
1.  Introduction
During a geomagnetic storm, intense injection of solar wind-magnetospheric energy and momentum into 
the coupled ionosphere-thermosphere (I-T) system occurs through enhanced electric fields, currents, and 
particle precipitation. These enhanced inputs are known to cause significant perturbations in the coupled 
I-T system (Buonsanto, 1999). In particular, dramatic and complicated local/global changes may occur in 
the I-T system in response to various chemical, dynamic, and electrodynamics driving processes, such as 
Joule heating, ion-drag forcing, and penetration electric field (Mendillo, 2006; Richmond & Lu, 2000). More-
over, besides the traditional concentration in storm effects within auroral/polar and equatorial regions, the 
midlatitude and subauroral ionosphere also experiences substantial dynamic structuring and increase in 
variability. These midlatitude I-T effects have been the subject of many recent community studies especially 
in the past decade as the observed response can exhibit far more storm-time dynamics than would be oth-
erwise anticipated (e.g., Ferdousi et al., 2019; Raeder et al., 2016; Zhang et al., 2015). Furthermore, steep 
electron density gradients therein can pose detrimental effects on modern navigation and communication 
systems (e.g., Coster & Foster, 2007; Doherty et al., 2004). For these reasons, characterizing the storm-time 
midlatitude ionosphere and thermosphere perturbations and understanding the intrinsic mechanisms in 
triggering those perturbations are of considerable importance in frontier space weather research.

Generally, midlatitude ionosphere-thermosphere responses to a geomagnetic storm are primarily deter-
mined by various ion-neutral coupling mechanisms and relevant electrodynamic processes. These include 
(a) Momentum transfer via ion drag: Strong ion convection in the storm-time auroral/subauroral region can 

Abstract  This work conducts a focused study of subauroral ion-neutral coupling processes and 
midlatitude ionospheric/thermospheric responses in North America during a minor but quite geo-
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analyzed using Millstone Hill and Poker Flat incoherent scatter radar measurements, Fabry-Perot 
interferometer data, total electron content data from Global Navigation Satellite System observations, and 
thermospheric composition O/N2 data from the Global-scale Observations of Limb and Disk mission. 
Despite solar minimum conditions, this minor storm produced several prominent dynamic features, in 
particular (a) Intense subauroral polarization stream (SAPS) of 1,000 m/s, overlapping with a deepened 
main trough structure. (b) An enhanced westward wind of 230 m/s and a significant poleward wind surge 
of 85 m/s occurred in the post-SAPS period. (c) Large-scale traveling ionospheric disturbances (TIDs) were 
generated and propagated equatorward across mid-latitudes in the storm main phase. TID characteristics 
were significantly affected by SAPS, evolving into divergent propagation patterns. (d) SAPS was situated 
on the poleward edge of a considerable storm-enhanced density structure. (e) The midlatitude ionosphere 
and thermosphere exhibited a prolonged positive storm effect in the main phase and beginning of 
recovery phase, with 5–10 TECU increase and 10%–30% O/N2 enhancement for 12 h. This was followed 
by a considerable negative storm effect with 5–10 TECU and 20%–40% O/N2 decrease. Results show that 
minor storm intervals can produce substantial mid-latitude ionospheric and thermospheric dynamics in 
low solar flux conditions.
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act as a driver to accelerate neutrals, resulting in large modifications to the horizontal thermospheric neu-
tral wind pattern (Killeen & Roble, 1984; Rishbeth, 1979). Conversely, the neutral circulation that is set up 
by the above-mentioned ion drag can also influence the ionosphere to drive Hall and field-aligned currents 
when the magnetospheric electric field is suddenly inhibited, in a configuration known as the “flywheel” 
effect (Deng et al., 1993; Lyons et al., 1985). (b) Energy transfer via heating: Electromagnetic energy from 
the magnetosphere can be transferred to the ionospheric plasma and further dissipate into the thermo-
sphere via ion-neutral coupling in the form of Joule heating. This process further modifies the global neu-
tral circulation and thermospheric composition (Schunk & Nagy, 2000). Moreover, at subauroral latitudes, 
the subauroral polarization stream (SAPS, Foster & Burke, 2002) will cause enhanced ion-neutral frictional 
heating and lead to considerable ion upflow associated with thermal expansion (Erickson et al., 2010; Yeh 
& Foster, 1990; Zhang, Erickson, et al., 2017). (c) Neutral dynamics and composition effects: Pressure gra-
dients due to the intense Joule and particle heating in the high-latitude ionosphere will cause atmospheric 
upwelling and equatorward neutral wind surge, leading to both ionospheric disturbance dynamo (Blanc & 
Richmond, 1980) and possible thermospheric composition (e.g., O/N2) changes (Fuller-Rowell et al., 1994). 
The direct effects of neutral wind through ion transport along field lines, as well as indirect effects through 
composition variation and the generation of dynamo electric fields, significantly impact the ionosphere. 
These underlying processes generate significant regional/global increases (positive storm) or decreases 
(negative storm) in total electron content (TEC) and electron density (e.g., Lu et al., 2014). (d) Prompt pen-
etration electric field (PPEF) and disturbance dynamo electric field (DDEF): In response to storm-induced 
variations in the solar wind-magnetosphere dynamo, there is a time-delayed development of the Region-2 
field-aligned current system with respect to the Region-1 field-aligned current. This delay leads to the build-
up of an undershielding (overshielding) PPEF during suddenly enhanced (decreased) magnetospheric con-
vection electric field conditions (Huang et al., 2010; Kikuchi et al., 1978; Klimenko & Klimenko, 2012; Lu 
et al., 2012). For the DDEF, the above-mentioned equatorward neutral wind surge can subsequently drive 
a westward wind component due to the Coriolis force, generating a disturbed zonal electric field in the 
mid- and low-latitude ionosphere via dynamo process (Blanc & Richmond, 1980; Maruyama et al., 2005). 
When all these factors are combined, the combination of electric fields, neutral winds, and thermospheric 
composition changes will generate complicated ionospheric and thermospheric variations during a storm.

In parallel with studies of these dynamic effects, continued community interest over the last several dec-
ades has focused on specifying the mechanisms and drivers behind storm-time midlatitude ionosphere 
and thermosphere dynamic features. Prominent drivers and associated characteristics are still a matter 
of study but include: (a) The subauroral polarization stream (SAPS, Foster & Burke 2002), which refers to 
intense westward plasma flows (a few hundred m/s) driven by large poleward electric fields in the subau-
roral ionosphere equatorward of the auroral precipitation zone (Erickson et al., 2011; Foster & Vo, 2002). 
SAPS is a broad term that can under certain circumstances be associated with embedded phenomena, 
such as latitudinally narrow and intense flow channel known as subauroral ion drifts (SAID) (Anderson 
et al., 1991; Spiro et al., 1979), or polarization jets (Galperin et al., 1974). (b) Storm-enhanced density (SED, 
Foster 1993), which describes a significant storm-time electron density or TEC enhancement in the local 
afternoon ionosphere at mid- and subauroral latitudes (Mendillo, 2006). SED structures sometimes extend 
to higher latitudes along a sunward/poleward elongated ridge and form a plume, which can occasionally 
convect into the cusp region and then into the polar cap (Foster et  al.,  2005). (c) Storm-induced trave-
ling ionospheric/atmospheric disturbances (TIDs/TADs). Storm-time energy deposition in the auroral and 
subauroral regions can generate large amplitude atmospheric gravity waves (AGWs), which manifest in 
the ionosphere as large-scale TIDs (Hunsucker, 1982). These underlying processes are of great importance 
in transporting high-latitude energy and momentum deposition into higher altitudes and lower latitudes 
(Richmond,  1978). (d) Negative and positive ionospheric storm effects, with main drivers being electric 
fields, thermospheric neutral winds, and composition changes. As partially described above, a negative 
ionospheric storm is primarily caused by a decrease in O/N2 density ratio due to thermospheric composition 
changes (Fuller-Rowell et al., 1994). In contrast, explaining the positive ionospheric storm remains a diffi-
cult issue since it involves many complicated and competing drivers, such as PPEF (Kikuchi et al., 1978) ef-
fects, DDEF (Blanc & Richmond, 1980) effects, as well as forcing from equatorward thermospheric neutral 
winds and TAD/TIDs (Balan et al., 2010).
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Recently, our understanding of storm-time midlatitude ion-neutral coupling and electrodynamic processes 
has greatly advanced through community-wide investigation on I-T responses to a few intense geomagnetic 
storms, especially in the maximum and declining phase of the Solar Cycle 24. These events include but 
not limited to the St. Patrick's Day storms during March 17–18, 2013 and 2015 (e.g., Astafyeva et al., 2015; 
Huang et al., 2016; Huba et al., 2017; Nava et al., 2016; Yue et al., 2016; Zakharenkova et al., 2016; Zhong 
et al., 2016; Zhang, Erickson, et al., 2017; Zhang, Zhang, et al., 2017), June 22–23, 2015 storm (e.g., Astafyeva 
et al., 2017; Singh & Sripathi, 2017), Memorial Day storm on May 27–28, 2017 (e.g., Jonah et al., 2018; Liu 
et al., 2019), September 07–08, 2017 storm (e.g., Aa et al., 2019; Jimoh et al., 2019; Lei et al., 2018; Zhang 
et al., 2019), as well as the August 25–26, 2018 storm (Astafyeva et al., 2020). Although significant progress 
has been made through prior studies on these intense storms, the spatial/temporal evolution of the I-T 
system in each storm can be quite different and often lacks a unified explanation of the various responses. 
Moreover, even a seemingly modest storm around a deep solar minimum period can be highly geo-effective 
in causing severe observed disturbances in the I-T system (Watari, 2017). Of these features, midlatitude 
ion-neutral coupling processes and their physical drivers are still in need of coordinated, multi-sensor stud-
ies through observational campaigns for modest storms to allow comparison with responses seen in intense 
storms near solar maximum. Such studies of modest storm response provide key information for a more 
complete understanding of storm-time I-T response.

In this study, we investigate a minor but very geo-effective geomagnetic storm that occurred on September 
27–28, 2019 in the deep minimum of solar cycle 24. The regional subauroral/midlatitude ionosphere and 
thermosphere responses, such as plasma drift, neutral wind, and electron density, were measured by a 
coordinated observational campaign within the North American longitude sector at subauroral latitudes 
near Millstone Hill (42.8°N, 71.5°W, MLAT: 52°). We comprehensively analyze I-T responses during this 
period to study several SAPS-related ion-neutral coupling processes. Ionospheric and thermospheric direct 
observations employed in this study include Millstone Hill incoherent scatter radar measurements and 
Fabry-Perot Interferometer (FPI) measurements. In addition, the storm-TEC from global navigation satellite 
system (GNSS) measurements and thermospheric O/N2 density ratio data derived from Global-scale Obser-
vations of Limb and Disk (GOLD) measurements over the American sector will also be collectively investi-
gated to understand the ionospheric storm effect and its underlying drivers. Moreover, measurements from 
the high-latitude Poker Flat incoherent scatter radar (PFISR) will also be used to extend and corroborate the 
above-mentioned results.

As a general statement, the appearance of several significant I-T disturbances in a minor storm near the 
solar minimum is quite unusual. In particular, the September 27–28, 2019 storm triggered a series of bright 
features, including intense SAPS flow, a considerable SED, strong zonal and meridional neutral wind per-
turbation, subauroral TIDs/TADs, and complicated positive and negative storm effects. Despite the relative-
ly minor storm conditions, many of these features became comparable to those reported in earlier studies of 
severe geospace storms. These features included large SAPS and SED (Foster et al., 2007; Zou et al., 2013), 
strong neutral wind disturbances in zonal and particularly in meridional components (Zhang et al., 2015), 
as well as significant TIDs/TADs in the subauroral latitudes (Guo et al., 2018; Zhang et al., 2019). In general, 
therefore, a straightforward connection to severe system forcing is not possible for this minor storm, and 
physical processes responsible for these features thus remain highly debatable. In aggregate, these factors 
motivated this study as a unique opportunity to advance the current understanding of storm-time electro-
dynamics and neutral dynamics at mid-latitudes.

2.  Data and Instrumentation
2.1.  Millstone Hill Incoherent Scatter Radar

The Millstone Hill incoherent scatter radar system uses the Thomson or incoherent scatter remote ion-
ospheric sensing technique (Evans,  1969), considered one of the most powerful ground-based methods 
for ionospheric dynamic observations. Millstone Hill has provided extensive and valuable auroral, sub-
auroral, and mid-latitude observations in the North American sector (e.g., Buonsanto et al., 1992; Foster 
et al., 2005). The radar system uses a 2.5-MW transmitter in combination with multiple large antennas and 
highly sensitive radio receivers to measure ionospheric plasma state parameters (e.g., temperature, density, 
composition, and velocity) with full altitude profiles between 100 and 1,000 km (Foster & Vo, 2002; Erickson 
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et al., 2011). The Millstone Hill incoherent scatter radar system is equipped with a 46 m diameter full steera-
ble MISA antenna and a 68 m diameter fixed zenith antenna. The MISA steerable antenna has an extensive 
field-of-view, which was configured in the observations reported in this study to conduct a wide-range azi-
muth scan from +20° to −100° at a fixed elevation of ∼6°, spanning over 30° in latitude and more than 4 h in 
local time at F-layer (Aa, Erickson, et al., 2020). On a near-simultaneous basis, the system's zenith antenna 
provided local altitude profiles in both E and F regions. For more details about Millstone Hill incoherent 
scatter radar data processing procedures, readers may refer to Zhang, Erickson, et al. (2017).

2.2.  Fabry-Perot Interferometer

The ground-based Fabry-Perot interferometer at Millstone Hill measures thermospheric horizontal winds 
at an altitude of ∼250 km. Observations are based on Doppler shifts in the upper atmosphere 630.0 nm 
nightglow emission occurring due to dissociative recombination of 

2O  (Zhang et al., 2015).

2.3.  GNSS TEC

GNSS TEC data are generated at the Massachusetts Institute of Technology's Haystack Observatory through 
a processing algorithm employing 6,000+ worldwide GNSS receivers. Resulting gridded TEC products are 
distributed through the Madrigal data system with a spatial resolution of 1° (longitude) × 1° (latitude) and 
a temporal cadence of 5 min (Rideout & Coster, 2006; Vierinen et al., 2016). Besides absolute TEC, in this 
study, we also examined detrended TEC (dTEC) to analyze both large-scale ionospheric variation and wave-
like traveling ionospheric disturbances associated with storm-time electrodynamics and dynamics. dTEC is 
calculated by filtering out the background TEC trend derived from a Savitzky-Golay low-pass filter method, 
employing a convolution process with the least-square fitting of successive subsets of TEC data points of 
given window size (30 min in this study) (Savitzky & Golay, 1964; Zhang et al., 2019). A threshold of 15° 
elevation cutoff is implemented to remove satellite-receiver ray paths close to the horizon.

2.4.  GOLD O/N2 Data

The GOLD instrument includes two identical far-ultraviolet (FUV) imaging spectrometers operating at a 
geostationary orbit over the longitude of 47.5°W. GOLD FUV observations image Earth's ionosphere and 
thermosphere by measuring airglow emissions (∼132–162  nm) at different cadences from the daytime 
disk, limb, occultation, and nighttime disk (Eastes et al., 2019; McClintock et al., 2020). The GOLD meas-
urements are equivalent approximately to a constant pressure surface in the lower thermosphere (Eastes 
et al., 2020). This study uses the O/N2 column-integrated density ratio derived from daytime disk imaging 
of OI 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) emission measurement. The O/N2 ratio is a proxy 
of thermospheric composition change and a key component in the analysis of storm-time variation in the 
I-T system.

2.5.  The Poker Flat Incoherent Scatter Radar (PFISR)

PFISR is an incoherent scatter radar situated in Alaska at the Poker Flat Research Range (65.13°N, 
147.47°W), at a location approximately corresponding to a magnetic L-shell coordinate of ∼5. The boresight 
of the PFISR antenna is tilted to the geomagnetic north with an elevation angle of 74° and an azimuth angle 
of 15° (Semeter et al., 2009; Varney et al., 2009). PFISR is a phased array radar that can transmit and receive 
on multiple frequency channels near 450 MHz and rapid pulse-to-pulse steering. This allows for almost 
simultaneous observations in various directions.

2.6.  Other Observations

Besides the above-mentioned datasets, the Defense Meteorological Satellite Program (DMSP) F18 satellite 
cross-track plasma drift measurements will also be used. The DMSP F18 satellite flies in a sun-synchronous 
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polar orbit approximately along the dusk-dawn meridian at an altitude of ∼840 km. Cross-track plasma 
drift was measured by the Special Sensor-Ions, Electrons, and Scintillation instrument onboard DMSP. A 
description of this data set can be found in Hairston et al. (2016) and references therein.

3.  Interplanetary and Geomagnetic Conditions of September 25–30, 2019
Figure 1 shows the temporal variation of solar wind proton density, solar wind speed and dynamic pressure, 
interplanetary magnetic field (IMF) By and Bz components, Kp and F10.7 index, interplanetary electric 
field, as well as the longitudinally symmetric index (SYM-H) from September 25 to October 01, 2019. Solar 
activity was at a very low level during this period, with F10.7 ranging from 66 to 68 SFU (1 SFU = 10−22 W/
m2/Hz). Both solar wind plasma density and dynamic pressure exhibit sudden enhancements during 06–12 
UT on September 27 that precede the velocity increase. This is a noticeable signature of stream interactions 
producing compressed plasma in the leading edge of the stream, due to the influence of a recurrent positive 
polarity coronal hole high-speed stream. The solar wind speed showed considerable enhancement after 
12 UT on September 27 from ∼350 to ∼700  km/s. IMF Bz exhibited intermittent fluctuations with two 
considerable southward excursions on September 27. Specifically, Bz first became slightly negative at ∼12 
UT and remained southward for about 2–3 h before temporarily returning to zero. Later, IMF Bz exhibited 
a moderate southward excursion again, reaching a minimum value of −8.2 nT at 20:00 UT. At the same 
time as the IMF Bz southward excursion, IMF By turned from negative to positive. A modest geomagnetic 
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Figure 1.  Temporal variation of (a) Solar wind proton density, (b) Solar wind speed and dynamic pressure, (c) Interplanetary magnetic field (IMF) By and Bz, 
(d) Kp and F10.7 index, (e) Interplanetary electric field (IEF), and (f) Longitudinally symmetric index (SYM-H) during September 25–October 01, 2019. Four 
vertical red dashed lines show the starting time of the sudden impulse (∼6 UT), initial phase (∼9 UT), main phase (∼12.3 UT), and recovery phase (∼23 UT) of 
the storm occurring on September 27, respectively.
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storm subsequently occurred due to the above-mentioned solar wind and IMF conditions. A sudden storm 
impulse was registered in the symmetric H-component (SYM-H) index at ∼6 UT on September 27, followed 
by the compression of the magnetosphere that marked the starting of the initial phase at ∼9 UT. After the 
beginning of the main phase at ∼12:20 UT, the SYM-H index gradually became more negative during main 
storm phase, reaching a minimum value of −60 nT at 23:05 UT on September 27. Also, the Kp index reached 
5+ during 18–24 UT on September 27. Taken as a whole, these parameters would nominally lead to a clas-
sification of this disturbance as a minor geomagnetic storm around the deep minimum of solar cycle 24, 
based on National Oceanic and Atmospheric Administration space weather scales (https://www.swpc.noaa.
gov/noaa-scales-explanation). This classification implies a corresponding expectation of limited ionosphere 
and thermosphere response. However, as will be seen in the following sections, this storm was actually a 
highly geo-effective one that triggered a series of noticeable I-T disturbances and responses, especially in 
the American sector. The results of this study suggest that Dst and Kp may not always be sufficient proxies 
to characterize a storm's I-T effects, and additional conditions need to be considered.

4.  Results
Results and discussion of storm-time I-T responses during the minor storm event in this study are elaborat-
ed in this section in the following order: (a) SAPS in the North American sector measured by the Millstone 
Hill incoherent scatter radar and DMSP satellites. (b) Zonal and meridional thermosphere neutral wind 
perturbations measured by FPI. (c) Subauroral TIDs in the vicinity of Millstone Hill. (d) SED measured by 
Millstone Hill and Poker Flat incoherent scatter radars. (f) Storm-time variation of midlatitude ionospheric 
TEC and thermospheric O/N2 over the North American sector.

4.1.  Storm-Time SAPS

As briefly mentioned above, SAPS refers to intense westward plasma flows (typically greater than several 
hundred m/s) driven by a strong magnetically poleward electric field in the subauroral ionosphere (Er-
ickson et al., 2011; Foster & Burke, 2002). Figure 2a shows the Northern Hemisphere polar view of TEC 
distribution at 21:30 UT on the storm day in the coordinates of magnetic local time (MLT) and geomagnetic 
latitude (MLAT), superposing DMSP F18 satellite cross-track ion velocity along its approximate dusk-dawn 
orbital path during 21:20–21:43 UT. There were two noticeable westward flow peaks around 60°–68° MLAT 
in the dusk sector. SAPS was identified as the local peak westward flow at ∼60° MLAT with a magnitude of 
∼1,000 m/s, while the ion convection returning flow is seen as the other poleward peak separated by around 
5°. Moreover, SAPS was also collocated with moderately reduced background TEC (i.e., in/near the main 
ionospheric trough) when compared with its equatorward edge. The TEC reduction may have resulted from 
an enhanced recombination rate associated with increased ion-neutral frictional heating due to large SAPS 
flows therein (Schunk, 1975), as well as SAPS-related large horizontal flux gradients.

Figure 2b shows line-of-sight Millstone Hill ISR plasma velocities for a full azimuth scan with 6° elevation 
together with the TEC map at 22:30 UT. SAPS flow signatures were clearly identified as the enhanced west-
ward plasma flow of ∼1,000 m/s at around 60°–62° MLAT and 16–17 MLT, which is consistent with the 
result of DMSP cross-track velocity.

To better present ion convection and SAPS flow in the subauroral region to the northwest of Millstone Hill's 
location, we used line-of-sight plasma velocity west-looking data from the wide-coverage azimuth scan to 
the northwest of Millstone Hill between −70° and −10° azimuth angle and between 300 and 450 km in alti-
tude, with the mean geodetic location at ∼(51°N, 87°W). We then computed the magnetic eastward plasma 
drift component perpendicular to the magnetic field VperE using a flow angle correction factor that assumes 
SAPS flow is aligned along constant magnetic latitude contours. This is a valid assumption near the base 
of SED as in this observational case and as introduced in several prior studies (Aa, Erickson, et al., 2020; 
Erickson et al., 2011; Zhang, Erickson, et al., 2017). In a similar manner, we also calculated the magnetic 
northward component of plasma drift perpendicular to the magnetic field VperN). Specifically, VperN was 
calculated from a poleward-looking subset of the line of sight velocity data where the observing direction 
was approximately perpendicular to the field line near the magnetic meridian at the F region with the mean 
location at ∼(52°N, 75°W). These settings and analysis methods allow for sensitive determination of VperE 
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and VperN vectors in the ionospheric F region with reliable accuracy and small uncertainty. For more details 
about the plasma velocity vector calculation, readers may refer to Zhang, Erickson, et al. (2017).

Using the above-mentioned methods and low-elevation Millstone Hill azimuth scans, Figures 2c and 2d 
show the temporal variation of the derived averaged eastward and northward plasma flow in the F region 
for each scan during five consecutive experiments days for this storm event. Results clearly show that the 
zonal ion velocity VperE exhibited a significant westward drift reaching a maximum speed of ∼1,000 m/s at 
22:30 UT on September 27. This drift was statistically significant and well beyond the uncertainty envelope 
calculated from other non-storm days during 20–24 UT. The enhanced plasma westward drift, together with 
the intense line-of-sight ion flow and DMSP cross-track drift in the North American subauroral area, clearly 
indicates the existence of strong SAPS and convection flow near the low-density main trough region to the 
northwest of Millstone Hill. These high-speed ion flows could influence local heating and cause thermo-
spheric disturbances as will be discussed later.

Figure 2d shows that VperN also exhibited daytime enhancements that were very evident between 19 and 
23 UT (14–18 LT) on September 27, in configurations which are signatures of intermittent enhancements 
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Figure 2.  (a) and (b) Northern Hemisphere polar view of total electron content at 21:30 UT and 22:30 UT on September 27, 2019 in the coordinates of magnetic 
local time and geomagnetic latitude. Overlapping plots show (a) Defense Meteorological Satellite Program F18 cross-track ion velocities in the dawn-dusk plane 
during 21:20–21:43 UT and (b) Line-of-sight plasma velocities for a full azimuth scan of Millstone Hill (white star) incoherent scatter radar during 22:15–22:31 
UT. Concentric dashed circles are plotted in 10° interval with outermost one representing 40° MLAT. PFISR location is also marked by a black star. (c) and 
(d) VperE (perpendicular eastward) and VperN (perpendicular northward) plasma convection speed in the F-region estimated from the radar's wide-coverage 
low-elevation experiment during five consecutive experiment days (see text). (e) Vertical ion drifts between 300 and 350 km at Millstone Hill derived from ISR 
zenith antenna measurements.
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of penetration electric fields. In addition, Figure 2e displays the temporal variation of vertical ion drift be-
tween 300 and 350 km at Millstone Hill derived from zenith antenna measurements. We note that vertical 
drifts showed a large negative diversion at 01–03 UT on September 28, reaching a peak amplitude of around 
−60 m/s. This phenomenon occurred at 3–4 h delay behind local SAPS and could be related to zonal electric 
field response and/or meridional wind disturbances potentially associated with SAPS flows. We will further 
discuss this mechanism in the next subsection.

4.2.  SAPS-Related Thermospheric Wind Response

Figure  3 presents Millstone Hill FPI nighttime measurements of zonal and meridional thermospheric 
neutral winds during September 25–30, 2019. Results, particularly in Figure 3c, indicate that during the 
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Figure 3.  Millstone Hill FPI 630 nm (red-line) measurements of thermospheric neutral wind and corresponding 
uncertainties for zonal (a)–(e) and meridional (f)–(j) components during September 25–30, 2019. Vertical dashed lines 
mark the approximate time of intense westward and poleward wind surge during storm days shown in Figures 3c 
and 3h, respectively.
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storm main phase (September 27–28), the zonal wind began to exhibit a noticeable westward diversion from 
∼23 UT and remained strongly westward for the next 3–4 h, reaching a maximum amplitude of ∼230 m/s 
around 01 UT. This feature did not occur on other non-storm days, and the storm time westward wind dis-
turbance gradually diminished around 04–05 UT close to local midnight.

Figures 3f–3j display the temporal variation of the meridional wind. During the storm time shown in Fig-
ure 3h, the meridional wind component exhibited both strong equatorward and poleward surges in the local 
premidnight sector. Specifically, a considerable equatorward wind surge occurred after 00 UT on September 
28. This equatorward wind surge is an expected storm-time dynamic characteristic primarily driven by 
increased Joule heating and thermosphere expansion at high latitudes (Fuller-Rowell et  al.,  1994; Rish-
beth, 1998). The equatorward wind surge reached a maximum magnitude of ∼170 m/s at 0030–0100 UT on 
September 28 (∼20 LT). This value is considerably larger than non-storm days since the storm-time wind 
surge was added to the background day-to-night neutral circulation pattern and was reinforced by the en-
hanced antisunward flow associated with expanded convection pattern (Buonsanto, 1999).

However, the equatorward neutral wind response to storm conditions also changed drastically poleward at 
0130 UT and remained in this direction for about 2 h before returning equatorward. The maximum ampli-
tude of this poleward wind surge was 85 m/s at 0200–0230 UT, with a time delay of 1.5–2 h following the 
peak westward wind and 3.5–4 h following SAPS peak value. Despite minor storm forcing, these intense 
poleward wind surges and time-dependent responses are quite similar to that of the St. Patrick's day storm 
in 2015 as shown by Zhang et al. (2015) and Guo et al. (2018) and will be further analyzed in the Section 5.

Beyond thermospheric effects, ionospheric effects of this poleward wind surge through ion-neutral cou-
pling were manifested in vertical ion drifts shown in Figure 2e. As mentioned in the previous subsection, 
during intervals between 01 and 03 UT on September 28 with strong poleward wind, the vertical ion drift 
also exhibited a larger-than-average downward flow compared to reference days, while the zonal electric 
fields were quite small as inferred from both Figures 1d and 2d. This suggests that the neutral drag force as-
sociated with the enhanced poleward wind may have played an important role in causing enhanced down-
ward ion drifts. Such effects are fully consistent with observations from the St Patrick's day storm results 
presented in (Zhang, Erickson, et al., 2017) and provide a clear illustration that even a minor storm can 
trigger very similar I-T coupling features to that seen in severe storms.

4.3.  SAPS-Related TIDs

Many prior storm-time TID studies have focused on the generation and propagation of large-scale TIDs 
(LSTIDs) primarily excited by high-latitude energy deposition due to enhanced Joule and particle heating 
(e.g., Ding et al., 2007; Jonah et al., 2018; Zakharenkova et al., 2016). In contrast, only a few studies in the 
literature have discussed the potential influence of SAPS on TID dynamics at subauroral latitudes (e.g., Guo 
et al., 2018; Zhang et al., 2019). Thus, in the current study, we will place emphasis on subauroral TIDs and 
further investigate their possible correlation with the existence of SAPS. Figure 4 shows two detrended TEC 
keograms as a function of latitude at 75°–85°W and longitude at 45°–50°N in the North American sector 
from 18 UT on September 27 to 04 UT on September 28. Significant wave-like TID structures can be clearly 
seen in those two panels. However, the TID structures exhibited quite different patterns in the pre-SAPS 
and post-SAPS intervals.

First, equatorward propagating LSTIDs was the predominant pattern in the pre-SAPS interval between 19 
and 22 UT. As the solar wind speed reached 600+ km/s at around 15:00 UT, and Kp index reached 5+ at 
18:00 UT, well-organized LSTIDs feature due to auroral-zone energy ingestion started to show since ∼19:00 
UT. In the top panel of Figure 4, at least four continuous large-scale wavefronts can be recognized. These 
LSTIDs propagated equatorward from auroral zone all the way to low-latitude region with an estimated 
period of ∼40–50 min, horizontal velocity of ∼800 m/s, and wavelength of 2,000–2,500 km. In the bottom 
panel, the corresponding LSTID wavefronts can be identified that aligned approximately along a zonal di-
rection, spanning more than 60° in longitude from the United States west coast to east coast. These typical 
features and parameters values are consistent with prior storm-time LSTIDs studies (e.g., Jonah et al., 2018; 
Shiokawa et al., 2002; Zakharenkova et al., 2016).
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However, the previous LSTIDs pattern went through a considerable adjustment between 22 and 00 UT 
around the dusk sector: the TID source region appeared to shift from the auroral zone to the subauroral 
region. Recall from Figure  2c that intense SAPS of ∼1,000  m/s occurred between 22 and 00 UT to the 
northwest of Millstone Hill. The top panel of Figure 4 also showed that divergent TID formats with both 
equatorward and some hint of poleward propagating components were generated in the subauroral region 
of 45°–50°N following the appearance of the SAPS channel. This might suggest that the SAPS-related strong 
ion flow and frictional heating could effectively drive or adjust the TID pattern and caused the observed 
divergent propagating pattern. This phenomenon is similar to those indicated in Zhang et al. (2019) and 
will be further analyzed in the discussion section. Furthermore, the TID wavefronts also exhibited addi-
tional quasi-zonal propagating components of perturbation to the equatorward edge of the SAPS region. In 
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Figure 4.  Temporal variation of the detrended total electron content keogram as a function of (top) latitude at 75°–85°W and (bottom) longitude at 45°–50°N 
in the North American sector on September 27–28, 2019. The dashed line represents the local sunset terminator. The solid lines with (top) arrows and (bottom) 
double-arrows mark equatorward propagating large-scale traveling ionospheric disturbances and their corresponding zonal wave fronts, respectively. The 
dashed lines with arrows mark the adjusted traveling ionospheric disturbances propagation pattern near dusk at times following the appearance of subauroral 
polarization stream.
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particular, in the bottom panel of Figure 4, the previous double-arrow wavefronts started to rotate and break, 
exhibiting a clear westward propagating trend following the occurrence of SAPS as shown by the dashed 
arrows with an estimated velocity of ∼600–800 m/s. This enhanced zonal perturbation with fast-moving 
features indicates that SAPS-related strong westward plasma flow might have generated the increased west-
ward propagating components of LSTIDs.

4.4.  SAPS-Related SED

A clear SED feature in the North American sector was also observed by the Millstone Hill ISR in this mi-
nor but quite geo-effective storm. Specifically, Figure 5a shows Ne measurements for a full low-elevation 
azimuth scan of Millstone Hill ISR. A clear SED signature can be seen as a plume-like Ne elongation struc-
ture in the North American sector, marked with a red ellipse, starting from the location slightly north of 
the Great Lakes and extending westward/poleward in the afternoon sector. In addition, Figure 5b displays 
plasma line-of-sight velocity from Millstone Hill's field of view. A significant stream-like sunward/poleward 
plasma flow of ∼600–800 m/s in the F region can be seen approximately collocated with SED in the after-
noon sector. This signature of enhanced Ne that associated with large sunward/poleward plasma flow is 
consistent with previous SED studies (Foster et al., 2007; Zou et al., 2013).

Moreover, SED and SAPS effects also appeared in zenith/vertical observations at Millstone Hill. In particu-
lar, Figures 5c and 5d show the temporal-altitudinal variation of Ne and vertical plasma velocity measured 
by zenith antenna. It can be seen that a strong upward ion drift of ∼50–100 m/s appeared around 21–22 UT 
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Figure 5.  (a) and (b) Millstone Hill ISR (star) wide-coverage results of electron density and line-of-sight plasma velocities for a full azimuth scan during 
19:32–19:48 UT on September 27. The red ellipse represents the signatures of storm-enhanced density. (c) and (d) Electron density and vertical plasma velocity 
as a function of altitude and universal time measured by zenith antenna of Millstone Hill incoherent scatter radar.
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across the whole F region and topside ionosphere. This phenomenon of ion upflow in the midst of SAPS 
interval could be driven by enhanced frictional heating and associated expansion in the SAPS region, plus 
some contribution from penetration electric fields after IMF Bz turning southward. This ion upflow was 
followed by an electron density enhancement at 350 km and higher altitude due to the reduced recombi-
nation rate caused by the F-layer uplift in the topside ionosphere. The above-mentioned phenomenon is a 
marker of the local passage of SED over the Millstone Hill. Furthermore, the plasma velocity exhibited a 
large downward flow between 23 and 01 UT, possibly due to neutral drag effects from the poleward wind 
surge, as has been shown in Figures 2 and 3.

In this study, we also briefly examined PFISR observations to broaden and corroborate the storm-time 
ion-neutral coupling processes that were mentioned above, especially SED and SAPS-related effects. Dur-
ing this storm period, PFISR was operated in three different modes: an International Polar year mode, a 
MSWINDs mode, as well as a world day 35 mode. There were four beams with common directions among 
those modes. Beam 1 was the zenith beam pointing to the magnetic north. Beam 2 was the southward beam 
that approximately pointed in the anti-parallel direction along the local magnetic field line. Beams 3 and 
4 were pointing northwest and northeast, respectively. For more details on beam configurations, readers 
may refer to Zou et al. (2013). Figure 6 shows the altitudinal variation of zenith beam observations during 
September 26–30, 2019. Between 23 UT on September 27 and 03 UT on September 28 among storm main 
phase, there was a modest electron density enhancement among 350–500 km comparing with the previous 
quiet day, and the corresponding hmF2 was slightly elevated around 50–100 km. These were local SED 
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Figure 6.  Poker Flat incoherent scatter radar zenith beam observations in the long-pulse mode during September 26–30, 2019. (a)–(d) Altitudinal profiles of 
electron density (Ne), electron temperature (Te), line-of-sight velocity, and ion flux (i.e., the product of Ne and line-of-sight Velocity).
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features near PFISR that related to the SAPS/SED signature in TEC maps shown in Figure 2b. Moreover, the 
corresponding electron temperature within the interval of 23–03 UT also exhibited moderate enhancement 
of a few hundred K as compared to quiet time values. This enhanced electron temperature could partially 
come from the contribution of soft electron precipitation, which produces ionization in the F region and 
topside ionosphere as shown by previous modeling and observational studies (e.g., Millward et al., 1999; Su 
et al., 1999; Zou et al., 2017).

To provide a more comprehensive analysis of the storm-time ionospheric convection near Poker Flat, Fig-
ures 7a–7e shows the reconstructed vector velocity product from all PFISR beams between 08 UT on Sep-
tember 27 and 04 UT on September 28. These results include the E × B convection flow magnitude, vector 
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Figure 7.  Poker Flat incoherent scatter radar observations between 08 UT on September 27 and 04 UT on September 
28. (a) and (b) The E × B convection flow magnitude and vector. (c)–(e) VperE (perpendicular eastward), VperN 
(perpendicular northward), and anti-parallel plasma flow speed along the filed line in the F-region. (f) and (g) 
Altitudinal profile of Ne for beam 2 and beam 4, respectively. Ne below 180 km is from the alternating code pulse 
measurement, while that above 180 km is from the long pulse measurement.
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distribution, VperE, VperN, and anti-parallel plasma flow velocity as a function of UT and geomagnetic lati-
tude. The convection flow at PFISR remained weak before 11 UT. With the passing of the stream interaction 
region and the beginning of the main phase, the convection pattern quickly expanded into the PFISR field-
of-view, as showed by the large increase of convection flow speed between 12 and 17 UT in Figures 7a–7d. In 
comparison, PFISR zenith beam result (Figure 6c) also showed enhanced plasma vertical flow (>200 m/s) 
during 12–17 UT predominantly due to the contribution from the E × B convection flow. In addition, dur-
ing 22–02 UT, the altitudinal profile observations from Beam 2 (Figure 7f) and Beam 4 (Figure 7g) showed 
slightly elevated hmF2 and enhanced Ne. These phenomena were associated with northwestward plasma 
flow on the order of several hundreds of m/s around 22:50 UT as shown in Figures 7b–7d, which is consist-
ent with the DMSP and Millstone Hill ISR measurements as shown in Figure 2. Zou et al. (2013) and Zou 
et al. (2014) indicated that these northwestward E × B flows collocated with SED can be either SAPS or en-
hanced convection flows. These played an important role for the density increase around PFISR due to their 
projected components in the vertical direction, which lifted plasma up to regions with lower recombination 
rate. Later, a much larger westward velocity enhancement was registered at 02–04 UT, which is very similar 
to other past PFISR dusk-side SAPS observations (e.g., Lyons et al., 2015).

4.5.  Positive and Negative Ionosphere/Thermosphere Storm Effects

We next investigate the storm-time variation of GNSS TEC and GOLD O/N2 data to further analyze electro-
dynamic and thermospheric effects. To better understand storm-time variation, we removed the averaged 
TEC and O/N2 reference values of seven quiet-time (all 3-h Kp ≤ 2+) days prior to the storm: September 
19–23 and 25–26. We note that there was a minor Antarctic sudden stratosphere warming (SSW) event that 
occurred from late August to mid-September in 2019, which caused ionospheric TEC anomalies at low 
latitudes and in the southern hemisphere (Goncharenko et al., 2020). Given this factor, to minimize the ef-
fects on our study of SSW-related driving forces from the lower atmosphere, we will focus on discussing the 
mid-latitude ionosphere and thermosphere response only in the North American sector, and limit selection 
of reference days as indicated above.

Figure 8 shows ΔTEC and ΔO/N2 maps from GOLD observations in the American-Atlantic sector between 
09 and 21 UT with a 3-h interval on September 27 and 28, respectively. Note that GOLD O/N2 data is only 
available during the daytime. For the midlatitude ionosphere over the North American region, TEC value 
showed a noticeable enhancement of 5–10 TECU between 15 and 21 UT on September 27 within the main 
phase of the storm, yet later showed a considerable reduction of 5–10 TECU between 12–21 UT on Sep-
tember 28 in the recovery phase. Similarly, the midlatitude O/N2 ratio also showed a modest increase of 
10%–20% on September 27 and a significant decrease of 20%–40% on September 28.

To better display storm-time ionosphere/thermosphere variation and to make a comparison with the 
above-mentioned Millstone Hill ISR/FPI campaign results, Figures 9a–9d show the latitudinal-temporal 
variation of the absolute TEC, ΔTEC, O/N2, and ΔO/N2 values during September 26–28 centered on 75°W, 
close to the Millstone Hill longitude in the North American sector. Note the mid-latitude ionospheric TEC 
and thermospheric O/N2 exhibited a long-duration positive storm effect for more than 12 h during the main 
phase on September 27, and TEC showed a persistent enhancement during local nighttime on September 
28 in the recovery phase. However, the subsequent variation of mid-latitude TEC and O/N2 showed a strong 
negative storm effect on the local daytime of September 28. We will further analyze these opposite storm 
effects as well as associated ionosphere-thermosphere processes.

Considerable positive deviation of ionospheric TEC from the reference values was observed since ∼13 UT 
on September 27 shortly after the beginning of the main phase. In the meantime, the IMF Bz exhibit-
ed a modest southward excursion, followed by some large fluctuations between negative and zero before 
reaching a minimum value of −8.2 nT at ∼20 UT. Between 14 and 21 UT, the low-latitude TEC around the 
northern crest of the equatorial ionization anomaly (EIA) showed a large daytime increase of 10–15 TECU. 
Correspondingly, the mid-latitude ionospheric TEC between 20 and 50°N also exhibited a considerable 
daytime increase of 5–10 TECU during the storm main phase, which continued for at least 12 h before grad-
ually subsided in the nighttime. Similarly, the mid-latitude O/N2 value showed a simultaneous 10%–20% 
enhancement throughout the daytime following the onset of the storm. Besides the electrodynamic effect of 
penetration electric field, this long-lived and synchronous mid-latitude positive I-T storm effect could also 
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be ascribed to two other possible mechanisms: (a) Downwelling of neutral atomic oxygen caused by storm-
time thermospheric circulation (Fuller-Rowell et al., 1994; Rishbeth, 1998): The upwelling and divergence 
of the polar atmosphere heating caused O/N2 decrease in high latitudes. In contrast, the altered thermo-
spheric circulation leads to convergence and downwelling of the neutral species through constant pressure 
level at low and mid-latitudes, increasing atomic O density relative to molecular constituents and thereby 
causing the TEC/Ne enhancement (Buonsanto, 1999; Burns et al., 1995; Crowley & Meier, 2008; Ngwira 
et al., 2012). (b) TEC enhancement caused by F-layer uplifting due to equatorward neutral wind surge (e.g., 
Burns et al., 1991; Mendillo, 2006; Immel et al., 2001): An equatorward neutral wind surge at mid-latitudes 
is a common storm-time feature of the thermosphere (Lu et al., 2008; Mendillo, 2006). Recall from Figure 3 
that strong equatorward neutral wind occurred near Millstone Hill around 23-01 UT on September 27–28 
before its poleward reversal. Moreover, the detrended TEC results in Figure 4 showed noticeable large-scale 
TID structures starting at 18 UT. The presence of equatorward neutral wind surge is consistent with the 
presence of these large-scale TIDs. All this information collectively illustrates the equatorward propagation 
of storm-induced high-latitude disturbances.

Furthermore, during the recovery phase on September 28, the daytime mid-latitude ionosphere showed a 
considerable negative storm with the TEC being reduced 5–10 TECU as shown in Figure 9b. Meanwhile, 
the storm-time modification of thermospheric composition also led to a 20%–40% decrease of the O/N2 
ratio in the mid-latitude and a slight increase of ∼5%–10% in the low latitudes. Theoretically, Fuller-Row-
ell et al. (1994) suggested that the storm-time upwelling process should push N2-rich air upward at mid/
high latitudes while pushing O-rich air downward at equatorial/low latitudes. Thus, the F-region O/N2 on 
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Figure 8.  (a)–(j) ΔTEC and (k–t) ΔO/N2 variation in the Northern American-Atlantic sector between 09–21 UT with 3-h interval on September 27 and 28, 
respectively. The geomagnetic equator and 15° line were marked by dashed lines.
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a constant pressure surface would tend to exhibit a reduction at mid/high latitudes and an enhancement 
at lower latitudes, especially during the storm recovery phase (Prölss, 2008). This mechanism is quite rel-
evant, especially considering GOLD observations are inherently equivalent to constant pressure surface 
observations (Eastes et  al.,  2020). As shown in our results, this composition alteration at mid-latitudes 
tends to increase the ion loss rate and cause the negative ionospheric storm therein (Cai et al., 2020, 2021; 
Crowley et al., 2006; Prölss, 1976). Moreover, this negative ionospheric storm expanded into the low-latitude 
region in the local afternoon period after 20 UT (15 LT), leading to the suppression of EIA crest densities of 
∼10 TECU amplitudes in the Northern Hemisphere. In addition, besides the above-mentioned composition 
effect, the disturbed thermospheric wind could also build up a disturbance dynamo electric field with a 
westward direction in the daytime, which would suppress the quiet-time dynamo pattern and form a large 
contribution to negative ionospheric storm effects in the low latitudes (Blanc & Richmond,  1980; Kuai 
et al., 2016).

5.  Discussion
5.1.  SAPS-Related Thermospheric Poleward Wind Surge

The Millstone Hill FPI and ISR measurements in this study demonstrate a striking phenomenon resulting 
from the effects of SAPS on ionosphere and thermosphere: a strong poleward wind surge of ∼85 m/s follow-
ing an intense westward zonal wind of ∼230 m/s was observed in the post-SAPS period. This phenomenon 
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Figure 9.  Keogram variations of (a) absolute total electron content (TEC), (b) ΔTEC, (c) O/N2, and (d) ΔO/N2 as a function of geographic latitude and universal 
time in the North American sector that centered at 75°W within ±10° in longitude during September 26–28, 2019. Dotted lines mark the local sunrise and 
sunset terminators. The storm-enhanced density feature is marked by slant dashed lines, and the storm-time deepened main trough structure is also labeled. (e) 
Temporal variation of interplanetary magnetic field Bz (black) and symmetric H-component index (red), respectively.
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could be explained by a causal chain of subauroral ion-neutral coupling processes and relevant thermo-
sphere dynamics as follows: (a) Intense westward wind: Recall from Figure 2 that a significant SAPS as-
sociated maximum westward ion drift of ∼1,000 m/s occurred around 22–24 UT on September 27 in the 
vicinity of Millstone Hill. In response, neutrals were subject to strong ion drag effects in the SAPS channel 
via ion-neutral friction and would subsequently form large westward winds, as have been observed and 
modeled in several prior studies (e.g., Ferdousi et al., 2019; Wang et al., 2011, 2012, 2018; Zhang et al., 2015). 
Due to the time scales of these effects, there was a 2–3 h time delay between the westward neutral wind 
disturbance and SAPS flow both for their initiation and peak responses. (b) Strong poleward wind surge: 
Besides our result, a similar SAPS event with poleward wind surge was observed by Zhang et al. (2015) and 
simulated by Guo et al. (2018) for the 2015 St. Patrick's day storm. Both studies indicated that the Coriolis 
force on the westward zonal wind contributed to its northward rotating and subsequent poleward surge. 
Moreover, Guo et al. (2018) suggested that the pressure gradient due to storm-time TAD/TID related to au-
roral and frictional heating could play a dominant role in triggering such a poleward wind surge. Shiokawa 
et al. (2003) also observed poleward wind enhancement at mid-latitudes during a major storm event and 
indicated that it correlated with LSTIDs. Recall from Figure 4 that both significant auroral-induced TIDs 
as well as subauroral TID feature with divergent propagation components were observed during the storm 
main phase before the appearance of poleward wind. The simulation in Zhang et al. (2015) indicated the 
Coriolis forcing was able to establish the poleward wind in 1–2 h, consistent with both the observed time 
lag from a zonal wind enhancement to poleward wind evolution and with the observed poleward wind peak 
velocity. However, this fundamental forcing resulted in only a smooth and gradual increase in the poleward 
wind. In the end, therefore, TADs/TIDs originated either by auroral or subauroral processes can provide a 
swift poleward wind surge but would need to meet specific excitation and propagation conditions to match 
the observed timing of the wind surge.

5.2.  SAPS-Induced TIDs

Coincident occurrence of westward propagating TIDs and strong SAPS was found in the North Ameri-
can subauroral region near Millstone Hill ISR. This phenomenon is similar to that reported in Zhang 
et al. (2019), and the generation mechanisms of these TIDs and their connection with SAPS might be ex-
plained as follows: (a) Gravity waves due to SAPS-induced frictional heating: It is known that SAPS will 
cause significant frictional heating due to large ion-neutral relative velocity therein (Anderson et al., 1991; 
Rodger, 2008). Guo et al. (2018) indicated that the intense frictional heating effect due to SAPS could cause 
neutral temperature and composition changes, resulting in acoustic-gravity waves that propagate away in 
the form of TAD/TIDs near the SAPS region. (b) Amplification of the Perkins instability growth rate due to 
SAPS electric field: Besides gravity waves, electrodynamic forces under a favorable condition of the Perkins 
instability (Perkins,  1973) could also explain the formation of mid-latitude medium-scale TIDs, though 
Perkins instability growth rates are usually quite small (Kelley & Fukao, 1991). Zhang et al. (2019) indicat-
ed that a strong magnetically poleward SAPS electric field could effectively amplify the Perkins instability 
growth rate, so that TIDs with a strong polarization electric field variation can be generated in the subauro-
ral region. A future theoretical study is needed to further address the mechanism.

5.3.  Interplay Between SAPS and SED

A notable SED feature associated with dusktime positive ionospheric storm conditions can be seen in Fig-
ures 9a and 9b as a plume-like large-amplitude TEC structure marked by dashed lines. This SED feature was 
also observed by the Millstone Hill incoherent scatter radar as shown in Figure 5. SED occurrence during 
such a minor but geo-effective storm is quite interesting, and it can potentially be ascribed to a combination 
of the following mechanisms: (a) Zonal ion transport driven by SAPS or enhanced convection flow: The 
poleward edge of SED is collocated with the equatorward wall of the deepened main trough where intense 
SAPS flow existed as shown in Figure 2. Moreover, Figure 9b shows that the storm-time main trough feature 
was much more pronounced than the previous quiet day. This indicates the presence of SAPS, since the en-
hanced ion temperature within SAPS could accelerate the recombination rate therein (Aa, Zou, et al., 2020; 
Rodger, 2008). Under these factors, plume materials could be effectively carried sunward from the nightside 
to the dayside in the SAPS overlapping region (Foster et al., 2007). Figures 9a and 9b also showed that the 
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main trough channel was significantly deepened and pushed equatorward around dusktime, indicating the 
equatorward expansion of the convection pattern. Foster (1993) suggested that the expansion of high-lat-
itude convection in the afternoon sector can pick up high-density plasma on its equatorward edge and 
transport it toward the cusp. (b) Ion transport across wide latitudinal regions: Some prior studies indicated 
that the peak of equatorial ionization anomaly could be pushed toward higher latitudes due to enhanced 
fountain effect though this effect is most likely a severe storm feature (e.g., Gardner et al.,  2018; Kelley 
et al., 2004; Tsurutani et al., 2004). In our results, Figure 8b show synchronous mid-latitude and low-lati-
tude TEC enhancement of ∼10 TECU around the dusk sector. It is likely therefore that the TEC enhance-
ment within the SED extended from the EIA crest region to higher latitudes, providing a seed population 
for density increases to be carried by SAPS and/or convection flow.

6.  Conclusions
In this study, we have investigated SAPS-related ion-neutral coupling processes and related mid-latitude 
ionosphere and thermosphere responses during a modest but geo-effective storm on September 27–28, 2019 
around the recent deep solar minimum. The effects of SAPS on midlatitude electrodynamics and dynamics 
in the North American sector were comprehensively analyzed using Millstone Hill incoherent scatter radar 
data, FPI measurements, GNSS TEC, DMSP cross-track drifts, and PFISR measurements, as well as GOLD 
O/N2 data. A number of salient and interesting features of ionospheric/thermospheric disturbances during 
the storm were recognized and summarized as follows:

1.	 �Both ground-based incoherent scatter radar and DMSP cross-track measurements showed evidence 
of strong SAPS flow of 1,000  m/s in the North American sector during 20–24 UT on September 27. 
Deepened main trough structure associated with SAPS was observed in GNSS TEC data, likely due to 
enhanced frictional heating and ion loss caused by SAPS. Considerable ion upflow of ∼50 m/s in the 
F region was also measured at Millstone Hill during a SAPS-influenced interval in the local afternoon.

2.	 �Around two hours after SAPS peak flow, a westward neutral wind peak of 230 m/s was observed by the 
FPI at Millstone Hill during 00–01 UT on September 28, driven by SAPS-related accumulative ion-drag 
effects. Later, the meridional wind showed a drastic turning from −170 m/s (equatorward) at 0030 UT 
to 85 m/s (poleward) at 0230 UT. This unusual poleward wind surge was possibly caused by the combin-
ing effects of the Coriolis force on the enhanced westward neutral wind and pressure gradients due to 
storm-time TAD/TIDs. The neutral drag effect of this poleward wind surge also caused concurrent large 
downward ion flow of 50–100 m/s at Millstone Hill.

3.	 �During the storm main phase, intense daytime LSTIDs were generated in the auroral zone and propa-
gated equatorward in the North American sector with a wavelength of 2,000–2,500 km and periods of 
40–50 min. However, the occurrence of dusktime SAPS caused significant changes to TID propagation 
and excitation. Under the influence of SAPS frictional heating and electric field, the previous zonal 
wavefronts started to rotate and break, exhibiting prominent divergent patterns with additional west-
ward propagating TID components.

4.	 �A significant SED feature was collectively observed by (a) GNSS TEC as an enhanced TEC structure and 
(b) Millstone Hill ISR as an enhanced Ne band with upward ion drift of 50 m/s in the local afternoon 
sector. In addition, the main trough and SAPS were simultaneously observed near the poleward edge of 
SED, and SED was also observed by PFISR associated with northwestward plasma flows. These facts sug-
gest that a combination of zonal ion transport driven by strong westward plasma flow and E × B plasma 
drift projected in the vertical direction, with some contribution from ion transportation across latitudes, 
collectively generated this considerable storm-time SED feature.

5.	 �A prolonged positive ionospheric and thermospheric storm feature occurred at mid-latitudes for more 
than 12 h during the main phase and early part of the recovery phase, with TEC enhancement of ∼5–10 
TECU and column O/N2 ratio increase of ∼10%–20%. This positive I-T storm effect could be collectively 
generated by atomic oxygen downwelling caused by storm-time thermospheric circulation, combined 
with plasma uplifting due to the equatorward neutral wind and enhanced storm-time TAD/TIDs.

6.	 �A synchronous negative storm effect across the mid-latitude ionosphere and thermosphere was observed 
during the later half of the recovery phase, with TEC reduction of ∼5–10 TECU and column O/N2 ra-
tio decrease of ∼20%–40%. This phenomenon could be largely caused by thermospheric composition 
change, plus some contribution from disturbance dynamo electric field.
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In aggregate, the presence of these substantial, and perhaps unexpected, ionosphere and thermosphere 
effects during a deep solar minimum, modest strength geomagnetic storm provide compelling evidence of 
the significant role of magnetosphere-ionosphere-thermosphere coupling in upper atmosphere dynamics. 
Future modeling and observational studies are encouraged to further explore the range of ionospheric and 
thermospheric variability such coupling can provide under an expanded range of solar and geomagnetic 
conditions.

Data Availability Statement
Millstone Hill incoherent scatter radar observation and GNSS TEC data products are provided to the com-
munity through the Madrigal distributed data system at (http://cedar.openmadrigal.org/) by the Massa-
chusetts Institute of Technology (MIT) under NSF grant AGS-1952737. The PFISR data are available at 
the SRI AMISR database (https://data.amisr.com/database/61/) and the Madrigal CEDAR database (http://
cedar.openmadrigal.org/). The FPI data are available at the Madrigal CEDAR database (http://cedar.open-
madrigal.org/). The DMSP SSIES data are available at NOAA NGDC (satdat.ngdc.noaa.gov/dmsp/) and the 
Madrigal CEDAR database (http://cedar.openmadrigal.org/). The GOLD data are provided to the public by 
NASA/GOLD mission science team (https://gold.cs.ucf.edu/). The solar and geophysical parameters data 
is acquired from NASA/GSFC's Space Physics Data Facility's OMNIWeb service (https://cdaweb.gsfc.nasa.
gov/) and Kyoto world data center for Geomagnetism (http://wdc.kugi.kyoto-u.ac.jp/).
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