies chosen in the low-,
mid-, and high-frequency regions of our range of interest,
along with their associated standard deviations (shaded
bands), σamnðfpÞ [defined in Eq. (E2)].
The figure demonstrates that for well-behaved compo-

nents (typically the larger, diagonal m ¼ n components in
most years), the dependence of S̄amnðfpÞ on τmin is smaller
than the spread σamnðfpÞ in the values of SamnðfpÞ for
τmin ¼ 16384 min or greater. The less well-behaved
components that vary somewhat more with changing
τmin are typically off-diagonal (i.e., m ≠ n) components,

which tend to be smaller by a factor of Oð3–10) than the
on-diagonal components; these thus have less impact on
our results, regardless of the choice of τmin. Generically,
the picture is that, for most years, a choice of τmin ¼
16384 min is reasonable, and gives results that do not
strongly depend on τmin; this choice also allows suffi-
ciently many independent chunks to obtain a noise
estimate within a Oð10%Þ, which is sufficient for the
level of precision in our analysis.
Nevertheless, we do note that for certain specific years,

there are exceptions to this generic picture. For instance,
Fig. 10 shows an example of a less well-behaved off-
diagonal component [ðm; nÞ ¼ ð2; 1Þ] from an early year
(a ¼ 1976), when much fewer stations were active as
compared to later years; cf. Fig. 2. This result clearly
shows a sharp change in behavior between τmin ¼
8192 min and τmin ¼ 16384 min that might be worrisome.
However, anomalous behavior in years with very few

FIG. 8. Noise stationarity validation; on-diagonal elements of SamnðfÞ. Upper panels: the solid black line shows representative
components of the full-year averaged [see Eq. (E1)] noise autopower spectra S̄amn (m ¼ n) for some selected representative years a,
while the various shaded colored bands give the values of S̄amnðfÞ � σamnðfÞ that are computed using data only from one of each of the
four quarters within that year a (see legend). The left-hand side shows a case where there is some mild tension between the quarter-by-
quarter noise determinations; the right-hand side shows a case where the four quarter-by-quarter determinations agree excellently. Lower
panels: for three selected frequencies (vertical gray dashed lines marked in the upper panels), we show histograms (colored bars; see
legend) of the values of SamnðfqÞ for fq falling within the averaging window used to determine the quarter-by-quarter values of S̄amnðfÞ
[see discussion around Eq. (E1)], along with the full-year average S̄amnðfÞ (vertical black line). Each histogram panel is displayed
immediately below the relevant vertical gray dashed line in the upper panel which marks the frequency to which it corresponds (i.e., in
order from left to right, the histograms correspond to the same three frequencies marked, in order from left to right, by the vertical gray
lines in the upper panel).
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FIG. 9. Noise stationarity validation; off-diagonal elements of SamnðfÞ. Because the off-diagonal components of the Hermitian matrices
SamnðfÞ are complex,we cannot show the quarter-by-quarter agreement as a function of the frequency as simply for the off-diagonal elements
as we did in Fig. 8 for the real, on-diagonal components. In this figure, at three selected representative frequencies (the same ones indicated
by the vertical gray dashed lines in Fig. 8), we select some representative off-diagonal components ðm; nÞ for some representative years a,
and show scatter plots in the complex plane of the values of SamnðfqÞ for the fq that liewithin the corresponding averaging windows used to
determine the quarterly values of S̄amnðfÞ [see discussion aroundEq. (E1)] (shaded colored circular points; see legend). Note that the density
of points, and not the depth of shading, indicates the clustering of values within each quarter (with some loss of resolution in the denser
regions); we have fixed the depth of shading for each quarter to be independent of the density of points in order tomake the differences in the
clustering of points from quarter to quarter clearer. Also shown are the 68% coverage ellipses for two-dimensional Gaussian fits to the
scattered points for each quarter (like-colored solid ellipses; see legend), along with the full-year average value of S̄amnðfÞ (black cross).
The left-hand column shows a case where there is some mild tension (within factors of ∼2–3) between the intrayear statistical stationary
of the noise assumed in our analysis, and the realized noise (i.e., the fitted 68%coverage ellipses for different quarters vary somewhat),while
the right-hand column shows a case where intrayear noise stationarity is realized well.
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FIG. 10. Dependence of noise estimates on the parameter τmin. Left column: frequency-space averaged noise spectra jS̄amnðfÞj for
τmin ¼ 2j min for choices j ¼ 11;…; 15 shown for multiple representative choices of year a and components ðm; nÞ. The colors as
annotated in the legend on the lower left distinguish the various cases. Note that the sliding window used to compute the frequency-space
average is varied (w ¼ 2j−5 for the integers j defined above), so that the sliding window width used to compute the frequency-space
averages is maintained at 5.2 × 10−4 Hz in all cases. Note also that, in this plot, where relevant and in contrast to Fig. 9, we show the
absolute value of the complex off-diagonal S̄amnðfÞ. Right column: dependence of jS̄amnðfÞj on τmin for three representative fixed
frequencies: f ¼ 1.04 × 10−3 Hz, f ¼ 2.95 × 10−3 Hz, and f ¼ 8.33 × 10−3 Hz (the locations of these frequencies are also indicated
as dashed vertical gray lines in the left panels). The gray bands represent the spread in the values in the sliding windows, σamnðfÞ; see
Eq. (E2). It is clear that, in most cases, for τmin ≥ 16384 min, the dependence of jS̄amnðfÞj on τmin is much smaller than the spread
σamnðfÞ. Note that the top row shows an anomalous off-diagonal component from an early year (a ¼ 1976), whose behavior is likely
strongly influenced by the small number of active stations. Additionally, the panels in the third row show a result for an off-diagonal
component [ðm; nÞ ¼ ð3; 1Þ], which is somewhat smaller in normalization than the other on-diagonal components from the same year;
residual variation of these results with τmin will thus have little effect on our results.
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stations running would not be entirely unexpected, as a
single station turning on/off would have a larger impact on
the overall results than in years with many stations running.
While we still include results from such “anomalous” years
in our analysis, we note that—precisely because they have
much fewer stations running—they will be naturally down-
weighted in our analysis owing to the larger noise obtained
with fewer stations running, and will thus have little
influence on our final results.

3. Gaussianity of variables

In Sec. V D, we constructed a likelihood function for
our Bayesian analysis under the assumption of Gaussianity
on the real and imaginary components of the zik; see,
e.g., Eq. (60). We evaluate the validity of this assumption
by computing the four-point function of zik and compar-
ing it to the expected result assuming Gaussianity:
hjzikj4iGaussian ¼ 2hjzikj2i2. We do this at each frequency
by treating the zik that we compute for each value of i and k
as independent samples of Eq. (60) in the absence of a
signal (ε ¼ 0), also assuming that values of zik at different
frequencies are independent.43 We again take moving
averages in frequency space of these independent samples
and study the result as a function of the frequency. That is,
we compute

hjzikjmiðfpÞ ¼
1

2wþ 1

Xpþw

q¼p−w

1

3KðfqÞ
X
i;k

jzikðfqÞjm ðE3Þ

for m ¼ 2, 4, where fp runs over the full set ffnig
described in Sec. V E, zikðfpÞ are our analysis variables
calculated for fA0 ¼ fp, and KðfpÞ is the number of
subseries (cf. the definition of K in Sec. VA 3) used in
the analysis for fA0 ¼ fp (which will vary for fni of
different n). Here, we use w ¼ 25000.

In Fig. 11 we show in orange the ratio of
hjzikj4i=2hjzikj2i2, which is expected to be 1 in the case
of exact Gaussianity, as a function of the frequency.
For comparison, we also show hjzikj2i in blue, which per

Eq. (60) should be 1 under our analysis assumptions.
Deviations of hjzikj2i from 1 would potentially stem from
misestimation of the noise Samn due to the uncertainties σamn
referenced in the above subsections. It is clear from Fig. 11
that the deviation from Gaussianity is smaller than the
misestimation of the noise. There is a small deviation of
hjzikj2i ¼ 1, within the 10% level, across the entire fre-
quency range; on the other hand, the assumption of
Gaussianity as tested in this fashion is good to within
2%. These levels are acceptably accurate for the purposes
of our analysis.
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