
Additive Manufacturing 40 (2021) 101929

Available online 25 February 2021
2214-8604/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research Paper

Direct 3D printing of multi-level voxel models

Sambit Ghadai, Anushrut Jignasu, Adarsh Krishnamurthy *

Department of Mechanical Engineering, Iowa State University, Ames, IA, USA

A R T I C L E I N F O

Keywords:
3D printing
Multi-level voxelization
GCode generation
Multi-level marching squares

A B S T R A C T

We present a direct method for the additive manufacturing of multi-level voxelized models that achieves a better
surface finish. We have developed a new multi-level marching squares algorithm to identify the boundary of the
multi-level voxelized model. We have also developed methods to use the multi-level voxelization to perform the
infill operation based on user-defined infill density. We directly generate the GCode that is input into the 3D
printer for printing. Our method overcomes the issues associated with the slicing operation for standard CAD
models. In addition, we can directly print thresholded voxel models that are output from CT or MRI scans to get a
physical 3D representation of medical data. We show that our method performs well by directly printing test
models of multi-level voxel representation of complex CAD geometries, and cardiac CT data.

1. Introduction

Additive manufacturing (AM, also known as 3D printing) is a process
by which virtual CAD models are physically manufactured by adding
material instead of traditional subtractive manufacturing. Most AM
processes use tessellated CAD models in stereolithography (STL) or
virtual reality modeling language (VRML) file format. Tessellated CAD
models, in the form of triangle soups, can be easily obtained from
generic CAD models, which are usually represented using boundary
representation (B-rep) or constructive solid geometry (CSG) modeling of
primitives. These tessellated models are further processed or sliced to
obtain the layer-by-layer information for AM. However, other data
structures representing solids, such as volumetric representations (vox
els), point clouds, and medical imaging data (MRI and CT scans), require
complex geometric algorithms to tessellate and represent them as
triangular facets. Additionally, developing AM printing strategies for
these representations is challenging due to the computational cost of
processing these representations at higher fidelity. In this paper, we
develop an AM strategy that enables direct 3D printing from volumetric
representations or multi-level voxel models with higher accuracy and
print quality. One of the advantages of using a voxel representation for
AM is that the regularity of the voxel grid eliminates the need for explicit
slicing, which is a time-consuming process. Slicing CAD models also
creates gaps and discontinuities that need further processing to be used
for AM. Voxelization alleviates this issue by directly generating a
rectilinear occupancy grid conforming to the required layer structure. In
addition, it also enables direct printing of models that are natively

represented using voxels such as 3D imaging data from MRI and CT scan
image stacks.

Voxel representations are rectilinear structured grids with scalar
values representing the volume elements of a solid geometry. Capturing
the fine details of a solid model requires a very high-resolution voxel
grid. However, high-resolution uniform data structures for voxels
require a large amount of memory and are compute-intensive. Special
ized data structures such as octrees [9] and multi-level voxels [33] use a
hierarchical approach to represent a dense voxel grid using sparser data.
Specifically, multi-level voxels provide flexibility to choose the voxels’
size and resolution at each hierarchical level. In addition, fast
GPU-accelerated voxelization algorithms for multi-level voxels with
very low space and time complexity have been developed [33]. We use a
multi-level voxelization with two hierarchy levels for representing the
volume information, without loss of generality. These levels–coarse and
fine–have an user-defined selection of voxel grid resolution at each level.
Specifically, we identify the voxels corresponding to the outside, inside,
and the boundary of the object at the coarse voxel level using different
scalar values. Each coarse boundary voxel is subdivided into fine voxels
with the same scalar values representing the boundary, inside, and
outside. The multi-level voxel representation is shown in Fig. 1, showing
the difference with the regular voxel grid.

Multi-level voxel representation provides us with the necessary
boundary and inside information to facilitate 3D printing. We build the
surface boundary layers from fine voxels and compute the infill layers
only at the coarse voxel level. The traditional marching squares algo
rithm is not suitable for a multi-level voxel grid as it can lead to errors in

* Corresponding author.
E-mail addresses: sambitg@iastate.edu (S. Ghadai), ajignasu@iastate.edu (A. Jignasu), adarsh@iastate.edu (A. Krishnamurthy).

Contents lists available at ScienceDirect

Additive Manufacturing

journal homepage: www.elsevier.com/locate/addma

https://doi.org/10.1016/j.addma.2021.101929

mailto:sambitg@iastate.edu
mailto:ajignasu@iastate.edu
mailto:adarsh@iastate.edu
www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2021.101929
https://doi.org/10.1016/j.addma.2021.101929
https://doi.org/10.1016/j.addma.2021.101929
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2021.101929&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Additive Manufacturing 40 (2021) 101929

2

the final contour (see Section 3.1 for details). Therefore, we have
developed a multi-level marching squares (MLMS) algorithm that gen
erates high-resolution isocontours from multi-level voxel representation
of CAD models to 3D print the boundary. However, printing the infill of
a model with such higher accuracy is generally unnecessary as it does
not contribute towards the surface finish. Hence, we use the inside in
formation of fine and coarse voxels of the multi-level voxel represen
tation to generate rectilinear infill structure using a hybrid scan-line
approach. This approach conservatively extracts the infill lines closer to
the boundary of a print layer while sparsely extracting the infill infor
mation from the larger coarse inside voxels at the same time. Thus, we
achieve both high fidelity at the boundary and sparse infill structure
with user-defined sparsity for direct 3D printing using multi-level
voxels.

In addition to balancing the resolution of the isocontours and infill
for 3D printing, multi-level voxel representation also allows us to print
the infill with variable layer height without explicit slicing. This elimi
nates the staircase aliasing artifacts [28] on the boundary of the printed
part, leading to a better surface finish. In the layer print direction, we
print the isocontours based on each fine voxel layer but only print the
infill once for the coarse voxel layer with a higher extrusion value that
can be automatically set for the 3D printer’s nozzle. Thus, we only print
the infill once after printing all the isocontours of the fine voxels in the
layer. We choose the resolution of the multi-level voxel representation to
conform to the variable layer height parameters. The layer heights for
boundary and infill structures govern the fine and coarse voxel sizes,
respectively. We then voxelize the CAD model to this resolution using a
GPU-accelerated multi-level voxelization algorithm. Based on these
layer heights, we also generate the GCode instructions to command the
printer to print the final part with variable heights, thus eliminating the
need to slice the model.

In this paper, we have developed a method to directly 3D print a CAD
model from a multi-level voxel representation. We have developed a
multi-level marching squares algorithm, which can be used to 3D print
medical data such as MRI and CT scans without explicit tessellation. The
major improvements of our direct 3D printing approach over traditional
STL 3D printing are tabulated in Table 1. Our main contributions
include:

• A direct 3D printing method employing multi-level voxel represen
tations of CAD models to accurately 3D print high resolution models.

• A multi-level marching squares algorithm to generate layer-by-layer
contours from a multi-level voxel representation of a CAD model.

• A novel infill generation method that uses a hybrid scan-line algo
rithm to create variable height infill structures from multi-level voxel
representations.

• Application of this 3D printing method to fabricate physical models
from high resolution CAD and volumetric medical data such as stacks
of MRI and CT scan images.

A complete outline of our framework is shown schematically in
Fig. 2. We first voxelize the CAD model according to the user-defined
layer heights and resolution to create a multi-level voxel representa
tion consisting of coarse and fine voxels, each with its specific boundary
and inside voxels (shown in green in Fig. 2). We then implement the
multi-level marching squares algorithm (Section 3) on the boundary
voxels of both coarse and fine voxels to generate the boundary iso
contours (shown in blue). Using the inside voxels of the coarse and fine
levels, we generate the infill structure for the model using a hybrid scan-
line approach (Section 4, shown in red). Finally, we combine the
boundary isocontours and the infill structure to create the GCode in
structions (Section 5) using the user-defined layer heights. We show
some physical examples of the 3D printed models in Section 6.

2. Background and related work

Given the recent evolution of 3D Printing technology, there has been
an increase in research focused on improving various AM processes [23].
Most generic AM processes use computer-aided design (CAD) repre
sentation of a part or model to generate special additive 3D printing
directives for manufacturing. Fadel and Kirschman [10] mentions that
among a plethora of CAD representation formats that have been used for
AM, none have been as universal as stereolithography (STL) format due
to its simplicity. An STL file approximates a CAD model using a tessel
lated (triangular) surface model and is the de-facto representation for 3D
printing of CAD models. The primary input to an AM process is a GCode
file generated from the CAD model after performing the slicing opera
tion on the STL file. However, issues like truncation errors and
approximation of curved surfaces by triangular facets in tessellated
representations introduce some level of inaccuracy [20]. Additionally,
Kumar and Dutta [20] mention problems such as inconsistent normals,
topological degeneracy, self-intersections, and geometric degeneracy to
be associated with the conversion to STL format.

The slicing operation is a necessary part of the layered additive
manufacturing process planning, which has a major impact on the sur
face finish [18,22,35], build time [19], and mechanical properties [24]
of the manufactured model. There are various slicing algorithms like
uniform slicing [6,7,34], its variant adaptive slicing [34], and direct slicing
[5]. Uniform slicing generates slices with constant layer thickness and
has been widely adopted for different AM processes. However, uniform
slicing of relatively large CAD models is computationally intensive, and
the process is slow [6,7], with coarse surface features. Adaptive slicing
uses machine capability and geometry [18,22,35] to determine slice
thickness allowing for reduced build time with a superior surface finish.
Zhou et al. [35] proposes the use of non-uniform cusp heights for higher
slicing efficiency. In this paper, we perform AM operations using voxel
representations of CAD models to overcome the aforementioned issues
associated with using tessellated representations and explicit slicing of

Fig. 1. Distinction between a regular voxel representation and multilevel voxel
representation. (a) shows a regular voxel grid of a turbine CAD model while (b)
shows its multi-level voxel representation. The effective representation reso
lution of both the grids are similar. (a) has a resolution of 12 × 16 × 24
whereas (b) has a coarse resolution of 8 × 8 × 12 and fine resolution of
4 × 4 × 4, hence achieving effective resolution of 32 × 32 × 48.

Table 1
Comparison of 3D printing methods.

Method Implicit
slicing

CT/MRI
scans

Volume
information

Traditional STL 3D printing X X X
Direct 3D printing of multi-

level voxels
✓ ✓ ✓

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

3

triangular facets. Regular rectilinear voxel grids have implicit layer in
formation that enables us to perform layered manufacturing directly
without undergoing standalone slicing operations. In addition, we
perform a variable layer height 3D printing for the surface as well as the
interior of the model using our multi-level voxels.

Voxelization is a traditional volume representation schema for CAD
models that stores the model’s occupancy information in a regular 3D
rectangular grid with volume elements called voxels. Voxelized repre
sentations offer the ability to conserve volumetric data associated with a
CAD model [16] and allow for efficient Boolean operations and collision
detection of CAD models. The conservation of volumetric data associ
ated with a CAD model is of particular importance for 3D printing [3,11,
16,29,30,32]. However, an accurate voxel representation of a CAD
model requires a very large number of voxels (~1 billion) to represent
the finer details of the model. This comes with a very high computa
tional and memory cost.

To overcome this high memory cost, traditional volume represen
tations have been modified to use various hierarchical data structures
such as octrees and kD-trees. The Octree representation offers efficient
memory allocation by using successive subdivisions of an object array
into octants [14,25]. kD-trees, on the other hand, alternatively divide
the space along the three principal axes, partitioning the space and
allowing for memory-efficient handling of location queries [4]. Laine
and Karras [21] use a sparse octree data structure where each node is
represented as a voxel for ray casting. The sparse octree-based approach
has also been used by Schwarz and Seidel [26] to create a GPU-based
solid voxel representation while addressing the high memory con
sumption of traditional voxel grids. Kazhdan et al. [17] extract water
tight level-set information from octrees. Similarly, Young and
Krishnamurthy [33] uses the high computation capability of GPUs to
generate a multi-level voxelization scheme that stores the occupancy
information of a CAD model at two hierarchical levels of voxels. First, a
general voxelization is performed on a boundary representation (B-rep)
model to store the inside-outside and boundary occupancy information.
Then, they further voxelize the boundary voxels into further smaller
voxels and maintain the hierarchical relationship of both voxel levels
using a prefix sum address data structure.

In this paper, we adopt the multi-level voxelization paradigm
developed by Young and Krishnamurthy [33] to easily and rapidly
voxelize models with an effective higher resolution, thus capturing the
finer details of the CAD model. Further, multi-level voxel representation

provides us with two distinct voxel hierarchy levels, which allows us to
easily handle the boundary and infill generation for the AM process in a
distinct fashion to achieve high surface printing accuracy while sparsely
printing infill with a variable height and density.

3. Boundary extraction from a multi-level voxel model

In this section, we describe our methodology to directly print the
boundary of the CAD model from the multi-level voxel representation.
We first voxelize the B-rep solid model to create a multi-level voxel
representation using the GPU-accelerated multi-level voxelization al
gorithm developed by Young and Krishnamurthy [33]. We voxelize a
B-rep model since voxelization implicitly performs the slicing operation
and generates the layer-by-layer information required for 3D printing. In
addition, voxelization of the B-rep preserves the volume information of
the CAD model in a voxel grid that enables us to generate the infill in
formation for 3D printing. The multi-level voxelization can also be
created from other 3D model representations such as point clouds and
medical imaging data (see Section 6). We use two independent methods
to extract and directly 3D print the boundary and the infill separately.
The voxels having boundary information in each of the coarse and fine
voxel resolutions, Rc and Rf respectively, are encoded using a scalar
value 1.0 and the empty voxels are encoded using a scalar value 0.
Similarly, the voxels representing the inside of the CAD model are
encoded with a scalar value 0.5. The multi-level voxelization algorithm
also creates a prefix-sum index array that maps each of the course
boundary voxels to its specific fine voxels. Please refer to Young and
Krishnamurthy [33] for more information about the multi-level voxel
representation.

The coarse voxel resolution corresponding to the print direction is
selected based on the required layer thickness and is independent of the
voxel resolution in the lateral direction. The fine voxel resolution along
the print direction is pre-selected and fixed according to the minimum
printable layer height defined by the print nozzle of the 3D printer.
Details of the voxel resolutions are further described in Section 5. To
generate the 3D print directives for a voxelized CAD model boundary,
we first isolate the layer information inherent in the voxel grid along the
print direction. We then implement a marching squares based approach
on each layer of the multi-level voxel grid to efficiently extract the
isocontour information. We have developed a multi-level marching
squares (MLMS) algorithm that extracts isocontours from the boundary

Fig. 2. Outline of direct 3D printing from multi-level voxels. Green boxes show detailed structure of multi-level voxel representation. Blue boxes define multi-level
marching squares implementation on coarse and fine boundary voxels. Hybrid-scan line from coarse and fine inside voxels is shown in red. Final step of combining
isocontours and infill to generated GCode is shown in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

4

of multi-level voxel layers and combines them to generate the boundary
printing information. Using MLMS on multi-level voxel grids allows us
to create accurate isocontours from voxel grids with very high effective
resolution (~ 8 billion voxels). Using the isocontours, we then generate
the GCode for the 3D printer to print the boundary of the CAD model.

3.1. Multi-level marching squares

The multi-level marching squares algorithm takes in a single layer of
multi-level voxels in a particular orthogonal slice of the voxel grid in the
print direction as shown in Fig. 3. The hierarchical layers in a multi-level
voxel model are shown in Fig. 4. In this model, we consider the Z di
rection of the voxel grid as the print direction and the X-Y plane as the
print layer. We first extract a coarse plane or layer of coarse voxels Lc in
the Z direction from the multi-level voxel grid. This coarse voxel layer
further has multiple fine voxel layers defined by the fine voxel resolution
Rf. We then extract a fine layer of voxel from Lc, namely Lf, that can be
considered as a binary image with varying pixel resolution, as shown in
Fig. 4(b). Since we have information regarding all the boundary voxels
in the multi-level voxel grid, we only apply MLMS on the boundary
voxels, i.e., voxels with a scalar value of 1.0, thus exploiting the sparsity
of a multi-level voxel grid. The boundary voxels on a multi-level voxel
layer are hierarchically structured with each coarse boundary voxel Bc
having further subdivision with fine boundary voxels Bf as shown in
Fig. 3.

Performing the standard MS operation on a multi-level voxel grid is
not feasible since the MS algorithm cannot automatically account for the
heterogeneous neighboring voxels in a hierarchical multi-level voxel
grid. Performing MS on the individual coarse voxel grid and combining
the resulting iso-contours is also not feasible since it creates discon
nected segments or gaps at each coarse voxel boundary, as shown in
Fig. 5. MLMS overcomes these issues in multi-level voxel grids, or hi
erarchical data representation in general, to efficiently and accurately
extract the iso-contours. To enable this, we pad each fine voxel grid, Gf,
with a single line of fine voxels from its neighboring boundary voxel
extremities. This is shown in Fig. 4(c) where we increase the grid size of
Gf by augmenting the grid with its neighboring grid values at the ex
tremes in ± x and ± y directions. This creates an overlapping grid be
tween the fine boundary voxels of a voxel layer and ensures that the
isocontour generated from standard MS on Gf is continuous along the
object boundary. We perform the boundary augmentation based on the
coarse voxel index of Bc to determine the neighboring voxels consti
tuting the boundary.

Once we extract a fine layer of voxels Lf, we perform the standard
marching squares (MS) algorithm individually on each of the coarse
boundary voxels Bc that is in itself a voxel grid Gf consisting of fine

voxels. Implementation of the standard marching squares algorithm
involves visiting each of the fine voxels of Gg sequentially along the x
and y direction (scanning or marching) with a filter of size 2 × 2. The
filter compares the current scalar values of Gc with the standard
marching squares look-up table of topological cases and draws an iso
contour line intersecting the grid edges. The isocontour lines are drawn
from the mid-points of the grid edges depending on the MS filter’s to
pology. The MS algorithm creates a set of such isocontour lines per layer.
It is important to note that each of these isocontour lines is directional, i.
e., we preserve the sequence of the start and endpoints of the isocontour
line. This later allows us to easily form a chain of such lines to create an
isocontour for a particular profile in a voxel layer as described in Section
3.2.

3.2. Combined isocontour creation

Algorithm 1 shows all the steps of the MLMS algorithm. The standard
MS algorithm on individual coarse boundary voxels Bc in a fine layer Lf
creates a set of isocontour lines isof for that particular layer. Once the
complete isof is generated for Lf, we check for duplicated isocontour lines
in isof and remove the entries to have unique isocontour lines in the set.
This is done to avoid adding multiple overlapping segments at each
grid’s extreme edge, which affects the 3D printing of the boundary.
Duplicate isocontour lines are a result of augmenting Gf with its neigh
boring grid extremities due to every two adjacent grids sharing a single
line of fine voxels, as shown in Fig. 4(c).

Algorithm 1. Multi-level marching squares algorithm.

Input: Multi-level voxel grid, Gm
Result: Multi-level Isocontours
1 foreach Coarse Layer L c ∈ Gm do
2 foreach Fine Layer L f ∈ Lc do
3 foreach Coarse boundary voxel B c ∈ Lf do
4 Get fine voxel grid Gf from Bc
5 foreach Neighbor voxel of B c do
6 if Neighbor voxel is boundarythen
7 Augment Gf extremes with 1
8 else
9 Augment Gf extremes with 0
10 end
11 end
12 isof = MarchingSquares(Gf)
13 end
14 isocontours = JoinContours(isof, hashmap(isof))
15 end
16 end

To combine the set isof into isocontours, we create a hash table that

Fig. 3. In-depth view of a multi-level voxel grid. (a) shows a scooby CAD model which is voxelized to get multi-level voxelization as shown in (b). Green and red
cubes represent the larger coarse voxels and smaller finer voxels at the boundary respectively. A single coarse voxel layer is extracted in (c) and its top and side views
are shown in (d) with detailed fine voxels. (e) shows the fine voxel occupancy values of a single coarse voxel in the x-y and z directions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

5

maps the endpoints of each isocontour line in isof. Since each mapping
defines an isocontour line segment and each line segment has exactly
two endpoints, the hash table mapping is bi-directional. Using this
mapping, we then generate a chain of connected isocontour line seg
ments, and a set of such isocontours form the boundary of the layer Lf.
Fig. 6 shows the isocontours of a fine voxel layer extracted from the
boundary voxels of a coarse voxel layer of the Scooby CAD model. We
repeat the steps for generating isocontours from each Lf layer and further
from each Lc layer, thus generating the isocontours for the whole model
(shown in Fig. 7).

4. Infill generation for a multi-level voxel model

In this section, we present an infill 3D printing scheme for multi-level
voxels. Several research works have recently focused on optimizing the
infill pattern for efficiently printing a CAD model with better structural
strength while using less material. Specifically, Aremu et al. [3] describe
a topology optimization framework using voxels to determine the lattice

structure for 3D printing of infill. However, since this is not the main
focus of our work, we describe a straightforward infill approach using a
standard infill pattern. We describe an algorithm that makes efficient
use of the multi-level voxel grids for this purpose. We use a rectilinear
pattern, computed from the boundary of the multi-level voxel repre
sentation of the CAD model, to enable direct infill printing from voxels.
However, generating the infill using a multi-level voxelization is not
straightforward since the fine level at the boundary of the models needs
to be accounted for during the infill generation process. Using our
approach, we can still control the infill density directly, allowing for
user-defined model density.

Fig. 4. Step-by-step implementation of Multi-level Marching Squares algorithm. (a) shows a coarse layer Lc in x-y direction. The fine boundary voxels are shown with
a red fill in (b). (c) shows an example of coarse voxel with its boundary augmented with neighboring fine voxels and the final grid formed is shown in (d). Multi-level
isocontour resulting from applying vanilla marching squares on the final grid is shown in (e). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Marching and gap issue while performing MS on multi-level voxel grid.
The black lines are the isocontours generated using standard marching squares
on the individual coarse voxels. The dashed line shows the gap in the isocontour
between the two coarse voxels.

Fig. 6. Isocontours generated from a layer of Multi-level voxels using MLMS.
(a) shows a layer with coarse and fine voxels as green and red boxes respec
tively. (b) shows the final isocontour generated from the multi-level voxel grid.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Rendered view of all iso-contours generated from multi-level voxel
representation of a scooby CAD model.

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

6

Algorithm 2. Hybrid scan-line algorithm on multi-level voxel grid.

Input: Multi-level voxel grid, Gm
Result: Infill Pattern
1 foreach Coarse Layer Lc ∈ Gm do
2 foreach indexy ∈ Lc do
3 foreach indexx ∈ Lc do
4 Determine voxel: v(indexx, indexy)
5 if v = = 1.0 then
6 Extract fine grid: Gf
7 Fine layer Lf = TopLayer(Gf)
8 foreach findexx ∈ Lf do
9 foreach findexy ∈ Lf do
10 Determine fine voxel: vf(findexx, findexy)
11 if vf > 0 then
12 Calculate center point, P
13 AddPointToLine(P)
14 end
15 end
16 end
17 end
18 if v = = 0.5 then
19 Calculate center point, P
20 AddPointToLine(P)
21 end
22 end
23 end
24 end

To compute the rectilinear infill pattern, we use a hybrid scan-line
approach on both coarse voxel layers Lc and fine voxel layers Lf of the
multi-level voxel grid using an adaptive technique. We first scan through
Lc in one of the x or y directions until we encounter a coarse boundary
voxel Bc, which in turn has a fine voxel grid Gf associated with it.
Adapting to Gf, we scan through its top Lf layer only at the center voxel
line. When the scanning encounters a fine boundary voxel Bf, we
compute its center-point coordinates and append it to a data structure
storing the continuous line segments of the scan-line. We then continue
scanning along the direction and append points in Bf, where the scalar
value of the voxels is > 0.5 (inside voxels). Once Bf is scanned, the
scanning proceeds to the next coarse voxel and checks if it is a boundary
or an inside voxel. The above steps are repeated in the case of a
boundary voxel. However, if an inside voxel is scanned, the coarse

voxel’s center point is added to the scan-line data structure. This con
tinues until another boundary voxel is encountered. In this case, the
scanned line is extracted, and the scan is resumed in the same direction
until it reaches the end of the multi-level voxel grid. A visual schematic
of the hybrid scan-line algorithm on a multi-level voxel grid is shown in
Fig. 8 and outlined in Algorithm 2.

One of the advantages of using this hybrid scan-line approach to
determine the infill pattern is the accurate encapsulation of the infill by
the boundary. Due to the presence of fine voxels at the coarse voxel grid
boundary, the scan-line is accurately computed to match the object’s
boundary isocontour extracted in Section 3. Besides, this algorithm
provides a control on the accuracy of the infill in z (layer) direction
while enforcing the accuracy in x-y (layer plane) direction. In most
additive manufacturing applications, the infill is required to be sparser
than the surface boundary. We can easily control this using our algo
rithm by selecting the algorithm to scan every fine layer or a single fine
layer in the multi-level voxel grid. We control sparse and dense infill
pattern by selective scanning for inside voxels. For sparse infill, we scan
a subset of the lines instead of all lines in the voxel grid. In addition, we

Fig. 8. Infill generation using hybrid scan-line in a multi-level voxel grid. An intermediate voxel layer is shown in (a) with coarse and fine voxels divided into inside
and boundary voxels. A single scanning of a line of coarse voxels is represented by the green box. (b) shows the top and side views of the hybrid scan-line algorithm
extracting infill line adaptively from fine and coarse inside voxels. Side view in (b) shows the layer height with which the extracted infill pattern is printed. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Isocontour generation and alternating infill patterns in a print layer of
scooby model. Figure on the left shows scanning in y direction and the right
figure shows x direction scanning.

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

7

change the direction of scanning for each infill layer by alternating be
tween x and y directions. This is shown in Fig. 9 with both x and y
scanning shown separately. After combining the layer, we generate a
rectilinear infill pattern with the required density. Fig. 10 shows both
sparse and dense rectilinear infill patterns generated from a layer of
scooby model.

5. GCode generation

Once we compute the boundary isocontours and infill structures
using the MLMS and the hybrid infill algorithm, we generate the GCode
directives required to directly 3D print the multi-level voxel model. We
implement a variable layer infill printing to enable efficient layer-by-
layer printing by exploiting the embedded layer information from the
multi-level voxels. Selecting an appropriate voxel resolution for the
coarse and fine level voxels is the key to perform a variable layer infill
and boundary printing. We develop the GCode directives for a Fused
Deposition Modeling (FDM) 3D printer in this work. We note that we do
not discuss the printing of support structures for overhangs in the model
in this work. However, the multi-level voxel representation provides all
the information required to generate such support structures–a possible
future direction for this research.

In FDM 3D printing, one of the important properties that define a
printed model’s quality and rigidity is the nozzle diameter of the
printer’s extruder (hot end). Other properties, such as layer height (Hl),
extrusion width (We), feed rate, traversal speed, and material con
sumption, are defined by the nozzle diameter [2,12,13]. In general, a
printed model’s layer height is selected to be within a range of the nozzle
diameter for better print quality. Further, the infill pattern is designed to
consume less material as it does not contribute to surface quality. We
utilize these properties to selectively define the coarse voxel resolution
as Nx1 × Ny1 × Hl where Nx1 is number of voxels in x direction, Nx2 is
number of voxels in y direction and layer height Hl is the number of

voxels in z (print direction). We also define the fine voxel resolution as
Nx2 × Ny2 × 3 where Nx2 and Ny2 are the number of fine voxels in x-y
directions in a coarse boundary voxel. Hence, the effective resolution of
our multi-resolution voxel grid is (Nx1Ṅx2) × (Ny1Ṅy2) × (Hl3̇). In addi
tion to providing a higher resolution in the x-y direction, we achieve a
single layer height of Hl∕3 due to the subdivision of the coarse voxels
into three fine voxels in z direction.

We define the print directives for boundary isocontours generated in
Section 3 with this layer height Hl∕3, while the infill pattern generated
in Section 4 has a height Hl. We select Hl∕3 as the layer height (as shown
in Fig. 11) since it enables us to capture finer details of the model. It
allows a relatively small layer height to print the boundary with preci
sion while having a large enough layer height to print the sparse infill
structures without compromising the structural integrity. We print the
infill layer of a higher thickness at each third layer of the boundary layer
with this printing protocol.

To generate the GCode for FDM 3D printing, we compute the print
material’s extrusion values based on the layer heights, Hl∕3 and Hl, and
the distance between two consecutive points in the isocontours and infill
patterns, respectively. This is shown in Fig. 11 with a thicker infill and
thinner boundary layer extrusions. We aim to print compensate for
printing lesser infill layers with a thicker infill according to the limits
allowed by the 3D printer and the nozzle diameter. Printer specific in
structions in the GCode, such as motor control, extruder temperature,
external cooling fan control, and bed temperatures, are generic based on
the printer and material used. We first compute the X, Y coordinates of
the point in the isocontour to be printed and define the Z coordinated
based on the layer index value of the respective isocontour. Further, we
compute the extrusion value, E, and the feed rate F and define it in the
GCode. Then we follow the process for all the isocontour points and
profiles in the layer. This is repeated for all the Lf in Lc. After that, we
proceed to follow the print process for the infill pattern of Lc with the
appropriate E value computed from Hl. In addition, we swap the scan
direction of the hybrid scan-line algorithm every consecutive layer to
have alternating linear infill patterns for each layer. We follow this
routine for all the Lc and Lf layers in the voxelized model to achieve the
final GCode ready for printing.

6. Results

We printed different physical CAD models to demonstrate the direct
3D printing capability from multi-level voxels, including tessellated
models and medical imaging data (CT scans). All the models were
printed using the same plastic material (ABS) using the same 3D printer
(MakerGear M2). We perform the GPU-accelerated multi-level voxeli
zation of CAD models to get three separate data structures representing
the coarse voxels, fine voxels, and a prefix sum address array that stores
the fine voxel index values for each coarse boundary voxel (please see
Young and Krishnamurthy [33] for details). We use the multi-level voxel
information to get the GCode directives to print the model. The MLMS
and the hybrid scan-line algorithms are implemented in a Python envi
ronment; the MLMS and GCode generation framework will be published
open-source.

Fig. 10. Low and high density infill pattern visualizations in scooby model. (a)
and (b) show the 2D view of the infill visualized from the GCode. (c) and (d)
show sectional views of 3D printing simulation of the GCode. (a) and (c) are
infill structures with low infill. (b) and (d) are infill structures with high den
sity infill.

Fig. 11. Layer heights comparison of boundary layer and infill layer. Extrusion
values of boundary and infill layers are calculated based on the respective layer
heights. Fine voxel and coarse voxel resolution is also based on the layer heights
defined for boundary and infill layers respectively.

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

8

To verify the printability using our framework, we simulated the 3D
printing process using the generated GCode in the open-sourced Ulti
maker Cura software [31]. Fig. 12 shows the final 3D printed simulation
of a Scooby model which is voxelized to a coarse resolution of
64 × 64 × 512 and fine resolution of 8 × 8 × 3 thus producing an
effective resolution of 512 × 512 × 1536 voxels. In Fig. 12(b), the
alternating pattern in the infill layer can be observed where each infill
layer prints either along the horizontal or the vertical direction. Fig. 13
(b) further shows a cross-sectional view of the print simulation where
there are two separate topological profiles of the model with a unique
infill pattern strictly conforming to the respective boundaries. Similarly,
Fig. 13 and Fig. 14 show the direct 3D printing simulations of the
Stanford Bunny and a Turbine Blade model, respectively. Due to such a
high-resolution representation of voxels, we can observe that in the x-y
direction (print layer plane), the isocontours generated from fine voxels
overcome the staircase effect that is generally associated with voxel grid
isocontours. Specifically, in the z direction (print direction), the stair
case effect is non-existent, and we obtain a smooth surface finish. Fig. 15
shows the Scooby, Stanford Bunny and Turbine Blade models, printed
with resolutions of 512 × 512 × 1536, 512 × 512 × 732, and
512 × 512 × 876, respectively using MLMS. Fig. 16 shows the final 3D
printed Stanford bunny model printed from a low-resolution voxel grid
of 643 voxel resolution. The voxel grid used in Fig. 16 is a standard 3D
voxel grid, and the iso-contours and infill pattern is generated using
standard marching squares and scan-line algorithms. In this figure, we
observe that the staircase effect is obvious due to the low resolution of
voxels. This issue is alleviated in Fig. 15 using high-resolution multi-
level voxel grids along with MLMS and hybrid scan-line algorithms.
Further, overhangs due to the absence of support structures are better
handled in the high-resolution prints using multi-level voxel
representation.

6.1. Direct printing of CT images

To enable direct 3D printing of CT images, we implemented our al
gorithm on a set of CT-scan images of the human heart. However, the CT
images need to be preprocessed and converted to multi-level voxels
before printing using our MLMS approach. The CT-scan images for the
heart model are stacked on top of one another to create a voxel grid. The
voxel grid has inside-outside occupancy information of the heart model
as shown in Fig. 17(a) with a resolution of 512 × 512 × 116. We create
a multi-level voxel grid by performing a convolution operation on the
original grid to create a coarse voxel grid (resolution of 64 × 64 × 116)

and a fine voxel grid (resolution of 8 × 8 × 4). We copy each fine layer
of voxels based on each image slice’s thickness provided in the CT-scan
data. This preserves the size and aspect ratio of the model, and the final
multi-level voxel grid has an effective resolution of 512 × 512 × 464,
with 464 fine layers to be printed.

We use our direct 3D printing framework to generate the GCode
information for the voxel grid created from CT images. Fig. 17(b) shows
a direct 3D printing simulation obtained from a stack of CT-scan images
of the human heart. Fig. 18 shows the final 3D printed heart model using
our direct 3D printing method. Fig. 18(b) and 18(c) show the sectional
views of the heart model with only the heart wall segmented from the
CT-scan images. In Fig. 18, we observe that the surface quality of the 3D
printed heart model is coarser along the z-direction than what we ach
ieve from directly printing a CAD model using MLMS. This is due to the
lower resolution of the original CT-image stack along the z-direction
from which we extract the iso-contours for each layer. This lower-
resolution results in a loss of accurate surface information in the voxel
model of the CT-scan, which leads to a staircase effect at high curvature
regions.

6.2. Print comparison

To validate our direct 3D printing framework, we compared different
3D printed models obtained using the traditional slicing method and our
multi-level marching squares (MLMS) method. Fig. 19 shows the 3D
prints of a simple curved geometry, in this case, a dumbbell model using
a combination of primitive shapes. To show the correctness of the MLMS
algorithm, we visualized the boundary of a single layer of the 3D print
obtained using traditional slicing and MLMS methods (shown in

Fig. 12. 3D Print simulation for Scooby model. (a) shows the final 3D print
simulation of the model with 64 × 64 × 512 coarse and 8 × 8 × 3 fine voxel
resolutions. (b) shows cross-sectional view of the simulation with linear
infill pattern.

Fig. 13. 3D Print simulation for Stanford Bunny model. (a) shows the final 3D
print simulation of the model with 64 × 64 × 244 coarse and 8 × 8 × 3 fine
voxel resolutions. (b) shows sectional view of the simulation with linear infill
pattern on two separate topological profiles of the model.

Fig. 14. 3D Print simulation for Turbine Blade model. (a) shows the final 3D
print simulation of the model with 64 × 64 × 292 coarse and 8 × 8 × 3 fine
voxel resolutions. (b) shows sectional view of the simulation with the
infill pattern.

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

9

Fig. 20). Comparing Fig. 20(a) and (b), it can be observed that the iso-
contours of both the layers are identical in shape and smoothness.

In Fig. 21, we show the comparison of 3D printed models printed
from the same 3D CAD model of the Stanford bunny using the traditional
slicing method and our proposed direct 3D printing method from voxels.
We observed that the surface quality of the model generated from our
direct 3D printing method is mostly at par with the traditional slicing
method and, at some regions, exceeds the quality of the slicing method
generated model. In addition, the STL resolution artifacts are signifi
cantly reduced in our approach.

To quantify our print quality, we used 3D Systems Geomagic Capture
3D laser scanner [1] and Solidworks [27] to generate point cloud rep
resentations of the MLMS and STL printed versions of the Dumbbell and

the Stanford Bunny model. The point clouds were exported to the Cloud
Compare software [8]–an open-source framework for computing point
cloud metrics. We then segmented the point clouds to generate patches
of densely scanned points of a specific region of the printed model. Vi
sualizations of the point cloud patches for the Dumbbell model are
shown in Fig. 22, and the Stanford Bunny model are shown in Fig. 23.
The patches were obtained approximately from the same regions of the
MLMS, and STL printed models. Using fine registration, we aligned the
individual patches with the CAD model. We then generated the error
metrics between the CAD model and the MLMS model or traditionally
sliced STL model patches using the point cloud-mesh-compare func
tionality of Cloud Compare. The quantitative error metrics obtained

Fig. 15. High resolution (> 5123) FDM 3D print using multi-level voxels. (a) shows the final 3D printed model of the Scooby, (b) shows the final 3D printed model of
the Stanford Bunny, and (c) shows the Turbine Blade model.

Fig. 16. Low resolution (643) 3D print of the Stanford Bunny model using
multi-level voxels. The staircase effect can be seen in this print due to the
inability of the low-resolution voxel grid to capture the detailed features.

Fig. 17. 3D Print simulation of heart model from CT-scan image stack. (a)
shows a volume rendering of the CT-scan images stacked on top of each other
with a resolution of 64 × 64 × 116 coarse voxels and 8 × 8 × 4 fine voxels. (b)
shows the 3D print simulation of the heart model.

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

10

from the point cloud comparisons from both models are tabulated in
Table 2. It can be seen that, for both the Dumbbell and the Bunny
models, the average distance between the CAD model and the point
cloud obtained from MLMS 3D print is less than that of the point cloud
obtained from STL based 3D print. Further, the maximum error between
the MLMS point cloud patch and the CAD model is nearly identical for
the Dumbbell model and lower in the Bunny model than the STL ob
tained point cloud. This quantitative analysis shows that our approach of
direct 3D printing from multi-level voxel models has a better surface
accuracy than traditional slicing based methods.

7. Discussion, limitations & future work

We discuss a few observations as well as the limitations of the current
work in this section. We did not explore support structure generation for
overhang sections in a CAD model. This can be seen in the final 3D

Fig. 18. 3D printed heart model from CT-scan. The CT-scan is segmented to
generate a voxel grid containing only the walls of the heart model. (a) shows
the complete model; (b) shows the bottom section of the heart model showing
the four heart chamber cavities; and (c) shows the top section of the
heart model.

Fig. 19. 3D print comparison between the traditional slicing method and our
direct 3D printing from multi-level voxels for a simple model.

Fig. 20. Comparison of iso-contour extraction using the traditional slicing
method and our MLMS algorithm. (a) shows the first layer contour of a simple
dumbbell model printed using traditional slicing method (b) shows the first
layer contour of a simple dumbbell model printed using direct 3D printing from
multi-level voxels.

Fig. 21. 3D print comparison between the traditional slicing method and our
direct 3D printing from multi-level voxels method. (a) shows the Stanford
Bunny model printed using the traditional slicing method, and (b) shows the
Stanford Bunny model printed using direct 3D printing from multi-level voxels.

Fig. 22. Point cloud visualization of patches extracted from 3D printed
Dumbbell models. (a) shows the point cloud patch of the model printed using
the traditional slicing method, and (b) using multi-level voxels.

S. Ghadai et al.

Additive Manufacturing 40 (2021) 101929

11

printed objects, where due to the absence of support structures, we get
warped boundaries at overhang locations of the model. However, due to
the high-resolution voxelization using multi-level voxel representation,
the generated contours are highly accurate, which allows us to 3D print
the complete models without incurring a hefty penalty on the surface
quality of the overhangs.

We observed that regions with steep angles resulted in a more
prominent staircase effect in the final 3D print. This is due to the dis
cretization of the surface during the voxelization. Regions with steep
angles result in a significant loss of surface continuity after voxelization.
Extracting iso-contours of such regions using the MLMS algorithm re
duces the staircase effect. However, high curvature surfaces are still
prone to this effect due to the intrinsic nature of the marching squares
algorithm, where the voxel center points are considered for iso-contour
extraction. This can be observed in Fig. 18 at the top region of the heart
model. Using a more sophisticated contour generation algorithm, such
as Dual Contouring [15] might overcome this limitation.

As presented in Section 6, high-resolution voxel grids enable us to
print 3D models with higher accuracy and better surface finish. How
ever, iso-contours extracted from very high-resolution voxel grids
(> 10243) result in any two adjacent points being very close (order of
> 10−4 mm) to each other that is less than the precision of the 3D printer
extrusion. Due to this limitation, the extrusion of print material from the
nozzle becomes inconsistent, introducing a discontinuity in the material
flow, thus affecting the surface finish of the printed model. Hence, the
voxel resolution of the 3D model is still limited by the precision and
accuracy of the 3D printer.

The multi-level voxel representation is not readily available for
medical data. We pre-processed the high-resolution medical data to
generate a multi-level voxel representation that is true to the original
data in the x-y layer plane. However, due to the stacking up of a copy of
each image slice in the print direction, there is a noticeable staircase
effect in the z-direction. This is primarily due to the limitation of the
data and not of the method itself. We can easily overcome this limitation
with the availability of a high-resolution CT scan stack.

Future work for the direct 3D printing framework involves devel
oping additional methods to generate support structures for overhangs.
Along with the boundary and inside-outside information for the voxel
grid, we also store the average triangle normal information for each
voxel based on the tessellated CAD model. This normal information can

be used to find overhang regions in the model and generate appropriate
support structures. In addition, different infill structure patterns can be
explored to be 3D printed using voxel grids. A potential improvement to
the framework is also to generate multiple offsets of the iso-contour in a
layer to create a boundary skin in the 3D printed model. This will
improve the surface quality of the prints by reducing the effect of over-
extrusion of infill over the boundary, thus eliminating small blobs on the
surface.

8. Conclusions

In this paper, we have developed an additive manufacturing frame
work to directly 3D print CAD models from multi-level voxel represen
tation. The multi-level voxel representation has inherent layer
information, obviating the need for the slicing operation. We extract
accurate iso-contours from high-resolution multi-level voxels using our
multi-level marching squares algorithm to print the model’s boundary
surface. This method exploits the sparse nature of the multi-level voxel
representation to heavily reduce the aliasing or staircase effect in the
model, achieving a better surface finish. We generate and print the infill
structure of the voxel model with a height proportional to the coarse
voxels while the boundary iso-contours are printed with layer height
proportional to the fine voxels, which further reduces the aliasing effects
in the z-direction. In addition, we can also directly control the infill
density, leading to prints with user-defined weight. We believe this
approach will be widely adopted by the additive manufacturing com
munity due to its flexibility and ease of adapting it to different layered
manufacturing processes.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by the National Science Foundation, USA
under grant numbers CMMI-1644441 and OAC-1750865.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.addma.2021.101929.

References

[1] 3DS Systems Inc., Geomagic Capture Series 3D Scanner. 〈https://www.3dsystems.
com/3d-scanners/geomagic-capture〉.

[2] A. Alafaghani, A. Qattawi, B. Alrawi, A. Guzman, Experimental optimization of
fused deposition modelling processing parameters: a design-for-manufacturing
approach, Procedia Manuf. 10 (2017) 791–803.

[3] A.O. Aremu, J.P.J. Brennan-Craddock, A. Panesar, I.A. Ashcroft, R.J.M. Hague, R.
D. Wildman, C. Tuck, A voxel-based method of constructing and skinning
conformal and functionally graded lattice structures suitable for additive
manufacturing, Addit. Manuf. 13 (2017) 1–13.

[4] J.L. Bentley, Multidimensional binary search trees used for associative searching,
Commun. ACM 18 (1975) 509–517.

[5] X. Chen, C. Wang, X. Ye, Y. Xiao, S. Huang, Direct slicing from PowerSHAPE
models for rapid prototyping, Int. J. Adv. Manuf. Technol. 17 (2001) 543–547.

[6] S.H. Choi, K.T. Kwok, A memory efficient slicing algorithm for large STL files, in:
Proceedings of the 1999 International Solid Freeform Fabrication Symposium,
(1999) pp. 155–162.

[7] S.H. Choi, K.T. Kwok, Hierarchical slice contours for layered-manufacturing,
Comput. Ind. 48 (2002) 219–239.

[8] CloudCompare, Cloudcompare (version 2.11.3), (2020). 〈http://www.
cloudcompare.org/〉.

[9] C. Crassin, S. Green, Octree-Based Sparse Voxelization Using the GPU Hardware
Rasterizer, CRC Press, 2012, pp. 303–319.

[10] G.M. Fadel, C. Kirschman, Accuracy issues in CAD to RP translations, Rapid
Prototyp. J. (1996).

Fig. 23. Point cloud visualization of patches extracted from 3D printed Bunny
models. (a) shows the point cloud patch of the model printed using the tradi
tional slicing method, and (b) using multi-level voxels.

Table 2
Quantitative comparison of 3D printed models with input CAD models, using
traditional slicing method (STL) and our multi-level marching squares (MLMS)
method.

Error metric (mm) Dumbbell Stanford Bunny

STL MLMS STL MLMS

Maximum Error 0.2663 0.2667 0.1574 0.1476
Average Distance 0.1276 0.0046 0.0068 0.0050
Standard Deviation 0.2371 0.2730 0.4669 0.2790

S. Ghadai et al.

https://doi.org/10.1016/j.addma.2021.101929
https://www.3dsystems.com/3d-scanners/geomagic-capture
https://www.3dsystems.com/3d-scanners/geomagic-capture
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref1
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref1
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref1
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref2
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref2
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref2
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref2
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref3
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref3
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref4
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref4
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref5
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref5
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref6
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref6
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref7
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref7

Additive Manufacturing 40 (2021) 101929

12

[11] S. Ghadai, A. Balu, S. Sarkar, A. Krishnamurthy, Learning localized features in 3D
CAD models for manufacturability analysis of drilled holes, Comput. Aided Geom.
Des. 62 (2018) 263–275.

[12] J. Giri, A. Patil, H. Prabhu, The effect of various parameters on the nozzle diameter
and 3D printed product in fused deposition modelling: an approach, in: C.
R. Krishna, M. Dutta, R. Kumar (Eds.), Proceedings of 2nd International Conference
on Communication, Computing and Networking, Springer Singapore, Singapore,
2019, pp. 839–847.

[13] G. Gomez-Gras, R. Jerez-Mesa, J.A. Travieso-Rodriguez, J. Lluma-Fuentes, Fatigue
performance of fused filament fabrication PLA specimens, Mater. Des. 140 (2018)
278–285.

[14] C.L. Jackins, S.L. Tanimoto, Octrees and their use in representing three-
dimensional objects, Comput. Graph. Image Process. 14 (1980) 249–270.

[15] T. Ju, F. Losasso, S. Schaefer, J. Warren, Dual contouring of hermite data, in:
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, (2002) pp. 339–346.

[16] A. Kaufman, Voxels as a computational representation of geometry, The
computational representation of geometry. SIGGRAPH 94, (1994) 45.

[17] M. Kazhdan, A. Klein, K. Dalal, H. Hoppe, Unconstrained isosurface extraction on
arbitrary octrees, in: Symposium on Geometry Processing, (2007) pp. 1–9.

[18] P. Kulkarni, D. Dutta, An accurate slicing procedure for layered manufacturing,
Comput. Aided Des. 28 (1996) 683–697.

[19] P. Kulkarni, A. Marsan, D. Dutta, A review of process planning techniques in
layered manufacturing, Rapid Prototyp. J. (2000).

[20] V. Kumar, D. Dutta, An assessment of data formats for layered manufacturing, Adv.
Eng. Softw. 28 (1997) 151–164.

[21] S. Laine, T. Karras, Efficient sparse voxel octrees, IEEE Trans. Vis. Comput. Graph.
17 (2010) 1048–1059.

[22] W. Ma, W.C. But, P. He, NURBS-based adaptive slicing for efficient rapid
prototyping, Comput. Aided Des. 36 (2004) 1309–1325.

[23] E. Matias, B. Rao, 3D printing: on its historical evolution and the implications for
business, in: Proceedings of the 2015 Portland International Conference on
Management of Engineering and Technology (PICMET), IEEE, (2015) pp. 551–558.

[24] D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters
influence over the mechanical properties of polymer specimens: a review, Polym.
Test. 69 (2018) 157–166.

[25] H. Samet, An overview of quadtrees, octrees, and related hierarchical data
structures. Theoretical Foundations of Computer Graphics and CAD, Springer,
1988, pp. 51–68.

[26] M. Schwarz, H.P. Seidel, Fast parallel surface and solid voxelization on GPUs, ACM
Trans. Graph. (TOG) 29 (2010) 1–10.

[27] SolidWorks Corp., SolidWorks, (2018). 〈www.solidworks.com〉.
[28] H.C. Song, N. Ray, D. Sokolov, S. Lefebvre, Anti-aliasing for fused filament

deposition, Comput. Aided Des. 89 (2017) 25–34.
[29] P. Song, Z. Fu, L. Liu, C.W. Fu, Printing 3D objects with interlocking parts, Comput.

Aided Geom. Des. 35 (2015) 137–148.
[30] A. Telea, A. Jalba, Voxel-based assessment of printability of 3D shapes, in:

Proceedings of the International symposium on mathematical morphology and its
applications to signal and image processing, Springer, (2011) pp. 393–404.

[31] Ultimaker, 2011–2020. Ultimaker cura. 〈https://ultimaker.com/software/ulti
maker-cura〉.

[32] Y. Xie, X. Chen, Support-free interior carving for 3D printing, Vis. Inform. 1 (2017)
9–15.

[33] G. Young, A. Krishnamurthy, GPU-accelerated generation and rendering of multi-
level voxel representations of solid models, Comput. Graph. 75 (2018) 11–24.

[34] Z. Zhang, S. Joshi, An improved slicing algorithm with efficient contour
construction using STL files, Int. J. Adv. Manuf. Technol. 80 (2015) 1347–1362.

[35] M.Y. Zhou, J.T. Xi, J.Q. Yan, Adaptive direct slicing with non-uniform cusp heights
for rapid prototyping, Int. J. Adv. Manuf. Technol. 23 (2004) 20–27.

S. Ghadai et al.

http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref8
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref8
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref8
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref9
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref9
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref9
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref9
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref9
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref10
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref10
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref10
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref11
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref11
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref12
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref12
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref13
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref13
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref14
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref14
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref15
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref15
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref16
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref16
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref17
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref17
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref17
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref18
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref18
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref18
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref19
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref19
http://www.solidworks.com
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref20
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref20
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref21
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref21
https://ultimaker.com/software/ultimaker-cura
https://ultimaker.com/software/ultimaker-cura
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref22
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref22
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref23
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref23
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref24
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref24
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref25
http://refhub.elsevier.com/S2214-8604(21)00094-4/sbref25

	Direct 3D printing of multi-level voxel models
	1 Introduction
	2 Background and related work
	3 Boundary extraction from a multi-level voxel model
	3.1 Multi-level marching squares
	3.2 Combined isocontour creation

	4 Infill generation for a multi-level voxel model
	5 GCode generation
	6 Results
	6.1 Direct printing of CT images
	6.2 Print comparison

	7 Discussion, limitations & future work
	8 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	References

