Differentiable Spline Approximations

Minsu Cho!f Aditya Balu?f Ameya Joshi' Anjana Deva Prasad®
Biswajit Khara® Soumik Sarkar? Baskar Ganapathysubramanian?
Adarsh Krishnamurthy? Chinmay Hegde!

New York University!, Iowa State University>
{mc8065, ameya.joshi, chinmay.hl}@nyu.edu
{baditya, anjana, bkhara, soumiks, baskarg, adarsh}Qiastate.edu”

Abstract

The paradigm of differentiable programming has significantly enhanced the scope
of machine learning via the judicious use of gradient-based optimization. However,
standard differentiable programming methods (such as autodiff) typically require
the machine learning models to be differentiable, limiting their applicability. Our
goal in this paper is to use a new, principled approach to extend gradient-based
optimization to functions well modeled by splines, which encompass a large family
of piecewise polynomial models. We derive the form of the (weak) Jacobian of such
functions and show that it exhibits a block-sparse structure that can be computed
implicitly and efficiently. Overall, we show that leveraging this redesigned Jacobian
in the form of a differentiable “layer” in predictive models leads to improved
performance in diverse applications such as image segmentation, 3D point cloud
reconstruction, and finite element analysis. We also open-source the code at
https://github.com/idealab-isu/DSA.

1 Introduction

Motivation: Differentiable programming has been a paradigm shift in algorithm design. The main
idea is to leverage gradient-based optimization to optimize the parameters of the algorithm, allowing
for end-to-end trainable systems (such as deep neural networks) to exploit structure in data and
achieve better performance. This approach has found use in a large variety of applications such as
scientific computing [Innes, 2020; Innes et al., 2019; Schafer et al., 2020], image processing [Li
et al., 2018a], physics engines [Degrave et al., 2017], computational simulations [Alnzs et al., 2015],
and graphics [Li et al., 2018b; Chen et al., 2019]. One way to leverage differentiable programming
modules is to encode additional structural priors as “layers” in a larger machine learning model.
Inherent structural constraints such as monotonicity, or piecewise constancy, are particularly prevalent
in applications such as physics simulations, graphics rendering, and network engineering. In such
applications, it may be beneficial to build models that obey such priors by design.

Challenges: For differentiable programming to work, all layers within the model must admit simple
gradient calculations; however, this poses a major limitation in many settings. For example, consider
computer graphics applications for rendering 3D objects [Kindlmann et al., 2003; Gross et al., 1995;
Loop and Blinn, 2006]. A common primitive in such cases is a spline (or a piecewise polynomial)
function which either exactly or approximately interpolates between a discrete set of points to produce
a continuous shape or surface. Similar spline (or other piecewise polynomial) approximations arise in

**Equal contribution.
35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/idealab-isu/DSA

partial differential equation (PDE) solvers [Hughes et al., 2005], network flow problems [Balakrishnan
and Graves, 1989], and other applications.

For such problems, we would like to compute gradients “through” operations involving spline
approximation. However, algorithms for spline approximation often involve discontinuous (or even
discrete) co-domains and may introduce undefined (or even zero) gradients. Generally, embedding
such functions as layers in a differentiable program, and running automatic differentiation on this
program, requires special care. A popular solution is to relax these non-differentiable, discrete
components into continuous approximations for which gradients exist. This has led to recent advances
in differentiable sorting [Blondel et al., 2020; Cuturi et al., 2019], dynamic programming [Mensch
and Blondel, 2018], and optimization [Djolonga and Krause, 2017; Agrawal et al., 2019; Deng et al.,
2020].

Our contributions: We propose a principled approach for differentiable programming for spline
functions without the use of continuous relaxation”. For the forward pass, we leverage fast algorithms
for computing the optimal projection of any given input onto the space of piecewise polynomial
functions. For the backward pass, we leverage a fundamental locality property in splines that every
piece (or basis function) in the output approximation only interacts with a few other elements.
Using this, we derive a weak form of the Jacobian for the spline operation and show that it exhibits
a particular block-structured form. While we focus on spline approximation in this paper, our
approach can be generalized to any algorithmic module with piecewise smooth outputs. Our specific
contributions are as follows:

1. We propose the use of spline function approximations as “layers” in differentiable programs.

2. We derive efficient (nearly-linear time) methods for computing forward and backward passes for
various spline approximation problems, showing that the (weak) Jacobian in each case can be
represented using a block sparse matrix that can be efficiently used for backpropagation.

3. We show applications of our approach in three stylized applications: image segmentation, 3D point
cloud reconstruction, and finite element analysis for the solution of partial differential equations.

Related Work Before proceeding, we briefly review related work.

Extensions of autodiff: Automatic differentiation (autodiff) algorithms enable gradient computations
over basic algorithmic primitives such as loops, recursion, and branch conditions [Baydin et al., 2018].
However, introducing more complex non-differentiable components requires careful treatment due to
undefined or badly behaved gradients. For example, in the case of sorting and ranking operators, it
can be shown that the corresponding gradients are either uninformative or downright pathological,
and it is imperative the operators obey a ‘soft’ differentiable form. Cuturi et al. [2019] propose a
differentiable proxy for sorting based on optimal transport. Blondel et al. [2020] improve this by
proposing a more efficient differentiable sorting/ranking operator by appealing to isotonic regression.
Berthet et al. [2020] introduce the use of stochastic perturbations to construct smooth approximations
to discrete functions, and other researchers have used similar approaches to implement end-to-end
trainable top-k ranking systems [Xie et al., 2020; Lee et al., 2020]. Several approaches for enabling
autodiff in optimization have also been researched [Pogancic et al., 2020; Amos and Kolter, 2019;
Agrawal et al., 2019; Mensch and Blondel, 2018].

Structured priors as neural “layers”: As mentioned above, one motivation for our approach
arises from the need for enforcing structural priors for scientific computing applications. Encoding
non-differentiable priors such as the solutions to specific partial differential equations [Sheriffdeen
et al., 2019], geometrical constraints [Joshi et al., 2020; Chen et al., 2019], and spatial consistency
measures [Djolonga and Krause, 2017] perform well but typically require massive amounts of
structured training examples.

Spline approximation: Non-Uniform Rational B-splines (NURBS) are commonly used for defining
spline surfaces for geometric modeling [Piegl and Tiller, 1997]. NURBS surfaces offer a high level
of control and versatility; they can also compactly represent the surface geometry. The versatility of
NURBS surfaces enables them to represent more complex shapes than Bezier or B-splines. Several
frameworks that leverage deep learning are beginning to use NURBS representations. Minto et al.
[2018] use NURBS surfaces fitted over the 3D geometry as an input representation for the object

2While tricks such as straight-through gradient estimation [Bengio, 2013] also avoid continuous relaxation,
they are heuristic in nature and may be inaccurate for specific problem instances [Yin et al., 2019].

classification task of ModelNet10 and ModelNet40 datasets. Erwinski et al. [2016] presented a
neural-network-based contour error prediction method for NURBS paths. Fey et al. [2018] present
a new convolution operator based on B-splines for irregular structured and geometric input, e.g.,
graphs or meshes. Very recently, Sharma et al. [2020] perform point cloud reconstruction to predict a
B-spline surface, which is later processed to obtain a complete CAD model with other primitives
“stitched” together.

Differentiable PDE solvers: With the advent of deep learning, there has been a recent rise in the
development of differentiable programming libraries for physics simulations [Hu et al., 2019; Qiao
et al., 2020]. Most often, the physics phenomena are represented using partial differential equations
(PDEs) [Sanchez-Gonzalez et al., 2020; Holl et al., 2020]. Considerable effort has gone into designing
physics-informed loss functions [Raissi et al., 2019; Raissi and Karniadakis, 2018; Kharazmi et al.,
2021] whose optimization leads to desired solutions for PDEs. Due to space limitations, we defer to
a detailed survey of this (vast) area by Cai et al. [2021].

2 Differentiable Spline Approximation

We now introduce our framework, Differentiable Spline Approximation (DSA), as an approach
to estimate gradients over piecewise polynomial operations. Our main goal will be to estimate
easy-to-compute forms of the (weak) Jacobian for several spline approximation problems, enabling
their use within backward passes in general differentiable programs.

Setup. We begin with some basic definitions and notation. Let f € R™ be a vector where the i
element is denoted as f;. Let us use [n] = {1,2,...,n} to denote the set of all coordinate indices.
For a vector f € R™ and an index set I C [n], let f; be the restriction of f to I, i.e., fori € I, we
have f;(i) := f;, and f7(i) := 0 for i ¢ I. Now, consider any fixed partition of [n] into a set of
disjoint intervals Z = {I, ..., I;} where the number of intervals |Z| = k. The ¢y-norm of f is

written as || f||2 == \/>_;, /7 while the ¢, distance between f, g is written as || f — g||.

We first define the notion of a discretized k-spline. Note that the use of “spline” here is non-standard
and somewhat more general than what is typically encountered in the literature. (Indeed, the spline
concept used in computer graphics is a special instance of this definition; we explain further below.)

Def. 2.1 (Discretized k-spline). A vector i € R™ is called a discretized k-spline with degree d if:
(i) there exists a partition of [n] into k disjoint intervals I, . .., I}; (ii) within each interval I;, the
coefficients of h;, j € I;, can be perfectly interpolated by some polynomial function of degree d.

Let us illustrate this by an example. Suppose that d = 1 and k = 5. Then, h is a discretized k-spline
with degree d if, in a “line plot” of the vector h (i.e., we interpolate the 2D points (j, i;) for all
j € [n]), we see up to k = 5 distinct linear pieces. A different way to interpret this definition is that
we start with a piecewise degree-d polynomial function H : R — R with k = 5 pieces (with suitably
defined knot points, which are the location of the intervals I), and evaluate H at any n equally spaced
points in its domain. This gives us a vector h € R", which we call a discretized k-spline. In contrast
with traditional splines, we allow H to be arbitrarily defined at the knot points and require no specific
continuity or differentiability properties. Therefore, our definition encompasses all standard spline
families (including interpolating/approximating splines such as smoothing-, cubic-, and B-splines).

2.1 Spline Approximation

Our focus in this paper is the problem of computing the best possible spline fit to a given set of data
points (where both the parameters of the spline as well as the knot vectors are allowed to be variable).

We provide an algebraic interpretation of this problem. For a given vector space R, consider .S, f;, the
set of all discretized k-splines with degree d. Since (standard) splines are vector spaces for a fixed set
of knots, one can easily see that for any fixed partition of [n] into k subsets, the family of discretized
k-splines is a k(d + 1)-dimensional subspace of R™. Now suppose that the knot indices are allowed
to vary. The number of possible partitions is finite (of the order of (2)) and therefore the set S% is a
finite union of subspaces, or a nonlinear submanifold, embedded in R™.

Therefore, the problem of discretized k-spline approximation can be viewed as an orthogonal
projection onto this nonlinear manifold. Consider any arbitrary vector x € R™ (we can think of (¢, x;)

as a set of n data points to which we are trying to fit a k-spline). Then, the best k-spline fit to = (in
the sense of /5 distance) amounts to solving the optimization problem:

n

o1 1
F(z) = arg min Sl = h||j2 = 5 ;(x —hi)? st.he Sk (1)

This operation resembles standard spline regression. But it is strictly more general since this requires
not only optimizing piecewise spline parameters but also the knot indices. Crucially, we note that F'
is both a non-differentiable and a non-convex map. Nevertheless, such an orthogonal projection can
be computed in polynomial (in fact, nearly-linear) time [Jagadish et al., 1998; Acharya et al., 2015]
using many different techniques, including dynamic programming. This forms the forward pass of
our DSA “layer”.

Our first main conceptual contribution is a formal derivation of the backward pass of the orthogonal
projection operation. Strictly speaking, the Jacobian is not well-defined due to the non-differentiable
nature of the forward pass (owing to the non-differentiability built into the definition of the k-
spline). Therefore, we will instead be deriving the so-called “weak” form of the Jacobian (borrowing
terminology from Blondel et al. [2020]).

We leverage two properties of the projection operation: (1) the output of the forward pass h corre-
sponds to a partition of [n], that is, each element of h; corresponds to a single interval, I;, and (2)
within each interval, the least-squares operation is continuous and differentiable. The first property
ensures that every element x; contributes to only a single piece in the output h. Given that the
sub-functions from the piecewise partitioning function are smooth, we also observe that the size of
each block corresponds to the size of the partition, /;. Using this observation, we get:

Theorem 1. The Jacobian of the operation F' with respect to x € R™ can be expressed as a block
diagonal matrix, J € R"*", whose (s,)™ entry obeys:

2)

_ Oh(x) _ [PO s e
0 otherwise

As a concrete instantiation of this result, consider the case d = 0. This is the case where we wish
to best approximate the entries of with at most k£ “horizontal” pieces, where the break-points are
obtained during the forward pass®. Call this approximation k. Then, the Jacobian of with respect to
x forms the block-diagonal matrix J € R™*":

30 0
0 Jo ... 0

J=1. . . 3)
0 o0 .. J

where all entries of each block, J; € RI:I*ILil are constant and equal to 1/|I;], i.e., they are
row/column-stochastic. Note that the sparse structure of the Jacobian allows for fast computation and
that computing the Jacobian vector product J'v for any input v requires O(n) running time. As an
additional benefit, the decoupling induced by the partition enables further speed up in computation via
parallelization. See the Appendix for proofs, as well as derivations of similar Jacobians for k-spline
approximation of any degree d > 1, and generalization to 2D domains (surface approximation). In
Section 3 we demonstrate the utility of this approach for a 2D segmentation (i.e., piecewise constant
approximation) problem, similar to the setting studied in Djolonga and Krause [2017].

3In the data summarization literature, this class of functions is sometimes called k-histograms [Jagadish
et al., 1998]

2.2 Differentiable NURBS

We now switch to a slightly different setting involving a special spline family known as non-uniform
rational B-splines (NURBS), which are common in geometric modeling. Mathematically, a NURBS
curve is a continuous function C : R — R defined as follows. Construct any knot vector u (i.e. a
non-decreasing sequence of real coordinate values) and fix degree d. Recursively define a sequence
of basis functions, N¢ : R — R computed using the Cox-de Boor formula:

dioy WU d Uitd+l — U g1 oy) 1 ifu Su<uigg
M) = N) 4 N), N = {
“)
ford = 1,2,.... In the uniform case (where the knots are equally spaced), each N¢ can be viewed

as being generated by recursively convolving a box function with Nid_l. The non-uniform case
cannot be written as a convolution, but the intuition is similar. With these basis functions in hand, the
NURBS curve C is defined as the rational function:

") N (u)w;P,;
Clu) = 2izo i (d“)w
> im0 Ni (w)w;
where P;, © = 0,1,...,t are called control points and w; are corresponding non-negative weights.
The number of control points is related to the number of knots k£ and curve degree d as follows:

k =t + d + 1. For simplicity, assume that all weights are equal to one. The basis functions in
NURBS add up to one uniformly for each w (this is called the partition of unity property). Therefore:

&)

t
C(u) =) Ni(u)P;, (6)
1=0

In summary, the NURBS curve is parametrically defined via the control points and the knot positions.
This discussion is for 1D curves, but an extension to higher-order surfaces is conceptually similar.

Consider implementing NURBS as a differentiable “layer” where the inputs are the knot positions
and control points. The forward pass through this layer simply consists of evaluating Equation 6 via
the recursive Equation 4, and storing the various basis functions (and their spans) for further use.

However, the backward pass is a bit more complicated, once again due to the non-differentiable
nature of C. The gradient with respect to the control point coordinates, P is straightforward since the
mapping from P to C is linear. However, the gradient with respect to the knot positions, u;, is not
well-defined due to the non-differentiable nature of the base cases of the recursion (which are box
functions specified in terms of u;). Once again, we see that the non-differentiability of NURBS is
built into its very definition, and this affects the numerics.

To resolve this, we propose the following approach to compute an (approximate) Jacobian of C. The
main source of the issue is the derivative of the box-car function N (u) = 1jy, 4,,,) With respect

to the knot points, which is not well defined. However, Ni0 (u) can be viewed as the difference
between convolutions of the unit step function with d,,, and 4, ,, where ¢ is the Dirac delta defined
over the real line. We smoothly approximate the delta function by a Gaussian function with small
enough bandwidth hyperparameter o: 6(u;) ~ g(u) = exp(—(u — u;)/20?). This function is now
differentiable with respect to u;, with ¢’(u) = “=*-g(u). Convolutions and differences are linear,
and hence the derivative is the basis function times a multiplicative factor. Finally, a similar approach
as the Cox-de Boor recursion (Equation 4) can be used to reconstruct the derivatives for all basis

functions of higher order. See Algorithm 1 for pseudocode and the Appendix for details.

Algorithm 1 Backward pass for NURBS Jacobian (for one curve point , C(u))

P’, U’: gradients of C w.r.t. P, U
Initialize: P, U’ — 0
Retrieve uspan, NE, C(u) calculated during forward pass
/* Uspan is the index of knot position */
/* N{ is the basis function of degree d */
/* C(u) is the evaluated curve point */
forh=0:d+1do
Plypanth = N{ // easy since C is a linear function of P.

Usspanth = Ng Uy, unth // due to Gaussian approximation; see discussion below.

Let us probe the structure of this Jacobian a bit further. Suppose we evaluate the curve C at n arbitrary
domain points. There are slightly less than % control points, and therefore the Jacobian is roughly of
size n x O(k). However, due to the recursive nature of the definition of basis functions, the span
(or support) of each basis function is small and only touches d + 1 knots; for example, only 2 knots
affect N?, only 3 knots impact N}, and so on. This endows a natural sparse structure on the Jacobian.
Moreover, for a fixed order parameter d + 1, the span is constant [Piegl and Tiller, 1997]; therefore,
assuming evenly spaced evaluation points, we have the same number of nonzeros. Therefore, the
Jacobian exhibits an interesting Toeplitz structure (unlike the block diagonal matrix in the case of
Equation 3), thereby enabling efficient evaluation during any gradient calculations. We show below
in Section 3 that automatic differentiation using this approach surpasses existing NURBS baselines.

2.3 Differentiable Finite Element PDE Solvers

Next, we see how spline approximations can be used to improve finite element analysis for solv-
ing PDEs. Popular recent efforts for solving PDEs using autodiff construct “physics-informed”
solvers [Raissi et al., 2019; Raissi and Karniadakis, 2018], while other efforts have been made to
utilize variational [Kharazmi et al., 2021] or adjoint-based derivative methods [Holl et al., 2020].
However, these approaches come with challenges while used in conjunction with autodiff packages,
and gradient pathologies pose a major barrier [Wang et al., 2020].

Using our principles developed above, we propose an alternative PDE solution approach via differen-
tiable finite elements. PDE solvers based on Finite Element Methods (FEM) are ubiquitous, and we
provide a very brief primer here. Consider a domain €2 and a differential system of equations:

NU(w)] =F(u), ueq, (7
where N denotes the differential operator and U : — R is a continuous field variable; it is common
to specify additional boundary constraints on U. The Galerkin method converts solving for the best
possible U (which is a continuous variable) into a discrete problem by first looking at the weak form:
R(U) = [,V [N(U) — F] du, where V is called a test function (and the weak form may involve
some integration by parts), and rewriting this weak form in terms of a finite set of basis coefficients.
A typical set of basis functions ®; is obtained by (piecewise) concatenation of polynomials, each
defined over elements of a given partition of €2 (also called a mesh). Commonly used choices include
Lagrange polynomials, defined by:

d
") = U= U _
piaw) =Y U, [] st €[] @®)
r=1 0<m<d
m£r
where {ug,u1,...,uq} are a finite set of nodes (akin to control points in our above discussion, except

in this case the splines interpolate the control points) and U, is the corresponding coefficient. We use
this collection of basis functions ®; to represent U:

#nodes

U@:ZQ@W)

and likewise for V. (The resemblance with Equation 5 above should be clear, and indeed NURBS
basis functions could be an alternative choice.) Plugging the discrete coefficient representation
U< := {U¢$} into the definition of R, we get a standard Finite Element form,

R(U°, V) = B(U, V¢ - L(V°) (10)
where B(U¢, V) is the discrete form (bilinear for linear operators) that encodes the differential
operator and L(v) is a linear functional involving the forcing function. For most PDE operators
(including linear elliptic operators), one can form the energy functional by using U as the test function:

1
J(U°) = iB(UC,UC) — L(U°). (11)
Optimization of this energy functional can now be performed using gradient-based iterations evaluated
by automatic differentiation. This is a powerful approach since formal techniques exist (e.g., Galerkin
Least Squares Bochev and Gunzburger [2009]) that reformulate weak forms of PDEs into equivalent
energy functionals. The key aspect to note here is that differentiating “through" the differential

operator A/ (embedded within B) requires derivative computations of the piecewise polynomial basis
functions ®;s, and therefore our techniques developed above are applicable.

3 Experiments

We have implemented the DSA framework (and its different applications provided below) by ex-
tending autograd functions in Pytorch. We also provide the capability to run the code using
CUDA for GPU support. All the experiments were performed using a local cluster with 6 com-
pute nodes and each node having 2 GPUs (Tesla V100s with 32GB GPU memory). All training
was done using a single GPU. We summarize all our experiments in Table 1. Each experiment
shown below is performed multiple times with different random seeds, and the average value with
error bars is provided. Due to limited space, we provide three interesting applications of spline
approximations here (see Appendix for additional examples). We have also open-sourced the code at
https://github.com/idealab-isu/DSA.

Image segmentation: We begin with implementing a 2D piecewise constant splines regression
approach for the image segmentation problem using a UNet [Ronneberger et al., 2015]. For differ-
entiation, we use the formulation of splines discussed in Section 2. We analyze the efficacy of our
approach by adding a piecewise constant DSA layer as the final layer of our network (Mpga). We
compare this approach with the baseline model without the piecewise constant layer (Mpaseline)-

We train two models (Mpsa, Mpaseline) On two different segmentation tasks: the Weizmann horse
dataset [Borenstein and Ullman, 2004] and the Broad Bioimage Benchmark Collection dataset [Ljosa
et al., 2012] (publicly available under Creative Commons License). We split both the Weizmann horse
and Broad Bioimage Benchmark Collection datasets into train and test with 85% and 15% of the
dataset. We use binary cross-entropy error between the ground truth and the predicted segmentation
map. We use the same architecture and hyper-parameters for both models (see Appendix for details.)

We observe that our DSA layer provides more consistent segmentation maps and higher Jaccard
scores than the baseline model; see Figure 1. For the Weizmann horse dataset, M.on, enforces the
connectivity of the segmented objects while also limiting noise in the segmentation map. In the cell

Table 1: Summary of Experiments: We present three experiments in this paper with diverse
applications, model architectures, basis functions, and degree of splines.

Application Input Output Architecture Spline Function | Degree
Image Image 2D piecewise constant U-Net Box-Car 0
Segmentation knot partitions functions
Point cloud 3D point cloud 3D control points Dynamic Graph BSpline 3
reconstruction and rational weights CNN polynomials
PDE-based 2D Mesh 2D physics field U-Net Lagrange 123
surrogate physics (regular grid) on the mesh grid polynomials

Or1g1na1 Ground Myaseline Mpsa Original Ground Mypaseline Mpsa

. _
A~.~_
y
3
’
N)

¢

"

Figure 1: Segmentation results. The two models, Mpsa and Mp,sejine Were trained with and without
the DSA layer, respectively. Note that Mpsa generates better segmentation masks with fewer holes
and enforced connectivity. Note the sharper edges compared to the standard segmentation results.
Additional figures are in the Appendix.

https://github.com/idealab-isu/DSA

Table 2: Results for the horse and cell segmentation dataset: Jaccard scores for the baseline
and connected component models for the cell and horse segmentation task. From independent
three runs with random seeds and the table reports mean and standard deviation. As the objects of
interest (piecewise constant components) are smaller, the model with the DSA layer learns a better
representation. Predictions are thresholded at 0.5.

Dataset Baseline (Mpaseline) Baseline + DSA (Mpga)
Weizmann Horse [Borenstein and Ullman] 72.06 £ 0.60 73.13 £ 0.31
Broad Bioimage Benchmark [Ljosa et al.] 79.34 £ 0.43 81.56 + 0.24

segmentation task, we note that the number of segments is high while the objects are small. Since the
size of the components is small, our DSA layer Jacobian exhibits substantial differences from the
commensurate identity gradient for the baseline models. Table 2 also shows the further improvement
in Jaccard score on cell segmentation tasks over the Weizmann horse dataset.

3D point cloud reconstruction using NURBS: Next, we provide results for two experiments using
DSA with NURBS discussed in Section 2.2. The first application is surface fitting for a complex
benchmark surface represented by a mesh of surface points obtained by evaluating the benchmark
test function at these points. We use Bukin function N.6 (publicly available here) for generating a
grid of 256 x 256 points as shown on the left of Figure 2. For fitting a NURBS surface from the
defined target point cloud, we initialize a uniform clamped knot vector for a cubic basis function and
random control points of size 8 x 8. Using DSA, we evaluate the NURBS surface for a uniform grid
of 256 x 256 parametric points. We now evaluate the surface and use mean squared error for fitting
the surface point cloud using NURBS. We consider two scenarios: (i) we do not update the knot
vectors (i.e., no reparameterization), and (ii) we compute the gradients for the knot vectors and allow
for reparameterization (i.e., change of knot locations). We provide the comparison of these scenarios
in Table 3. We see that the reparameterization helps in reducing the error in fit by half. Also, we
notice that the density of points evaluated has a very minimal impact on the performance (see more
details in Appendix). Visually, in Figure 2, we see that two knots in the “v” direction come close to
each other around 0.06, enabling a sharp edge in the evaluated surface.

The next experiment we present involves surface reconstruction from point clouds using a graph
convolutional neural network and DSA for unsupervised training. We use the SplineNet method
proposed by Sharma et al. [2020] to be the baseline for point cloud reconstruction using splines.
SplineNet uses a dynamic graph convolutional neural network (DGCNN) to predict the control points
for a spline surface. The authors use a supervised control point loss to perform the training and
include regularizations such as the Laplacian loss and a patch distance (using Chamfer distance) loss.
Instead, we perform this training in an unsupervised manner by not using the control points prediction
loss and only using DSA to evaluate the surface and then apply regularization of minimizing the
Laplacian of the surface. Since we can train this unsupervised, we can even use an arbitrary number
of control points and are not restricted to the target control points.

For a fair comparison, we use the same network, dataset, and hyperparameters as Sharma et al.
[2020] and change the loss functions by removing the control point regression loss. For comparison,
we compute the chamfer distance between the input point cloud and the NURBS surface fit by the
DGCNN model (Mpgs4) (see Appendix for details of training). We use the Spline Dataset, which is

1.000

0.005
X f D
0.316 “ -0 005

z 0064

[\ 0.058
k, %00 025 050 075 100 0% 600 0261“0 511 0.756 1.000
y Y u
Surface Predicted NURBS Pointwise Normalized Predicted NURBS Pointwise Normalized
X (no reparameterization) MSE (with reparameterization) MSE

Figure 2: NURBS surface fitting results: Surface fitting to point cloud generated using the Bukin’s

function N.6 given by z = 100+/|y — 0.0122| + 0.01|x 4+ 10|; —15 < © < =5, -3 < y < 3. The
center image shows the surface fit obtained without reparameterization of the knots. We obtain better
fit by reparameterizing the knots.

https://www.sfu.ca/~ssurjano/bukin6.html

Table 3: NURBS surface fitting results: Comparison of mean squared error between the target
surface point cloud and the surface generated using DSA with and without reparameterization.

Number of Points M pg 4 (without reparameterization) M pg 4 (with reparameterization)
128 x 128 19.83 4+ 0.001 8.25 + 0.01
256 x 256 19.85 4+ 0.001 8.23 £+ 0.02

Table 4: Point-cloud reconstruction results: Comparison between the model proposed by Sharma
et al. [2020] and its extension using DSA (with different number of control points). We compare the
two-sided chamfer distance (scaled by 100) between the input point cloud and the fitted surface.

Mpasetine Mpsa Mpsa Mpsa
(20 x 20) (20 x 20) (5 x 5) (4 x 4)

Chamfer Distance 1.18 =0.10 0.03 +=0.02 0.14 £0.07 0.02 £+ 0.01

Experiment

a subset of surfaces extracted from the ABC dataset (available for public use under this license). In
Table 4, we provide a comparison of chamfer distance obtained between the predicted surface points
from splines and the input point cloud for the test dataset. In our experiments, we observe that we get
significantly better performance with fewer control points. This is because most of the surfaces in the
dataset are simple curved surfaces that can be easily fit with fewer control points.

PDE based surrogate physics priors: Finally, we leverage DSA in the context of solving PDEs as
a prior. In particular, we consider the Poisson equation solved for u:

~V - (v(x)Vu) = f(x) in D (12)
ulop =0 (13)

where D = [0, 1]2, a 2D square domain, v is the diffusivity and f is the forcing function. We consider
two experiments here: (1) validation of our approach with an analytically known solution, and (2)
extending this to learn the solutions for the parametric Poisson equation parameterized using v.

For the first experiment, we set v to 1 and the forcing f = f(z) = f(z,y) = 27%sin(7z) sin(my),
and minimize the residual using the approach described in Section 2.3. We know that for this
PDE and the conditions provided, the exact solution is given by u.,(z,y) = sin(7wz) sin(ry). We
compare our results (upg4) with the exact solution ... Also, we perform this experiment with
Lagrange polynomials of different degrees. Further, we compare our results with results obtained
using PINNSs [Raissi et al., 2019]. We obtain significantly better performance (lesser ¢2-error by an
order of magnitude) compared to PINNs, owing to more accurate gradients computed using our DSA
approach. The performance improvement with increase in degree of polynomial in lower resolutions
is more pronounced than at higher resolutions.

Next, we present results for training a deep learning network with a prior for solving a parametric
Poisson’s equation. The input to the network are different diffusivity maps v sampled from

v(x;w) = exp (Z Wz')\ifi(x)7]z‘(y)> (14)

=1

where w; is an m-dimensional parameter, A is a vector of real numbers with monotonically decreasing
values arranged in order; and £ and 7 are functions of x and y respectively. We take m = 4,

w=[-3,3]"and \; = m where a = (1.72,4.05, 6.85,9.82). Also &;(z) = % cos(a;z) +

sin(a;x) and n(y) = % cos(a;y) + sin(a;y). We generate several diffusivity maps by sampling this
function with different values of w.

Table 5: Quantitative comparison of Solving PDEs: L, Norm between the analytical exact solution
Ue, and predicted u using PINNs [Raissi et al., 2019] and DSA with different degrees of the Lagrange
polynomials.

Model PINN DSA(d=1) DSA(d=2) DSA(d=3)

128 x 128 372+ 0.20E-4 332+£0.05E-5 2.16+0.04E-5 237 +0.10E-5
256 x 256 2.63 £020E4 257+0.01E-5 279+020E-5 2.59+0.10E-5

Lo Norm

https://deep-geometry.github.io/abc-dataset/#license

1.0

3.0

D

0.0

‘\ oin

-0.01

0.0

0.0 4 1.0 Upsa Uground Upsa ~Uground

Figure 3: Learning a parametric family of PDE solutions: Poisson’s equation with log permeabil-
ity coefficients w = (—0.26, —0.77, —0.37, —0.92) in the Poisson’s equation.

We use a UNet [Ronneberger et al., 2015] that takes these diffusivity maps and predicts the solution
u, which is further optimized with the residual minimizing prior to the Poisson’s equation. Thus, we
obtain a trained neural network that predicts the solution field u for any unknown diffusivity maps
from the data distribution. We provide the predicted result along with its comparison with traditional
numerical FEM results in Figure 3. Visually, we see both the predicted solution field map (upsa)
and the actual solution field (tground) Obtained using traditional numerical methods match each other.
The right most image shows the difference between both with the maximum deviation to be 0.01,
showing the accuracy of our (easy-to-implement) DSA-based FEM solver.

4 Broader Impact and Discussion

We introduce a principled approach to estimate gradients for spline approximations. Specifically, we
derive the (weak) Jacobian in the form of a block-sparse matrix based on the partitions generated
by any spline approximation algorithm (which serves as the forward pass). The block structure
allows for fast computation of the backward pass, thereby extending the application of differentiable
programs (such as deep neural networks) to tasks involving splines. Our methods show superior
performance than the state-of-the-art curve fitting methods by reducing the chamfer distance by
an order of magnitude and the mean squared error in the case of surface fitting by a factor of two.
Further, with the application of our methods in finite element analysis, we show significantly better
performance than state-of-the-art physics-informed neural networks.

Our method is quite generic and may impact applications such as computer graphics, physics
simulations, and engineering design. Care should be taken to ensure that these applications are
deployed responsibly. Future works include further algorithmic understanding of the inductive bias
encoded by DSA layers and dealing with splines having a dynamically chosen number of parameters
(control points and knots).

Acknowledgements

This work was supported in part by the National Science Foundation under grants CCF-2005804,
LEAP-HI:2053760, CMMI:1644441, CPS-FRONTIER:1954556, USDA-NIFA:2021-67021-35329
and ARPA-E DIFFERENTIATE:DE-AR0001215. Any information provided and opinions expressed
in this material are those of the author(s) and do not necessarily reflect the views of, nor any
endorsements by, the funding agencies.

10

References
Michael J. Innes. Algorithmic differentiation. In Machine Learning and Systems, pages 1-12, 2020.

Mike Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and Will Tebbutt. A differentiable
programming system to bridge machine learning and scientific computing. ArXiv, abs/1907.07587, 2019.

F. Schafer, M. Kloc, C. Bruder, and N. Lorch. A differentiable programming method for quantum control. ArXiv,
2020.

Tzu-Mao Li, Michaél Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-Kelley. Differentiable
programming for image processing and deep learning in halide. ACM Transactions on Graphics, 37(4):1-13,
2018a.

J. Degrave, Michiel Hermans, J. Dambre, and F. Wyffels. A differentiable physics engine for deep learning in
robotics. Frontiers Neurorobotics, 13, 2017.

Martin Alnes, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris Richardson,
Johannes Ring, Marie E Rognes, and Garth N Wells. The FEniCS project version 1.5. Archive of Numerical
Software, 3(100), 2015.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable Monte-Carlo ray tracing through
edge sampling. ACM Transactions on Graphics, 37(6):1-11, 2018b.

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler.
Learning to predict 3D objects with an interpolation-based differentiable renderer. In Advances in Neural
Information Processing Systems, volume 32, pages 1-11, 2019.

Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and Torsten Moller. Curvature-based transfer functions for
direct volume rendering: Methods and applications. In IEEE Visualization, 2003. VIS 2003., pages 513-520.
IEEE, 2003.

Markus H Gross, Lars Lippert, A Dreger, and R Koch. A new method to approximate the volume-rendering
equation using wavelet bases and piecewise polynomials. Computers & Graphics, 19(1):47-62, 1995.

Charles Loop and Jim Blinn. Real-time GPU rendering of piecewise algebraic surfaces. In SIGGRAPH, pages
664-670. ACM, 2006.

Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comp. methods in Applied Mechanics and Engineering, 194(39-41):
41354195, 2005.

Anantharam Balakrishnan and Stephen C Graves. A composite algorithm for a concave-cost network flow
problem. Networks, 19(2):175-202, 1989.

Mathieu Blondel, O. Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting and ranking. ArXiv,
abs/2002.08871, 2020.

Marco Cuturi, O. Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using optimal transport. In
Neural Information Processing Systems, 2019.

A. Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction and attention.
ArXiv, abs/1802.03676, 2018.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. In Adv. Neural Inf. Proc.
Sys. (NeurIPS), pages 1013-1023, 2017.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers.
In Adv. Neural Inf. Proc. Sys. (NeurIPS), 2019.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.
CvxNet: Learnable convex decomposition. In IEEE Conf. Comp. Vision and Pattern Recog. IEEE, 2020.

Yoshua Bengio. Estimating or propagating gradients through stochastic neurons. ArXiv, abs/1305.2982, 2013.
Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understanding straight-

through estimator in training activation quantized neural nets. In Proc. Int. Conf. Learning Representations
(ICLR), 2019.

11

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. J. Machine Learning Research, 18(153):1-43, 2018. URL
http://jmlr.org/papers/v18/17-468.html.

Quentin Berthet, Mathieu Blondel, O. Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis R. Bach. Learning
with differentiable perturbed optimizers. ArXiv, abs/2002.08676, 2020.

Yujia Xie, Hanjun Dai, M. Chen, Bo Dai, Tuo Zhao, H. Zha, Wei Wei, and T. Pfister. Differentiable top-k
operator with optimal transport. ArXiv, abs/2002.06504, 2020.

Hyunsung Lee, Yeongjae Jang, Jaekwang Kim, and Honguk Woo. A differentiable ranking metric using relaxed
sorting opeartion for top-k recommender systems. ArXiv, abs/2008.13141, 2020.

Marin Vlastelica Poganci¢, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differentiation
of blackbox combinatorial solvers. In Proc. Int. Conf. Learning Representations (ICLR), 2020. URL
https://openreview.net/forum?id=BkevoJSYPB.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. ArXiv,
1703.00443, 2019.

Sheroze Sheriffdeen, J. Ragusa, J. Morel, M. Adams, and T. Bui-Thanh. Accelerating PDE-constrained inverse
solutions with deep learning and reduced order models. ArXiv, abs/1912.08864, 2019.

Ameya Joshi, Minsu Cho, Viraj Shah, B. Pokuri, Soumik Sarkar, Baskar Ganapathysubramanian, and Chinmay
Hegde. InvNet: Encoding geometric and statistical invariances in deep generative models. In Association for
the Advancement of Artificial Intelligence Conference, pages 1-8, 2020.

Les Piegl and Wayne Tiller. The NURBS Book (2nd Ed.). Springer-Verlag, Berlin, Heidelberg, 1997. ISBN
3540615458.

Ludovico Minto, Pietro Zanuttigh, and Giampaolo Pagnutti. Deep learning for 3D shape classification based on
volumetric density and surface approximation clues. In VISIGRAPP (5: VISAPP), pages 317-324, 2018.

Krystian Erwinski, Marcin Paprocki, Andrzej Wawrzak, and Lech M Grzesiak. Neural network contour error
predictor in CNC control systems. In 2016 21st International Conference on Methods and Models in
Automation and Robotics (MMAR), pages 537-542. IEEE, 2016.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Miiller. SplineCNN: Fast geometric deep learning
with continuous B-spline kernels. In Conference on Computer Vision and Pattern Recognition, pages 869-877,
2018.

Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha Chaudhuri, and Radomir Méch.
ParSeNet: A parametric surface fitting network for 3D point clouds, 2020.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand.
Difftaichi: Differentiable programming for physical simulation. arXiv preprint arXiv:1910.00935, 2019.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Scalable differentiable physics for learning and
control. arXiv preprint arXiv:2007.02168, 2020.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In International Conference on Machine
Learning, pages 8459-8468. PMLR, 2020.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics. arXiv
preprint arXiv:2001.07457, 2020.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686 — 707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045.
URL http://www.sciencedirect.com/science/article/pii/S0021999118307125.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear partial
differential equations. Journal of Computational Physics, 357:125-141, 2018.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-VPINNSs: Variational physics-informed

neural networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering,
374:113547, 2021.

12

http://jmlr.org/papers/v18/17-468.html
https://openreview.net/forum?id=BkevoJSYPB
http://www.sciencedirect.com/science/article/pii/S0021999118307125

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed
neural networks (pinns) for fluid mechanics: A review. arXiv preprint arXiv:2105.09506, 2021.

H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C. Sevcik, and Torsten Suel.
Optimal histograms with quality guarantees. In Proc. of Int. Conference on Very Large Data Bases (VLDB),
1998.

Jayadev Acharya, Ilias Diakonikolas, Chinmay Hegde, Jerry Zheng Li, and Ludwig Schmidt. Fast and near-
optimal algorithms for approximating distributions by histograms. In Proc. ACM SIGMOD-SIGACT-SIGAI
Symp. on Principles of Database Systems, 2015.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies in physics-
informed neural networks. arXiv preprint arXiv:2001.04536, 2020.

Pavel B Bochev and Max D Gunzburger. Least-squares finite element methods, volume 166. Springer Science &
Business Media, 2009.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted intervention,
pages 234-241. Springer, 2015.

Eran Borenstein and Shimon Ullman. Learning to segment. In Euro. Conf. Comp. Vision, pages 315-328.
Springer, 2004.

Vebjorn Ljosa, Katherine L Sokolnicki, and Anne E Carpenter. Annotated high-throughput microscopy image
sets for validation. Nature methods, 9(7):637-637, 2012.

Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms for histogram
construction problems. ACM Trans. on Database Systems (TODS), 31(1):396—438, 2006.

Kesheng Wu, Ekow Otoo, and Arie Shoshani. Optimizing connected component labeling algorithms. In Medical
Imaging 2005: Image Processing, volume 5747, pages 1965-1976. International Society for Optics and
Photonics, 2005.

Adarsh Krishnamurthy, Rahul Khardekar, Sara McMains, Kirk Haller, and Gershon Elber. Performing efficient
NURBS modeling operations on the GPU. IEEE Transactions on Visualization and Computer Graphics, 15
(4):530-543, 20009.

13

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] In Introduction, we provide specific contributions we
make in this paper.

(b) Did you describe the limitations of your work? [Yes] In Section 4.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have reviewed the guidelines and we conform to them.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section 2.
We provide the definitions and formulations and assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] We include it in
Supplement.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Included in
Section 3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Partial details are included in Section 3. Rest of them in Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All the tables have error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In the beginning of Section 3.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All the codes and
datasets are hyperlinked.

(b) Did you mention the license of the assets? [Yes] We provide the license information in
parenthesis for each case, except for one case where the dataset is publicly available,
but with unclear license information.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We will make the code public.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not use any such information.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

14

Appendix

A Proofs and derivations

Theorem 1. The Jacobian of the operation F' with respect to x € R” can be expressed as a block
diagonal matrix, J € R™*", whose (s,)" entry obeys:

oh(z), [P Gpg e
J.(F(x))(s,t) = = oy ’ ¢ 15
(F@) (1) Oz 0 otherwise (15)
Proof. The proof follows similar arguments as in Proposition 4 from Blondel et al. [2020].
LetZ = {I;,I5,--- , I} be k partitions induced by some H : R — R for some input, x € R”

and h € R" be a vector from n equally spaced evaluated H in its domain. Then, each element, z;
uniquely belongs to some partition /..

Now,

Y h(x),©1(s € 1))

I (F(2))(s, 1) =

8Z't
_ ool if st el
0 otherwise

Note that this is a block-diagonal matrix with each block being |I,.| x |I,.|, giving us the required
statement. O

B Application of DSA to piecewise polynomial regression

1D piecewise constant regression: We first provide the notations we provided in Section 2.

Let f € R™ be a vector where the i element is denoted as f;. Let us use [n] = {1,2,...,n} to
denote the set of all coordinate indices. For a vector f € R™ and an index set I C [n], let f; be the
restriction of f to I, i.e., fori € I, we have f;(¢) := f;, and f;(¢) := O for ¢ ¢ I. Now, consider any
fixed partition of [n] into a set of disjoint intervals Z = {I1,. .., I} where the number of intervals
|Z| = k. The ¢o-norm of f is written as || f||2 := \/>_._, f? while the ¢, distance between f, g is
written as || f — g|2. Finally, 1; € {0, 1}"™ is a indicator vector where for ¢ € I, 1;(i) = 1 and for
i¢ I, 1;7(i)=0.

We consider the case of k-piecewise regression in 1D, where we can use any algorithm to approximate
a given input vector with a fixed number of piecewise polynomial functions. The simplest example
is that of k-piecewise constant regression, where a given input vector is approximated by a set of
constant segments.

Formally, consider a piecewise constant function H : R — R with &k pieces. Similar to spline, we
evaluate H at any n equally spaced points in its domain. This gives us a vector i € R™, which we
call a k-piecewise constant vector. Since the best (in terms of /5-norm) constant approximation to a
function is its mean, a k-piecewise constant function approximation can be reparameterized over the

collection of all disjoint intervals Z = {I1, ..., I} of [n] such that given x:
n k k 1
. . 2 . 2
(1) —x)? = — - 1
,min, Z;Z(hzj (i) = @i)* = min. Z Z(Ilj > a—) (16)
i=1 j=1 j=1:€l; lel;

We assume an optimal H (parameterized by {I;} that can be obtained using many existing methods
(a classical approach by dynamic programming [Jagadish et al., 1998]). The running time of such
approaches is typically O(nk), which is constant for fixed k; see Acharya et al. [2015] for a more
detailed treatment.

Using Theorem 1, the Jacobian of the output k-histogram with respect to x assumes the following
form:

S T = S (i))
8xi_8xl_ |1;]) 8.%1, I\)
lel; j=1 lel;
k
S SR,) a9
j=1 9t |I | eI, 1751
Therefore, the Jacobian of h with respect to x forms the block-diagonal matrix J € R™*™:
J, 0 ... O
0O J, ... O
J=1. .. .
o 0 ... Ji

where all entries of J; € RI:/*I%il equal to 1/|I;|. Note here that the sparse structure of the Jacobian
allows for fast computation, and it can be easily seen that computing the Jacobian vector product
JTv for any input v requires O(n) running time. As an additional benefit, the decoupling induced by
the partition enables further speed up in computation via parallelization.

Generalization to 1D piecewise polynomial fitting: We now derive differentiable forms of gener-
alized piecewise d-polynomial regression, which is used in applications such as spline fittings.

As before, H : R — R is any algorithm to compute the k-piecewise d polynomial approximation of
an input vector x € R? that outputs partition Z = {I1, ..., I;.}. Similarly, the function H gives us a
vector h € R™, a k-piecewise polynomial vector. Then, for each partition, we are required to solve
a d-degree polynomial regressions. Generally, the polynomial regression problem is simplified to
linear regression by leveraging a Vandermonde matrix. We get a similar closed-form expression for
the coefficient as in Section 2.2.

Assume that for partition /;, the input indices #;, (i) is i element in an index vector corresponding
to the I; partition. Then, the input indices #;, (i) are represented as a Vandermonde matrix, V7, :

L)) et (1)
1ot,(2) t,(22 - t1(2)
Vi, = : : : . :
1oty (LD) (LD -t ()

It can be shown that the optimal polynomial coefficient cj; corresponding to the partition (or disjoint
interval) I; have the following closed form:

= (V?;_V]j)_l\ng]j,

where x;, € Rl is a vector x length of |I;| corresponding to the I; partition such that x (1) =
if ¢ € I; and undefined if ¢ ¢ I;. This can be computed in O(knd™) time where w is the matrix-
multiplication exponent [Guha et al., 2006]. Then using Theorem 1 and the gradient for polynomial
regression, the Jacobian of i, with respect to x forms a blockwise sparse matrix:

8h17. (s) 0 9
8;’El 8xl(<a137[VT] >) or l(<(VTVI) 1V£XQ,[VZ]S>)
8 —
— P VEEVEV) Vg
_ SV VIV TUVED], ifls e,
0 otherwise.

The two main takeaways here are as follows: (1) V, can be precomputed for all possible n — 1
partition sizes, thus allowing for fast (O(n)) computation of Jacobian-vector products; and (2) an
added flexibility is that we can independently control the degree of the polynomial used in each of the
partitions. The second advantage could be very useful for heterogeneous data as well as considering
boundary cases in data streams.

B.1 2D piecewise constant functions

Our 1D piecewise spline approximation can be (heuristically) extended to 2D data. We provide
detailed descriptions. We consider the problem of image segmentation, which can be viewed
as representing the domain of an image into a disjoint union of subsets. Neural-network-based
segmentation involves training a model (deep or otherwise) to map the input image to a segmentation
map, which is a piecewise constant spline function. However, standard neural models trained in
a supervised manner with image-segmentation map pairs would generate pixel-wise predictions,
leading to disconnected regions (or holes) as predictions. We leverage our approach to enforce deep
models to predict piecewise constant segmentation maps. In case of 2D images, note that we do not
have a standard primitive (for piecewise constant fitting) to serve as the forward pass. Instead, we
leverage connected-component algorithms (such as Hoshen-Kopelman, or other, techniques [Wu
et al., 2005]) to produce a partition, and the predicted output is a piecewise constant image with
values representing the mean of input pixels in the corresponding piece. For the backward pass, we
use a tensor generalization of the block Jacobian where each partition is now represented as a channel
which is only non-zero in the positions corresponding to the channel. Formally, if the image x € R"

is represented as the union of k partitions, h = Ule I;, the Jacobian, Jx = 0h/0x € R™*" and,

M@ _ 1 if st e,

JX(F(a?))(S,t)Z{ ze |4 (19)

0 otherwise.

Note that I; here no longer correspond to single blocks in the Jacobian. Here, they will reflect the
positions of pixels associated with the various components. However, the Jacobian is still sparsely
structured, enabling fast vector operations.

C Implementing DSA with NURBS

C.1 Backward evaluation for NURBS surface

In a modular machine learning system, each computational layer requires the gradient of a loss
function with respect to the output tensor for the backward computation or the backpropagation. For
our NURBS evaluation layer this corresponds to 9£/6s . As an output to the backward pass, we
need to provide 2£/aw. While we represent S for the boundary surface, computationally, we only
compute S (the set of surface points evaluated from S). Therefore, we would be using the notation of
0S instead of JS to represent the gradients with respect to the boundary surface. Here, we assume
that with increasing the number of evaluated points, S will asymptotically converge to S. Now,
we explain the computation of 98/5w in order to compute 9£/sw using the chain rule. To explain
the implementation of the backward algorithm, we first explain the NURBS derivatives for a given
surface point with respect to the different NURBS parameters.

C.2 NURBS derivatives

We rewrite the NURBS formulation as follows:
NR(u,v)

Slu,v) = w(u,v)

(20)

where,
n m

NR(u,v) =Y Y N (u)N{(v)w;; Py

i=0 j=0

W) = 33 NP)N,

i=0 j=0

For the forward evaluation of S(u,v) = f (P, U,V , W), we can define four derivatives for a given
surface evaluation point: S, = 95(wv)/ou, S, = 95wv)/av, S p 1= 95(wv)/op, and S w =
0S(u.v)/ow. Note that, S p and S v are represented as a vector of gradients {S p,,VP;; € P} and
{Suw,,;Yw;; € W}. Now, we show the mathematical form of each of these four derivatives. The first

derivative is traditionally known as the parametric surface derivative, S ,,. Here, N? (u) refers to the
derivative of basis functions with respect to .

S.u(u,v) = : 21

where,

NR,u(u, 1}) = Z Z Nz;l?u (U)NJ(I(U)’LU”P”
=0 j=0

n m

w oy (u,v) = Z N/ (u) N (v)wg;
i=0 j=0

A similar surface point derivative could be defined for S ,,. These derivatives are useful in the sense
of differential geometry of NURBS for several CAD applications [Krishnamurthy et al., 2009].
However, since many deep learning applications such as surface fitting are not dependent on the
(u, v) parametric coordinates, we do not use them in our layer. Also, note that S ,, and S ,, are not the
same as S y and S v. A discussion about S yy and S v/ is provided later in this section. Now, let us
define S ,; (u,v).

Sp Nf(U)NJq(U)wz‘j

\u, = m m .
’ ”(u v) Zk:OZl:Ole(u)qu(v)wkl .

S,p,, (u,v) is the rational basis functions themselves. Computing S ,,,; (u, v) is more involved with
w;; terms in both the numerator and the denominator of the evaluation.

S,wij (u7 ’U) _ NR,wij (U7 U)UJ(U, U) — NR(U7 U)wﬂﬂa‘,j (u’ ’U) (23)

w(u,v)?

where,
NR ., (u,v) = NP (u)N{(v)Py;

z J

W,y (u,0) = N (u) N (v)

J

C.3 Derivatives with respect to knot points

For simplicity, we will stick to 1D NURBS curves. The extension to 2D surfaces is straightforward
using Kronecker products.

We recall the definition of the NURBS basis:

N (u) = MNd—l(u) T M]\ﬂi—l(u), NO(u) =

{ 1 ifu; <u<uig
i +1
Uipd — Ui Uigd+1 — Wit1

0 otherwise
24
The goal is to evaluate the derivative of N (u) with respect to the knot points {u;}. We observe that

due to the recursive nature of the definition, we can accordingly compute the derivatives of N (u) in
a recursive fashion using the chain rule, provided we can evaluate:

OND(u) 01 ([us, wira])
8ui o 8’u2

(and likewise for u;4;) where 1 denotes the indicator function over an interval. However, this
derivative is not well-defined since the gradient is zero everywhere and undefined at the interval
edges.

We propose to approximate this derivative using Gaussian smoothing. Rewrite the interval as the
difference between step-functions convolved with deltas shifted by u; and u;4; respectively:

1([ui, wit1))(u) = sign(u) * 6(u — u;) — sign(u) * 6(u — w;q1)
and approximate the delta function with a Gaussian of sufficiently small (but constant) bandwidth:
1([ws, uit1])(u) = sign(u) * Go(u — u;) — sign(u) * Go(u — wiy1)
where

1
Colu=1)= ==

The derivative with respect to p is therefore given by:

chu=mw =",),
202
which means that the approximate gradient introduces a multiplicative (u — u) factor with the original
basis function. Propagating this through the chain rule and applying a similar strategy as Cox-de
Boor recursion gives us Algorithm 1. [

D Experimental details

D.1 Segmentation

Weizmann Horse dataset: The dataset consists of 378 images of single horses with varied back-
grounds and their corresponding ground truth. We divide the dataset into 85:15 ratios for training and
testing, respectively. Further, each image is normalized to a [0, 1] domain by dividing it by 256. 5443

Cell dataset: The dataset consists of 19K gray-scale images containing various cells, and we take
1900 subset images as the dataset. We divide the dataset into 85:15 ratios for training and testing,
respectively. Similarly, we normalize the image to a [0, 1] by dividing each pixel by 256.

Architecture and training: We use the following U-Net architecture for training our segmentation
networks. While we use the equivalent model skeleton reported by Ronneberger et al. [2015], we
scale down the network size starting the initial channels C' = 8 (default channel is C' = 64). In
both datasets, we train the network 1000 epochs with an initial learning rate of 0.0003. We leverage
Adam optimizer with 5 = (0.9,0.999) and weight decay 0.0001. We use a binary cross-entropy loss
function as the objective function.

D.2 NURBS surface fitting implementation

The complete algorithm for forward evaluation of S(u,v) as described in Piegl and Tiller [1997] can
be divided into three steps:

1. Finding the knot span of v € [u;,u;+1) and the knot span of v € [vj,v;41), Where
us, w41 € Uand vj,vj41 € V. This is required for the efficient computation of only the
non-zero basis functions.

2. Now, we compute the non-zero basis functions N{ (u) and NJ(v) using the knot span.
The basis functions have specific mathematical properties that help us in evaluating them
efficiently. The partition of unity and the recursion formula ensures that the basis functions
are non-zero only over a finite span of p + 1 control points. Therefore, we only compute
those p + 1 non-zero basis functions instead of the entire n basis function. Similarly in the
v direction we only compute g + 1 basis functions instead of m.

3. We first compute the weighted control points P} for a given control point P;; =
{P,,P,,P.} and weight w;; as {P,w, P,w, P, w} representing the surface after ho-
mogeneous transformation for ease of computation. Once the basis functions are computed

we multiply the non-zero basis functions with the corresponding weighted control points,
P’ This result, S" is then used to compute S(u, v) as {57,/ Sy,, Sy, /S5, S%/5;, }-

Algorithm 2 Forward algorithm for multiple surfaces

Input :U, V, P, W, output resolution ny,;q, Mgrid
Output:S
Initialize a meshgrid of parametric coordinates
uniformly from [0, 1] using ngriq X Mgrid : Ugrid X Vgrid
Initialize: S — 0
for k = 1 : sur faces in parallel do
for j = 1 : mg,q points in parallel do
for ¢ = 1 : ngiq points in parallel do
Compute Ugparn, and Vgpqy, for the corresponding u; and v; using knot vectors Uy and Vi
Compute basis functions IV; and N; basis functions using tspan and vspq, and knot
vectors Uy and Vi
Compute surface point S(u;, vj) (in z, y, and z directions).
Store Uspan» Vspans Ni» Nj, and S(u;, v;) for backward computation

In a deep learning system, each layer is considered as an independent unit performing the computation.
The layer takes a batch of input during the forward pass and transforms them using the parameters of
the layer. Further, in order to reduce the computations needed during the backward pass, we store
extra information for computing the gradients during the forward computation. The NURBS layer
takes as input the control points, weights, and knot vectors for a batch of NURBS surfaces. We
define a parameter to control the number of points evaluated from the NURBS surface. We define a
mesh grid of a uniformly spaced set of parametric coordinates tg,;q X Vgriq. We perform a parallel
evaluation of each surface point S(u, v) in the ugriq X vgriq for all surfaces in the batch and store
all the required information for the backward computation. The complete algorithm is explained in
Algorithm 2. Our implementation is robust and modular for different applications. For example, if an
end-user desires to use this for a B-spline evaluation, they need to set the knot vectors to be uniform
and weights W to be 1.0. In this case, the forward evaluation can be simplified to S(u, v) = f(P).
Further, we can also pre-compute the knot spans and basis functions during the initialization of the
NURBS layer. During computation, we could make use of tensor comprehension that significantly
increases the computational speed. We can also handle NUBS (Non-Uniform B-splines), where the
knot vectors are still non-uniform, but the weights I are set to 1.0. Note in the case of B-splines
U = {P} (the output from the deep learning framework) and in the case of NUBS ¥ = {P, U, V}.

SplineNet training details: The SplineNet architecture comprises a series of dynamic graph
convolution layers, followed by an adaptive max pooling and conv1d layers. We use the Chamfer
distance as the loss function. The Chamfer distance (Lo p) is a global distance metric between two
sets of points, as shown below.

Lop= > min[[Pi—Qsllz+ > min|[Pi—Qsll: (25)
P;cP Q;eQ

For training and testing our experiments, we use the SplineDataset provided by Sharma et al. [2020].

The SplineDataset is a diverse collection of open and closed splines that have been extracted from

one million CAD geometries included in the ABC dataset. We run our experiments on open splines

split into 3.2K, 3K, and 3K surfaces for training, testing, and validation.

D.3 PDE solver implementation with DSA prior

Deep convolutional neural networks are a natural choice for the network architecture for solving
PDE:s due to the structured grid representation of S? and similarly structured representation of Ug.
The spatial localization of convolutional neural networks helps in learning the interaction between the
discrete points locally. Since the network takes an input of a discrete grid representation (similar to an
image, possibly with multiple channels) and predicts an output of the solution field of a discrete grid
representation (similar to an image, possibly with multiple channels), this is considered to be similar to
an image segmentation or image-to-image translation task in computer vision. U-Nets [Ronneberger
et al., 2015] have been known to be effective for applications such as semantic segmentation and
image reconstruction.

Coefficient /

. Ly — == Solution field
forcing field

- -
..I.. =) Conv 3x3, RelLU, BN

UpSampling, Conv 3x3,
™ RelU, BN

U-Net == Conv 3x3, Sigmoid

Figure 4: UNet architecture used for training

o o o o 0012
0010
0.008

100 0.006
50 150 04 150 04 150 0.004

0.002

25 0.000

100 200 0 100 200 0 100 200 0 100 200

Figure 5: Solution to the linear Poisson’s equation with forcing. From left to right: f, upga,
Upym aNd (UpSA — Upym)- HEre Uyqm, 1s a conventional numerical solution obtained through FEM.
Diffusivity v =1

We choose U-Net architecture for solving the PDE due to its success in other diverse applications.
The architecture of the network is shown in Figure 4. First, a block of convolution and instance
normalization is applied. Then, the output is saved for later use during skip-connection. This
intermediate output is then downsampled to a lower resolution for a subsequent convolution block
and instance normalization layers. This process is continued twice. The upsampling starts where
the saved outputs of similar dimensions are concatenated with the output of upsampling for creating
the skip-connections followed by a convolution layer. LeakyReL U activation was used for all the
intermediate layers. The final layer has a Sigmoid activation.

D.3.1 Applying boundary conditions

The Dirichlet boundary conditions are applied exactly. The query result from U from the network
pertains only to the interior of the domain. The boundary conditions need to be taken into account
separately. There are two ways of doing this:

* Applying the boundary conditions exactly (this is possible only for Dirichlet conditions in
FEM/FDM, and the zero-Neumann case in FEM)

* Taking the boundary conditions into account in the loss function, thereby applying them approxi-
mately.

We take the first approach of applying the Dirichlet conditions exactly (subject to the mesh). Since the
network architecture is well suited for 2d and 3d matrices (which serve as an adequate representation
of the discrete field in 2D/3D on regular geometry), the imposition of Dirichlet boundary conditions
amounts to simply padding the matrix by the appropriate values. A zero-Neumann condition can
be imposed by taking the “edge values" of the interior and copying them as padding. A nonzero
Neumann condition is slightly more involved in the FDM case since additional equations need to be
constructed, but if using FEM loss, this can be done with another surface integration on the relevant
boundary.

E Additional results

Ground Myaseline

Original

; - I 4 O
] Al 1T - 250 -
..B....§

Figure 6: Image Segmentation Tasks Adding DSA layers (Mpsa) on top of U-Net (Mpaseline)
improves the segmentation tasks on both datasets.

Figure 7: Additional cell segmentations results. Mpaseline and Mpsa correspond to U-Net and
U-Net+DSA layers, respectively.

Ablation studies: In the main paper, we demonstrate how our module can perform for different
experiments. In this section, we assess the computational performance of our module. For brevity, we
restrict our analysis to surface fitting operation and analyze the timings with variations in the number
of control points, evaluation points, and surface degree. We only study the first 500 iterations (which
include both the forward and backward pass). We perform all our experiments on a desktop with a

32 core 2.4 GHz Intel Xeon processor, 64 GB RAM, and an NVIDIA Titan Black GPU with 6 GB
RAM.

Table 6: Time to fit a surface for different number of control points.

Control Points | Iteration time (s)
6x6 0.098

12 x 12 0.106

24 x 24 0.110

48 x 48 0.110

Table 7: Time to fit a surface for different number of evaluation points.

Evaluation Points | Iteration time (s)
64 x 64 0.074

128 x 128 0.120
256 x 256 0.170
512 x 512 0.266

Table 8: Computation time to fit a surface of different degree.

Degree | Iteration time (s)
1 0.074
2 0.120
3 0.170
4 0.266

10

	differentiable_spline_approxim
	Introduction
	Differentiable Spline Approximation
	Spline Approximation
	Differentiable NURBS
	Differentiable Finite Element PDE Solvers

	Experiments
	Broader Impact and Discussion
	Proofs and derivations
	Application of DSA to piecewise polynomial regression
	2D piecewise constant functions

	Implementing DSA with NURBS
	Backward evaluation for NURBS surface
	NURBS derivatives
	Derivatives with respect to knot points

	Experimental details
	Segmentation
	NURBS surface fitting implementation
	PDE solver implementation with DSA prior
	Applying boundary conditions

	Additional results

	differentiable_spline_approxim-Supplementary Material

