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A B S T R A C T   

We present a direct method for the additive manufacturing of multi-level voxelized models that achieves a better 
surface finish. We have developed a new multi-level marching squares algorithm to identify the boundary of the 
multi-level voxelized model. We have also developed methods to use the multi-level voxelization to perform the 
infill operation based on user-defined infill density. We directly generate the GCode that is input into the 3D 
printer for printing. Our method overcomes the issues associated with the slicing operation for standard CAD 
models. In addition, we can directly print thresholded voxel models that are output from CT or MRI scans to get a 
physical 3D representation of medical data. We show that our method performs well by directly printing test 
models of multi-level voxel representation of complex CAD geometries, and cardiac CT data.   

1. Introduction 

Additive manufacturing (AM, also known as 3D printing) is a process 
by which virtual CAD models are physically manufactured by adding 
material instead of traditional subtractive manufacturing. Most AM 
processes use tessellated CAD models in stereolithography (STL) or 
virtual reality modeling language (VRML) file format. Tessellated CAD 
models, in the form of triangle soups, can be easily obtained from 
generic CAD models, which are usually represented using boundary 
representation (B-rep) or constructive solid geometry (CSG) modeling of 
primitives. These tessellated models are further processed or sliced to 
obtain the layer-by-layer information for AM. However, other data 
structures representing solids, such as volumetric representations (vox
els), point clouds, and medical imaging data (MRI and CT scans), require 
complex geometric algorithms to tessellate and represent them as 
triangular facets. Additionally, developing AM printing strategies for 
these representations is challenging due to the computational cost of 
processing these representations at higher fidelity. In this paper, we 
develop an AM strategy that enables direct 3D printing from volumetric 
representations or multi-level voxel models with higher accuracy and 
print quality. One of the advantages of using a voxel representation for 
AM is that the regularity of the voxel grid eliminates the need for explicit 
slicing, which is a time-consuming process. Slicing CAD models also 
creates gaps and discontinuities that need further processing to be used 
for AM. Voxelization alleviates this issue by directly generating a 
rectilinear occupancy grid conforming to the required layer structure. In 
addition, it also enables direct printing of models that are natively 

represented using voxels such as 3D imaging data from MRI and CT scan 
image stacks. 

Voxel representations are rectilinear structured grids with scalar 
values representing the volume elements of a solid geometry. Capturing 
the fine details of a solid model requires a very high-resolution voxel 
grid. However, high-resolution uniform data structures for voxels 
require a large amount of memory and are compute-intensive. Special
ized data structures such as octrees [9] and multi-level voxels [33] use a 
hierarchical approach to represent a dense voxel grid using sparser data. 
Specifically, multi-level voxels provide flexibility to choose the voxels’ 
size and resolution at each hierarchical level. In addition, fast 
GPU-accelerated voxelization algorithms for multi-level voxels with 
very low space and time complexity have been developed [33]. We use a 
multi-level voxelization with two hierarchy levels for representing the 
volume information, without loss of generality. These levels–coarse and 
fine–have an user-defined selection of voxel grid resolution at each level. 
Specifically, we identify the voxels corresponding to the outside, inside, 
and the boundary of the object at the coarse voxel level using different 
scalar values. Each coarse boundary voxel is subdivided into fine voxels 
with the same scalar values representing the boundary, inside, and 
outside. The multi-level voxel representation is shown in Fig. 1, showing 
the difference with the regular voxel grid. 

Multi-level voxel representation provides us with the necessary 
boundary and inside information to facilitate 3D printing. We build the 
surface boundary layers from fine voxels and compute the infill layers 
only at the coarse voxel level. The traditional marching squares algo
rithm is not suitable for a multi-level voxel grid as it can lead to errors in 
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the final contour (see Section 3.1 for details). Therefore, we have 
developed a multi-level marching squares (MLMS) algorithm that gen
erates high-resolution isocontours from multi-level voxel representation 
of CAD models to 3D print the boundary. However, printing the infill of 
a model with such higher accuracy is generally unnecessary as it does 
not contribute towards the surface finish. Hence, we use the inside in
formation of fine and coarse voxels of the multi-level voxel represen
tation to generate rectilinear infill structure using a hybrid scan-line 
approach. This approach conservatively extracts the infill lines closer to 
the boundary of a print layer while sparsely extracting the infill infor
mation from the larger coarse inside voxels at the same time. Thus, we 
achieve both high fidelity at the boundary and sparse infill structure 
with user-defined sparsity for direct 3D printing using multi-level 
voxels. 

In addition to balancing the resolution of the isocontours and infill 
for 3D printing, multi-level voxel representation also allows us to print 
the infill with variable layer height without explicit slicing. This elimi
nates the staircase aliasing artifacts [28] on the boundary of the printed 
part, leading to a better surface finish. In the layer print direction, we 
print the isocontours based on each fine voxel layer but only print the 
infill once for the coarse voxel layer with a higher extrusion value that 
can be automatically set for the 3D printer’s nozzle. Thus, we only print 
the infill once after printing all the isocontours of the fine voxels in the 
layer. We choose the resolution of the multi-level voxel representation to 
conform to the variable layer height parameters. The layer heights for 
boundary and infill structures govern the fine and coarse voxel sizes, 
respectively. We then voxelize the CAD model to this resolution using a 
GPU-accelerated multi-level voxelization algorithm. Based on these 
layer heights, we also generate the GCode instructions to command the 
printer to print the final part with variable heights, thus eliminating the 
need to slice the model. 

In this paper, we have developed a method to directly 3D print a CAD 
model from a multi-level voxel representation. We have developed a 
multi-level marching squares algorithm, which can be used to 3D print 
medical data such as MRI and CT scans without explicit tessellation. The 
major improvements of our direct 3D printing approach over traditional 
STL 3D printing are tabulated in Table 1. Our main contributions 
include: 

• A direct 3D printing method employing multi-level voxel represen
tations of CAD models to accurately 3D print high resolution models.  

• A multi-level marching squares algorithm to generate layer-by-layer 
contours from a multi-level voxel representation of a CAD model. 

• A novel infill generation method that uses a hybrid scan-line algo
rithm to create variable height infill structures from multi-level voxel 
representations.  

• Application of this 3D printing method to fabricate physical models 
from high resolution CAD and volumetric medical data such as stacks 
of MRI and CT scan images. 

A complete outline of our framework is shown schematically in  
Fig. 2. We first voxelize the CAD model according to the user-defined 
layer heights and resolution to create a multi-level voxel representa
tion consisting of coarse and fine voxels, each with its specific boundary 
and inside voxels (shown in green in Fig. 2). We then implement the 
multi-level marching squares algorithm (Section 3) on the boundary 
voxels of both coarse and fine voxels to generate the boundary iso
contours (shown in blue). Using the inside voxels of the coarse and fine 
levels, we generate the infill structure for the model using a hybrid scan- 
line approach (Section 4, shown in red). Finally, we combine the 
boundary isocontours and the infill structure to create the GCode in
structions (Section 5) using the user-defined layer heights. We show 
some physical examples of the 3D printed models in Section 6. 

2. Background and related work 

Given the recent evolution of 3D Printing technology, there has been 
an increase in research focused on improving various AM processes [23]. 
Most generic AM processes use computer-aided design (CAD) repre
sentation of a part or model to generate special additive 3D printing 
directives for manufacturing. Fadel and Kirschman [10] mentions that 
among a plethora of CAD representation formats that have been used for 
AM, none have been as universal as stereolithography (STL) format due 
to its simplicity. An STL file approximates a CAD model using a tessel
lated (triangular) surface model and is the de-facto representation for 3D 
printing of CAD models. The primary input to an AM process is a GCode 
file generated from the CAD model after performing the slicing opera
tion on the STL file. However, issues like truncation errors and 
approximation of curved surfaces by triangular facets in tessellated 
representations introduce some level of inaccuracy [20]. Additionally, 
Kumar and Dutta [20] mention problems such as inconsistent normals, 
topological degeneracy, self-intersections, and geometric degeneracy to 
be associated with the conversion to STL format. 

The slicing operation is a necessary part of the layered additive 
manufacturing process planning, which has a major impact on the sur
face finish [18,22,35], build time [19], and mechanical properties [24] 
of the manufactured model. There are various slicing algorithms like 
uniform slicing [6,7,34], its variant adaptive slicing [34], and direct slicing 
[5]. Uniform slicing generates slices with constant layer thickness and 
has been widely adopted for different AM processes. However, uniform 
slicing of relatively large CAD models is computationally intensive, and 
the process is slow [6,7], with coarse surface features. Adaptive slicing 
uses machine capability and geometry [18,22,35] to determine slice 
thickness allowing for reduced build time with a superior surface finish. 
Zhou et al. [35] proposes the use of non-uniform cusp heights for higher 
slicing efficiency. In this paper, we perform AM operations using voxel 
representations of CAD models to overcome the aforementioned issues 
associated with using tessellated representations and explicit slicing of 

Fig. 1. Distinction between a regular voxel representation and multilevel voxel 
representation. (a) shows a regular voxel grid of a turbine CAD model while (b) 
shows its multi-level voxel representation. The effective representation reso
lution of both the grids are similar. (a) has a resolution of 12 × 16 × 24 
whereas (b) has a coarse resolution of 8 × 8 × 12 and fine resolution of 
4 × 4 × 4, hence achieving effective resolution of 32 × 32 × 48. 

Table 1 
Comparison of 3D printing methods.  

Method Implicit 
slicing 

CT/MRI 
scans 

Volume 
information 

Traditional STL 3D printing X X X 
Direct 3D printing of multi- 

level voxels 
✓ ✓ ✓  
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triangular facets. Regular rectilinear voxel grids have implicit layer in
formation that enables us to perform layered manufacturing directly 
without undergoing standalone slicing operations. In addition, we 
perform a variable layer height 3D printing for the surface as well as the 
interior of the model using our multi-level voxels. 

Voxelization is a traditional volume representation schema for CAD 
models that stores the model’s occupancy information in a regular 3D 
rectangular grid with volume elements called voxels. Voxelized repre
sentations offer the ability to conserve volumetric data associated with a 
CAD model [16] and allow for efficient Boolean operations and collision 
detection of CAD models. The conservation of volumetric data associ
ated with a CAD model is of particular importance for 3D printing [3,11, 
16,29,30,32]. However, an accurate voxel representation of a CAD 
model requires a very large number of voxels (~1 billion) to represent 
the finer details of the model. This comes with a very high computa
tional and memory cost. 

To overcome this high memory cost, traditional volume represen
tations have been modified to use various hierarchical data structures 
such as octrees and kD-trees. The Octree representation offers efficient 
memory allocation by using successive subdivisions of an object array 
into octants [14,25]. kD-trees, on the other hand, alternatively divide 
the space along the three principal axes, partitioning the space and 
allowing for memory-efficient handling of location queries [4]. Laine 
and Karras [21] use a sparse octree data structure where each node is 
represented as a voxel for ray casting. The sparse octree-based approach 
has also been used by Schwarz and Seidel [26] to create a GPU-based 
solid voxel representation while addressing the high memory con
sumption of traditional voxel grids. Kazhdan et al. [17] extract water
tight level-set information from octrees. Similarly, Young and 
Krishnamurthy [33] uses the high computation capability of GPUs to 
generate a multi-level voxelization scheme that stores the occupancy 
information of a CAD model at two hierarchical levels of voxels. First, a 
general voxelization is performed on a boundary representation (B-rep) 
model to store the inside-outside and boundary occupancy information. 
Then, they further voxelize the boundary voxels into further smaller 
voxels and maintain the hierarchical relationship of both voxel levels 
using a prefix sum address data structure. 

In this paper, we adopt the multi-level voxelization paradigm 
developed by Young and Krishnamurthy [33] to easily and rapidly 
voxelize models with an effective higher resolution, thus capturing the 
finer details of the CAD model. Further, multi-level voxel representation 

provides us with two distinct voxel hierarchy levels, which allows us to 
easily handle the boundary and infill generation for the AM process in a 
distinct fashion to achieve high surface printing accuracy while sparsely 
printing infill with a variable height and density. 

3. Boundary extraction from a multi-level voxel model 

In this section, we describe our methodology to directly print the 
boundary of the CAD model from the multi-level voxel representation. 
We first voxelize the B-rep solid model to create a multi-level voxel 
representation using the GPU-accelerated multi-level voxelization al
gorithm developed by Young and Krishnamurthy [33]. We voxelize a 
B-rep model since voxelization implicitly performs the slicing operation 
and generates the layer-by-layer information required for 3D printing. In 
addition, voxelization of the B-rep preserves the volume information of 
the CAD model in a voxel grid that enables us to generate the infill in
formation for 3D printing. The multi-level voxelization can also be 
created from other 3D model representations such as point clouds and 
medical imaging data (see Section 6). We use two independent methods 
to extract and directly 3D print the boundary and the infill separately. 
The voxels having boundary information in each of the coarse and fine 
voxel resolutions, Rc and Rf respectively, are encoded using a scalar 
value 1.0 and the empty voxels are encoded using a scalar value 0. 
Similarly, the voxels representing the inside of the CAD model are 
encoded with a scalar value 0.5. The multi-level voxelization algorithm 
also creates a prefix-sum index array that maps each of the course 
boundary voxels to its specific fine voxels. Please refer to Young and 
Krishnamurthy [33] for more information about the multi-level voxel 
representation. 

The coarse voxel resolution corresponding to the print direction is 
selected based on the required layer thickness and is independent of the 
voxel resolution in the lateral direction. The fine voxel resolution along 
the print direction is pre-selected and fixed according to the minimum 
printable layer height defined by the print nozzle of the 3D printer. 
Details of the voxel resolutions are further described in Section 5. To 
generate the 3D print directives for a voxelized CAD model boundary, 
we first isolate the layer information inherent in the voxel grid along the 
print direction. We then implement a marching squares based approach 
on each layer of the multi-level voxel grid to efficiently extract the 
isocontour information. We have developed a multi-level marching 
squares (MLMS) algorithm that extracts isocontours from the boundary 

Fig. 2. Outline of direct 3D printing from multi-level voxels. Green boxes show detailed structure of multi-level voxel representation. Blue boxes define multi-level 
marching squares implementation on coarse and fine boundary voxels. Hybrid-scan line from coarse and fine inside voxels is shown in red. Final step of combining 
isocontours and infill to generated GCode is shown in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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of multi-level voxel layers and combines them to generate the boundary 
printing information. Using MLMS on multi-level voxel grids allows us 
to create accurate isocontours from voxel grids with very high effective 
resolution (~ 8 billion voxels). Using the isocontours, we then generate 
the GCode for the 3D printer to print the boundary of the CAD model. 

3.1. Multi-level marching squares 

The multi-level marching squares algorithm takes in a single layer of 
multi-level voxels in a particular orthogonal slice of the voxel grid in the 
print direction as shown in Fig. 3. The hierarchical layers in a multi-level 
voxel model are shown in Fig. 4. In this model, we consider the Z di
rection of the voxel grid as the print direction and the X-Y plane as the 
print layer. We first extract a coarse plane or layer of coarse voxels Lc in 
the Z direction from the multi-level voxel grid. This coarse voxel layer 
further has multiple fine voxel layers defined by the fine voxel resolution 
Rf. We then extract a fine layer of voxel from Lc, namely Lf, that can be 
considered as a binary image with varying pixel resolution, as shown in 
Fig. 4(b). Since we have information regarding all the boundary voxels 
in the multi-level voxel grid, we only apply MLMS on the boundary 
voxels, i.e., voxels with a scalar value of 1.0, thus exploiting the sparsity 
of a multi-level voxel grid. The boundary voxels on a multi-level voxel 
layer are hierarchically structured with each coarse boundary voxel Bc 
having further subdivision with fine boundary voxels Bf as shown in 
Fig. 3. 

Performing the standard MS operation on a multi-level voxel grid is 
not feasible since the MS algorithm cannot automatically account for the 
heterogeneous neighboring voxels in a hierarchical multi-level voxel 
grid. Performing MS on the individual coarse voxel grid and combining 
the resulting iso-contours is also not feasible since it creates discon
nected segments or gaps at each coarse voxel boundary, as shown in  
Fig. 5. MLMS overcomes these issues in multi-level voxel grids, or hi
erarchical data representation in general, to efficiently and accurately 
extract the iso-contours. To enable this, we pad each fine voxel grid, Gf, 
with a single line of fine voxels from its neighboring boundary voxel 
extremities. This is shown in Fig. 4(c) where we increase the grid size of 
Gf by augmenting the grid with its neighboring grid values at the ex
tremes in ± x and ± y directions. This creates an overlapping grid be
tween the fine boundary voxels of a voxel layer and ensures that the 
isocontour generated from standard MS on Gf is continuous along the 
object boundary. We perform the boundary augmentation based on the 
coarse voxel index of Bc to determine the neighboring voxels consti
tuting the boundary. 

Once we extract a fine layer of voxels Lf, we perform the standard 
marching squares (MS) algorithm individually on each of the coarse 
boundary voxels Bc that is in itself a voxel grid Gf consisting of fine 

voxels. Implementation of the standard marching squares algorithm 
involves visiting each of the fine voxels of Gg sequentially along the x 
and y direction (scanning or marching) with a filter of size 2 × 2. The 
filter compares the current scalar values of Gc with the standard 
marching squares look-up table of topological cases and draws an iso
contour line intersecting the grid edges. The isocontour lines are drawn 
from the mid-points of the grid edges depending on the MS filter’s to
pology. The MS algorithm creates a set of such isocontour lines per layer. 
It is important to note that each of these isocontour lines is directional, i. 
e., we preserve the sequence of the start and endpoints of the isocontour 
line. This later allows us to easily form a chain of such lines to create an 
isocontour for a particular profile in a voxel layer as described in Section 
3.2. 

3.2. Combined isocontour creation 

Algorithm 1 shows all the steps of the MLMS algorithm. The standard 
MS algorithm on individual coarse boundary voxels Bc in a fine layer Lf 
creates a set of isocontour lines isof for that particular layer. Once the 
complete isof is generated for Lf, we check for duplicated isocontour lines 
in isof and remove the entries to have unique isocontour lines in the set. 
This is done to avoid adding multiple overlapping segments at each 
grid’s extreme edge, which affects the 3D printing of the boundary. 
Duplicate isocontour lines are a result of augmenting Gf with its neigh
boring grid extremities due to every two adjacent grids sharing a single 
line of fine voxels, as shown in Fig. 4(c). 

Algorithm 1. Multi-level marching squares algorithm.  

Input: Multi-level voxel grid, Gm 
Result: Multi-level Isocontours 
1 foreach Coarse Layer L c ∈ Gm do 
2 foreach Fine Layer L f ∈ Lc do 
3 foreach Coarse boundary voxel B c ∈ Lf do 
4 Get fine voxel grid Gf from Bc 
5 foreach Neighbor voxel of B c do 
6 if Neighbor voxel is boundarythen 
7 Augment Gf extremes with 1 
8 else 
9 Augment Gf extremes with 0 
10 end 
11 end 
12 isof = MarchingSquares(Gf) 
13 end 
14 isocontours = JoinContours(isof, hashmap(isof)) 
15 end 
16 end  

To combine the set isof into isocontours, we create a hash table that 

Fig. 3. In-depth view of a multi-level voxel grid. (a) shows a scooby CAD model which is voxelized to get multi-level voxelization as shown in (b). Green and red 
cubes represent the larger coarse voxels and smaller finer voxels at the boundary respectively. A single coarse voxel layer is extracted in (c) and its top and side views 
are shown in (d) with detailed fine voxels. (e) shows the fine voxel occupancy values of a single coarse voxel in the x-y and z directions. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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maps the endpoints of each isocontour line in isof. Since each mapping 
defines an isocontour line segment and each line segment has exactly 
two endpoints, the hash table mapping is bi-directional. Using this 
mapping, we then generate a chain of connected isocontour line seg
ments, and a set of such isocontours form the boundary of the layer Lf.  
Fig. 6 shows the isocontours of a fine voxel layer extracted from the 
boundary voxels of a coarse voxel layer of the Scooby CAD model. We 
repeat the steps for generating isocontours from each Lf layer and further 
from each Lc layer, thus generating the isocontours for the whole model 
(shown in Fig. 7). 

4. Infill generation for a multi-level voxel model 

In this section, we present an infill 3D printing scheme for multi-level 
voxels. Several research works have recently focused on optimizing the 
infill pattern for efficiently printing a CAD model with better structural 
strength while using less material. Specifically, Aremu et al. [3] describe 
a topology optimization framework using voxels to determine the lattice 

structure for 3D printing of infill. However, since this is not the main 
focus of our work, we describe a straightforward infill approach using a 
standard infill pattern. We describe an algorithm that makes efficient 
use of the multi-level voxel grids for this purpose. We use a rectilinear 
pattern, computed from the boundary of the multi-level voxel repre
sentation of the CAD model, to enable direct infill printing from voxels. 
However, generating the infill using a multi-level voxelization is not 
straightforward since the fine level at the boundary of the models needs 
to be accounted for during the infill generation process. Using our 
approach, we can still control the infill density directly, allowing for 
user-defined model density. 

Fig. 4. Step-by-step implementation of Multi-level Marching Squares algorithm. (a) shows a coarse layer Lc in x-y direction. The fine boundary voxels are shown with 
a red fill in (b). (c) shows an example of coarse voxel with its boundary augmented with neighboring fine voxels and the final grid formed is shown in (d). Multi-level 
isocontour resulting from applying vanilla marching squares on the final grid is shown in (e). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 5. Marching and gap issue while performing MS on multi-level voxel grid. 
The black lines are the isocontours generated using standard marching squares 
on the individual coarse voxels. The dashed line shows the gap in the isocontour 
between the two coarse voxels. 

Fig. 6. Isocontours generated from a layer of Multi-level voxels using MLMS. 
(a) shows a layer with coarse and fine voxels as green and red boxes respec
tively. (b) shows the final isocontour generated from the multi-level voxel grid. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Rendered view of all iso-contours generated from multi-level voxel 
representation of a scooby CAD model. 
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Algorithm 2. Hybrid scan-line algorithm on multi-level voxel grid.  

Input: Multi-level voxel grid, Gm 
Result: Infill Pattern 
1 foreach Coarse Layer Lc ∈ Gm do 
2 foreach indexy ∈ Lc do 
3 foreach indexx ∈ Lc do 
4 Determine voxel: v(indexx, indexy) 
5 if v = = 1.0 then 
6 Extract fine grid: Gf 
7 Fine layer Lf = TopLayer(Gf) 
8 foreach findexx ∈ Lf do 
9 foreach findexy ∈ Lf do 
10 Determine fine voxel: vf(findexx, findexy) 
11 if vf > 0 then 
12 Calculate center point, P 
13 AddPointToLine(P) 
14 end 
15 end 
16 end 
17 end 
18 if v = = 0.5 then 
19 Calculate center point, P 
20 AddPointToLine(P) 
21 end 
22 end 
23 end 
24 end  

To compute the rectilinear infill pattern, we use a hybrid scan-line 
approach on both coarse voxel layers Lc and fine voxel layers Lf of the 
multi-level voxel grid using an adaptive technique. We first scan through 
Lc in one of the x or y directions until we encounter a coarse boundary 
voxel Bc, which in turn has a fine voxel grid Gf associated with it. 
Adapting to Gf, we scan through its top Lf layer only at the center voxel 
line. When the scanning encounters a fine boundary voxel Bf, we 
compute its center-point coordinates and append it to a data structure 
storing the continuous line segments of the scan-line. We then continue 
scanning along the direction and append points in Bf, where the scalar 
value of the voxels is > 0.5 (inside voxels). Once Bf is scanned, the 
scanning proceeds to the next coarse voxel and checks if it is a boundary 
or an inside voxel. The above steps are repeated in the case of a 
boundary voxel. However, if an inside voxel is scanned, the coarse 

voxel’s center point is added to the scan-line data structure. This con
tinues until another boundary voxel is encountered. In this case, the 
scanned line is extracted, and the scan is resumed in the same direction 
until it reaches the end of the multi-level voxel grid. A visual schematic 
of the hybrid scan-line algorithm on a multi-level voxel grid is shown in  
Fig. 8 and outlined in Algorithm 2. 

One of the advantages of using this hybrid scan-line approach to 
determine the infill pattern is the accurate encapsulation of the infill by 
the boundary. Due to the presence of fine voxels at the coarse voxel grid 
boundary, the scan-line is accurately computed to match the object’s 
boundary isocontour extracted in Section 3. Besides, this algorithm 
provides a control on the accuracy of the infill in z (layer) direction 
while enforcing the accuracy in x-y (layer plane) direction. In most 
additive manufacturing applications, the infill is required to be sparser 
than the surface boundary. We can easily control this using our algo
rithm by selecting the algorithm to scan every fine layer or a single fine 
layer in the multi-level voxel grid. We control sparse and dense infill 
pattern by selective scanning for inside voxels. For sparse infill, we scan 
a subset of the lines instead of all lines in the voxel grid. In addition, we 

Fig. 8. Infill generation using hybrid scan-line in a multi-level voxel grid. An intermediate voxel layer is shown in (a) with coarse and fine voxels divided into inside 
and boundary voxels. A single scanning of a line of coarse voxels is represented by the green box. (b) shows the top and side views of the hybrid scan-line algorithm 
extracting infill line adaptively from fine and coarse inside voxels. Side view in (b) shows the layer height with which the extracted infill pattern is printed. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Isocontour generation and alternating infill patterns in a print layer of 
scooby model. Figure on the left shows scanning in y direction and the right 
figure shows x direction scanning. 
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change the direction of scanning for each infill layer by alternating be
tween x and y directions. This is shown in Fig. 9 with both x and y 
scanning shown separately. After combining the layer, we generate a 
rectilinear infill pattern with the required density. Fig. 10 shows both 
sparse and dense rectilinear infill patterns generated from a layer of 
scooby model. 

5. GCode generation 

Once we compute the boundary isocontours and infill structures 
using the MLMS and the hybrid infill algorithm, we generate the GCode 
directives required to directly 3D print the multi-level voxel model. We 
implement a variable layer infill printing to enable efficient layer-by- 
layer printing by exploiting the embedded layer information from the 
multi-level voxels. Selecting an appropriate voxel resolution for the 
coarse and fine level voxels is the key to perform a variable layer infill 
and boundary printing. We develop the GCode directives for a Fused 
Deposition Modeling (FDM) 3D printer in this work. We note that we do 
not discuss the printing of support structures for overhangs in the model 
in this work. However, the multi-level voxel representation provides all 
the information required to generate such support structures–a possible 
future direction for this research. 

In FDM 3D printing, one of the important properties that define a 
printed model’s quality and rigidity is the nozzle diameter of the 
printer’s extruder (hot end). Other properties, such as layer height (Hl), 
extrusion width (We), feed rate, traversal speed, and material con
sumption, are defined by the nozzle diameter [2,12,13]. In general, a 
printed model’s layer height is selected to be within a range of the nozzle 
diameter for better print quality. Further, the infill pattern is designed to 
consume less material as it does not contribute to surface quality. We 
utilize these properties to selectively define the coarse voxel resolution 
as Nx1 × Ny1 × Hl where Nx1 is number of voxels in x direction, Nx2 is 
number of voxels in y direction and layer height Hl is the number of 

voxels in z (print direction). We also define the fine voxel resolution as 
Nx2 × Ny2 × 3 where Nx2 and Ny2 are the number of fine voxels in x-y 
directions in a coarse boundary voxel. Hence, the effective resolution of 
our multi-resolution voxel grid is (Nx1Ṅx2) × (Ny1Ṅy2) × (Hl3̇). In addi
tion to providing a higher resolution in the x-y direction, we achieve a 
single layer height of Hl∕3 due to the subdivision of the coarse voxels 
into three fine voxels in z direction. 

We define the print directives for boundary isocontours generated in 
Section 3 with this layer height Hl∕3, while the infill pattern generated 
in Section 4 has a height Hl. We select Hl∕3 as the layer height (as shown 
in Fig. 11) since it enables us to capture finer details of the model. It 
allows a relatively small layer height to print the boundary with preci
sion while having a large enough layer height to print the sparse infill 
structures without compromising the structural integrity. We print the 
infill layer of a higher thickness at each third layer of the boundary layer 
with this printing protocol. 

To generate the GCode for FDM 3D printing, we compute the print 
material’s extrusion values based on the layer heights, Hl∕3 and Hl, and 
the distance between two consecutive points in the isocontours and infill 
patterns, respectively. This is shown in Fig. 11 with a thicker infill and 
thinner boundary layer extrusions. We aim to print compensate for 
printing lesser infill layers with a thicker infill according to the limits 
allowed by the 3D printer and the nozzle diameter. Printer specific in
structions in the GCode, such as motor control, extruder temperature, 
external cooling fan control, and bed temperatures, are generic based on 
the printer and material used. We first compute the X, Y coordinates of 
the point in the isocontour to be printed and define the Z coordinated 
based on the layer index value of the respective isocontour. Further, we 
compute the extrusion value, E, and the feed rate F and define it in the 
GCode. Then we follow the process for all the isocontour points and 
profiles in the layer. This is repeated for all the Lf in Lc. After that, we 
proceed to follow the print process for the infill pattern of Lc with the 
appropriate E value computed from Hl. In addition, we swap the scan 
direction of the hybrid scan-line algorithm every consecutive layer to 
have alternating linear infill patterns for each layer. We follow this 
routine for all the Lc and Lf layers in the voxelized model to achieve the 
final GCode ready for printing. 

6. Results 

We printed different physical CAD models to demonstrate the direct 
3D printing capability from multi-level voxels, including tessellated 
models and medical imaging data (CT scans). All the models were 
printed using the same plastic material (ABS) using the same 3D printer 
(MakerGear M2). We perform the GPU-accelerated multi-level voxeli
zation of CAD models to get three separate data structures representing 
the coarse voxels, fine voxels, and a prefix sum address array that stores 
the fine voxel index values for each coarse boundary voxel (please see 
Young and Krishnamurthy [33] for details). We use the multi-level voxel 
information to get the GCode directives to print the model. The MLMS 
and the hybrid scan-line algorithms are implemented in a Python envi
ronment; the MLMS and GCode generation framework will be published 
open-source. 

Fig. 10. Low and high density infill pattern visualizations in scooby model. (a) 
and (b) show the 2D view of the infill visualized from the GCode. (c) and (d) 
show sectional views of 3D printing simulation of the GCode. (a) and (c) are 
infill structures with low infill. (b) and (d) are infill structures with high den
sity infill. 

Fig. 11. Layer heights comparison of boundary layer and infill layer. Extrusion 
values of boundary and infill layers are calculated based on the respective layer 
heights. Fine voxel and coarse voxel resolution is also based on the layer heights 
defined for boundary and infill layers respectively. 
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To verify the printability using our framework, we simulated the 3D 
printing process using the generated GCode in the open-sourced Ulti
maker Cura software [31]. Fig. 12 shows the final 3D printed simulation 
of a Scooby model which is voxelized to a coarse resolution of 
64 × 64 × 512 and fine resolution of 8 × 8 × 3 thus producing an 
effective resolution of 512 × 512 × 1536 voxels. In Fig. 12(b), the 
alternating pattern in the infill layer can be observed where each infill 
layer prints either along the horizontal or the vertical direction. Fig. 13 
(b) further shows a cross-sectional view of the print simulation where 
there are two separate topological profiles of the model with a unique 
infill pattern strictly conforming to the respective boundaries. Similarly, 
Fig. 13 and Fig. 14 show the direct 3D printing simulations of the 
Stanford Bunny and a Turbine Blade model, respectively. Due to such a 
high-resolution representation of voxels, we can observe that in the x-y 
direction (print layer plane), the isocontours generated from fine voxels 
overcome the staircase effect that is generally associated with voxel grid 
isocontours. Specifically, in the z direction (print direction), the stair
case effect is non-existent, and we obtain a smooth surface finish. Fig. 15 
shows the Scooby, Stanford Bunny and Turbine Blade models, printed 
with resolutions of 512 × 512 × 1536, 512 × 512 × 732, and 
512 × 512 × 876, respectively using MLMS. Fig. 16 shows the final 3D 
printed Stanford bunny model printed from a low-resolution voxel grid 
of 643 voxel resolution. The voxel grid used in Fig. 16 is a standard 3D 
voxel grid, and the iso-contours and infill pattern is generated using 
standard marching squares and scan-line algorithms. In this figure, we 
observe that the staircase effect is obvious due to the low resolution of 
voxels. This issue is alleviated in Fig. 15 using high-resolution multi-
level voxel grids along with MLMS and hybrid scan-line algorithms. 
Further, overhangs due to the absence of support structures are better 
handled in the high-resolution prints using multi-level voxel 
representation. 

6.1. Direct printing of CT images 

To enable direct 3D printing of CT images, we implemented our al
gorithm on a set of CT-scan images of the human heart. However, the CT 
images need to be preprocessed and converted to multi-level voxels 
before printing using our MLMS approach. The CT-scan images for the 
heart model are stacked on top of one another to create a voxel grid. The 
voxel grid has inside-outside occupancy information of the heart model 
as shown in Fig. 17(a) with a resolution of 512 × 512 × 116. We create 
a multi-level voxel grid by performing a convolution operation on the 
original grid to create a coarse voxel grid (resolution of 64 × 64 × 116) 

and a fine voxel grid (resolution of 8 × 8 × 4). We copy each fine layer 
of voxels based on each image slice’s thickness provided in the CT-scan 
data. This preserves the size and aspect ratio of the model, and the final 
multi-level voxel grid has an effective resolution of 512 × 512 × 464, 
with 464 fine layers to be printed. 

We use our direct 3D printing framework to generate the GCode 
information for the voxel grid created from CT images. Fig. 17(b) shows 
a direct 3D printing simulation obtained from a stack of CT-scan images 
of the human heart. Fig. 18 shows the final 3D printed heart model using 
our direct 3D printing method. Fig. 18(b) and 18(c) show the sectional 
views of the heart model with only the heart wall segmented from the 
CT-scan images. In Fig. 18, we observe that the surface quality of the 3D 
printed heart model is coarser along the z-direction than what we ach
ieve from directly printing a CAD model using MLMS. This is due to the 
lower resolution of the original CT-image stack along the z-direction 
from which we extract the iso-contours for each layer. This lower- 
resolution results in a loss of accurate surface information in the voxel 
model of the CT-scan, which leads to a staircase effect at high curvature 
regions. 

6.2. Print comparison 

To validate our direct 3D printing framework, we compared different 
3D printed models obtained using the traditional slicing method and our 
multi-level marching squares (MLMS) method. Fig. 19 shows the 3D 
prints of a simple curved geometry, in this case, a dumbbell model using 
a combination of primitive shapes. To show the correctness of the MLMS 
algorithm, we visualized the boundary of a single layer of the 3D print 
obtained using traditional slicing and MLMS methods (shown in  

Fig. 12. 3D Print simulation for Scooby model. (a) shows the final 3D print 
simulation of the model with 64 × 64 × 512 coarse and 8 × 8 × 3 fine voxel 
resolutions. (b) shows cross-sectional view of the simulation with linear 
infill pattern. 

Fig. 13. 3D Print simulation for Stanford Bunny model. (a) shows the final 3D 
print simulation of the model with 64 × 64 × 244 coarse and 8 × 8 × 3 fine 
voxel resolutions. (b) shows sectional view of the simulation with linear infill 
pattern on two separate topological profiles of the model. 

Fig. 14. 3D Print simulation for Turbine Blade model. (a) shows the final 3D 
print simulation of the model with 64 × 64 × 292 coarse and 8 × 8 × 3 fine 
voxel resolutions. (b) shows sectional view of the simulation with the 
infill pattern. 
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Fig. 20). Comparing Fig. 20(a) and (b), it can be observed that the iso- 
contours of both the layers are identical in shape and smoothness. 

In Fig. 21, we show the comparison of 3D printed models printed 
from the same 3D CAD model of the Stanford bunny using the traditional 
slicing method and our proposed direct 3D printing method from voxels. 
We observed that the surface quality of the model generated from our 
direct 3D printing method is mostly at par with the traditional slicing 
method and, at some regions, exceeds the quality of the slicing method 
generated model. In addition, the STL resolution artifacts are signifi
cantly reduced in our approach. 

To quantify our print quality, we used 3D Systems Geomagic Capture 
3D laser scanner [1] and Solidworks [27] to generate point cloud rep
resentations of the MLMS and STL printed versions of the Dumbbell and 

the Stanford Bunny model. The point clouds were exported to the Cloud 
Compare software [8]–an open-source framework for computing point 
cloud metrics. We then segmented the point clouds to generate patches 
of densely scanned points of a specific region of the printed model. Vi
sualizations of the point cloud patches for the Dumbbell model are 
shown in Fig. 22, and the Stanford Bunny model are shown in Fig. 23. 
The patches were obtained approximately from the same regions of the 
MLMS, and STL printed models. Using fine registration, we aligned the 
individual patches with the CAD model. We then generated the error 
metrics between the CAD model and the MLMS model or traditionally 
sliced STL model patches using the point cloud-mesh-compare func
tionality of Cloud Compare. The quantitative error metrics obtained 

Fig. 15. High resolution (> 5123) FDM 3D print using multi-level voxels. (a) shows the final 3D printed model of the Scooby, (b) shows the final 3D printed model of 
the Stanford Bunny, and (c) shows the Turbine Blade model. 

Fig. 16. Low resolution (643) 3D print of the Stanford Bunny model using 
multi-level voxels. The staircase effect can be seen in this print due to the 
inability of the low-resolution voxel grid to capture the detailed features. 

Fig. 17. 3D Print simulation of heart model from CT-scan image stack. (a) 
shows a volume rendering of the CT-scan images stacked on top of each other 
with a resolution of 64 × 64 × 116 coarse voxels and 8 × 8 × 4 fine voxels. (b) 
shows the 3D print simulation of the heart model. 
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from the point cloud comparisons from both models are tabulated in  
Table 2. It can be seen that, for both the Dumbbell and the Bunny 
models, the average distance between the CAD model and the point 
cloud obtained from MLMS 3D print is less than that of the point cloud 
obtained from STL based 3D print. Further, the maximum error between 
the MLMS point cloud patch and the CAD model is nearly identical for 
the Dumbbell model and lower in the Bunny model than the STL ob
tained point cloud. This quantitative analysis shows that our approach of 
direct 3D printing from multi-level voxel models has a better surface 
accuracy than traditional slicing based methods. 

7. Discussion, limitations & future work 

We discuss a few observations as well as the limitations of the current 
work in this section. We did not explore support structure generation for 
overhang sections in a CAD model. This can be seen in the final 3D 

Fig. 18. 3D printed heart model from CT-scan. The CT-scan is segmented to 
generate a voxel grid containing only the walls of the heart model. (a) shows 
the complete model; (b) shows the bottom section of the heart model showing 
the four heart chamber cavities; and (c) shows the top section of the 
heart model. 

Fig. 19. 3D print comparison between the traditional slicing method and our 
direct 3D printing from multi-level voxels for a simple model. 

Fig. 20. Comparison of iso-contour extraction using the traditional slicing 
method and our MLMS algorithm. (a) shows the first layer contour of a simple 
dumbbell model printed using traditional slicing method (b) shows the first 
layer contour of a simple dumbbell model printed using direct 3D printing from 
multi-level voxels. 

Fig. 21. 3D print comparison between the traditional slicing method and our 
direct 3D printing from multi-level voxels method. (a) shows the Stanford 
Bunny model printed using the traditional slicing method, and (b) shows the 
Stanford Bunny model printed using direct 3D printing from multi-level voxels. 

Fig. 22. Point cloud visualization of patches extracted from 3D printed 
Dumbbell models. (a) shows the point cloud patch of the model printed using 
the traditional slicing method, and (b) using multi-level voxels. 
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printed objects, where due to the absence of support structures, we get 
warped boundaries at overhang locations of the model. However, due to 
the high-resolution voxelization using multi-level voxel representation, 
the generated contours are highly accurate, which allows us to 3D print 
the complete models without incurring a hefty penalty on the surface 
quality of the overhangs. 

We observed that regions with steep angles resulted in a more 
prominent staircase effect in the final 3D print. This is due to the dis
cretization of the surface during the voxelization. Regions with steep 
angles result in a significant loss of surface continuity after voxelization. 
Extracting iso-contours of such regions using the MLMS algorithm re
duces the staircase effect. However, high curvature surfaces are still 
prone to this effect due to the intrinsic nature of the marching squares 
algorithm, where the voxel center points are considered for iso-contour 
extraction. This can be observed in Fig. 18 at the top region of the heart 
model. Using a more sophisticated contour generation algorithm, such 
as Dual Contouring [15] might overcome this limitation. 

As presented in Section 6, high-resolution voxel grids enable us to 
print 3D models with higher accuracy and better surface finish. How
ever, iso-contours extracted from very high-resolution voxel grids 
(> 10243) result in any two adjacent points being very close (order of 
> 10−4 mm) to each other that is less than the precision of the 3D printer 
extrusion. Due to this limitation, the extrusion of print material from the 
nozzle becomes inconsistent, introducing a discontinuity in the material 
flow, thus affecting the surface finish of the printed model. Hence, the 
voxel resolution of the 3D model is still limited by the precision and 
accuracy of the 3D printer. 

The multi-level voxel representation is not readily available for 
medical data. We pre-processed the high-resolution medical data to 
generate a multi-level voxel representation that is true to the original 
data in the x-y layer plane. However, due to the stacking up of a copy of 
each image slice in the print direction, there is a noticeable staircase 
effect in the z-direction. This is primarily due to the limitation of the 
data and not of the method itself. We can easily overcome this limitation 
with the availability of a high-resolution CT scan stack. 

Future work for the direct 3D printing framework involves devel
oping additional methods to generate support structures for overhangs. 
Along with the boundary and inside-outside information for the voxel 
grid, we also store the average triangle normal information for each 
voxel based on the tessellated CAD model. This normal information can 

be used to find overhang regions in the model and generate appropriate 
support structures. In addition, different infill structure patterns can be 
explored to be 3D printed using voxel grids. A potential improvement to 
the framework is also to generate multiple offsets of the iso-contour in a 
layer to create a boundary skin in the 3D printed model. This will 
improve the surface quality of the prints by reducing the effect of over- 
extrusion of infill over the boundary, thus eliminating small blobs on the 
surface. 

8. Conclusions 

In this paper, we have developed an additive manufacturing frame
work to directly 3D print CAD models from multi-level voxel represen
tation. The multi-level voxel representation has inherent layer 
information, obviating the need for the slicing operation. We extract 
accurate iso-contours from high-resolution multi-level voxels using our 
multi-level marching squares algorithm to print the model’s boundary 
surface. This method exploits the sparse nature of the multi-level voxel 
representation to heavily reduce the aliasing or staircase effect in the 
model, achieving a better surface finish. We generate and print the infill 
structure of the voxel model with a height proportional to the coarse 
voxels while the boundary iso-contours are printed with layer height 
proportional to the fine voxels, which further reduces the aliasing effects 
in the z-direction. In addition, we can also directly control the infill 
density, leading to prints with user-defined weight. We believe this 
approach will be widely adopted by the additive manufacturing com
munity due to its flexibility and ease of adapting it to different layered 
manufacturing processes. 
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