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a b s t r a c t

The microstructure – spatial distribution of electron donor and acceptor domains – plays an important
role in determining the photo current in thin film organic solar cells (OSCs). Optimizing the microstruc-
ture can lead to higher photo current generation, and is an active area of experimental research. There
has been recent progress in framing OSC microstructure design as a computational design problem.
However, most current approaches to microstructure optimization are based on volumetric distribution
of material, which makes the design space very large. In contrast, we frame the microstructure design
optimization problem in terms of designing the interface between the donor and acceptor regions,
and thus pose it as a surface representation and optimization problem. This results in substantially
reduced number of design variables, thus enabling use of standard optimization tools. In this work, we
address the efficient design of OSC microstructure by using surface and curve modeling techniques to
model the donor–acceptor interface, and use meta-heuristic, gradient-free optimization techniques to
optimize the microstructure for maximum short circuit current generation. Our modeling framework
consists of three major components: (1) geometric modeling of OSC microstructure that uses Non-
Uniform Rational B-spline (NURBS) curves and surfaces to construct the free-form donor–acceptor
interface, (2) photo-current generation modeling that uses a parallel, finite-element based exciton–
drift–diffusion (XDD) model, and (3) optimization that utilizes genetic algorithms (GA) to optimize
the OSCs microstructure via exploration of the NURBS representation. We apply these methods
for the optimization of both 2D and 3D microstructures. Results show substantial improvement in
current density compared to the bulk-heterojunction microstructures. These results provide promising
microstructures for experimental groups to fabricate. The proposed surface representation approach
seems to be a promising approach for interface design in engineered systems.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, numerous studies have investigated
the chemistry of materials used in organic solar cells (OSCs) in
order to enhance the photocurrent generation. These advances
along with limited process optimization have helped improve
OSC efficiency from less than 1% to over 10% [1]. The community
believes that additional improvements in efficiency are possible
by rationally tailoring the morphology or the microstructure of
the OSC [2]. This is very promising because OSCs exhibit several
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advantages over their inorganic counterparts, that make them
very attractive for diverse applications. These advantages include
(a) significantly reduced cost in comparison to traditional inor-
ganic photovoltaics [3], (b) natural structural flexibility, allowing
for easier transport and installation [4], (c) easy tunability to
achieve diverse colors and textures, and (d) production of devices
with unusual form factors, thus extending their applicability to
consumer electronics.

OSCs are typically thin films that are comprised of two types
of organic materials (i.e. molecules containing a carbon back-
bone) called electron donor and electron acceptor (excitons).
The spatial distribution of the donor and acceptor domains in
the thin film (i.e. microstructure) is critical to the performance
of the device. This is because each stage of the photocurrent
generation process – light absorption, exciton generation, exciton
dissociation, and charge transport – is directly affected by the
microstructure. Fig. 1 shows a schematic view of a thin film
OSC. The incident solar radiation causes excitons (which are
electron–hole pairs) to form in the electron donating region.
The excitons dissociate into positive and negative charges at
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Fig. 1. Schematic of the current generation process in a typical organic solar cell. The active layer is made of a blend of acceptor and donor materials. A representative
volume element (RVE) of this active layer is represented by the microstructure. The active layer is composed of repeating 2D or 3D unit RVEs.

the donor–acceptor interface. These charges then travel through
the domain – positive charges through the electron donor, and
negative charges through the electron acceptor – to reach the
top and bottom electrodes, thus producing current. Each stage
of the photo-current generation process (exciton creation, exci-
ton dissociation, charge transport) is affected by the underlying
microstructure, thus making a compelling argument for rational
design of OSC microstructure.

Microstructure-sensitive design has been successfully used
in applications focused on bulk behavior such as the field of
elastic/structural materials [5]. However, microstructure design is
still a nascent topic when other applications – especially multi-
physics applications – are considered. This is especially true in
the context of studies seeking to improve the performance of
OSC’s. Recent work on modeling the microstructure-aware photo-
physics has finally resulted in the availability of simulation tools
that can map a given microstructure to its photovoltaic per-
formance. One such set of tools model the photo-physics via
the exciton–drift–diffusion (XDD) equations, which are a set of
tightly coupled partial differential equations. Using these sim-
ulation tools, there have been recent studies [6,7] that seek to
understand the effect of specific microstructural features on the
device performance [8,9]. However, there have been very few
studies to design the microstructure. This research gap motivates
the current work.

Various design approaches have been developed in the field
of microstructure sensitive design [10–12]. These approaches
include: (1) modeling materials and geometry separately us-
ing voxel-based methods [13], (2) utilizing implicit modeling
methods to model both the geometry and the material compo-
sition [14], and (3) decomposing the microstructure into several
sub-objects, each of which refers to a different material class
and combining them using Boolean operations [15]. However,
even though these methods are promising for manual microstruc-
ture design, they many not be the most efficient choices for
microstructure design through optimization. This is because these
methods are based on volumetric distribution of material, which
makes the design space very large.

In this work, we frame the microstructure design optimization
problem in terms of designing the interface between the donor
and acceptor regions (DA interface), and thus pose microstructure

design as a surface representation and optimization problem.
This novel approach results in substantially reduced number of
design variables, thus enabling use of sophisticated optimization
tools to improve the short-circuit photocurrent generation. We
utilize a NURBS-based interface generation method that uses
NURBS curves or surfaces to represent the donor–acceptor inter-
face within a representative volume element (RVE). We develop
and deploy an automated workflow that takes in a NURBS curve
or surface, find its envelope (bounded by the curve or surface),
and use rasterization methods to convert the RVE into a binary
volumetric representation. We then solve the XDD equations
for this RVE to assess its performance (i.e. short-circuit current
production). An optimization framework uses this performance
evaluation to modify the DA interface to obtain higher perfor-
mance. We demonstrate this workflow in both 2D and 3D by
identifying promising classes of microstructures with improved
performance.

This paper is arranged as follows: we explain the physics
model in Section 2. We then explain the motivation behind repre-
senting the microstructure using the Donor–Acceptor interface in
Section 3. We then detail our approach for 2D and 3D microstruc-
ture modeling and optimization in Sections 4 and 5, respectively.
We present a comprehensive discussion of the results in Section 6
and conclude in Section 7.

2. Physics model: Microstructure to property mapper

The microstructure of an OSC thin film consists of two ma-
terials spatially distributed in the domain. The spatial distri-
bution, m(x⃗), of the two materials (called electron-donor and
electron-acceptor) determines the photovoltaic performance of
the OSC. Without loss of generality, we can represent a mi-
crostructure as a binary image (or volume), or equivalently as
a two-phase material [16]. There are broadly two approaches to
computationally interrogate a microstructure, m(x⃗), to evaluate
its photovoltaic performance: (1) microscopic/discrete models
and (2) continuum/PDE models. Microscopic models, usually
based on (kinetic) Monte Carlo approaches, can accurately de-
scribe the effect of microstructure on charge generation, recom-
bination, and transport. They have been used with great utility to
understand the effects of various sub-processes in semiconductor
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device operations. However, these methods are computationally
very expensive to use for three-dimensional simulations and high
throughput analysis, thus precluding them as viable options for
microstructure design. Continuum models based on the drift–
diffusion equations [17–20], provide a computationally efficient
alternative to microscopic models. Continuum models can also
incorporate recombination, exciton generation, and creation of
free charges unique to the physics of OSC device operation. The
effect of microstructure is incorporated into the drift–diffusion
model by using spatially-varying material properties based on the
spatial distribution of constituent materials, both in 2D [20–22]
and in 3D [22].

We, therefore, use an Exciton–Drift–Diffusion model (XDD) to
evaluate the performance of a microstructure. A detailed discus-
sion of the XDD equations is provided in Appendix A. We briefly
outline the basic photo-physics that the equations model. The
exciton equations (X) models the generation, diffusion, dissoci-
ation of excitons in the domain. The incident solar radiation is
absorbed by the electron donor regions resulting in a volumetric
generation of excitons. The excitons diffuse towards the donor–
acceptor (DA) interface, where they undergo dissociation into an
electron and hole. The kinetics of this dissociation (kd) depends on
the local density of charges (n, the electron density and p, the hole
density). The drift–diffusion equations model how these charges
(n, and p) are transported across the domain to the respective
electrodes. This consists of two phenomena: diffusion of charges
from high density regions to low density regions, and the drift
of the charges under the imposed electric field. Additionally, the
charge densities interact with each other via Columbic attraction
undergoing recombination. All these phenomena are accounted
for in the XDD equations.

The XDD equations are solved using a stabilized finite element
approach [22] along with the imposition of weak boundary con-
ditions [23]. An in-house parallel FEM framework [22,24] is used
to solve the XDD equations.

3. Microstructure interface representation using parametric
curves/surfaces

A standard way to represent the microstructure, m(x⃗), is using
a field, i.e. a spatial distribution where m(x⃗) takes a value of 1
when x⃗ lies in phase one, and takes a value 0 when x⃗ lies in phase
two. This representation is essentially an indicator function rep-
resentation at every spatial location. While simple and intuitive,
this results in a very large design space for microstructure design.

We utilize a key feature of the photo-physics to reformulate
the microstructure representation into an equivalent form that
exhibits a much more compact parameterization. As described in
the previous section, the exciton dissociates into an electron and
hole pair at the donor–acceptor interface. For successful collec-
tion of these pair of charges, the electron must successfully tra-
verse through the acceptor domain to reach the bottom electrode,
while the hole must successfully traverse through the donor
domain to reach the top electrode. The presence of any isolated
islands (of either material) will result in loss of viable pathways
of charges from that region to the appropriate electrode, pro-
ducing a degradation in performance. Thus, it has been argued
that good morphologies exhibit a bi-continuous structure [5]. A
bi-continuous structure is defined as a structure in which two
contiguous phases interpenetrate. Thus, for every point, x⃗DA, on
the donor–acceptor interface, there exist continuous pathways
from x⃗DA through the acceptor domain (i.e. m(x⃗) = 1) to one
electrode, and through the acceptor domain (i.e. m(x⃗) = 0) to
the other electrode. A bi-continuous structure ensures that every
part of the DA interface is viable (see Fig. 2). We emphasize
that this is a necessary (but not sufficient) condition for maximal

Fig. 2. Illustration of a bi-continuous morphology. The red dots are represen-
tative points on the donor–acceptor interface, and the directed lines represent
pathways from the DA interface to the respective electrodes.

extraction of charges. It is very interesting to note that standard
processing approaches for OSC produce BHJ morphologies that
exhibit a nearly bi-continuous morphology [25].

We, thus, seek to optimize two-phase microstructure that
exhibit a bi-continuous property. Such microstructures are
uniquely defined by the interface between the two phases. The
microstructure is fully defined by a non-intersecting boundary
that defines the interface between the two distinct components. It
follows that the mathematical tools for parametric representation
of curves (in 2D) and surfaces (3D) can be effectively utilized to
characterize the interface, and thus the microstructure.

This is a critical insight as it converts the computationally dif-
ficult problem of volumetric microstructure design into a more
tractable surface design of the interface. We emphasize that
this reformulation is not specific to the OSC microstructure de-
sign problem we consider here, but is endemic to a wide va-
riety of material systems – including catalysis, energy harvest-
ing, and membranes – where a bi-continuous property is ex-
pected. Moreover, multiple manufacturing techniques produce
such microstructures [26], making the designs realizable.

Representing the interface using a curve or surface that ex-
hibits a bi-continuous property necessitates that the boundary is
not self intersecting. This can be handled in two ways: (1) care-
fully parameterizing the interface to prevent self-intersections
for all possible interfaces in the design space, or (2) detect-
ing and removing self-intersections after the interface has been
generated. Both these methods are computationally tractable
for a 2D microstructure design. Hence, we implemented both
these approaches in this work for 2D microstructure optimization
(see Section 4). On the other hand, detecting and removing
self-intersections in 3D surface representations is much more
challenging. We resolve this challenge by computing the (lower)
envelope of the NURBS surface using ray intersection methods
and directly voxelizing the microstructure (see Section 4).

We frame the design problem as an surface optimization prob-
lem and use genetic algorithms (GAs) as the optimization routine.
GAs have been proven to be successful in many scientific ap-
plications where computing the derivatives is not possible or
challenging. We utilize the curve/surface reformulation for mi-
crostructure design and illustrate the methodology first in 2D and
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Fig. 3. Overall workflow for using genetic algorithms for optimization of microstructure of OSCs. The fitness evaluation step (magnified in the inset) for 2D and 3D
microstructures is explained in detail in Sections 4 and 5, respectively.

Fig. 4. The algorithm for 2D microstructure design.

then in 3D. Fig. 3 shows the optimization framework of current
study using GAs.

4. Microstructure modeling: Formulation and results for the
2D case

For the 2D microstructure, we model the donor–acceptor in-
terface using NURBS curves, detect and remove the self intersec-
tions, and use rasterization methods to convert the resulting RVE
into a volumetric (image pixel) representation. In the volumetric
representation, the RVE is divided into a user-defined grid of
pixels and each pixel is classified into acceptor or donor re-
gions. Thus each representation of the interface can be converted
directly into a microstructure.

Fig. 4 shows the three steps to create a 2D microstructure.
In the first step, we use curve modeling techniques to construct
the interface curves using NURBS. In the second step, we detect
and eliminate self intersection(s). In the third step, we find the
lower envelop of the curve to convert into a raster (volumetric)
representation.

4.1. Curve modeling

The coordinates of a parametric curve is defined with respect
to a parametric value. Consider g : [a, b] → Rs for s ≥ 2,
this mapping is called a parametric representation of class Cm

for m ≥ 1 if it satisfies the following conditions. First, all the
n components of g should have continuous derivatives up to

order m and second, the first derivative of g should not vanish in
[a, b],

Dg(t) = g′(t) ̸= 0, for t ∈ [a, b] (1)

Note that a function y = f (x) can always be considered as
a curve through the parametric representation f (u) = (u, f (u)).
In this paper we use this property to represent the DA interface
as a curve in 2D and as a surface in 3D. Non-uniform rational
B-splines (NURBS) are a superset of curve/surface representation
that we use to represent the donor–acceptor interface in our
work. Detailed equations of NURBS curves can be found in Piegl
and Tiller [27]; in the following we review NURBS equations
briefly.

NURBS curves: The NURBS curve is a parametric curve that
can be represented using control points (P), weights (w), and
the knots (U). P forms the control polygon and U should form a
sequence of non-decreasing numbers. In other words knot vector
should be formed such that:

U = {u0, . . . , up, up+1, . . . , um−p−1, um−p, . . . , um} (2)

where, ui ⩽ ui+1(i = 0, . . . .,m − 1). The number of knots in u
direction is m + 1. Without loss of generality, the NURBS curve
is defined the parametric domain u = [0, 1]. As a consequence,
u0 = 0 and um = 1.

The B-spline basis functions Ni,p(u) on U are defined recur-
sively such that:

Ni,0(u) =
{
1 if ui ⩽ u < ui+1

0 otherwise

Ni,p(u) =
u− ui

(ui+p − ui)
Ni,p−1(u)+

ui+p+1 − u
(ui+p+1 − ui+1)

Ni+1,p−1(u) (3)

By having Ni,p(u) we can define the NURBS curve as a function
of the parameter u as:

C(u) =
Σn

i=0Ni,p(u)wiPi
Σn

i=0Ni,p(u)wi
(4)

We can define piece-wise rational functions (Ri,p(u)) such that

Ri,p(u) =
Ni,p(u)wi

Σn
j=0Nj,p(u)wj

(5)

Therefore Eq. (4) can be rewritten as

C(u) = Σn
i=0Ri,p(u)Pi (6)
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Fig. 5. Schematic representation of detection and elimination of self-intersection(s).

There are many advantages associated with using NURBS curve
for the interface. Some of the NURBS characteristics that are
related to this study are:

1. NURBS have a local control property. From Ri,p(u) = 0
for u /∈ [ui, ui+p+1), we can conclude that moving a single
control point Pi only affects the piece of the NURBS curve
which u ∈ [ui, ui+p+1) and not outside this interval.

2. The general shape of the NURBS curve C(u) is determined
by the control polygon formed by the convex hull of control
points from Pi−p to Pi while u ∈ [ui, ui+1).

We model the DA interface using NURBS with a new approach
for the parameterization. Most of the studies in the literature
assume that the control points are distributed linearly along
x-axis but are free to move only along the y-axis (for example
see [28]). This assumption avoids self intersection and generating
the interface envelope is trivial using the ray-casting algorithm.
However, allowing the control points to move only in 1 direction
can be too restrictive to create optimal microstructures. Hence, in
our approach, we allow the control points to move freely in both
x and y axes. This assumption creates more realistic microstruc-
tures, since the generated curves have more degrees of freedom.
However, in this case, there could be self-intersections, which
need to be specially handled to generate the curve envelope.

4.2. Detection and elimination of self-intersection(s)

Evaluating the self intersection of NURBS curves is an essential
operation in the design of microstructure since it can have direct
impact on the performance of the OSCs [29]. Given a general
curve C(t) as is presented in Fig. 5(a), the microstructure result
shown in Fig. 5(b) is not the one typically desired since it has mul-
tiple isolated islands. Presence of isolated islands increases the
recombination of carrier charges which decreases current gener-
ation of the device dramatically. As a result, the self-intersections
in the resulting computed curve are expected to be trimmed
away. In order to detect self intersections, we subdivide C(t) into
monotone linear regions, and then processes all the (monotone)
segments using a plane sweep scheme. For this purpose, we
use Bentley and Ottmann algorithm [30] which is a sweep-line
algorithm to find all k intersections among n line-segments with
an O((n+ k) log n) time complexity. Following are detailed steps
for this algorithm.

1. Let there be n given line segments. There must be 2n
end points corresponding to these n lines. Sort all points
according to x coordinates.

2. Tag a flag to each point indicating whether this point is left
point of its line or right point.

3. If the current point is a left point of its line segment: Check
for intersection of its line segment with the segments just
above and below it. And add its line to active line segments.

4. If the current point is a right point of its line segment:
Remove its line segment from active list and check whether
its two active neighbors intersect with each other.

Note that steps 3 and 4 are like passing a vertical line from all
points starting from the leftmost point to the rightmost point.

Once an intersection is detected, the curve is split at this
location. Our method for removing self-intersection(s) is based
on the physics of OSCs. As we mentioned before, isolated islands
decrease current generation of OSCs dramatically, as a result, we
eliminate those set of line segments which create these type
of islands in the final microstructure. Fig. 5(a) shows the curve
envelope generated by NURBS and Fig. 5(b) shows correspond-
ing microstructure for this curve. It can be seen that there are
multiple isolated islands in this figure. Fig. 5(c) shows detection
of intersection and segments of Fig. 5(a). Fig. 5(d) shows the
corresponding microstructure for Fig. 5(a) after elimination of in-
tersecting regions. The microstructure in Fig. 5(d) has 380% more
current generation compared to the microstructure in Fig. 5(b).

4.3. Conversion to volumetric representation

Once the envelope is constructed, we convert this representa-
tion back into a volumetric representation, m(x⃗). We construct a
lattice of points in the domain (depending on the mesh density
required for solving the photophysics equations (see next sec-
tion). For each point on the lattice, we evaluate the phase it lies
on to create m(x⃗). We use ray-casting algorithm to find the phase
of each point. Briefly, this method works based on the number
of times a ray, starting from the point and going in any fixed
direction, intersects with the envelope of the curve. If the point is
on the inside (outside) of the envelope the ray will intersect it an
odd (even) number of times. This algorithm is computationally
inexpensive and fast, however, it may not work correctly for
complex geometries with self intersection(s). Thus, our previous
step of detection and elimination of self-intersection(s) is an
essential step to maintaining the accuracy of this step.

4.4. Microstructure optimization using genetic algorithms

We use our XDD model to assess the performance of a mi-
crostructure and use it to frame the optimization problem: Find
the NURBS parameters that result in a 2D microstructure with
maximal short circuit current. Numerical explorations revealed
that the cost-function can be highly corrugated making comput-
ing of the gradient non-trivial. Additionally, numerically comput-
ing the gradient is computationally expensive (as the solution of
the XDD equations are themselves computationally expensive).
Finally, we impose shape constraints which makes parts of the
design space out of bounds. Based on these characteristics, we
choose to use a meta-heuristic, gradient free, optimization strat-
egy. We specifically use a genetic algorithm (GA), as we have prior
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experience in utilizing this class of approaches for optimizing
complex engineered systems [31].

There are many variants of GA, however, we describe the
standard algorithm below:

1. Initialize the first generation of points with randomly gen-
erated points in the search space. These points are encoded
into strings and are called ‘‘chromosomes’’.

2. Evaluate each chromosome of this generation using a fit-
ness function that best relates to the problem. Here the
fitness function is the short circuit current computed by
solving the XDD equations. Rank order the chromosomes
based on fitness value.

3. Select chromosomes based on their fitness to create a new
generation of individuals through crossover and mutation
methods. Good fitness is rewarded by an increased possi-
bility of selection. To create the next generation, there are
three standard methods:

• Crossover combines genetic material (i.e. specific de-
sign variables) in an individuals’ chromosomes and
creates offsprings that maintain some of the traits
of the parents. A crossover rate decides the por-
tion of each new generation that should come from
crossover.

• Mutation randomly alters the bits within a chromo-
some. This initiates a random variation into the pop-
ulation which potentially brings prospective solutions
out of local optima.

• A set of top-performing chromosomes in the popula-
tion are selected as ‘elites’, whose chromosomes are
retained in the next generation. This maintains the
optimal solution across the GA.

4. Repeat steps 2–3 until some set of termination criteria are
met, usually:

• Stall generation limit: Terminate the GA if optimal
or mean fitness fails to improve for a set number of
generations.

• Generation limit: Terminate the GA if a set number of
generations are explored.

• Stall time: Terminate the GA if the runtime for the GA
reaches a set value.

An optimal solution is determined by choosing the most efficient
individual chromosome within the final generation. In this work,
the GA is formulated as a minimization problem which makes
lower fitness more desirable. Because GAs utilize a population of
potential solutions distributed over the design space, they are less
likely to getting stuck in local minima. Please note that GA is a
stochastic optimization method, so it is expected that running it
multiple times will produce different results. One practical way
to solve this issue is repeating each optimization multiple times.
This gives us the opportunity to observe statistical significance of
results and reliably explore the phase space.

Design variables, simulation time and assumptions: We
model donor–acceptor interface with NURBS. Since each set of
control points represents a unique microstructure, we identify
the control points as the design variables. Some questions which
arise here are: how many control points are needed in order to
generate a microstructure? What are the diversity of generated
microstructures with NURBS? We address these questions below:

Accuracy and computational costs are two major concerns of
this current work. Usage of more control points models donor–
acceptor interface with higher order curves and ultimately
constructs more complex microstructures. However, this also in-
creases the computational complexity of the optimization process

Fig. 6. Convergence study of GA.

dramatically. This is because of the nature of the governing PDEs
– exciton–drift–diffusion equations – which are highly nonlinear.
Approximately, each fitness function requires about an hour for
evaluation on a HPC cluster with one node (16 processors). As a
result, finding the minimum number of control points – which
creates microstructures which are reasonably complex, yet re-
quire reduced computational cost – is a crucial step in the design
process.

Principle component analysis (PCA) is a convenient way to
investigate the diversity of generated data. To understand the di-
versity of the microstructures, we generated different microstruc-
tures using NURBS with 4, 8, 16, and 32 control points. We then
performed PCA on the microstructure images, took the top two
values (i.e. map each image to a point in 2D), and visualized them
(see Fig. 7). As expected, microstructures created using larger
number of control points have more diversity than those created
with fewer number of control points. However, increasing num-
ber of control points from 16 (green zone) to 32 (red zone) does
not cause a significant increase in the microstructure diversity.
In order to quantify this claim, we computed the area enclosed
by the convex hull of blue (microstructures generated using 4
control points, A1), black (microstructures generated using 8 con-
trol points, A2), green (microstructures generated using 16 control
points, A3) and red points (microstructures generated using 32
control points, A4). Quantitatively, A2/A1 = 2.265, A3/A2 =

1.189, and A4/A3 = 1.015. This shows changing the number of
control points from 16 to 32 does not significantly change the
area occupied by the corresponding points. As a result, we choose
NURBS with 16 control points and uniform knot vector to model
the microstructure.

Problem Constraints: The constraints in this problem were
driven by the geometric characteristics of the microstructure. For
simplicity and without loss of generality we assume that the
microstructure has a unit length in x and y direction. Generated
curves should therefore satisfy: ymax < 1 and ymin > 0, xmax < 1
and xmin > 0. Consequently, a set of control points (Pi) are valid
only if the curve produced satisfy Eq. (7). The same constraints
are extended to 3D for the 3D microstructure generation.

0 ≤ Σn
i=0Ri,p(u)Pi ≤ 1 (7)

GA convergence: As we discussed earlier, GAs are an inher-
ently stochastic method, so we repeat each optimization multiple
times (20 times) to consider statistical significance of results and
attempt to reliably explore the phase space. However, there is no
guarantee that we can find the global minima. This is however not
a major problem in design as we seek to identify microstructures
that are better performers than our current best. Fig. 6 shows the
convergence of GA for this problem.



R. Noruzi, S. Ghadai, O.R. Bingol et al. / Computer-Aided Design 118 (2020) 102771 7

Fig. 7. Dimension reduction of microstructures created by NURBS by mapping
each microstructure image to a unique point in xy-plane. Blue, gray, green and
red zones represent diversity of generated microstructures with 4, 8, 16 and 32
control points respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. 2D microstructure (a) bilayer and (b) bulk heterojunction (BHJ), red
shows electron acceptor regions and blue shows electron donor regions. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4.5. Simulation parameters

Genetic operators and parameters: In the present study,
stochastic uniform selection, intermediate crossover, and adap-
tive feasibility were selected as the parameters of the GA. The
size of population and maximum evolution generation are set to
50 and 200, respectively. The optimization process is terminated
if there is a low chance to achieve significant changes in the
next generations i.e. when relative error between two genera-
tions is less than a specified criteria. The maximum allowable
relative change of fitness function is set to 0.001. Eq. (8) shows
termination condition of GA.
∥fbest (i)− fbest (i− 1)∥

∥fbest (i− 1)∥
≤ 0.001 (8)

OSC device parameters: In this paper we consider a device
with thickness of 100 nm fabricated using P3HT:PCBM donor–
acceptor blend. The material specific parameters for this system
were obtained from Kodali [22]. The device configuration is such
that the electrodes are placed at the top and bottom boundaries
(in 2D) and side boundaries (in 3D). In all cases, the microstruc-
ture image clearly identifies the surfaces that act as cathode and
anode.

4.6. Optimized microstructure

With the model system detailed in the previous section, we
use GA to find microstructures with high short circuit current. We

compare charge transport properties of the optimized microstruc-
ture with bilayer and bulk heterojunction (BHJ) microstructures.
We choose these two microstructures for comparison as their
properties have been widely studied [32,33]. Fig. 8 shows the
2D microstructure of bilayer and BHJ. We note that most current
high performance OSC devices have been shown to exhibit a
BHJ microstructure. The bilayer microstructure is included as a
comparative reference since the first successful OSC was made
from stacking together two layers. Current OSC – with BHJ mi-
crostructures – have substantially larger short circuit currents
compared to the bilayer microstructure, primarily due to their
higher donor–acceptor interfacial area.

Consequently, we use the current density of BHJ, denoted (Jref ),
as a reference metric to compare our optimization results with.
This value is Jref = 1.319 mA/cm2. Since our analysis is not
limited to a specific polymeric system, we choose to express the
current density of optimized microstructures as a ratio of the
current density of the BHJ structure i.e. current density is scaled
by Jref .

Fig. 9 shows the optimized microstructure designed using
NURBS 2D. The value of collected current is J/Jref = 2.914
i.e. short-circuit current was improved by about 190% compared
to 2D BHJ structure. Fig. 9(a) and (b) show the contour of the
electron and hole current densities components normal to the
electrodes.

5. Microstructure modeling: Formulation and results for the
3D case

We explained the required steps to design 2D optimized mi-
crostructures in the previous section. In this section, we explain
how we extend the same methodology to design 3D optimized
microstructures using NURBS surfaces. Note that the physical
model, optimization method and simulation parameters are the
same for both 2D and 3D cases.

5.1. NURBS surface interface generation

To represent the microstructure in 3D, we first create a NURBS
surface that represents the DA interface, similar to the 2D ex-
ample. This is done by generating a set of 16 control points, 4
in each dimension, for the microstructure surface. The boundary
points of the control points mesh are clamped on to the x–y
mid-plane for uniformity. Using these control points mesh and
the NURBS-Python spline library [34], we generate a bi-cubic
NURBS surface using automatically-generated uniform knot vec-
tors in all parametric dimensions. The resulting NURBS surface
is tessellated and exported as a triangle soup (a Wavefront .obj
representation file) for further computations. An example of this
is shown in Fig. 11(a). We use this surface to create a solid bound-
ary representation (B-rep) watertight model of the microstruc-
ture. We create four orthogonal side faces, which along with the
x–y plane and the clamped NURBS surface forms a closed solid
object, since the edges of the NURBS surface are clamped to the
x–y mid-plane. This is illustrated in Fig. 11(b) with a wireframe
visualization of the triangle mesh. This triangle mesh or the
B-rep model of the solid is further voxelized to generate a volume
representation of the microstructure as explained in the next
section.

5.2. Voxelization-based envelop generation

The B-rep model of the 3D microstructure is generated as
mentioned in the previous section. We then compute the enve-
lope of this 3D surface and rasterize the microstructure for the
simulations. For this purpose, it is necessary to classify whether
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Fig. 9. Optimized microstructure design using NURBS 2D. (a) Microstructure, red shows electron acceptor regions and blue shows electron donor regions. (b) Normal
component of electron current density. (c) Normal component of donor current density. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 10. Illustration of self intersecting 3D NURBS resolved through lower
envelope after inside–outside classification during voxelization.

a point is inside (acceptor region) or outside (donor region) the
solid microstructure. In order to compute the point membership
classification of the solid, we convert the B-rep model of the
microstructure to a volume representation using a structured
voxel grid and a ray-casting algorithm. Using the GPU-accelerated
Voxelization framework by Young and Krishnamurthy [35], we
generate the volume occupancy grid based on whether a voxel
representing the grid lies inside the volume or outside the vol-
ume. The complete voxel grid is a binary grid of in(1) and out(0)
representing the acceptor region and donor region of the mi-
crostructure, respectively. An example of a microstructure rep-
resented as a B-rep model and an In–Out voxel model is shown
in Fig. 12. We first represent the NURBS surface as a pseudo-
manifold solid model by converting it to a dense set of triangles.
We then voxelize the triangle mesh to compute the lower en-
velope. This prevents the problem of self intersecting surfaces
as the ray-tracing algorithm with odd-even intersections of the
boundary correctly computes the in and out of the geometry by
computing the first intersection. The lower envelope is computed
by using only the first intersection of each ray and discarding any
other subsequent intersections (see Fig. 10). This ameliorates the
issue of wrong inside–outside classification with self-intersecting
surfaces. The special case when a ray intersects exactly with the
self-intersection curve on the surface is handled using an anti-
aliasing approach. We compute the intersection using 4 adjacent
rays (similar to 2 × 2 anti-aliasing) and use the intersection
outcome of the majority ( 2) of the rays for computing the lower
envelope. This method overcomes the need to compute the self-
intersection of NURBS surfaces. The disadvantage is that multiple
NURBS surfaces might produce the same microstructure, but the
optimization process can overcome this issue, since what we are
interested is the optimized microstructure.

5.3. Optimized microstructure

Similar to 2D design, we compare charge transportation prop-
erties of the optimized microstructure in 3D with bilayer and bulk
heterojunction (BHJ). Fig. 13 shows the microstructure of bilayer
and BHJ. We apply exciton–drift–diffusion model in 3D to the
above mentioned structures and evaluate their electricity gen-
eration. 3D BHJ has a higher donor–acceptor interfacial contact
area which results in a higher electricity generation compared to
bilayer. We use current density of 3D BHJ (Jref ) as a reference
metric. We obtained the value of reference current density as
Jref = 1.289 mA/cm2

Fig. 14 shows the optimized 3D microstructure designed with
NURBS surfaces. The value of collected current is J/Jref = 2.454
i.e. short-circuit current was improved by 145% compared to 3D
BHJ structure. Current density of electron and hole is shown
in Fig. 14(b) and (c). The electron current-density is negligible
in the electron-donor area and increases in the acceptor area
from anode to cathode. A comparable effect is detected with
hole current-density. In the following section, we discuss the two
optimized microstructures.

6. Discussion of the results: Interpretation and detailed char-
acterization of the optimized microstructures

Fig. 15 illustrates a comprehensive performance comparison
of 2D optimized microstructure with bilayer and BHJ. According
to Fig. 15, electricity generation of bilayer and BHJ are Jbilayer =

1.210 mA/cm2 and JBHJ = 1.319 mA/cm2 while the current den-
sity of 2D optimized microstructure is Joptimized = 3.843 mA/cm2.
Thus, the optimized 2D microstructure produces 3.17 and 2.91
times useful current compared to the bilayer and BHJ devices,
respectively. Fig. 15 also compares dissociation (D) and recom-
bination (R) rates of above mentioned microstructures. In gen-
eral more dissociation and less recombination leads to a higher
amount of current generation. According to contours of (D) and
(R) in Fig. 15, bilayer has least amount of dissociation and re-
combination, BHJ have a higher amount of dissociation and re-
combination but there is a good balance between amount of
dissociation and recombination for the optimized microstructure
resulted in a higher electricity generation for this microstructure.

Similarly, Fig. 16 depicts performance comparison of 3D opti-
mized microstructure with bilayer and BHJ. According to
Fig. 16, electricity generation of bilayer and BHJ are Jbilayer =

0.980 mA/cm2 and JBHJ = 1.289 mA/cm2 while the current den-
sity of 3D optimized microstructure is Joptimized = 3.158 mA/cm2.
Thus, the current generated by the optimized 3D microstructure
is 3.22 and 2.44 times that generated by the bilayer and BHJ
devices, respectively.



R. Noruzi, S. Ghadai, O.R. Bingol et al. / Computer-Aided Design 118 (2020) 102771 9

Fig. 11. (a) NURBS surface representation modeled with 16 control points. Control points have been distributed evenly among x-axis and y-axis and they have
random z-coordinates. (b) NURBS surface with closed boundaries that generates a pseudo-manifold B-Rep solid model.

Fig. 12. (a) Wireframe visualization of a solid representation of microstructure generated from NURBS surface. (b) B-rep solid model of the microstructure.(c) Volume
rendering of the voxel representation of the microstructure based on point-membership classification of the microstructure.

We next seek to understand the features of the optimized
microstructure that results in these dramatic gains. The pho-
tocurrent generation process can be thought of as consisting of
three steps: light absorption, exciton dissociation, and charge
transport. We identify metrics that quantify the performance of
each microstructure in terms of these steps [36–38]:

Metric of light absorption: Electron-donor material is respon-
sible for light absorption and exciton generation. Thus, fraction of
electron-donor material within the active layer of the device is a
natural metric to quantify light absorption (fabs).

Metric of exciton diffusion and dissociation: Generated ex-
citons in the electron-donor material will diffuse towards donor–
acceptor interface. The bounded electron–hole pair disassociates
into free carriers. As a result, an ideal metric to identify exciton
diffusion and exciton dissociation is the fraction of dissociated
exciton to generated excitons (fdis).

Metric of recombination: The free carriers transport towards
the electrodes for collection. However, because of recombina-
tion phenomena, collected charges in electrodes are less than
generated charges in DA interface. Consequently, fraction of re-
combined charges to all free charges created in DA interface is
a good metric for quantifying recombination (frec). Since we are
interested in amount not recombined, we consider our metric to
be 1− frec .

The comparison of the metrics for the optimized and the BHJ
microstructures are shown in Table 1, from which the following
observations can be made. NURBS 2D has a higher amount of light
absorption compared to BHJ 2D. The recombination for this model
is relatively lower than BHJ 2D (possibly because of the lower
length of the DA interface of NURBS 2D), while the dissociation
metrics for both are similar. Thus, the NURBS 2D microstructure is

Fig. 13. 3D microstructure of (a) bilayer and (b) bulk heterojunction (BHJ). Red
denotes electron acceptor and blue denotes donor regions, respectively. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

similar or better in all three metrics than the BHJ 2D microstruc-
ture. Light absorption and dissociation of NURBS 3D is slightly
lower than that of BHJ 3D, respectively. However, this is more
than made up for an excellent recombination metric. This is key
insight into designing better microstructures. BHJ microstructures
exhibit large recombination losses, which is a good area for
improvement. The optimized 3D microstructure essentially only
improves recombination losses, but shows no improvement in
the other two stages, and yet produces improved short circuit
current.

A natural question that arises is the manufacturability of
the designed microstructures. As stated earlier, conventional ap-
proaches of fabricating OSC thin films involve solution processing
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Fig. 14. Optimized microstructure design using NURBS surfaces. (a) Microstructure. red shows electron acceptor regions and blue shows electron donor regions. (b)
Normal component of electron current density. (c) Normal component of donor current density. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Performance characterization of the optimized microstructures.
Methodology fabs fdis 1− frec
BHJ 2D 0.541 0.332 0.462
NURBS 2D 0.760 0.393 0.898
BHJ 3D 0.573 0.449 0.387
NURBS 3D 0.546 0.401 0.934

leverage phenomena like phase-separation and domain coars-
ening to produce bi-continuous morphologies. Additionally, the
use of block co-polymers can produce micro phase-separation
producing very fine (and controllable) bi-continuous structures.
Speculatively, advances in 3D printing technology suggest even
finer control of the morphology opening up the possibility of
production of complex tailored DA interfaces. A final remark
is worth noting here: the OSC community generally considers
two distinct problems in the context of morphology design. The
first problem is identification of optimal morphologies without
considerations of reachability of that morphology by current man-
ufacturing processes. The second problem is the identification of
high-performing morphologies within the bounds of processing
conditions currently available [39]. The focus of this paper is on
the former problem.

The methodology we adopted for optimizing the 3D micro-
structures can be further fine-tuned. Here we avoided the difficult
step of finding the self-intersection in 3D surfaces by computing
the lower envelope. As a result, the self-intersected regions do
not contribute to the final shape of the microstructure and hence,
reduces the complexity of the generated structures. Future work
on this topic would explore an exact method to remove self-
intersections in 3D, which can lead to a more diverse set of
microstructures in 3D

7. Conclusions

Optimizing the microstructure in OSCs can lead to higher
photo current generation of the device. In this study we framed
the microstructure design optimization problem in terms of de-
signing the interface between the donor and acceptor regions.
Donor–acceptor interface was represented using surface and curve
modeling techniques. Maximizing the short circuit current gen-
eration was performed using meta-heuristic, gradient-free op-
timization techniques. OSC’s current generation was modeled

using the exciton–drift–diffusion (XDD) equations. Our frame-
work works for both 2-D and 3-D structures. Results show
substantial improvement in current density compared to the
bulk-heterojunction microstructures. Using a surface or curve
based technique to model the DA interface reduces the number
of design variables and allows the use of sophisticated gradient-
free optimization methods to design the OSC microstructure
for optimal performance. The proposed surface representation
approach seems to be a promising approach for interface design
in engineered systems.
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Appendix A. Exciton–Drift–Diffusion (XDD) model

In this work, all of the device simulations are performed by
using a XDD model, where the electron and hole current densities
are shown as:

Jn = −qnµn∇ϕ + qVtµn∇n (A.1)

Jp = −qpµp∇ϕ − qVtµp∇p (A.2)

where q represents the fundamental charge, Vt = KbT/q is the
thermal voltage, Kb is Boltzmann constant and T is temperature.
Also ϕ is the electrostatic potential, while p and n refer to the
densities of the electron and hole, and µn and µp respectively
represent the mobility of the electrons and holes. The continuity
equations for both carriers are necessary to solve in order to
simulate a device such that:

∇.Jn − R+ D = 0 (A.3)

−∇.Jp − R+ D = 0 (A.4)

where R is the recombination rate of electrons and holes. The
dissociation profile within the most active layer of this device can
be found in Eq. (A.6), term D. The carrier continuity equations
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Fig. 15. Performance comparison of 2D optimized microstructure with bilayer and BHJ.

Fig. 16. Performance comparison of 3D optimized microstructure with bilayer and BHJ.
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Fig. B.17. GA convergence and current generation for different designs.

need to be coupled through using the following Poisson equation
in order to be solved:

∇.(ϵrϵ0∇ϕ) = q(n− p) (A.5)

The vacuum permittivity is represented by ϵ0 and the dielec-
tric constant of the medium is represented by ϵr . For a realistic
simulation of an OPV one also need to couple another equation
with Eqs. (A.3)–(A.5); this equation is exciton equation. Exciton
is directly responsible for dissociation term in drift–diffusion
equation such that:

D = kdissX (A.6)

where kdiss = f (∇ϕ). Detailed formulation of kdiss can be found
in Kodali [22]. Exciton (X) is solved such that:

−∇.(Vtµx∇X)− fD[∇ϕ,X] − R[x] = −G− R[n,p] (A.7)

The basis of the XDD model is Eqs. (A.3), (A.4), (A.5), and (A.7).
Using the Newton method, Eqs. (A.3), (A.4), and (A.5) are solved
in an iterative manner and coupled with Eq. (A.7). By discretizing
these equations on a finite element mesh, the equations of the
XDD model are numerically solved for the active layer.

Appendix B. GA convergence and current generation for dif-
ferent designs

GA is a stochastic optimization method, so it is expected
that running it multiple times will produce different results. One
practical way to solve this issue is repeating each optimization
multiple times. Fig. B.17 samples results from different reruns

of the designs. It can be seen that the different runs result in
different optima. We choose the lowest of all the runs as the final
result.
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