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Learning multi-scale spatial features from 3D spatial geometric representations of objects 
such as point clouds, 3D CAD models, surfaces, and RGB-D data can potentially improve 
object recognition accuracy. Current deep learning approaches learn such features using 
structured data representations such as volume occupancy grids (voxels) and octrees or 
unstructured representations such as graphs and point clouds. Structured representations 
are generally restricted by their inherent limitations on the resolution, such as the voxel 
grid dimensions or the maximum octree depth. At the same time, it is challenging to 
learn directly from unstructured representations of 3D data due to non-uniformity among 
the samples. A hierarchical approach that maintains the structure at a larger scale while 
still accounting for the details at a smaller scale in specific spatial locations can provide 
an optimal solution for learning from 3D data. In this paper, we propose a multi-level 
learning approach to capture large-scale features at a coarse level (for example, using 
a coarse voxelization) while simultaneously capturing flexible sparse information of the 
small-scale features at a fine level (for example, a local fine-level voxel grid) at different 
spatial locations. To demonstrate the utility of the proposed multi-resolution learning, 
we use a multi-level voxel representation of CAD models to perform object recognition. 
The multi-level voxel representation consists of a coarse voxel grid containing volumetric 
information of the 3D objects and multiple fine-level voxel grids corresponding to each 
voxel in the coarse grid containing a portion of the object boundary. In addition, we 
develop an interpretability-based feedback approach to transfer saliency information from 
one level of features to another in our hierarchical end-to-end learning framework. Finally, 
we demonstrate the performance of our multi-resolution learning algorithm for object 
recognition. We outperform several previously published benchmarks for object recognition 
while using significantly less memory during training.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A three-dimensional object comprises of different multi-scale features inherent to its geometry and its overall shape. 
Considerable efforts have been made in shape detection & searching (Iyer et al., 2005; Schnabel et al., 2007; Tangelder and 
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Fig. 1. An illustrative example showing the need for multi scale feature detection in two mechanical parts (CAD models). The CAD models have a multitude 
of features, each on a separate spatial scale, which create challenges in specific feature detection.

Veltkamp, 2004; Veltkamp, 2001) and feature detection (Elinson et al., 1997; Lowe, 2001; Tombari et al., 2011) from 3D 
objects, and CAD models for various applications such as design, manufacturing, and analysis (Cardone et al., 2003; Jayanti 
et al., 2006; Joshi and Chang, 1988; Kyprianou, 1980; Ramesh et al., 2001). A major research area in computer vision is 
representing 3D spatial data and extracting meaningful information or features using deep neural networks. Previous works 
have proposed learning from 3D data by projecting the 3D information to 2D or 2.5D (depth inclusion) images, thereby 
extending image recognition principles to 3D object recognition (Song and Xiao, 2016; Su et al., 2015; Wu et al., 2015). 
Researchers have also demonstrated object recognition from multiple 2D views of the 3D object (Kanezaki et al., 2018; Li 
et al., 2018; Qi et al., 2016; Sfikas et al., 2017). Though this approach is effective in many applications, including 3D recon-
struction, some spatial relationships among the features may be lost, and this makes it infeasible for certain problems such 
as graphics rendering (Tatarchenko et al., 2017), point cloud labeling (Qi et al., 2017), design and manufacturing (Ghadai 
et al., 2018), etc. However, a major limitation of directly using 3D data with deep neural networks is the high memory re-
quirement. The presence of abundant information in spatial data coupled with large data requirements for efficient training 
of deep learning algorithms renders this task impractical for high-resolution 3D data. On the other hand, since the reso-
lution of data representation directly influences the memory requirement, reducing memory usage results in low fidelity 
feature extraction and detection. Hence, new efficient and scalable feature learning techniques are required to enable better 
detection, classification, and feature analysis of CAD models.

Effective utilization of high-resolution 3D CAD data for object classification using deep learning requires developing new 
data representations and novel deep learning architectures. The learning algorithm needs to preserve spatial localization 
while learning hierarchical features from data. Therefore, convolutional neural networks (CNNs), which have been proven 
to be effective for 3D spatial data (Ioannidou et al., 2017; Maturana and Scherer, 2015) are the natural candidates. How-
ever, training CNNs using uniform data representations (such as voxelized representation) becomes inefficient when the 
spatial features exist on different scales since the uniform data representation cannot effectively accommodate this non-
uniformity (Abdul-Rahman and Pilouk, 2007). This concept is illustrated in Fig. 1, where the CAD models have features such 
as holes, slots, and pockets pertaining to different spatial scales. Thus, there is a need to represent CAD data hierarchically 
and build an efficient deep learning architecture to learn features from each level of the hierarchy. In addition, the data 
representation needs to be both memory-efficient and preserve the spatial relationship in the data. Similar to the learning 
paradigm of CNNs, where the first few layers learn fine-level features and final layers learn coarse-level features, hierarchical 
learning can enable extraction of key features from a fine level of the hierarchy and then merge the understanding of the 
small scale aspects with the coarse level features. Such an approach will also exploit the sparse nature of the spatial data 
better. Extending this idea explicitly, we use a multi-level voxel representation of CAD models representing 3D models in a 
more memory-efficient manner.

One of the primary requirements for the efficient functioning of a deep neural network, especially CNNs, is a large 
representative labeled dataset that facilitates object classification. To demonstrate the main concept of our paper, we use 
the open-source ModelNet dataset (Wu et al., 2015), consisting of an extensive collection of 3D models, to perform object 
classification tasks based on the features of each class of models in the dataset. This follows along with the concept that 
3D objects can be segregated based on their feature-based similarity (Kriegel et al., 2003), as well as geometry-based 
similarity (Keim, 1999; Seidl and Kriegel, 1998).
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Table 1
Comparisons between different spatial deep learning approaches. Our approach (MRCNN) retains some of the 
advantages OctNet of such as memory efficiency while still having a flexible data structure. MRCNN also enables 
spatial multi-scale learning from multi-resolution data.
Method Data Representation Data Structure Memory Efficient Spatial Multi-scale Learning

VoxNet Voxels Structured × ×
PointNet++ Point cloud Unstructured × ×
OctNet Octree Structured � ×
MRCNN Multi-level voxels Structured-flexible � �

In this paper, we present a novel approach to enable hierarchical learning of features at different scales and thus perform 
object classification from a flexible multi-level voxel representation of 3D CAD data using deep learning. We achieve this by 
adopting the multi-level voxelization framework developed by Young and Krishnamurthy (2018), which generates a multi-
level voxel grid structure (see Table 1 for comparisons between different spatial deep learning approaches). The 3D object is 
represented using a binary occupancy grid at two levels with independent user-defined resolutions at each level. This is to 
ensure that CAD model features at different levels are effectively captured in the data representation. Based on the scale of 
features, the size and number of voxels are generically selected. We developed a multi-level CNN that efficiently learns from 
this multi-level data representation by extending the same idea to the deep learning algorithm. This paper is an extension of 
our previous CVPR workshop paper (Ghadai et al., 2019). However, in this paper, we have devised an interpretability-based 
feedback approach to enable the flow of salient information from the fine level to the coarse level. The specific contributions 
of this paper include:

1. A framework for learning from a hierarchical multi-scale representation of 3D CAD data, where there are two levels of 
information, a coarse level and a fine level. The coarse level description of features in the spatial data can give an overall 
understanding of the object, while some important finer level features could improve the learning by augmenting the 
coarse level description.

2. A new method of connecting the multiple learning levels via salient information flow between them. We develop the 
connection between the two levels of the network using feedback from the coarse level to the fine level provided 
by interpretability mechanisms such as GradCAM (Gradient of the Class Activation Map) regarding important spatial 
regions.

3. Demonstration of the methods mentioned above on a multi-level voxel representation used for object classification 
of ModelNet10 and ModelNet40 datasets. We achieve similar accuracy of results as previously reported while using 
considerably lower memory during training.

The paper is arranged as follows. In Section 2, we discuss a few relevant works in the field of learning from 3D data us-
ing different data representations. In Section 3, we describe the multi-resolution representation of 3D data using multi-level 
voxelization, which we generate using a GPU accelerated voxelization algorithm. We explain the Multi-Resolution Convolu-
tional Neural Network (MRCNN) architecture that effectively learns the features from the multi-level voxel representation 
in Section 4. Finally, in Section 5, we present the results from evaluating the MRCNN on multi-level voxel data to classify 
objects in the ModelNet10 dataset and also explain the effectiveness of MRCNN to learn from 3D data with reduced memory 
usage.

2. Related work

Learning from spatial data has been an active research topic, and researchers have developed several approaches to 
address this challenge. Most of the approaches can be categorized into two main learning methodologies. The first category 
of approaches is based on learning from unstructured spatial data such as point clouds (Charles et al., 2017; Klokov and 
Lempitsky, 2017; Qi et al., 2017; Roveri et al., 2018), meshes (Boscaini et al., 2016; Fey et al., 2018; Masci et al., 2015) 
and graphs (Bronstein et al., 2017; Kovnatsky et al., 2013; Wang et al., 2018a). The second class of methods use structured 
spatial data such as voxel grids (Ma et al., 2018; Maturana and Scherer, 2015; Wu et al., 2016, 2015; Xu and Todorovic, 
2016), octrees (Riegler et al., 2017; Tatarchenko et al., 2017; Wang et al., 2017), RGB-D images (Couprie et al., 2013; Liu et 
al., 2019; Socher et al., 2012), etc. Choy et al. (2019) developed a 4D CNN using Minkowski operations for object recognition 
from 3D-videos and LIDAR scans. A 3D attention-based recurrent neural network has been developed by Liu et al. (2019) to 
target the best view of an object for object recognition. Various other data representations for geometric deep-learning are 
being explored recently (Xiao et al., 2020). Using general deep learning methods (such as CNNs) to learn from unstructured 
spatial data is challenging since many operations require a structured input. Our work is focused on a sub-class of structured 
methods that use volumetric representation (voxels, octrees) to learn from spatial data while also being flexible in terms 
of the data structure. Our multi-level voxel data structure makes use of user-defined voxel resolution at each level, making 
it more flexible than the octree data structure (where each voxel is divided exactly into 23 sub-voxels). This allows us to 
achieve very high effective resolutions using only two levels while retaining better memory efficiency.
3



S. Ghadai, X.Y. Lee, A. Balu et al. Computer Aided Geometric Design 91 (2021) 102038
2.1. Multi-level voxel learning

Learning from 3D voxel data was initially explored by Wu et al. (2015) (3DShapeNet) using convolutional deep belief 
networks (CDBNs) and later by Maturana and Scherer (2015) (VoxNet) using 3D-CNN. It is challenging to achieve a good 
classification accuracy on the ModelNet10 and ModelNet40 datasets using these approaches. Most approaches that use voxel 
data use a maximum of 323 resolution; recently, with the increase in GPU memory, using a resolution of 643 is possible. 
However, increasing the resolution beyond that is not practical with current systems for training deep networks using dense 
voxel grids for large datasets.

Increasing the effective voxel resolution beyond 643 requires new specialized data structures. Tatarchenko et al. (2017)
and Riegler et al. (2017) developed OctNets, which leverages an octree-based voxel representation of the data. In a tree 
structure, each voxel is represented as a node, and each of those nodes is connected to exactly eight subdivided voxels 
or octants. However, traversing the octree structure requires recursive algorithms. OctNets solved this problem by making 
use of shallow octree data stored using a regular grid. This allowed them to directly index the data in the octree without 
recursively parsing the tree and achieve an effective resolution of 2563. In this work, we use a different strategy of having 
multiple voxelization levels with arbitrary resolutions at each level. With this approach, we can also achieve a very high 
resolution similar to those achieved using OctNets. For example, we can achieve an effective resolution of 2563 by having a 
coarse resolution of 643 and a fine resolution of 43.

2.2. Feedback from interpretable attention maps

Convolutional Neural Networks (CNNs) (He et al., 2016; Huang et al., 2017; Krizhevsky et al., 2017; Lecun et al., 1998) are 
the preferred vision detectors when it comes to deep learning-based computer vision such as image classification, segmen-
tation, and detection. However, CNNs are considered to be black boxes since they do not provide insights into the workings 
of the feature extractors and the hidden layers. To overcome this setback, recent research has been dedicated to unlocking 
this black box nature of CNNs for more explainable/interpretable insights (Zhang et al., 2018b). Most of the interpretability 
methods (Olah et al., 2017; Ribeiro et al., 2016; Selvaraju et al., 2017; Zeiler and Fergus, 2014; Zhang et al., 2018a) are 
based on understanding a pre-trained network; although, a few works present disentangled/interpretable representations of 
neural networks that produce self-explanatory graphs. Using these disentangled representations, researchers have developed 
middle-to-end learning models that use weak to strong supervisory inputs from interpretable models to enhance learning. 
These supervisory inputs are in the form of feedback cues, such as active question-answering and object annotations, to en-
able hierarchical object understanding (Zhang et al., 2017), one-shot/multi-shot learning, etc. In this paper, we show the use 
of such an interpretability mechanism to augment 3D-CNNs with feedback based on attention maps. According to the multi-
level data representation we use in our work, this feedback mechanism is used to bridge fine-level learning to coarse-level 
learning.

3. Multi-level voxelization

In this section, we briefly describe the GPU-accelerated algorithm (Young and Krishnamurthy, 2018) we used to generate 
a multi-level voxelization of a boundary representation (B-rep) CAD model. A solid model, S is often represented using the 
B-rep surfaces dS . Whereas, the multi-level voxelization is a binary occupancy grid having two major components, namely, 
coarse-level voxelization Gc and fine-level voxelization G f . Note that, while our approach can be abstracted for multiple levels 
of features, here in this paper, we consider only two levels of representation. Our experiments show that these two levels 
are sufficient for representing the fine features in the geometry.

Multi-resolution voxel representations of B-rep CAD models are shown in Fig. 2 along with corresponding coarse and 
dense voxel grids. At each level, the voxel occupancy is represented using a binary value of 0/1 (i.e. G = {0, 1}d , where 
d refers to the total number of voxels in the grid) that defines whether the object occupies a voxel or not. To create the 
coarse-level voxelization, a standard grid of voxels using a user-defined resolution is constructed in the region occupied by 
the object (denoted by the axis-aligned bounding box (AABB)). A triangle-box intersection test is used in the next step to 
identify the boundary voxels by checking the intersection of each triangle of the B-rep model with every voxel. Identifying 
the boundary voxels enables a further division of the coarse-level grid into a fine resolution only at the boundary of the 
object without cubically increasing the voxel count. Once the boundary voxels are identified, they are further sub-divided 
to construct the fine-level voxel grid only at the boundary locations. The same triangle-box intersection test is then used to 
identify the fine-level voxels that intersect with the triangles of the B-rep model. The complete voxelization framework is 
GPU-accelerated, where each triangle-box intersection test is computed in parallel at individual levels. Using this method on 
the GPU, a high-resolution (effective resolution of 1283) multi-level voxelization of a low-mid polygon count model can be 
generated in about 180 ms.

A prefix sum address array is created using exclusive prefix sum that maps the memory location of each coarse-level 
boundary voxel to its corresponding fine-level voxel grid as shown in Fig. 3. We make use of a flat data structure to store 
the multi-level voxelization. This data structure consists of unrolling the 3D voxels first along the x-direction, followed by 
y- and z-direction, sequentially at the coarse level. We explain the details of the data structure for a 2D example of a two-
level voxelization using Fig. 3. As shown in the figure, the Coarse level voxelization consists of a 3 × 3 voxel grid unrolled 
4
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Fig. 2. Multi-level voxelization of B-rep CAD models. The fine level voxelization is performed only near the boundaries of the coarse level voxelization. The 
final resolution is equivalent to having dense level voxels throughout the model. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 3. Data structure for storing the multi-level voxelization.

along the x-direction first and then along the y-direction. Out of the total 9 voxels, 7 are occupied and are identified using 
the value “1” in the Coarse Level voxelization. All 7 voxels intersect with the boundary of the object; these voxels are 
further subdivided in the fine-level voxelization and are identified by “1” using the Boundary Voxels array. To efficiently 
store the information only from the boundary voxel, we use the Prefix Sum Address Array. The exclusive prefix sum array is 
created using the scan algorithm (Blelloch, 1989) on the Boundary Voxels array. It consists of the sum of the values of the 
elements until the current element, which gives a unique index location for each boundary voxel. In the present example, 
each boundary voxel is further divided into a 2 × 2 grid of fine level voxels. The 4 values of the fine level array for each 
boundary voxel are then stored in a single flat array that consists of a total of 28 values.

Representing a 3D model using a multi-level voxel grid structure exploits the sparse nature of the data. When spatial 
data is represented using voxel grids, the voxel count increases as O(n3) with an increase in resolution of the grid and in 
turn reduces the total voxel space occupied by the object. To prove this, we represent the coarse-level voxel grid by Gc

and its corresponding fine-level voxel grids by G f = {G1
f , G

2
f , . . . , G

φb
f } with resolutions of nc × nc × nc and n f × n f × n f , 

respectively, where the number of boundary voxels are φb . Comparing it with a dense voxel grid of resolution nd × nd × nd
where nd = nc × n f , we see that, total voxels in multi-level data structure are φb × n3f . As the number of boundary voxels 
can never be more than the total voxel count, 1 ≤ φb ≤ n3c . Define

Gc → nc × nc × nc

G f → n f × n f × n f

nd = nc × n f

From the above,

1 ≤ #Boundary Voxels, φb ≤ Total Voxels ,n3c

∴ φb × n3f ≤ n3c × n3f = n3d

⇒ Voxel countmulti ≤ Voxel countdense.
5
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The number of boundary voxels for a fixed-genus closed object scales with O(n2) with the resolution n. In practical 
cases, this scaling is much smaller than the volumetric scaling of voxels, leading to a compression in the data structure 
without losing any accuracy in the representation. In addition, the spatial locations of the locally dense fine level voxels can 
also potentially aid in learning the shape of the object at the coarse level.

4. Multi-resolution CNN

In the previous section, we showed that representing 3D spatial data of a geometry, S , using a flexible multi-level 
data structure exploits the sparse nature of the data and is memory efficient. The multi-level voxel data stores the volume 
occupancy information in two hierarchical levels, the coarse voxel grid Gc and a set of voxel grids, G f . In this section, we 
explain the multi-resolution hierarchical learning algorithm that enables end-to-end learning of individual features from 
both the coarse and fine voxel grids. Further, we investigate an interpretability-based feedback mechanism for adaptively 
extracting voxel zones that bridge the learning from the fine to the coarse level.

The multi-resolution convolutional neural network (MRCNN) consists of multiple 3DCNN networks, with each network 
dealing with features from the corresponding voxel grid. For example, with two levels of resolutions, each level has a 3DCNN 
network that learns the features commonly present in that resolution. One of these 3D CNNs, named as Coarse-level CNN, 
takes in the coarse level voxels Gc as input, and the other CNN called Fine-level CNN accepts the set of fine level voxels, G f
as input. Let θ1 be the set of weights for the Coarse-level CNN and let F (Gc, θ1) be the predicted output for a given coarse-
level input Gc and θ1. This provides a benchmark of the network’s performance with some loss ε in the prediction. We then 
augment the performance of the network by adding Fine-level CNN with another set of weights, θ2, which are used to learn 
features from G f . These two neural networks are carefully combined to work together as a single unit in both the forward 
pass and backward pass of the algorithm so that it facilitates better learning from the multi-level data representation and 
makes it computationally comparable to performing sparse convolutions. The main challenge in this task from a geometric 
perspective is that all the operations we perform on the Fine-level CNN have to be integrated or appended to the operations 
performed in the Coarse-level CNN. Further, since the deep learning models are trained using the back-propagation algorithm, 
the operation we construct must be differentiably (Baydin et al., 2018; Wang et al., 2018b) defined. Therefore, we define 
the forward and backward pass in the next two sections to address this challenge.

4.1. Forward computation of MRCNN

Recalling the voxel data representation, a 3D object is represented as a grid of coarse voxels (say 83 resolution) with 
a binary voxel value of 0/1 at the boundary of the object. Each boundary voxel (with coarse voxel value of 1) is further 
subdivided into a fine voxel grid (say 43 resolution) with similar binary values 0/1.

The forward computation of MRCNN starts from the fine-level voxel grid by randomly sampling a subset of the total 
boundary voxels, �, of a 3D model. This subset of boundary voxels with individual fine voxel grid G f of resolution n f

3, 
are used as input to the Fine-level CNN. The Fine-level CNN network consists of blocks of convolution - max pooling layer pairs 
and fully connected layers connected in conjunction, each with a ReLU activation function associated with it. The Fine-Level 
CNN then outputs a single real numbered value ηφ∀φ ∈ �, ηφ ∈ R for each boundary voxel, φ. This set of ηφ values are sent 
forward to be combined with the coarse-level voxel grid, Gc . The outputs of Fine-level grid, ηφ , replace the original coarse 
voxel grid values at the appropriate voxel positions, Gc(φ) = ηφ . This is performed with the help of the index array (obtained 
from the prefix sum array) that maps the position of each coarse-level boundary voxel with its respective fine-level voxel 
grid.

In the corresponding phase of the forward computation of MRCNN, the coarse-level voxel grid with selective embed-
dings from Fine-level CNN, G ′

c (Gc , with specific values replaced with ηφ ), is used as an input to the Coarse-level CNN. The 
architecture of Coarse-level CNN network comprises of different permutations of convolution - max pooling layer blocks. The 
end section of the network has multiple fully connected layers, and the output is the class prediction probability vector. The 
categorical cross-entropy loss function is used to compute the loss of the predicted classes with the true class labels. The 
forward run of the MRCNN network algorithm is depicted in Algorithm 1. Network hyperparameter details are provided in 
the online Appendix.

4.2. Backward computation of MRCNN

While the forward computation of MRCNN may be trivial, the back-propagation of the MRCNN can be tricky to imple-
ment correctly. The main challenge of the back-propagation computation is to link the two networks such that the gradients 
can be passed on from the coarse level network to the fine level network. Without this link, the weights of the fine-level 
network would not be updated accordingly.

For backpropagation, we begin with the final loss between the ypred and ytrue obtained as an output from the coarse 
level network using the categorical cross-entropy loss. We back-propagate this loss through the coarse level network using 
standard automatic differentiation packages. Thus, from the loss L, we can define the derivatives for weights in each layer 
of the coarse level (i.e., ∂L/∂θ1). Finally, using the same backpropagation scheme, we can obtain the gradients of the loss L
6
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Algorithm 1: MRCNN Forward & Backward Passes.
1 Forward Pass:
2 forall Boundary voxels, φb in parallel do
3 ηb= ForwardF ine−levelCNN (ϑ2b ));
4 ϑ1(φb) = ηb

5 end
6 ypred = ForwardCoarse−levelCNN (ϑ1)

7 Backward Pass:
8 dϑ1 = BackwardCoarse−levelCNN (ϑ1, dypred)

9 forall Boundary voxels, φb in parallel do
10 dηb = dϑ1(φb)

11 dϑ2b = BackwardCoarse−levelCNN (ϑ2b , dηb);
12 end

Fig. 4. Multi-Resolution Convolutional Neural Network (MRCNN). Our proposed network can learn from a hierarchical CAD data representation with a coarse 
level of information and information of boundary voxels which connects to the fine level voxels. For a forward pass (left to right) the information learned
from selected fine level voxels using the L2 CNN is embedded in the coarse level input to L1 CNN and then the final prediction is obtained. The backward 
pass follows the reverse order of the forward pass (right to left).

with respect to the input G ′
c (modified coarse level input with selective fine level embedding). Recall that we embedded 

the features from the fine voxel grid to G ′
c using the variable ηφ .

∂L

∂ηφ

= ∂L

∂G ′
c
(φ) (1)

This linking of derivative from Gc to ηφ is obtained using the index array obtained from the prefix sum. Thus, we get 
the derivative of the loss with respect to the output of the fine level network (ηφ ) and use it to back-propagate through the 
network to obtain the gradients of the fine level network. This process is explained in Algorithm 1 and Equation (2) shows 
the back-propagation of the loss from the output level to the fine level network.

∂L

∂θ2
=

∑

∀φ∈�

∂L

∂ηφ

∂ηφ

∂θ2
(2)

Using Equation (1), we can now define the backpropagation process completely. It is also worth noting that since the 
same Fine-level CNN is shared among all the boundary voxels, the gradients of θ2 for Fine-level CNN are computed for all 
boundary voxels only once. With that gradient, the network could be trained to update its weights θ1 and θ2 in such a 
way that the loss L, of the final prediction ypred , is minimized. This approach facilitates the end-to-end learning of network 
parameters θ1, θ2 in a hierarchical order. The network parameters’ update could be performed using an optimizer, such as 
SGD, Adam, Adadelta, etc. The complete operation of MRCNN is explained schematically in Fig. 4.

4.3. Adaptive salient-voxel-zone feedback via interpretable attention maps

In the forward computation of MRCNN as discussed in Section 4.1, we randomly sample � boundary voxels from coarse-
level voxel grid as the input to the Fine-level CNN. We do so to reduce the computational time incurred in using all the 
boundary voxels. From our experiments, we found that using all the � voxels did not improve the learning capability of 
MRCNN substantially (≈ 0.2%). However, we note the � voxels sampled randomly might not be the perfect candidates that 
carry important spatial information in the fine-level grid. Hence, we propose an adaptive salient-voxel-zone (SVZ) selection 
7
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Algorithm 2: FeedbackMRCNN.

1 θ1 ← PretrainCoarse−levelCNN

2 forall Epochs do
3 γ = 3DGradC AM(ϑ1(�), θ1)
4 ypred ← ForwardMRCNN (ϑ2(γ (φb)), ϑ1)

5 L = Cross − entropy(ytrue, ypred)

6 θ1, θ2(Update) ← BackwardMRCNN (Loss)

Fig. 5. Interpretability based feedback for Multi-Resolution CNN. The output is first evaluated with just the coarse voxels using L1 CNN. The interpretability 
of the L1 CNN provides feedback salient features to select voxel-zones (SVZs) to train MRCNN as explained in Algorithm 2.

technique that samples the coarse-level boundary voxels based on an interpretability algorithm. These �int voxels, a fraction 
of the total � boundary voxels, are input to the Fine-level CNN; with the rest of the forward and backward computations 
of MRCNN similar to the algorithm discussed in Algorithm 1. Note that this approach is not to get better performance but 
to get more physically interpretable models. In this section, we explain the process of using interpretability as feedback to 
MRCNN for an intelligent sampling of boundary voxels from the coarse-level grid.

The interpretability mechanism adopted to detect important boundary voxels is an enhancement of GradCAM (Selvaraju 
et al., 2017) for 3D objects (3DGradCAM (Ghadai et al., 2018)). 3DGradCAM backpropagates the gradients of class-specific 
feature maps, retrieved from the CNN, with respect to the loss prediction to generate class activation maps (CAM) that 
estimate the importance of regions in the input 3D object. The feature maps are first obtained from the CNNs, and a class 
discriminative gradient is computed with respect to these feature maps. Spatially important feature maps are thus obtained 
for a particular class. Mapping the CAM to the input voxel grid allows us to extract regions, which we call salient-voxel-zones, 
from the coarse-voxel grid.

In the first step to extract SVZ, we use a pre-trained model of Coarse-level CNN, trained on coarse level voxel grid ϑ1
to generate the CAMs, γ , using 3DGradCAM. To overlay the CAM to the input data, we interpolate it to match the coarse 
level voxel grid size. This acts as an attention map of the voxel grid to interpret the important voxels contributing to the 
classification. The relevant voxels interpreted from γ have higher activation than the non-relevant voxels. We exploit this 
factor to choose γ (�b) voxels from the total boundary voxels � to be used as input to Fine-level CNN. Then, the forward 
computation of MRCNN proceeds, as discussed in Section 4.1, to classify the object using the network parameters θ1, θ2. 
After computing the classification loss L, the backward computation of MRCNN updates the network parameters θ1, θ2 by 
back-propagating L to the input layer of Fine-level CNN. This constitutes one training iteration (or epoch) of MRCNN. The 
next epoch again begins with selecting salient-voxel-zones using 3DGradCAM with the updated parameter θ1 instead of the 
pre-trained parameters. The complete process of incorporating the interpretability-based feedback system is shown in Fig. 5
and explained in Algorithm 2.

5. Experimental results & discussion

In this section, we present the classification results of the proposed MRCNN framework on Princeton’s ModelNet10 
dataset (Wu et al., 2015) that contains 3D CAD models of 10 different categories. The 3D CAD models were voxelized using 
the voxelization scheme mentioned in Section 3, yielding a set of coarse voxel grid of 83 and another set of dense voxel grid 
of 323. In addition, we also voxelized two sets of multi-resolution data to test the efficacy of MRCNN; an 83 coarse voxel 
grid with a 43 fine voxel grid giving an effective resolution of 323 resolution and a 323 coarse voxel grid with a 43 fine voxel 
grid, resulting in an effective resolution of 1283. We ran a set of experiments on the four different resolutions of the data 
and compared the classification performance between a Coarse-Level CNN applied on the coarse and dense resolution data 
and MRCNN applied on the multi-resolution data. For the coarse and dense resolutions, we applied the Coarse-level CNN on 
the data and evaluated the classification performance of the network. For the multi-resolution representation, we applied 
our proposed MRCNN by sampling 40% of SVZ, computed by 3DGradCAM, and allowed the fine resolution voxels of these 
coarse voxels to run on Fine-level CNN. We selectively embed these values in the coarse level boundary voxels and continue 
the forward pass as explained in Section 4.1. We find that sampling 40% of boundary voxels gives a good classification 
8
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Fig. 6. (a) Mean classification performance with different input resolutions on ModelNet10 dataset. The coarse and dense resolutions are trained with a 
conventional 3DCNN, while the multi-resolution voxel grids are trained with MRCNN. (b) GPU memory usage of MRCNN training & equivalent CNN training 
on specified voxel grid resolutions. The red horizontal line shows the current prominent GPU capacity. Blue hatched bar depicts the anticipated memory 
usage while training a 1283 dense voxel grid on CNN.

Table 2
Comparison of deep learning frameworks with voxel-based representation for 
ModelNet10 object recognition. MRCNN (our method), along with OctNet, can 
learn from a voxel grid resolution of 1283, so we compare our work with Oct-
Net for better clarification. We also show the performance of other voxel-based 
spatial learning methods. ∗ represents value interpreted from plot.
Method Data Representation Accuracy %

MRCNN Multi-level voxels 91.3
OctNet (Riegler et al., 2017) Octree Voxels 91.0∗
3D Shapenets (Wu et al., 2015) Voxels 83.5
VoxNet (Maturana and Scherer, 2015) Voxels 92.0
Beam Search (Xu and Todorovic, 2016) Voxels 88.0
3DGAN (Wu et al., 2016) Voxels 91.0
binVoxNetPlus (Ma et al., 2018) Voxels 92.3
LightNet (Zhi et al., 2018) Voxels 93.9

performance using MRCNN without excessively prolonging the training time. We ran multiple sets of experiments across 
all four resolutions with different hyperparameters to demonstrate that our proposed framework is agnostic to network 
architectures. These are described in the online Appendix.

We perform an ablation study to understand the performance of MRCNN compared to traditional CNN networks. Fig. 6a 
shows the mean test accuracy obtained from the experiments with the variance of the accuracy represented by the shaded 
regions. There is a clear trend that a denser resolution results in a minor improvement in classification accuracy. Starting 
from the coarse resolution of 83, the Coarse-level CNN can achieve a mean test accuracy of 81%. However, with a multi-
resolution voxel grid of 323 effective resolution, MRCNN can obtain a better mean classification accuracy. Subsequently, a 
regular CNN applied on a dense voxel grid of 323 is able to achieve a slightly better classification accuracy than both. Due 
to the GPU’s memory constraints, we are unable to demonstrate the performance of a Coarse-level CNN applied on a dense 
resolution data of 1283. Nonetheless, using MRCNN, we are able to achieve the best classification performance using an 
effective resolution of 1283 represented by a multi-resolution voxel grid with a base resolution of 323 and a fine resolution 
of 43. Another important factor to note is that the variance in the accuracy of the different network architectures is reduced 
with the increase in resolution. This reduction in variance could be due to the fine features being sufficiently represented 
in the higher resolution enabling better learning. We see that MRCNN has a variance value that is in between the range for 
the coarse resolution and the dense resolution CNNs. The lower variance also confirms that our method is robust to changes 
in the hyperparameters of the network and can perform equivalently better to a single level representation (although not to 
the same extent as the dense representation), with a much lower memory cost.

A comparison of our results with the performance of other spatial deep learning methods is also tabulated in Table 2. 
We compare our performance with OctNet due to the similarities in data representation (high-resolution voxel grid) and 
classification task that exploits spatial data sparsity. In addition to that, we compare MRCNN performance with other voxel-
based methods employed on the ModelNet10 dataset. We observe that MRCNN (91.3%) outperforms some of the voxel-based 
9
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Fig. 7. Visualization of salient-voxel-zones from Fine-level CNN to Coarse-level CNN via random selection vs. GradCAM on ModelNet10 dataset using MRCNN. 
We can observe that the intensity of the embedding changes drastically between the 5th and 15th epoch, which demonstrates the learning of a region’s 
importance. Hence, adaptive SVZ selection technique enables a more efficient sampling of important boundary voxels.

methods and is better at classification than OctNet (91.0%). To compare with VoxNet, our dense-level network with selec-
tively chosen hyperparameters has better performance (92.1%) than VoxNet (92.0%) as seen from Fig. 6a, while consuming 
memory comparable to a coarser voxel grid. Additionally, OctNet defines a layer-based approach (i.e., defining a specific 
convolution operation to deal with each hierarchy) in deep learning parlance. However, we use a modular approach with 
two networks (one dealing with lower-level features and the other for coarser features). This modular approach helps in 
dealing with noise and different artifacts in the geometry robustly, unlike in the case of OctNet.

An interesting observation is that although the mean classification accuracy achieved on the coarse level voxel grid is 
relatively high, there is a great variance across the set of experiments performed as well, with certain network architectures 
having an accuracy of only 55%. Generally, we observed that network architectures that use average-pooling layers see a 
bigger increase in performance when used with MRCNN. Hence, the advantages of MRCNN are two-fold. First, we show that 
with a multi-level data structure, MRCNN can learn simultaneously from the two levels of data and perform better than a 
standard CNN trained on coarse resolution data. Second, MRCNN greatly reduces the effect of varying network architectures 
on the performance of the network, especially on the lower bound of the performance. This is advantageous as it allows 
greater flexibility when designing a deep network.

An additional advantage of the MRCNN framework is the GPU memory requirement during the training of the network. In 
Fig. 6b, we show a comparison between the memory requirements of the GPU for training on the four different resolutions 
of data. As shown in Fig. 6b, the memory requirements of the GPU scales exponentially with the test accuracy, resulting in 
an inability to train a dense-level network on 1283 voxel resolution (shown as a blue hatched bar). To achieve a 6% (82.6% to 
88.2%) increase in test accuracy by training on dense resolution data, an additional GPU memory of at least 300% is required 
when compared to training the MRCNN model. This highlights the effect of sparsity in a dense resolution voxel grid where 
the increase in classification performance scales non-linearly with data resolution.

Further, to study the effect of the different components of the multi-level network on classification accuracy, we perform 
an ablation study by comparing the performance of MRCNN with and without the SVZ selection technique. While we 
performed experiments on several network architectures, we repeatedly observed that SVZ performs marginally better than 
non-SVZ. For example, the performance of several architectures led to average test accuracy of 88.68% without the SVZ 
selection technique. In contrast, the performance of the same network architectures with the SVZ selection technique is 
88.92%. While the improvement in accuracy is not significant, the SVZ approach leads to a more interpretable result by 
highlighting the regions of importance in the model. Fig. 7 shows a visual comparison of selecting boundary voxels via 
random sampling and using the SVZ selection technique. From the color intensity of the sampled boundary voxels, we 
can see that as the training progresses from the 5th to the 15th epoch, a regional pattern emerges from the embeddings 
10
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sampled through SVZ. This demonstrates that the network is learning the importance of different regions to classify an 
object correctly. Therefore, by applying the SVZ technique, the network has better control over the sampling of significant 
boundary voxels in comparison to random sampling.

MRCNN can also be applied to non-CAD model representations of 3D objects such as meshes and point clouds. A voxel 
grid can be generated from point clouds by sampling the points in the point cloud on an overlayed tight voxel grid. A 
multi-level voxel grid can also be constructed from the point cloud by sampling points inside each coarse voxel grid to 
create fine-level voxels. Object recognition on the point cloud can then be performed by applying MRCNN on this multi-
level voxel grid.

6. Conclusions

In this paper, we explore a novel deep learning architecture, MRCNN, to learn from 3D data in a hierarchical manner 
using multi-resolution voxel-based data structures. We also demonstrated that a model interpretability mechanism could be 
leveraged to enable information flow between the two levels of MRCNN. Our object recognition results show that MRCNN 
performance is significantly better and robust than regular CNNs trained on coarse-resolution data while having similar 
memory requirements. MRCNN performs about as well as CNNs trained on dense data with equivalent resolution while 
keeping the memory requirements significantly lower. We can extend this inference to feature-rich CAD models of mechan-
ical components given the availability of such a large dataset of models. Future works will include exploring efficacies of 
MRCNN on such a collection of CAD models and various object recognition datasets and other relevant engineering problems 
such as design, manufacturing, and analysis, where extraction of multi-scale features is critically important.
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