Distributed Multigrid Neural Solvers on Megavoxel Domains

Aditya Balu®
Iowa State University
Ames, Iowa, USA

Vinay Rao
Rocket ML Inc.
Portland, Oregon, USA

Adarsh Krishnamurthy
Iowa State University
Ames, Iowa, USA

Sergio Botelho®
Rocket ML Inc.
Portland, Oregon, USA

Soumik Sarkar
Iowa State University
Ames, Iowa, USA

Santi Adavani
Rocket ML Inc.
Portland, Oregon, USA

Biswajit Khara*
Iowa State University
Ames, Iowa, USA

Chinmay Hegde
New York University
New York City, New York, USA

Baskar

Ganapathysubramanian
Iowa State University
Ames, Iowa, USA

Level 1 @ -
Level 2 ® —)
Level 3 @ -

Multigrid coefficient field

Multigrid solution field

MGDiffNet

Figure 1: We demonstrate a distributed multigrid strategy to train a neural solver that maps a coefficient field with solution field for a given
parametric PDE. Coefficient fields at different multigrid resolutions are input to the same underlying network architecture at different stages of

training to train the architecture at the highest resolution.

Abstract

We consider the distributed training of large scale neural networks
that serve as PDE (partial differential equation) solvers producing
full field outputs. We specifically consider neural solvers for the
generalized 3D Poisson equation over megavoxel domains. A scal-
able framework is presented that integrates two distinct advances.
First, we accelerate training a large model via a method analogous
to the multigrid technique used in numerical linear algebra. Here,
the network is trained using a hierarchy of increasing resolution
inputs in sequence, analogous to the ‘V’, “‘W’, ‘F’ and ‘Half-V’ cycles
used in multigrid approaches. In conjunction with the multi-grid

*Authors contributed equally to the paper

This work is licensed under a Creative Commons Attribution International 4.0 License.

SC °21, November 14-19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476218

approach, we implement a distributed deep learning framework
which significantly reduces the time to solve. We show scalability of
this approach on both GPU (Azure VMs on Cloud) and CPU clusters
(PSC Bridges2). This approach is deployed to train a generalized 3D
Poisson solver that scales well to predict output full field solutions
up to the resolution of 512 X512 x 512 for a high dimensional family
of inputs. This strategy opens up the possibility of fast and scalable
training of neural PDE solvers on heterogeneous clusters.

Keywords

Physics aware neural networks, Distributed training, Multigrid,
Neural PDE solvers

ACM Reference Format:

Aditya Balu, Sergio Botelho, Biswajit Khara, Vinay Rao, Soumik Sarkar,
Chinmay Hegde, Adarsh Krishnamurthy, Santi Adavani, and Baskar Ganap-
athysubramanian. 2021. Distributed Multigrid Neural Solvers on Megavoxel
Domains. In The International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC °21), November 14—19, 2021, St.
Louis, MO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3458817.3476218

https://doi.org/10.1145/3458817.3476218
https://doi.org/10.1145/3458817.3476218
https://doi.org/10.1145/3458817.3476218
https://creativecommons.org/licenses/by/4.0/

SC ’21, November 14-19, 2021, St. Louis, MO, USA

1 Introduction

In recent years, several data-driven [42, 46] and data-free [15, 19,
22, 34, 36, 39, 43, 45, 49] approaches for solving partial differential
equations (PDEs) have been proposed. The backbone of these ap-
proaches is the use of (deep) neural networks, which have proven
to be capable of learning complex non-linear relationships between
the inputs and the outputs. For a subset of these neural PDE solver
approaches, the intent is to obtain field predictions, which can
then be used to fill in a sparse amount of observable data [6, 38]
or optimize the input parameters for inverse design [9, 30]. The
motivation behind training such networks is to have a fast surro-
gate model that can quickly provide full-field solutions at a much
lower cost than traditional numerical simulators. This approach
is especially useful in computational design optimization, where
hundreds (or thousands) of simulations are necessary to obtain an
optimal design, making it computationally expensive or impractical
to use traditional scientific simulators. While reduced-order mod-
eling approaches exist for performing such design optimization,
they do not necessarily capture the complete complex relationship
of the underlying physics. Specifically, for design optimization at
very high resolutions, reduced-order modeling may not capture the
fine-scale features driving the design figure of merits (for instance,
initiation of combustion instabilities).

A canonical application that motivates this work is (real-time)
field reconstruction from sparse measurements. For instance, a
neural PDE solver that produces high-resolution outputs of con-
taminant spread under diverse release scenarios can be used to
assimilate sparse measurements of contaminants from sensors, and
evaluate containment and evacuation strategies in real-time as well
as identify the sources of the contaminant [13]. Here, both the
speed of prediction and the spatio-temporal resolution are critical.
While well-trained neural PDE solvers are ideal for this application,
(offline) training of such high-resolution solvers is computationally
expensive. This is the motivation for the current work, where we
explore the idea of using neural PDE solvers to obtain the field
solutions for parametric PDEs at a very high spatial resolution.
More generally, the multigrid strategy affords an elegant and cost-
effective approach to network architecture search (NAS) [12] since
the cost of each network training is significantly reduced (see Re-
mark 1).

A large fraction of neural solvers are designed for pointwise
prediction, i.e., the networks in these cases take as input a vector
x of locations in the spatial domain D, and produces an output

237.8
=
< 200
£
< 100 62.86
2, 8.76 8.97 11.3 20.36
=) 0 — — — :l

T T T T T T
28 210 212 214 216 218

Degrees of freedom

Figure 2: Time taken per epoch for performing training at different
resolutions of the 2D solution field using same network architecture.

Balu, et al.

vector u, by calculating the value of u at each point. They exploit
the ideas of automatic differentiation [37] to solve the PDE by
minimizing the residual over a set of sampled points x. Due to
this implicit representation, these methods do not require a mesh
and rely on collocating points from the domain randomly. Apart
from minimizing the volumetric residual, these approaches also
satisfy the prescribed boundary conditions. Some of these methods
satisfy/apply the boundary conditions exactly [25, 28, 32], while
others do that in an approximate (weak) sense [26, 39, 45]. While
the state-of-the-art methods mentioned here show great promise in
mapping the complex non-linear relationship between the domain
and the field values representing the physics, these methods have
the following limitations:

(1) Non-intuitive weights and hyper-parameters: The meth-
ods that approximately satisfy the boundary conditions do so
by adding a loss function with respect to the specified boundary
conditions. However, the losses have to be carefully weighed,
making this a non-trivial exercise in hyper parameter tun-
ing [47]. While recent work like Variational PINN [22], neurod-
iffeq [7] alleviate this issue (by the exact imposition of boundary
conditions, instead of another loss), these are not yet fully de-
veloped for arbitrary boundary conditions.

(2) Single instance solution: Most of the approaches above use

an implicit representation of the domain where the input are the

points x for performing the prediction. Although the implicit
representation has several advantages, such as its capability to
predict the fields for any arbitrary resolution of points, there
are disadvantages, such as the inability to provide topological
information about the geometry. Topological information is
essential for developing a robust solver that can handle chang-
ing the input geometry or the input parameters. Therefore, the
above methods suffer from the limitation of their applicability
to a single instance of the PDE and do not solve a family of

parametric PDE instances. Recent works such as SimNet [16]

attempt to capture a small domain of parametric cases instead

of the complete field representation of the parametric PDE.

Scalability: Most of these approaches (although fundamentally

scalable) have not been well explored in applications to 3D

spatial domains due to computational costs involved in training
such deep learning models. With the increase in dimensionality,
there is an increase in the number of collocation points sampled

(the spatial resolution). Further, enforcing boundary conditions

is much more challenging (in weak enforcement of the boundary

condition). Apart from these technical issues, computational
issues such as the computational cost involved in training these
networks are also challenging.

@3

~

A limited number of efforts address these issues. For example,
Liao and Ming [29] resolve application of essential boundary con-
ditions by using Nitsche’s variational formulation. Khoo et al. [23]
extend efforts for solving parametric PDEs. In additiona to these
mathematical developments, recent work such as Botelho et al. [3],
and Yang et al. [50] enable the scalable training of models used for
solving PDEs. Specifically, Yang et al. [50] demonstrates the scala-
bility of the framework to 27,500 GPUs. However, the application of
these methods in 3-dimensional spatial domains is computationally

Distributed Multigrid Neural Solvers on Megavoxel Domains

expensive. As the spatial domain increases, traditional PINN (and its
variants) need a vast number of collocation points. Similarly, in the
parametric setting, using a convolutional neural network [3, 23], the
voxel resolution creates computational and memory requirement
challenges. For example, in Figure 2 we see that the computational
time per epoch increases quadratically with the increase in the res-
olution of the spatial domain. These challenges persist, especially
for training neural PDE solvers at scale.

Data-parallel distributed deep-learning strategies are often used
to overcome memory limitations, where multiple replicas of a model
are simultaneously trained to optimize a single objective function.
Typically, universities and government research labs either use
on-premise HPC clusters or supercomputers such as the Summit,
Bridges2, Frontera, and Stampede2. In this paper, we use a dis-
tributed deep learning strategy for performing our training on the
Bridges2 cluster running on CPU nodes. However, most of these
systems have very few GPU nodes (except for Summit, having
27,360 GPUs). Therefore, we use the Microsoft Azure on-demand
HPC virtual machines for performing our distributed experiments
on the GPU. This is especially topical, given recent efforts by fed-
eral agencies (like the US NSF) for providing cloud access via the
CloudBank service.

In addition to using distributed deep learning, we also propose
a new training scheme inspired by the multigrid approaches to
solving PDEs. The key idea is to use a variational formulation of
the loss function to train the neural network at different resolutions
or levels (similar to different levels in the multigrid approach). This
approach is particularly useful because the training in the lower
resolutions is much faster (see Figure 2) than the training time at
higher spatial resolutions. We explore strategies for efficient and
scalable training of neural PDE solvers based on this approach.

Remark 1: While our PDE application motivates these devel-
opments, the distributed multigrid approach can be used to train
any fully convolutional neural network that maps input fields to
output fields that are resolution agnostic. This encompasses diverse
applications, including semantic segmentation and image-to-image
translation prevalent in computer vision.

The main contributions of this paper are:

(1) A variational loss function to solve PDEs (similar to previously
proposed ideas [22, 29, 45]) but with the exact application of
boundary conditions.

(2) A multigrid-inspired training scheme for training the networks
at higher resolutions. We explore several multigrid training
schemes and perform a detailed comparison with the direct
training of the neural network at high resolutions.

(3) Cluster-agnostic data parallel distributed deep learning library
to train CNNs. We illustrate versatility using on-prem and cloud
based CPU and GPU HPC clusters.

(4) Demonstrated scaling of the approach to very high resolutions
(up to 512 X 512 X 512 voxel resolution) in 3D using CPU (on
PSC Bridges2) and GPU (on Azure VMs) clusters.

The rest of the paper is arranged as follows: we first explain the
mathematical preliminaries in Section 2; we explain the algorithmic
contributions of our work in Section 3; we present the scaling and
timing results in Section 4; and finally, we conclude and provide a
few remarks on possible future work. Some of the notations and
abbreviations are summarized in Table 1.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Table 1: Notations used in paper.

PDE partial differential equation
FEM finite element method

NN neural network

MG multigrid

GMG geometric multigrid

SGD stochastic gradient descent

P number of MPI tasks in the MPI communicator

N elements along a dimension in an FEM discretization
N number of samples used in a neural optimization

Np number of minibatches in the optimization process
bs batch-size for SGD based optimization

Ny number of neural network model parameters

Gun the neural network as a function

2 Mathematical preliminaries
2.1 Convolutional Neural Networks (CNNs)

A deep neural network consists of several layers of connections
forming one network, which takes an input y;, and produces an
output yoys. Each connecting layer (/;) in the network can be repre-
sented as y;,,, = o(W], -y, +by,), where o(...) represents a non-linear
activation function, W}, and bj, are the weights and biases in the
connection. A convolution connection (compared to a dense connec-
tion) provides a more efficient and compact connection especially
for images and fields. The convolution operation (®) between a 3D
input representation y and a corresponding 3D weight, W is given
by
Wlm,n,pl ® y[m,n,p] =
i=h j=l k=q

Dy 20 2 Wlkjiklylm—in=j.p =k 8

i=—h j=—l k=—q

A series of convolutional connections, non-linear activations,
and pooling forms a CNN. CNNs are more prevalent in deep learn-
ing due to their efficacy in capturing the topological information
in datasets such as images, videos, voxels, etc. Several recent pa-
pers have utilized such neural networks for producing field predic-
tions [35, 40, 51, 52]. In the next section, we provide details of the
network used in this paper. Now, we shall cover some preliminaries
for solving PDEs using neural networks.

2.2 Di1rrNET: Solving PDEs using CNNs

Consider a bounded open (spatial) domain D € R",n > 2 with a
Lipschitz continuous boundary I' = 9D. We will denote the domain
variable as x, where the underbar denotes a vector or tuple of real
numbers. In R"”, we have x = (x1,x2,...,xy); but for 2D and 3D
domains, we will use the more common notation x = (x,y) and
x = (x,y, z) respectively. On this domain D, we consider an abstract
PDE on the function u : D — R as:

Nlws(x o)l =f(x), xeD (22)
Bux)=g(x), xeT (2b)
where N is a differential operator (possibly nonlinear) operating

on a function u. The differential equation also depends on the data
of the problem s which in turn is a function of the domain variable

SC ’21, November 14-19, 2021, St. Louis, MO, USA

x and parameter w. Thus N is essentially a family of PDE’s param-
eterized by w. 8B is a boundary operator acting on u. In general,
there can be multiple boundary operators for different parts of the
boundary T

Given such a PDE along with appropriate boundary conditions,
the goal is to find a solution u that satisfies Equation 2 as accurately
as possible. Previous works [25, 39, 45] seek to find this exact map-
ping u : D — R. But as we present in the next section, we do not
have to restrict ourselves to this mapping, and in fact, with the help
of deep neural networks coupled with numerical methods, we can
find other mappings to retrieve a discrete solution.

In this work, without any loss of generality, we focus on the
Poisson equation with both Dirichlet and Neumann conditions
applied on the boundaries.

2.2.1 Poisson Equation: Consider the equation:
V- ((x)Vu) = f(x) in D 3)

along with the boundary conditions

u=gonlp (4)
17
X —hon In (5)
on

where v is the permeability (or diffusivity), f is the forcing; I'p and
I'y are the boundaries of the domain D where Dirichlet and Neu-
mann conditions are specified respectively. We will assume that
0D =T =Tp UTy. We are mostly interested in a steady-state mass
(or heat) transfer through an inhomogeneous medium (material),
which means that the material has different properties at differ-
ent points. The only material property appearing in the Poisson’s
equation (3) is v(x), thus the inhomogeneity can be modeled by a
spatially varying v, i.e., v = v(x).

Without loss of generality, we consider the following equation:

V- (#(x)Vu) = 0in D ©)

with the boundary conditions

u(0,9) =1 7)
u(l,y) =0 8)
ou .
on = 0 on other boundaries)
n

where D is a hypercube domain in R”, n = 2, 3. Here the diffusivity
v is parametric, and is represented by the following log perme-
ability expression, typically used in geological simulations and in
uncertainty quantification:

#(x;) = exp (Z wia,-g,-(x)ni(y)) (10)
i=1

where w; is an m-dimensional parameter, A is a vector of real num-
bers with monotonically decreasing values in order; and & and n
are functions of x and y respectively. We take m = 4, @ = [-3,3]*

R N - . —
and A; = (r0.0520)” where a = (1.72,4.05, 6.85,9.82). Also &;(x) =
a;

% cos(a;x) +sin(a;x) and n(y) = 3 cos(a;y) +sin(a;y).

Balu, et al.

2.3 Geometric Multigrid approach

The geometric multigrid (GMG) is a powerful tool used for scalable
numerical linear algebra. The GMG approach defines a hierarchy
of meshes and sequentially projects and solves the PDE on these
meshes. The advantage of GMG lies in accessing the different re-
gions of the error spectrum of a numerical operator by projecting
the error on meshes of varying refinement. This is a powerful con-
cept that can be naturally extended to training CNNs. We provide
a brief outline of the major ideas of multigrid approaches below.
Detailed discussions can be found in texts such as [4, 5, 14].

Suppose we want to solve the Poisson equation on a [0, 1]% do-
main using N X N “finite elements”. This N X N grid marks the
“finest” grid, which is referred to as the “Level-1” (see Figure 3).
Such discrete grids are capable of representing only a finite num-
ber of Fourier modes. When classical iterative methods such as
under-relaxed Jacobi iteration are used on the linear system at this
level, the errors corresponding to the high frequencies (> N/2) are
reduced within a few iterations, but the errors corresponding to
the low frequencies (< N/2) take several iterations to reduce, thus
rendering the solve extremely slow. But this issue can be overcome
simply by performing subsequent iterations on increasingly coarser
grids, e.g., a grid having (N/2 X N/2) elements (i.e., “Level-2”). The
maximum frequency at this level is now ~ N/2, and thus the errors
in the frequencies above N/4 are reduced faster at this level. We can
continue this coarsening process by going to deeper levels until
a satisfactory accuracy at the lowest Fourier (frequency) mode is
achieved. In Figure 3, the coarsest level shown is “Level-4”. The
coarsening of the grid and projection of the solution to the coarse
grid is called “restriction”. In a geometric multigrid method, often,
the coarse grid is simply a coarser subset of the preceding grid.

Once a solution is obtained at the deepest level, it is then propa-
gated upwards through the finer levels. Interpolating the solution
from a coarser level to a finer level is called “prolongation”. After
prolongation, a few more iterations might be needed to smooth out
some additional errors introduced during prolongation, known as
“post-smoothing”. The same process is followed to go back to the
finest level (Level-1). This whole idea of solving the same problem
on multiple grids to strategically target all the Fourier modes of the
error is the essence of the multigrid approach.

One major aspect of GMG is the choice of different grid hier-
archies (or GMG cycles). Figure 3 illustrates some common grid
hierarchies in the multigrid approach. It is important to note that
solving the system on progressively coarser grids becomes progres-
sively cheaper. In a V-cycle hierarchy, restriction and smoothing
are performed until the coarsest grid, and then the prolongation
and correction are performed until one reaches the starting mesh
resolution. In a W-cycle (second from left in Figure 3) restriction

Level 3
Level 4
L V Cycle

W Cycle

F Cycle Half-V Cycle/

Figure 3: Different multigrid strategies.

Distributed Multigrid Neural Solvers on Megavoxel Domains

and smoothing is performed to the coarsest cycle. However, in-
stead of performing prolongation and correction to the initial mesh
resolution, prolongation and correction are used alternatively to
minimize the low-frequency errors and improve stability. It is im-
portant to note that this does not compromise efficiency as these
alternate operations are done on really cheap coarse meshes. Sub-
sequently, correction and prolongation are performed fully to the
initial mesh resolution, just like in the V-cycle. The extra expense
of the W-cycle compared to the V-cycle is progressively lower for
increasing spatial dimensions [14]. The F-cycle falls somewhere
between V-cycle and W-cycle in terms of expense. It starts with the
restriction to the coarsest grid like the V-cycle. After reaching each
level the first time, a restriction to the coarsest grid is performed
in the prolongation process. In addition to the classical MG cycles
discussed above, we also consider the “half-V-cycle”, which is not
very common in numerical analysis literature, but turns out to be
a very natural method in the case of MGDIFFNET (our proposed
approach). It can be classified as a special case of the V-cycle, in
which no smoothing is done before the coarsest grid layer. This is
discussed in more detail in Section 3.1.2.

Several works have been performed in the context of multi-
grid approaches to deep learning [8, 21, 48] and deep learning
approaches to improve multigrid operations [17, 20, 31, 33]. Here,
we leverage the multigrid hierarchy and try to establish a mapping
between the domain and the solution using a CNN on every grid
layer. However, careful scaling and timing analysis is required to
determine the best strategy, which we perform in Section 4.

3 Algorithmic Developments

3.1 Multigrid Approaches

We seek a mapping between the input s and the full field solution
u in the discrete spaces. 54 denotes the discrete representation of
the known quantity s. 59 could be either available only at discrete
points (perhaps from some experimental data). In many cases, s is in
a functional form, and thus S¢ will be the values of s evaluated at the
discrete points. Therefore, if we denote a MGDIFFNET network by
Gnn, then Gy, takes as input a discrete or functional representation
of s and predicts a discrete solution field Ud, where 6 denotes the
network parameters. For example, if we consider a PDE defined on
a 2D bounded domain, Gy, takes a 2D matrix containing the values
of s and predicts the solution field U? which is also a 2D matrix (as
illustrated in Fig. 1). The weights of the network G, are initialized
randomly in the beginning, and using optimization schemes, we
obtain the network parameters 6, which maps the input coefficients
field s to solution field u. The first step is designing the loss function
based on the finite element method (FEM).

3.1.1 FEM Loss: The FEM loss involves the weakening of the
PDE using an appropriate weighting functions. Let the set X =
(X1, %900 Xpy) € R™N denote a collection of points in R that pro-
duces a (uniform) discretization of D with a set of non-overlapping
elements denoted by Q;, i = 1,2, ..., n,. such that U;’ElQl— =D.we
define S; = s(x;) and U; an approximation of the unknown u(x;).

SC ’21, November 14-19, 2021, St. Louis, MO, USA

The unknown solution can be approximated as:

N
up = > $i(x) (U (11)
i=1

where ¢; are the finite element basis functions.

This approximation is plugged into the PDE, after which we
invoke Galerkin’s method. We multiply the PDE with a test function
and reduce the differentiability requirement on u”

by parts:!

using integration

/U[N(ug;s)—f] dx=0Yv eV, (12)
Q
which results in this following (standard FEM) form

B(v,ul) - L(v) =0 Vv € V, (13)

where B(v, ué‘) is the bilinear form that encodes the PDE, while L(v)
is the linear form that encodes the load and the boundary conditions.
By choosing the test function to be the (unknown) solution, u”?

we
0
get an energy functional whose minima is the solution:

J(ul = %B(ug, ult) - L(uh). (14)

This energy functional accounts for the PDE as well as all Neumann
(and Robin) boundary conditions. This energy functional also serves
as our loss function.

3.1.2 Multigrid Training of MGDIFFNET: We first define the neural
network, Gpp, to be a fully convolutional neural network with the
following properties:

(1) The connections between each layer only use convolution

(and/or transpose convolution) operations;

(2) The downsampling (performed using max-pooling or con-

volution with stride > 1) is always a factor of two;

(3) Appropriate padding is performed to ward off fence effects.

Constructing such a fully convolutional network is not difficult.
A standard fully convolutional neural network, called U-Net [10, 41],
satisfies all the requirements mentioned above. The primary use
of such a fully convolutional neural network is that the network
architecture remains the same for different input resolutions. Recall
that the filter weights W for a convolution operation is not depen-
dent on the input resolution (N in each dimension) and the same
filter weights can be used to extract local information from any
resolution. This means that for learning a smooth solution field,
we can perform training of Gy, at different resolutions where the
network’s parameters learn the mapping between the solution field
u and the coefficients field s2.

The core idea behind different multigrid strategies is the transfer
learning between two grid resolutions. Due to the fully convolu-
tional nature of the neural network, once Gy, is trained at one
resolution, the forward pass of the coefficients through the network
itself becomes an excellent starting point for performing interpo-
lation (prolongation) and solving the PDE at a higher resolution.

!For completeness, we assume ug € V c H'(D) where H' (D) denotes the Hilbert
space of functions on D that have square-integrable first derivatives.

Interestingly, while writing this paper, we came across work that hypothesized deep
mathematical connections between numerical methods and neural nets [1], with a
specific call out to a link between multigrid approaches with U-Net architectures. Our
work anecdotally validates these assertions.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

oo @‘ N2
epochs

v N\2 N\ 2
epets {(3))

Depth d), = logzLﬁ

e
epochs| L€

Balu, et al.

N2 N2 H
epochs
. . mehb
. . me'h\

Figure 4: Schematic diagram of a typical V-cycle in MGDIFFNET for a N X N 2D problem. L, is the grid size in one dimension at the coarsest

level. Here we assume that the ratio L_ is a perfect power of 2 and thus the level-depth dj, = log, () is an integer.

Algorithm 1 Underlying training algorithm for MGDIFFNET at
each MG-level

1: procedure TRAINING(Gpp, s4. a, TOL)

2: for epoch « 1 to max_epoch do

3: for mb < 1 to max_mini_batches do

4 Sample anb from the set

5: (Ug)int,mb — Gnn(srdnh)

6: > “int” stands for interior nodes
7: U mb — U intmp Xint + (U pe X

8: lossyp = L(Ug)

9 0 «— optimizer(6, a, Vg(lossy,p)) » Gnpn is updated
10: end for

11: end for

12: Return G,

13: end procedure

Algorithm 2 MGDIFrNET algorithm for a V-cycle

Require: Finest Grid size N, Coarsest grid size Lc, Set of optimiza-
tion inputs at each level = opT

1: procedure MG(N, Lc, opT, Gpp) > N=grid size

2: Create samples 59 for size N
3 Unpack « and ToL from opT for this level
4: Gnn < TRAINING(Gpp, sd a, oPT) > “smoothing” at this

level using Algorithm 1

5 if N/2 < Lc then

6 Return G,

7: else

8 Gnn < MG(N/2, Lc, opPT, Gup)

9 end if

10: Gnn «— TRAINING(Gpp, S, a, 0PT) > “post-smoothing” at
this level using Algorithm 1

11: Return G,

12: end procedure

We now train the network until convergence (defined by the early
stopping criteria) to proceed to higher resolutions. In the context
of deep learning, these cycles help the network become robust to
different resolutions and can learn the unique mapping at all the
resolutions. Here, we note that this is only true when the network

learning capacity is infinite. Different filters of the convolution
operation learn neighborhood information at different scales of the
multigrid, thus solving the PDE faster.

Different multigrid cycles can be performed using MGDIFFNET:

e V-cycle: The simplest strategy is the V-cycle (see Figure 3). We
first run training of G, at the coarsest level (with resolution
N x N) for y; epochs. Then, we change the input-output grid for
the same problem to N/2 X N/2 keeping the weights and biases
learnt from Level-1. Now, we perform training on this problem
for y2 epochs (usually y2 > y1). We continue this process till the
deepest level (coarsest grid). Now, we go back to the previous level
and let training run for a few epochs to fine-tune. The complete
training algorithm is shown in Algorithm 2 and Figure 4.

e W,F-cycles: The W and F-cycles are performed in a similar man-
ner as the V-cycle, except that the sequence of grids is different
(see Figure 3).

o Half-V cycle: The “half-V cycle”, an additional method available
in MGDI1FFNET, is not common in the numerical analysis litera-
ture. Here, we actually start from a coarse grid (instead of a fine
grid). Now this coarse scale model can serve as an starting point
for higher resolution grids, thus obviating the need to start from
scratch for a higher resolution problem and consequently saving
time and resources. We show examples of this in Section 4.

In this study, we only consider one ‘cycle’ of multigrid. While it
is certainly possible to extend this for several ‘cycles’ of multigrid
and with more variations on which cycle to apply at which stage
of the training, we restrict ourselves to just one cycle where each
step of the cycle involves longer training time for several epochs.
This avoids the problem of moving target (often quoted in rela-
tionship with reinforcement learning) where the distribution (or
the frequencies of information) of data learned keeps changing,
not allowing the network to be properly trained. Further, while
the study can be performed at any arbitrary number of multigrid
levels, we restrict ourselves to a maximum of 4 levels. Further, all
the multigrid prolongation steps are until we reach convergence
(defined using an early-stopping criterion). At the same time, all
the restriction steps are trained for a fixed number of epochs (be-
cause convergence is not necessary at the higher resolutions in the
beginning). Now, we will discuss our distributed data-parallel deep
learning implementation.

Distributed Multigrid Neural Solvers on Megavoxel Domains

Input diffusivity maps

3k o N
S N

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Output solution field

Figure 5: Data-parallel distributed deep-learning: multiple replicas of the model are asynchronously trained by workers, each processing a local

subset of the global mini-batch.

Ng total samples

b

be/p
Iﬂ - [P1 T Pp]

global batch 1 global batch 2 global batch N,

Figure 6: Data splitting across workers in a parallel run: local mini-
batches are guaranteed to always have identical sizes at any given
time, promoting optimal load balance.

3.2 Distributed Deep Learning

One of the most widely used techniques for performing distributed
deep-learning training is the data parallel strategy, in which identi-
cal copies of the model are simultaneously trained by independent
processes that work together to minimize a common objective func-
tion [2]. For this to be possible, the training data samples (and
their corresponding labels in supervised learning) must be equally
split among the workers. Since stochastic optimization-based train-
ing already entails splitting the data into mini-batches, this means
one has to further split the mini-batches into local mini-batches,
which are then asynchronously processed via forward and back-
propagation steps. Local gradients are computed by each worker
and collectively averaged using an all-reduce operation. Once each
worker possesses the global gradient vector, they invoke the opti-
mizer to update their local network parameters, which are now in
sync with every other worker (see Figure 5).

However, we must ensure that results are independent of the
number of workers utilized, an essential tenet of high-performance
computing. To accomplish that, we start by augmenting the dataset
to make the total number of training samples N divisible by the
number of workers p. Then, each global mini-batch of size b is
divided into p equal parts, which become the local mini-batches to
be dispatched to the p workers, as shown in Figure 6. This ensures
that the union of the n™ local mini-batches across all workers will
be identical to the nth (global) mini-batch of the corresponding
single-processor run,

P

\JwmB); = (GMB), (15)

i=0
for all n € [0, Np], where N}, = [N;/bs] is the number of mini-
batches in each training epoch. Module rounding errors during
gradient communication, the above scheme thus guarantees that

‘,/’GPUI cpul
EE
— —i- e
@] “@ E _’ Ucache |
e GPU2 T:; cPU2
E
: BEE
= EE
o ((eche |

MPI

Y

Interconnection network

Figure 7: Process-to-process hybrid distribution paradigm: processes
communicate via MPI and spawn local threads that exploit intra-node
parallelism.

the solution will be independent of the number of workers. It also
follows from the arithmetic that, for any global mini-batch size bs
chosen, the local mini-batches processed by workers at any given
time will have the same size, thus optimizing load balance.

Our parallelization strategy leverages both distributed-memory
MPI-based communication primitives, which handle data transfer
across processes, and shared-memory OpenMP or CUDA-based
multi-threading, which exploits parallelism within a node. This
combination of shared memory and message-passing paradigms
within the same application is known as hybrid programming [11],
and is illustrated in Figure 7. In the specific case of our deep-learning
software, MPI collective all-reduce calls are invoked to handle gra-
dient communication and averaging across workers. They make
use of the ring-allReduce algorithm [44], which has a complexity
of O(Ny, + log(p)), where N,, is the number of model parameters.
Since N,, > p, we expect the communication complexity to be al-
most independent of the cluster size. On the other hand, the engines
we use internally to execute forward and back-propagation can
spawn their own Open-MP or CUDA threads, which communicate
only with other threads within the same MPI process. Since MPI
communication only happens outside critical multi-threaded re-
gions, our parallelization strategy can be said to model the process-
to-process hybrid paradigm. The number of processes launched
per node and the maximum number of threads spawned by each
process will depend on the specs of the cluster and details of the
experiment and are chosen in such a way as to maximize resource
utilization, minimize communication overhead and fulfill memory
requirements.

SC ’21, November 14-19, 2021, St. Louis, MO, USA Balu, et al.
Table 2: Comparison between different multigrid strategies for different resolutions in 2D and 3D.
Dimension | Resolution Strategy Levels | Base Time (s) | MG Time (s) | Base Loss | MG Loss | Speedup
3 1934.305 0.0571 1.56%
V Cycle 7
4 2401.070 0.0570 1.26X
133.861 . 96X
Half-V Cycle 3 3133.86 0.0568 0.96
128 X 128 4 3021.05 3275.405 0.0510 0.0588 0.92%
3 2023.778 0.0569 1.49%
W Cycle
4 2512.113 0.0597 1.20X
F Cycle 4 2578.451 0.0584 1.17X
3 3297.706 0.0210 2.80%
V Cycle
oD 4 3639.291 0.0209 2.54%
Half-V Cycle 3 4585.830 0.0181 2.02%
256 X 256 4 9248.44 4722.950 0.0165 0.0174 1.96x
3 5791.277 0.0174 1.60X
W Cycle
4 5597.503 0.0188 1.65X
F Cycle 4 7401.254 0.0164 1.25X
V Cycle 4 10352.543 0.0058 2.11x
512 % 512 Half-V Cycle 4 21860.50 11282.420 0.0050 0.0053 1.94%
W Cycle 4 10996.353 0.0062 1.99%
F Cycle 4 17409.934 0.0053 1.26X
128 X 128 x 128 | Half-V Cycle 3 42422.50 7025.314 0.0400 0.0400 6.04%
3D 256 X 256 x 256 | Half-V Cycle 4 120000.00 9000.000 0.0200 0.0200 13.33%
512 % 512 X 512 | Half-V Cycle 5 See Rem. 2 30600.000 | See Rem. 2 0.0100 | See Rem. 2

4 Results and Discussion

One of the key outcomes of our experiments was to demonstrate a
practical approach to train MGDIFFNET on domain sizes up to 5123,
We applied our framework to train MGDIFFNET for resolutions
up to 256 on GPU-based HPC clusters using on-demand multi-
GPU virtual machines on Microsoft Azure. To train DiffNet for
resolutions > 256> we used PSC Bridges2 HPC cluster with bare-
metal access to CPU nodes. We first talk about our experiments to
study the multigrid approach and then the scaling studies using
distributed deep learning.

4.1 Multigrid Training

We first sample the set of coefficients w used for generating the
diffusivity maps using eq. 10. We sampled 65536 coefficients using
a quasi-random Sobol sampling. The U-Net architecture used for
all the experiments has a depth of 3 (i.e., a total of 3 convolution
layers and 3 transpose convolution layers). First, a block of con-
volution and batch normalization is applied. This output is saved
for later use using the skip-connection. This intermediate output
is downsampled to a lower resolution for a subsequent block of
convolution, batch normalization layers. This process is repeated
twice. The upsampling starts where the saved outputs of similar
dimensions are concatenated with the upsampling output for creat-
ing the skip-connections followed by a convolution layer. We use
LeakyReLU activation for all the intermediate layers and a Sigmoid

activation for the final layer. The starting filter size is 16, and we
double the number of filters as the depth of the U-Net increases.
For all the studies, we use the Adam optimizer [24] with a learning
rate of 1 x 10~ and the global batch size of 64.

4.1.1 Multigrid Strategies: We first study each multigrid strategy at
different resolutions. In Table 2, we provide the time taken to reach
convergence and the final loss. As our baseline, we perform full
training at the highest resolution of the multigrid to quantify the
performance. The time and the loss value at convergence for this
full training are reported as Base Time and Base Loss. First, we note
that all the strategies at all the resolutions converge around a similar
loss value compared to the Base Loss. Also, at lower resolutions, the
speedup obtained from the multigrid approaches is very marginal,
and for the Half-V cycle, it is worse than the Base training time. At
the same time, the V cycle has the best computational speedup.
The speedup increases with the increase in resolution for each
strategy (except for the F cycle, where the increase is marginal). We
also see that each strategy has a slightly different trend in speedup
with the increase in resolution. To understand this, we plot the %
time spent on each of the levels of resolution in Figure 8. With the
primary assumption that % time spent on lower resolutions is better
than that on higher resolution (based on Figure 2), we conclude
that the Half-V cycle is the best. However, at lower resolutions such
as 128 x 128, the time taken per epoch on the lower resolution is
comparable with the time taken per epoch on higher resolution.

Distributed Multigrid Neural Solvers on Megavoxel Domains

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Table 3: An analysis of cost for solving a 256% problem in a standalone manner and with MGDIFFNET half-V cycle approach. The $/hour value
provided is for a ND40rs_v2 Azure VM (Tesla V100-SXM2 with 8 GPUs per node).

Method | Size | # epoch | Loss value | Time (min) | Cost ($/hour) | Cost ($) | Total cost ($)
32 65 1.0 10 3.67
MG 64 30 0.1 20 22.032 734 55.07
128 20 0.04 70 25.7
256 10 0.02 50 18.36
Standalone | 256 400 0.02 2000 22.032 734.40 734.40
Table 4: Network adaptation studies.
Strategy Base Time (s) | MG Time (s) | Base Loss | MG Loss | Speedup
Half-V Cycle (no network adaptation) 21860.50 12270.44 0.0050 0.0067 1.94%
Half-V Cycle (network adaptation) 36267.75 11803.04 0.0047 0.0052 3.07%
W Cycle V Cycle Half-v Cycle F Cycle =Ll additional layers added are again initialized with random weights.
L However, we observe that within 20-30 mini-batches of update,
the loss (which is expected to rise due to the random weights)
B drops down. Table 4, shows comparisons between with and with-
L4 out adaptation. Note that the base time and base loss for the case

Figure 8: Pie chart for % time spent on training at different resolutions
for each multigrid strategy

This allows for a drastic jump in speedup from 128 to 512. At the
same time, the speedup for the V cycle increased and then reduced.
While the speedup is desired, we want the MGDIFFNET to have
similar performance accuracy compared to the base network. For
all resolutions, Half-V and F cycles perform closer to the Base loss,
whereas the V cycle has the maximum deviation. Combined with
the fact that the Half-V cycle has a much better speedup than the F
cycle, we conclude that the Half-V cycle performs the best.

Table 3 provides evidence of this conclusion by showing the
dollar cost on Microsoft Azure multi-GPU virtual machines. Here,
a 256 problem is trained in two ways: first, a “standalone” training
on a fixed mesh of 2563 size; and second, through a MG half-V
cycle, using a sequence of meshes of sizes 323, 643, 1283 and 256°.
This experiment reaffirms that the MG approach outperforms the
standalone training. The last column provides the total costs, and
we can clearly see that the MG method reduces the computational
cost by more than 10X. In the subsequent experiments, we only
show results on the Half-V cycle MGDIFFNET strategy.

4.1.2 Architectural Adaptation: A direct extension to the proposed
multigrid approach is to adaptively add more weights for perform-
ing better at higher resolutions. This is particularly interesting
when the assumption that the network has infinite learning ca-
pacity is relaxed. As soon as this assumption is relaxed, one can
explore if the network learning at a lower resolution is sufficient
for learning at higher resolutions. To evaluate this question, we
perform an experiment where we add three additional layers (one
convolutional layer and two transpose convolutional layers) and
remove one learned transpose convolutional layer after training
at each coarse resolution and moving to the finer resolution. The

with architectural adaptation accounts for the final network archi-
tecture and an experiment to run full training on that final network
architecture. We note that there is a marginal improvement in the
loss at the same time; we show that there is a 3X improvement in
training time for a very deep U-Net architecture. This ties into the
theme of correlations between U-Net architecture and multigrid
methods mentioned in Alt et al. [1].

4.1.3 Scaling to 3D: We next discuss training models for higher
resolutions in 3D. In Table 2, we show results for 128 X 128 x 128,
256 X 256 X 256, and 512 X 512 X 512 resolutions. Similar trends are
observed for 3D problems. Here, we only show results from half-V
cycle runs and compare with the base standalone training times.
We point out the significant speedup achieved in the case of 1283
(= 6x) and 2563 (~ 13X) resolutions. See Remark 2 for a discussion
on the 512 case. We also show the loss performance plot of our

10 T T
Full 256 ==
Multigrid 32, ==
Multigrid 64;
Multigrid 1287
Multigrid 2567 =
BTN
N
N
N\
» N
0
o
4
S
0.1F ——
.01
0.0 0 50 100 150 200 250 300
Time (mins)

Figure 9: Comparison of performance of base training and multigrid
training for 256 X 256 X 256 resolution. The multigrid strategy used
here is the Half-V cycle.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

multigrid approach in comparison with full training at the same
resolution in Figure 9. We see that the losses are first reduced in
the lower resolutions and then further reduced at a finer resolution
(as anticipated in a multigrid solver).

Remark 2: Although 3D problems as large as 256° can be trained
on GPU nodes, a problem of size 5123 does not fit in the GPU RAM,
and we instead run across multiple CPU nodes, exploiting our
MPI based library. We ran the 5123 problem on 8 CPU nodes of
Bridges-2, where one epoch takes about 6 hours. Thus, solving
this problem standalone would take multiple days. Due to limited
resources, we did not explore this path. That is why we do not
report the standalone training time for 5123 in Table 2. However, by
using the network trained on a 2563 grid to train the 5123 case, we
achieve convergence in just one epoch! We report this total time in
the “MG Time” column (last row). This emphasizes the potential
for multigrid-based deep learning methods, where an extremely
expensive base case can be successfully run at a much lower cost
using multigrid cycles.

4.2 Scaling to Significantly Higher Resolutions

In what follows, we demonstrate the ability to train 3D MGDIFFNET
on much higher resolutions by scaling out on GPU and CPU clusters
with hundreds to thousands of cores. We show that we can achieve
excellent speedups on both cloud and bare-metal infrastructures.

4.2.1 Scaling on a GPU Cluster: The first set of experiments were
performed on a GPU cluster of NDv2-series VMs on Microsoft
Azure, each containing 8 NVIDIA Tesla V100 GPUs with 32GB of
memory per device. The input dataset consisted of 1024 parametric
diffusivity maps of size 256 X 256 X 256, as described by Equation 10.
The training was performed on clusters with as many as 64 nodes
(512 GPUs), using 8 devices per node for p > 8 processes (for p < 8,
certain GPUs were left idle). The local mini-batch size was fixed at
2 since each sample required ~14GB during training, and we used
the SGD-based Adam optimizer [24] (with a learning rate of 1074).

Figure 10 shows the wall-clock time per epoch, as well as the cor-
responding speedup. It demonstrates the ability of our distributed
deep-learning solution to scale virtually linearly to 512 GPUs, re-
ducing the runtime per epoch from 48 minutes to only 6 seconds (a
speedup of 480x). Inference time (i.e., full-field prediction time) on
a single GPU at this resolution was half a second.

4.2.2 Scaling on a CPU Cluster for Significantly High Resolutions:
Despite achieving excellent speedups, training on GPUs is still lim-
ited by their relatively small available memory per device, which
caps the maximum size of the training volumes at 256 X 256 X 256.
To demonstrate the ability of our software to solve problems at even
higher resolutions (without implementing model-parallelism), we
trained DiffNet with diffusivity maps of size 512x512x512 on a clus-
ter of AMD EPYC-7742 CPU nodes, each with 128 cores and 256GB
total RAM. Figure 11 shows epoch times and speedups obtained
on clusters with up to 128 nodes, with one MPI process per node
(using all 128 CPU cores) and two samples per local batch. Once
again, scalability is excellent up to 128 nodes. The peak memory
utilization per node was 230GB, which would have been infeasible
on a cluster of GPUs. The full-field prediction time on the same
machine type was around 20 seconds.

Balu, et al.

E L. T T 7 T 3
Pixt —e— Present 1512
I —— Ideal 256
30 |
T 107 1128
= - H64 17
- I]
132 Qu
E o102} 1% 3
Il F 416 0
'S"U F B 8 (o
g L N 92
& g0l | 4
8 2
+ 1
10°

AR TP
MPI Processes —

Figure 10: Strong scaling results for training a 3D DiffNet using our
distributed deep-learning framework at 256 X 256 X 256 resolution on
a cluster of NVIDIA Tesla V100 cloud GPUs. The labels above the bars
indicate the number of nodes and the number of GPUs per node. Each
epoch consists of 1024 samples.

F T T T T T E

F —e— Present 128

I —— Ideal h
p 10°F | 64
z 12
] 116 =
g 102 E =
Il F 48)
=) . - (5]
g | 1, &
a H 14
= 101 E =

g 12

| 11

10°

T T N T P]
AT,

MPI Processes —

Figure 11: Strong scaling results for training a minibatch of 3D
DiffNet using our (MPI) distributed deep-learning framework at 512 X
512X 512 resolution on a cluster of AMD EPYC-7742 bare-metal nodes
(with 1 MPI process per node). Each epoch consists of 128 samples.

4.3 Comparison with Traditional FEM

We also provide some visualizations and comparisons with tradi-
tional FEM simulations for the same parameters. Here, by “tradi-
tional FEM”, we mean the case where an equation is formed for
each unknown in the discrete domain, and then a matrix-vector
system is solved by numerical linear algebra methods [18, 27]. Ta-
ble 6 shows the visualization of the predictions from the multigrid
trained network for 512x512. An example in 3D is shown in Table 7.
We see the MGDIFrNET predicts the solution field accurately. We
also compare the results obtained by different multigrid strategies
to confirm that the Half-V cycle predictions are the best among
all the strategies. We also show visualization of a few anecdotal
solution fields produced using MGDIFFNET in 2D (Table 5).

Distributed Multigrid Neural Solvers on Megavoxel Domains

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Table 5: Visualization of MGDIFENET predictions and comparison with traditional FEM solutions for 2 anecdotal values of w.

v UMGDIFFNET

UFEM UMGDIFFNET — UFEM

0.8 0.8 0.025
0.000
0.6 0.6
-0.02
0.4 0.4
-0.05
0.2 0.2 ~0.07
© = (0.6681, 1.5354, 0.7644, —2.9709)
0.06
150 0.8 0.04
100 0-6 o2
0.00
0.4
50 -0.02
0.2
-0.04
w = (1.3821, 2.5508, 0.1750, 2.1269)
10 0.10
0.8
8
06 0.05
6)
4 0.4 0.00
2 0.2 -0.05
0.10
1000 0.8 0.8 ‘
800 0.05
0.6 0.6
600 oa o 0.00
_—
400 : :
-0.05
200 0.2 0.2
-0.10

= (0.2838, —2.3550, 2.9574, —1.8963)

Another important comparison is between the time taken for
inference on MGDIFFNET versus the time taken for performing
one “traditional” FEM solve. The FEM simulation takes about 576
seconds for the 512 X 512 X 512 resolution on 2 Stampede2 SKX
nodes (this is the minimum number of nodes required to fit the
FEM problem in memory). But the MGDIFFNET inference, on the
other hand, takes only 20 seconds on 1 Stampede2 SKX node (unlike
training, inference can be performed on a single node). Since the
solutions are valid for a range of PDE parameters, the impact of our
framework in reducing the computational time while performing
inverse design will be substantial. We also note that there is no
need for any data annotation in this framework.

5 Conclusion and Future Work

In this work, we propose a distributed multigrid neural solver for
solving PDEs at large spatial dimensions with efficient use of compu-
tational resources. To this end, we contribute a numerical multigrid-
inspired training scheme for fully convolutional neural networks
and further implement a distributed data-parallel training strategy
to train networks up to a resolution of 512 X 512 X 512 (= 134M
voxels). Our multigrid-based training results show a 6X speedup
over the baseline full training at higher resolutions with negligible
loss in performance. Further, our method scales almost linearly with
minimal communication costs in a distributed environment over
both CPU and GPU clusters. This approach opens up the efficient
training of parametric PDEs for use in Scientific ML applications.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Balu, et al.

Table 6: Visualization of MGDIFFNET predictions with different multigrid strategies. The input » = (0.3105, 1.5386, 0.0932, —1.2442)

Strategy V Cycle W Cycle F Cycle Half-V Cycle
0.8 0.8 0.8 0.8
UMGDIFFNET 0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0.2 0.15
‘ 0.05
L 0.10
0.1 0.1 ' 0.00
UMGDIFrNET — UFEM 0.05
0.0 —0.05
0.0 0.00
-0.10
~0.1 -0.1 —0.05
-0.15

Table 7: Visualization of MGDIFFNET predictions and comparison with traditional FEM solutions for w = (0.3105, 1.5386,0.0932, —1.2442).

v UMGDIFFNET UFEM

Additionally, this approach can be naturally applied to a variety of

high-resolution image-to-image translation tasks.

There are several avenues of future work that follow:

e Scaling beyond megavoxels to gigavoxels. This is currently mainly
limited by the CPU memory, since we estimate a single 10243
solve would require about 2TB of memory on one node. Ex-
tending our approach to allow model-parallel distributed deep
learning could alleviate this issue.

o Elucidating the mathematical connections between the multigrid
approach with stability and convergence of the training.

e Deploying this neural PDE Poisson solver for applications in
topology optimization, flow through porous media, and thermal
transport in composites—all of which are defined by Equation 3.

o Deploying this framework to other PDE’s where having high-
resolution outputs is critical for control (via model predictive
control approaches).

We envision such bidirectional linkages between numerical linear

algebra and scalable solutions of neural networks to significantly

accelerate scientific computing workflows.

0.0

Acknowledgments

This work was partly supported by the ARPA-E DIFFERENTIATE
under grant DE-AR0001215 and National Science Foundation under
grants RII award number(s): 2019574, COALESCE award number(s):
1954556, CM award number(s): 1644441 and CAREER award num-
ber(s): 1750865. This work used the Extreme Science and Engineer-
ing Discovery Environment (XSEDE), which is supported by NSF
grant ACI-1548562 and the Bridges2 system supported by NSF grant
ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). We
also used Microsoft Azure compute resources for performing some
of the GPU performance results shown.

References

[1] T. Alt, P. Peter, J. Weickert, and K. Schrader, “Translating numerical concepts for
pdes into neural architectures,” arXiv preprint arXiv:2103.15419, 2021.

[2] T.Ben-nun and T. Hoefler, “Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis,” arXiv preprint arXiv:1802.09941v2, 2018.

[3] S.Botelho, A. Joshi, B. Khara, S. Sarkar, C. Hegde, S. Adavani, and B. Ganapa-
thysubramanian, “Deep generative models that solve pdes: Distributed computing
for training large data-free models,” arXiv preprint arXiv:2007.12792, 2020.

[4] J. H. Bramble, Multigrid methods. Chapman and Hall/CRC, 2019.

Distributed Multigrid Neural Solvers on Megavoxel Domains

(5]
6]

[7

[

[10]

(1]

[12

[13]

[14]

[15]

[16]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

[32]

W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial. ~SIAM,
2000.

S. Cai, H. Li, F. Zheng, F. Kong, M. Dao, G. E. Karniadakis, and S. Suresh, “Artificial
intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional
analysis of blood flow in physiology and disease,” Proceedings of the National
Academy of Sciences, vol. 118, no. 13, 2021.

F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, and
M. Di Giovanni, “Neurodiffeq: A python package for solving differential equa-
tions with neural networks,” Journal of Open Source Software, vol. 5, no. 46, p.
1931, 2020.

Y. Chen, B. Dong, and J. Xu, “Meta-mgnet: Meta multigrid networks for solving
parameterized partial differential equations,” arXiv preprint arXiv:2010.14088,
2020.

Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro, “Physics-informed neural
networks for inverse problems in nano-optics and metamaterials,” Optics express,
vol. 28, no. 8, pp. 11618-11 633, 2020.

O. Cigek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net:
learning dense volumetric segmentation from sparse annotation,” in Interna-
tional conference on medical image computing and computer-assisted intervention.
Springer, 2016, pp. 424-432.

T. V. T. Duy, K. Yamazaki, K. Ikegami, and S. Oyanagi, “Hybrid mpi-openmp
paradigm on smp clusters: Mpeg-2 encoder and n-body simulation,” arXiv preprint
arXiv:1211.2292, 2012.

T. Elsken, J. H. Metzen, F. Hutter et al, “Neural architecture search: A survey.” J.
Mach. Learn. Res., vol. 20, no. 55, pp. 1-21, 2019.

A. D. Fontanini, U. Vaidya, and B. Ganapathysubramanian, “A methodology for
optimal placement of sensors in enclosed environments: A dynamical systems
approach,” Building and Environment, vol. 100, pp. 145-161, 2016.

W. Hackbusch, Multi-grid methods and applications. Springer Science & Business
Media, 2013, vol. 4.

J. Han, A. Jentzen, and E. Weinan, “Solving high-dimensional partial differential
equations using deep learning,” Proceedings of the National Academy of Sciences,
vol. 115, no. 34, pp. 8505-8510, 2018.

O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Ri-
etmann, J. d. A. Ferrandis, W. Byeon, Z. Fang, and S. Choudhry, “Nvidia
simnet”{TM}: an ai-accelerated multi-physics simulation framework,” arXiv
preprint arXiv:2012.07938, 2020.

R. Huang, R. Li, and Y. Xi, “Learning optimal multigrid smoothers via neural
networks,” arXiv preprint arXiv:2102.12071, 2021.

T.J. Hughes, The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 2012.

S. Karumuri, R. Tripathy, L. Bilionis, and J. Panchal, “Simulator-free solution
of high-dimensional stochastic elliptic partial differential equations using deep
neural networks,” Journal of Computational Physics, vol. 404, p. 109120, 2020.

A. Katrutsa, T. Daulbaev, and 1. Oseledets, “Deep multigrid: learning prolongation
and restriction matrices,” arXiv preprint arXiv:1711.03825, 2017.

T.-W. Ke, M. Maire, and S. X. Yu, “Multigrid neural architectures,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
6665-6673.

E. Kharazmi, Z. Zhang, and G. E. Karniadakis, “hp-VPINNs: Variational physics-
informed neural networks with domain decomposition,” Computer Methods in
Applied Mechanics and Engineering, vol. 374, p. 113547, 2021.

Y. Khoo, J. Lu, and L. Ying, “Solving parametric pde problems with artificial
neural networks,” arXiv preprint arXiv:1707.03351, 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.
Int. Conf. Learning Representations (ICLR), 2015.

L E. Lagaris, A. Likas, and D. L. Fotiadis, “Artificial neural networks for solving
ordinary and partial differential equations,” IEEE transactions on neural networks,
vol. 9, no. 5, pp. 987-1000, 1998.

L. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, “Neural-network methods for
boundary value problems with irregular boundaries,” IEEE Transactions on Neural
Networks, vol. 11, no. 5, pp. 1041-1049, 2000.

M. G. Larson and F. Bengzon, The finite element method: theory, implementation,
and applications. Springer Science & Business Media, 2013, vol. 10.

H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal
of Computational Physics, vol. 91, no. 1, pp. 110-131, 1990.

Y. Liao and P. Ming, “Deep nitsche method: Deep ritz method with essential
boundary conditions,” arXiv preprint arXiv:1912.01309, 2019.

L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson, “Physics-
informed neural networks with hard constraints for inverse design,” arXiv preprint
arXiv:2102.04626, 2021.

L Luz, M. Galun, H. Maron, R. Basri, and L. Yavneh, “Learning algebraic multigrid
using graph neural networks,” in International Conference on Machine Learning.
PMLR, 2020, pp. 6489-6499

A. Malek and R. S. Beidokhti, “Numerical solution for high order differential equa-
tions using a hybrid neural network—optimization method,” Applied Mathematics
and Computation, vol. 183, no. 1, pp. 260-271, 2006.

[33

(34]

(35]

[36

@
=

(38]

[39

[40

[41]

[42

[43]

[44]

[45]

[47

[48

[49

[50

[51

[52

SC ’21, November 14-19, 2021, St. Louis, MO, USA

N. Margenberg, C. Lessig, and T. Richter, “Structure preservation for the deep
neural network multigrid solver,” arXiv preprint arXiv:2012.05290, 2020.

C. Michoski, M. Milosavljevic, T. Oliver, and D. Hatch, “Solving irregular and
data-enriched differential equations using deep neural networks,” arXiv preprint
arXiv:1905.04351, 2019.

A. G. Ozbay, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller, “Poisson cnn: Convo-
lutional neural networks for the solution of the poisson equation with varying
meshes and dirichlet boundary conditions,” arXiv preprint arXiv:1910.08613, 2019.
G. Pang, L. Lu, and G. E. Karniadakis, “fpinns: Fractional physics-informed neural
networks,” SIAM Journal on Scientific Computing, vol. 41, no. 4, pp. A2603-A2626,
2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
2017. [Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ

M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of
nonlinear partial differential equations,” Journal of Computational Physics, vol.
357, pp. 125-141, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations,” Journal of Computational Physics, vol.
378, pp. 686-707, 2019.

R. Ranade, C. Hill, and J. Pathak, “Discretizationnet: A machine-learning based
solver for navier-stokes equations using finite volume discretization,” Computer
Methods in Applied Mechanics and Engineering, vol. 378, p. 113722, 2021.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234-241.

S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, “Data-driven identification of
parametric partial differential equations,” SIAM Journal on Applied Dynamical
Systems, vol. 18, no. 2, pp. 643-660, 2019.

E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia,
X. Zhuang, and T. Rabczuk, “An energy approach to the solution of partial differ-
ential equations in computational mechanics via machine learning: Concepts,
implementation and applications,” Computer Methods in Applied Mechanics and
Engineering, vol. 362, p. 112790, 2020.

A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep learning in
TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving
partial differential equations,” Journal of Computational Physics, vol. 375, pp.
1339-1364, 2018.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating eulerian
fluid simulation with convolutional networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 3424-3433.

R. van der Meer, C. Oosterlee, and A. Borovykh, “Optimally weighted loss func-
tions for solving pdes with neural networks,” arXiv preprint arXiv:2002.06269,
2020.

C.-Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and P. Krahenbuhl, “A multigrid
method for efficiently training video models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 153-162.

L. Yang, D. Zhang, and G. E. Karniadakis, “Physics-informed generative adversar-
ial networks for stochastic differential equations,” arXiv preprint arXiv:1811.02033,
2018.

L. Yang, S. Treichler, T. Kurth, K. Fischer, D. Barajas-Solano, J. Romero, V. Churavy,
A. Tartakovsky, M. Houston, M. Prabhat et al., “Highly-scalable, physics-informed
gans for learning solutions of stochastic pdes,” in 2019 IEEE/ACM Third Workshop
on Deep Learning on Supercomputers (DLS). IEEE, 2019, pp. 1-11.

Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder-decoder networks
for surrogate modeling and uncertainty quantification,” Journal of Computational
Physics, vol. 366, pp. 415-447, 2018.

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quan-
tification without labeled data,” arXiv preprint arXiv:1901.06314, 2019.

https://openreview.net/forum?id=BJJsrmfCZ

SC ’21, November 14-19, 2021, St. Louis, MO, USA

A Artifact Description

Summary of Reported Experiments

We performed the experiments (all experiments are described in
the “Results and Discussions" section of the paper):

(1) Comparison of strategies - these were done on Azure cloud
platform.

(2) Scaling studies were performed for training MGDIFFNET of
256 X 256 X 256 and lower were performing on Azure cloud
platform and studies above 256 X 256 X 256 were performed
on PSC Bridges2.

(3) Solving the PDE using FEM for comparison with MGDIFFNET
results was done on PSC Bridges2 using 1 Regular Memory
node.

Modules loaded on Bridges2 for MGDIFENET experiments:

1) cmake/3.16.1
2) gcc/10.2.0
3) openmpi/4.0.5-gccl10.2.0

Libraries Dependencies
The following dependencies are required to compile the code:

o C/C++ compilers with C++11 standards and OpenMP sup-
port

e MPI implementation (e.g. openmpi, mvapich2)

e Petsc 3.8 or higher

e ZLib compression library (used to write . vtu files in binary
format with compression enabled)

e MKL / LAPACK library

e CMake 2.8 or higher version

e OpenCV 3.4.2

Computing Configuration

Relevant computational hardware details are provided here:

Table 8: Functional specifications of Microsoft Azure and Bridges2
infrastructures used in our experiments.

Specification Microsoft Azure Bridges2
Type Virtual Machine Bare-Metal
CPU Intel Xeon | \p EPYC 7742

Platinum 8168
CPU cores 40 128
Memory (GB) 672 256
GPU Tesla V100 -
GPU Memory (GB) 32 -
No. of GPUs 8 -
Interconnect EDR Infiniband HDR Infiniband
Bandwidth 100 Gb/sec 200 Gb/sec
Topology Fat tree Fat tree

Balu, et al.

Artifact Availability

Software Artifact Availability: Some author-created software arti-
facts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts are
NOT maintained in a public repository or are NOT available under
an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts that
are not created by the authors. Some author-created artifacts are
proprietary.

Author-Created or Modified Artifacts:

Persistent ID: None

Artifact name: MGDiffNet

Citation of artifact: MGDiffNet is a proprietary
— software from an early-stage startup whose
business model is based on software licensing.
Due to this reason, we cannot disclose our
software details.

rert

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We performed the experiments (all experiments are described in
the “Results and Discussions" section of the paper):

(1) Comparison of strategies - these were done on Azure cloud
platform.

(2) Scaling studies were performed for training of 256 x 256 X
256 and lower were performing on Azure cloud platform
and studies above 256 X 256 X 256 were performed on PSC
Bridges2.

(3) Solving the PDE using FEM for comparison with results was
done on PSC Bridges2 using 1 Regular Memory node.

Modules loaded on Bridges2 for experiments:
1) cmake/3.16.1

2) gcc/10.2.0

3) openmpi/4.0.5-gccl10.2.0

Author-Created or Modified Artifacts:

Persistent ID: None

Artifact name: MGDiffNet

Citation of artifact: MGDiffNet is a proprietary

— software from an early-stage startup whose
business model is based on software licensing.
Due to this reason, we cannot disclose our
software details. The data parallel distributed
deep learning library written in C++ and Python to
train CNNs on CPU/GPU based HPC clusters both
on-prem and on cloud. Key features of the library
include a) user defined variational loss
functions to solve PDEs, b) ability to use
multiple resolutions along with transfer learning
between resolutions in a single run, and c)
ability to experiment with different multigrid
approaches like V, W, F, half-V cycle.

L

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Xeon Platinum 8168, AMD EPYC
7V12, NVIDIA Tesla V100

Operating systems and versions: Ubuntu 18.04
Compilers and versions: gec 7.5.0

Applications and versions: OpenCV 3.4.2
Libraries and versions: OpenMPI v3.1.3, HPCX

Key algorithms: Data parallel Distributed Deep Learning

	Abstract
	1 Introduction
	2 Mathematical preliminaries
	2.1 Convolutional Neural Networks (CNNs)
	2.2 DiffNet: Solving PDEs using CNNs
	2.3 Geometric Multigrid approach

	3 Algorithmic Developments
	3.1 Multigrid Approaches
	3.2 Distributed Deep Learning

	4 Results and Discussion
	4.1 Multigrid Training
	4.2 Scaling to Significantly Higher Resolutions
	4.3 Comparison with Traditional FEM

	5 Conclusion and Future Work
	References
	A Artifact Description

