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Abstract

We compare the directions of molecular outflows of 62 low-mass Class 0 and I protostars in nearby (<450 pc) star-
forming regions with the mean orientations of the magnetic fields on 0.05-0.5 pc scales in the dense cores/clumps
where they are embedded. The magnetic field orientations were measured using the JCMT POL-2 data taken by
the BISTRO-1 survey and from the archive. The outflow directions were observed with interferometers in the
literature. The observed distribution of the angles between the outflows and the magnetic fields peaks between 15°
and 35°. After considering projection effects, our results could suggest that the outflows tend to be misaligned with
the magnetic fields by 50° 4+ 15° in three-dimensional space and are less likely (but not ruled out) randomly

3 NAOJ Fellow.
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oriented with respect to the magnetic fields. There is no correlation between the misalignment and the bolometric
temperatures in our sample. In several sources, the small-scale (1000-3000 au) magnetic field is more misaligned
with the outflow than the large-scale magnetic field, suggesting that the small-scale magnetic field has been twisted
by the dynamics. In comparison with turbulent MHD simulations of core formation, our observational results are
more consistent with models in which the energy densities in the magnetic field and the turbulence of the gas are
comparable. Our results also suggest that the misalignment alone cannot sufficiently reduce the efficiency of
magnetic braking to enable formation of the observed number of large Keplerian disks with sizes larger than

30-50 au.

Unified Astronomy Thesaurus concepts: Star formation (1569); Star forming regions (1565); Protostars (1302);

Interstellar magnetic fields (845)

Supporting material: figure sets

1. Introduction

Star-forming regions are magnetized (Crutcher 2012; Planck
Collaboration et al. 2016a). The magnetic field is theoretically
expected to be dynamically important during the star formation
processes (e.g., Galli & Shu 1993; Basu & Mouschovias 1994;
Allen et al. 2003). On large scales, the relative importance of the
magnetic field and the turbulence could affect structure formation
in molecular clouds (McKee & Ostriker 2007; Soler et al. 2013) as
well as the properties of dense cores formed in them (e.g., Burkert
& Bodenheimer 2000; Gammie et al. 2003). Inside dense cores,
the magnetic field could influence the transfer of mass and angular
momentum from large to small scales and subsequently the
formation and evolution of circumstellar disks around protostars
(Li et al. 2014). Therefore, observational studies of magnetic field
structures in comparison with other physical quantities in a large
sample of molecular clouds and dense cores are essential to
understand the role of the magnetic field in star formation (e.g.,
Matthews et al. 2009; Palmeirim et al. 2013; Poidevin et al. 2013;
Koch et al. 2014; Zhang et al. 2014; Planck Collaboration et al.
2016b; Hull & Zhang 2019; Pattle & Fissel 2019; Chen et al.
2020).

Alignment between the magnetic field and rotational axis in
dense cores can be a diagnostic of the importance of the magnetic
field in environments of core formation. Theoretically, if the
magnetic field is dominant, a dense core is expected to have its
rotational axis aligned with it (Mouschovias & Paleologou 1979).
Turbulent magnetohydrodynamic (MHD) simulations of core
formation in converging flows also show that there are more
dense cores with their rotational axes better aligned with the
magnetic fields when initially the magnetic field is dominating
over the turbulence in converging flows (Chen & Ostriker 2018).
In addition, the alignment between the magnetic field and
rotational axis can be an important parameter during the collapse
of dense cores. MHD simulations show that when the magnetic
field is misaligned with the rotational axis in a collapsing dense
core, the efficiency of magnetic braking decreases, and more
angular momentum can be transferred to the vicinity of the central
protostar, resulting in the formation of a larger rotationally
supported disk (Joos et al. 2012; Li et al. 2013; Hirano et al.
2020). Similar effects are also seen in MHD simulations with
turbulence, where the local turbulence in a collapsing core can
cause misalignment between the magnetic field and the rotational
axis (e.g., Gray et al. 2018; Lam et al. 2019). Theoretically, an
outflow is expected to launch along the rotational axis of a star—
disk system (e.g., Blandford & Payne 1982; Pudritz & Norman
1983). The MHD simulations also show that in a collapsing dense
core, the direction of the bipolar outflow on a scale of a few
thousand astronomical units is along the rotational axis of the

dense core, even if this axis is initially misaligned with the
magnetic field (Ciardi & Hennebelle 2010; Hirano et al. 2020).
Thus, observationally, the direction of a bipolar outflow in a
protostellar source can be a proxy for the rotational axis of its natal
dense core, and statistical studies of the alignment between the
magnetic fields and outflows in protostellar sources are crucial to
better understand the formation of dense cores and circumstellar
disks around protostars.

The alignment between the magnetic fields on the core scale
of ~0.1 pc and outflows in low-mass protostars has been studied
with a sample of seven sources using the SHARP polarimeter at
the Caltech Submillimeter Observatory (Davidson et al. 2011;
Chapman et al. 2013). On the assumption that the observed
magnetic field structures trace an hourglass morphology, these
single-dish studies suggest that the magnetic field tends to align
with the outflow direction. In contrast, interferometric studies of
~20-30 low-mass protostars with the Combined Array for
Research in Millimeter-wave Astronomy (CARMA) at spatial
resolutions of ~1000 au show that the magnetic fields in the
protostellar envelopes on a scale of a few thousand astronomical
units are randomly oriented with respect to the outflow directions
(Hull et al. 2013, 2014; Hull & Zhang 2019). Similar studies of
12 sources with the Submillimeter Array (SMA) suggest a
bimodal distribution, where the magnetic fields in protostellar
envelopes are either aligned with or perpendicular to the outflow
directions (Galametz et al. 2018). The results obtained with these
single-dish and interferometric observations seem to be incon-
sistent. However, the sample sizes of the previous single-dish
studies are limited. On the other hand, in contrast with the single-
dish observations, the magnetic field structures on the envelope
scale observed with the interferometers are more likely to be
affected by collapse and rotational motion in the protostellar
envelopes, and possibly do not represent the initial configura-
tions. Therefore, single-dish observations toward a large sample
of protostars to probe their large-scale magnetic fields, which
may still preserve the initial configurations, are needed to
investigate the alignment between the magnetic field and
rotational axis in dense cores.

The James Clerk Maxwell Telescope (JCMT) large program,
B-fields In STar-forming Region Observations (BISTRO; Ward-
Thompson et al. 2017), provides excellent data sets to study the
magnetic field in star-forming regions. The BISTRO program
observes polarized thermal continuum emission from dust at
850 pm and 450 pm using the polarimeter POL-2 (Friberg et al.
2016) for the bolometer SCUBA-2 (Holland et al. 2013). The
first part of the survey, BISTRO-1, observed 16 fields in dense
parts of the Gould Belt star-forming regions and covered a total
area of >110 arcmin” with a total observing time of 224 hr. The
BISTRO-1 observations have been completed. There are two


http://astrothesaurus.org/uat/1569
http://astrothesaurus.org/uat/1565
http://astrothesaurus.org/uat/1302
http://astrothesaurus.org/uat/845

THE ASTROPHYSICAL JOURNAL, 907:33 (21pp), 2021 January 20

on-going follow-up BISTRO surveys, BISTRO-2 to continue the
observations of the Gould Belt regions and to include other
intermediate- and high-mass star-forming regions and BISTRO-
3 to observe regions at different evolutionary stages and different
spatial scales. Each follow-up survey also has a total observing
time of 224 hr and targets 16 fields. A series of studies on the
structures and strengths of the magnetic field and the properties
of the dust grains in several star-forming regions have been
conducted with the BISTRO program (Pattle et al. 2017,
2018, 2019; Kwon et al. 2018; Soam et al. 2018; Coudé€ et al.
2019; Liu et al. 2019; Wang et al. 2019a; Doi et al. 2020). In the
present paper, we study the alignment between the magnetic
fields and outflows in 62 low-mass protostars using BISTRO and
archival POL-2 data, and discuss the observed distribution of the
angles between the magnetic fields and the outflows in the
context of the formation of dense cores and circumstellar disks.

2. Sample

Our sample sources were selected from dense molecular
clouds in nearby low-mass star-forming regions at distances
less than 450 pc observed by the JCMT BISTRO survey
(program ID: M16AL004 and M17BLO011), including Taurus,
Perseus, Ophiuchus, and Serpens Main. A part of the BISTRO
results of these regions has been published by Kwon et al.
(2018), Soam et al. (2018), Coudé et al. (2019), Liu et al.
(2019), Pattle et al. (2019), and Doi et al. (2020), and the
remaining data of regions in Taurus and Serpens Main will be
presented in detail in the forthcoming papers by C. Eswaraiah
et al. (2020, in preparation), W. Kwon et al. (2020, in
preparation), and Y.-W. Tang et al. (2020, in preparation). The
Auriga star-forming region was also observed by the BISTRO
survey (Ngoc et al. 2020). Since no young protostars are
associated with clear bipolar outflows in the Auriga BISTRO
field, these data are not included here. In addition, we searched
the JCMT data archive for the POL-2 data of other nearby
molecular clouds and Bok globules, and we retrieved the data
taken with the regular projects M17AP067 (PI: P. Koch),
M17AP073 (PI: W. Kwon), M17BP058 (PI: W. Kwon), and
M17BP070 (PI: A. Soam). Some of these data have been
published by Soam et al. (2019) and Yen et al. (2019). Then,
from these star-forming regions, we selected low-mass Class 0
and I protostars whose molecular outflows have been imaged
with interferometric observations at spatial resolutions of a few
hundred astronomical units and show more or less well defined
axes or cavity walls, so that the directions of their outflows
could be accurately determined.** These selection criteria led to
a sample of 62 Class 0 and I protostars. Table 1 lists all the
sample sources with their outflow directions obtained from the
literature and their basic properties. This represents the
complete sample of young protostars that have been observed
to host clear bipolar outflows in the BISTRO-1 survey fields of
the low-mass star-forming regions. The distributions of the
bolometric temperature (7y,,) and luminosity (L) in our
sample are presented in Figure 1. We note that there are more
than a factor of two more Class 0 and I protostars in these star-
forming regions than in those included here (Dunham et al.
2008; Enoch et al. 2008; Evans et al. 2009), but there are no

4 We note that this selection criterion may bias our sample and exclude pole-
on outflows. Nevertheless, we have tested this effect in our simulations of
distributions of misalignment angles (Section 4.2) by excluding pairs of vectors
with one of them aligned with the line of sight within a certain degree. We
confirmed that the simulated distributions are not affected.

Yen et al.

suitable measurements of their outflow directions with inter-
ferometric observations of these additional sources. Thus, they
are not included in this work.

3. POL-2 Data and Analysis

In this work, we used the POL-2 data at 850 pm. The angular
resolution of the JCMT POL-2 observations at 850 ym is 14”6,
corresponding to spatial scales from 2000 to 6000 au at the
distances to our sample protostars. We reduced all the POL-2
data with the software Starlink (Currie et al. 2014) and the task
pol2map of the version updated on 2019 November 6. We
followed the standard procedure of the data reduction as
described in Pattle et al. (2017, 2019). The instrumental
polarization model of “JAN2018” was adopted.*” The data
were first reduced with the default pixel size of 4”. Then every
3 x 3 pixels in the final Stokes /QU maps were binned to have
a pixel size of 12", which is comparable to the angular
resolution, to extract polarization detections. Our detection
criteria of the polarized emission are signal-to-noise ratios of
Stokes I and polarized intensities both higher than three and
polarization percentage lower than 20%, which is typically the
maximum polarization percentage observed in star-forming
regions by Planck (Planck Collaboration et al. 2015). Thus, the
uncertainty in the polarization orientation of each detection is
always <9°. The detected polarization orientations were rotated
by 90° to infer the orientations of the magnetic field.

To measure the mean orientations of the magnetic fields in
the dense cores or clumps®® associated with the protostars in
our sample, we first applied the two-dimensional version of the
core/clump identification algorithm Clumpfind (Williams et al.
1994) on the Stokes I maps with a pixel size of 4” and
separated the molecular clouds into individual dense cores or
clumps. The results are shown in Section 4 and Appendix A.
Then, we calculated the mean Stokes Q and U of the
polarization detections within the area of each dense core or
clump identified by Clumpfind, and computed the mean
magnetic field orientation from the mean Stokes Q and U.
For the isolated dense cores in our sample-L1521F, L1527,
HH212, HH 111, and B335-we simply included all the
polarization detections in the observed fields to compute their
mean Stokes Q and U and the resulting mean magnetic field
orientations. Although L1157 is also an isolated dense core,
there is extended emission along the northwest—southeast
direction detected by the JCMT POL-2 observations, and this
extended component is likely related to the powerful outflow in
L1157 (Bachiller et al. 2001; Tafalla et al. 2015) and is distinct
from the central compact core (Figure 12). Thus, for L1157,
we only used the detections within the central core identified
by Clumpfind to compute its mean magnetic field orientation.
The measured mean orientations of the magnetic field on a
~0.1 pc scale in all the protostars in our sample are listed in
Table 1.

45 The default instrumental polarization model used by pol2map was changed
from “JAN2018” to “Aug2019” in 2020 April. The difference at 850 pm
between the two models is expected to be less than the noise (https://www.
eaobservatory.org/jemt/2020/04 /change-to-the-default-ip-model-used-by-
pol2map/).

46 Single-dish polarimetric observations of molecular clouds and Bok globules
show that the polarized intensity generally increases with increasing Stokes /
intensity, even though the polarization percentage decreases with it (e.g., Wolf
et al. 2003; Coudé et al. 2019). Thus, the polarized emission is expected to be
proportional to density and is more sensitive to dense regions along the line of
sight.
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Table 1
Sample List
Name Region Distance R.A. (J2000) Decl. (J2000) Tool Lo Outflow Mean B Field Reference
(pc) (K) (L) Orientation Orientation

L1448 IRS 2 L1448 288 03:25:22.41 +30:45:13.3 43 3.6 118° 138° + 2° 1,2
L1448 IRS 2E L1448 288 03:25:25.66 +30:44:56.7 15 0.05 165° 9° + 2° 1,2
L1448 IRS 3Bc* L1448 288 03:25:35.67 +30:45:34.1 57 <83 128° 169° + 1° 1,2
L1448 IRS 3Ba™” L1448 288 03:25:36.38 +30:45:14.7 57 <83 122° 17° + 3° 1,2
L1448 IRS 3Bb*" L1448 288 03:25:36.50 +30:45:21.9 57 <8.3 38° 17° 4+ 3° 1,2
L1448-mm” L1448 288 03:25:38.88 +30:44:05.3 47 8.4 162° 21° + 30° 1,2
L1448C-S° L1448 288 03:25:39.14 +30:43:57.9 163 0.68 43° 21° + 30° 1,2
Per-emb 17 L1455 279 03:27:39.10 +30:13:03.1 39 4.2 10° 65° + 4° 1,2
L1455 IRS 4 L1455 279 03:27:43.28 +30:12:28.8 65 1.4 115° 80° + 3° 1,2
Per-emb 3 NGC 1333 299 03:29:00.58 +31:12:00.2 32 0.5 96° 53° + 6° 1,2
NGC 13333 IRAS 4A NGC 1333 299 03:29:10.54 +31:13:30.9 29 7 35° 60° + 1° 1,2
NGC 1333 IRAS 4B1*" NGC 1333 299 03:29:12.02 +31:13:08.0 28 <4 0° 71° + 1° 1,2
NGC 1333 IRAS 4B2*" NGC 1333 299 03:29:12.84 +31:13:06.9 28 <4 90° 71° + 1° 1,2
NGC 1333 IRAS 7° NGC 1333 299 03:29:11.26 +31:18:31.1 59 2.8 150° 92° + 1° 1,2
Per-emb 21° NGC 1333 299 03:29:10.67 +31:18:20.2 45 6.9 48° 92° £ ° 1,2
NGC 1333 IRAS 2A1™° NGC 1333 299 03:28:55.57 +31:14:37.0 69 <19 14° 79° + 2° 1,2
NGC 1333 IRAS 2A2*° NGC 1333 299 03:28:55.56 +31:14:36.4 69 <19 104° 79° + 2° 1,2
NGC 1333 IRAS 1a™° NGC 1333 299 03:28:37.09 +31:13:30.8 103 <9.1 123° 83° + 8° 1,2
NGC 1333 IRAS 1b*° NGC 1333 299 03:28:37.22 +31:13:31.8 103 <9.1 169° 83° + 8° 1,2
NGC 1333 IRAS 2B NGC 1333 299 03:28:57.37 +31:14:15.8 106 5.3 24° 55° + 4° 1,2
SVS 13A° NGC 1333 299 03:29:03.77 +31:16:03.8 188 32.5 130° 164° £+ 1° 1,2
RNO15-FIR" NGC 1333 299 03:29:04.1 +31:14:46.2 36 0.4 145° 164° + 1° 1,2
Per-emb 37 NGC 1333 299 03:29:19.0 +31:23:14.3 22 0.5 37° 131° + 3° 1,2
Per-emb 49 NGC 1333 299 03:29:12.95 +31:18:14.3 239 1.1 25° 92° + 1° 1,2
Per-emb 50 NGC 1333 299 03:29:07.77 +31:21:57.1 128 23.2 104° 175° £ 1° 1,2
Per-emb 58 NGC 1333 299 03:28:58.42 +31:22:17.5 322 0.63 167° 119° + 2° 1,2
SVS 13B° NGC 1333 299 03:29:03.08 +31:15:51.7 20 1 160° 164° + 1° 1,2
SVS 13C° NGC 1333 299 03:29:01.97 +31:15:38.1 21 1.5 8° 164° + 1° 1,2
Per-emb 6 Perseus B1 301 03:33:14.4 +31:07:10.9 52 0.3 60° 144° 4+ 2° 1,2
Per-emb 10 Perseus B1 301 03:33:16.45 +31:06:52.5 30 0.6 51° 156° £ 1° 1,2
Bl-a Perseus B1 301 03:33:16.66 +31:07:55.2 132 1.5 101° 146° + 1° 1,2
Bl-c Perseus Bl 301 03:33:17.85 +31:09:32 48 3.7 131° 95° 4+ 1° 1,2
B1-b° Perseus B1 301 03:33:20.96 +31:07:23.8 157 0.17 30° 157° + 1° 1,2
B1-bN® Perseus B1 301 03:33:21.21 +31:07:43.7 14 0.32 90° 157° + 1° 1,2
B1-bSP Perseus B1 301 03:33:21.36 +31:07:26.4 17 0.70 112° 157° + 1° 1,2
HH 211-mms IC 348 295 03:43:56.81 +32:00:50.2 27 1.8 116° 152° + 1° 1,2
IC 348 MMSa™" IC 348 295 03:43:57.07 +32:03:04.8 30 <1.5 167° 153° + 2° 1,2
IC 348 MMSb™® IC 348 295 03:43:57.69 +32:03:10.0 30 <15 36° 153° 4+ 2° 1,2
Per-emb 16" IC 348 295 03:43:50.98 +32:03:24.1 39 0.4 10° 113° + 3° 1,2
Per-emb 28° IC 348 295 03:43:51.01 +32:03:08.0 45 0.7 112° 113° + 3° 1,2
Per-emb 62 IC 348 295 03:44:12.98 +32:01:35.4 378 1.8 24° 145° + 9° 1,2
IRAS 04169+2702 B211/B213 140 04:19:58.46 +27:09:56.9 133 0.77 64° 102° + 6° 3,4
IRAS 0416642706 B211/B213 140 04:19:42.50 +27:13:36.0 139 0.3 30° 47° + 3° 5,6
L1521F LI1521F 140 04:28:38.9 +26:51:35.0 20 0.03 70° 21° £+ 6° 7,8
L1527 L1527 140 04:39:53.88 +26:03:09.7 44 1.9 92° 82° £+ 11° 9, 10
HH 212 HH 212 414 05:43:51.41 —01:02:53.1 41 9 23° 35° £+ 4° 11, 12
HH 111 HH 111 414 05:51:46.25 +02:48:29.7 69 20 97° 67° + 2° 11, 13
GSS 30 IRS 3 Ophiuchus A 138 16:26:21.72 —24:22:50.9 86 33 20° 79° + 1° 14, 15
VLA 1623A Ophiuchus A 138 16:26:26.39 —24:24:30.7 10 1.10 125° 75° + 1° 16, 17
Elias 32 Ophiuchus B 138 16:27:28.4 —24:27:21.7 321 5 91° 151° + 3° 14, 18
Elias 33 Ophiuchus B 138 16:27:30.2 —24:27:43.9 460 12 129° 153° 4+ 2° 14, 18
S68NP Serpens Main 436 18:29:48.09 +01:16:43.3 30 14 131° 85° + 1° 19
S68Ncl® Serpens Main 436 18:29:48.72 +01:16:55.6 <40 <2.1 109° 85° + 1° 19
S68Nb1° Serpens Main 436 18:29:49.51 +01:17:10.9 <60 <0.9 68° 85° + 1° 19
Serpens SMM1b™° Serpens Main 436 18:29:49.67 +01:15:21.2 39 <109 165° 98° + 1° 9, 20
Serpens SMM1a™" Serpens Main 436 18:29:49.8 +01:15:20.3 39 <109 135° 98° £+ 1° 9, 20
Serpens SMM1d*® Serpens Main 436 18:29:49.99 +01:15:23.0 39 <109 80° 98° + 1° 9, 20
Serpens SMM4B™*" Serpens Main 436 18:29:56.53 +01:13:11.5 <30 <2.6 76° 48° + 3° 19
Serpens SMM4A™" Serpens Main 436 18:29:56.72 +01:13:15.6 <30 <2.6 14° 48° £ 3° 19
Serpens SMM11° Serpens Main 436 18:30:00.39 +01:11:44.6 <29 <0.9 76° 94° + 1° 19



THE ASTROPHYSICAL JOURNAL, 907:33 (21pp), 2021 January 20 Yen et al.

Table 1
(Continued)
Name Region Distance R.A. (J2000) Decl. (J2000) Tool Lo Outflow Mean B Field Reference
(pc) (K) (Le) Orientation Orientation
B335 B335 165 19:37:00.90 +07:34:09.5 36 1.4 99° 111° £ 2° 9, 10
L1157 L1157 352 20:39:06.27 +68:02:15.7 42 7 163° 159° £ 1° 21, 22

Notes. The outflow orientations and the mean magnetic field orientations on 0.05-0.5 pc scales are presented as position angles increasing from north to east.
Typically, the uncertainties in the outflow orientations are ~10° (Stephens et al. 2017). The uncertainties in the mean magnetic field orientations are calculated with
the error propagation of the uncertainties of the individual polarization detections. If the blue- and redshifted lobes of a bipolar outflow are not symmetric, we adopt the
position angle of the mean axis of the two lobes as the outflow orientation. For each protostar, the first reference is for the bolometric temperature (7},;) and luminosity
(Lyo1), and the second is for the outflow orientation. For HH 212 and HH 111, L, is from the second reference. If only one reference is listed, both T}, and outflow
orientation are from that reference. The distances to Perseus, Ophiuchus, and Serpens are adopted from Ortiz-Ledn et al. (2018a, 2018b), the distance to Orion from
Menten et al. (2007), the distance to Taurus and Cepheus from Torres et al. (2009) and Zucker et al. (2019), and the distance to B335 from Watson (2020).
 This source is in a multiple system, where individual protostars are not resolved in infrared observations. Thus, the same T} and Ly, are assigned to it and its
companions. The assigned Ly, is the total luminosity of the system and should be considered as an upper limit for the individual sources.

® In this source, there are multiple sample protostars in the same dense core or clump.

References. (1) Tobin et al. (2016) and references therein; (2) Stephens et al. (2017); (3) Young et al. (2003); (4) Takakuwa et al. (2018); (5) Chen et al. (1995); (6)
Wang et al. (2019b); (7) Hsieh et al. (2017); (8) Takahashi et al. (2013); (9) Kristensen et al. (2012); (10) Hull et al. (2014); (11) Tafalla et al. (2013); (12) Lee et al.
(2017b); (13) Lee et al. (2016); (14) van Kempen et al. (2009); (15) Friesen et al. (2018); (16) Murillo et al. (2013); (17) Santangelo et al. (2015); (18) Kamazaki et al.
(2019); (19) Aso et al. (2019); (20) Tychoniec et al. (2019); (21) Motte & André (2001); (22) Maury et al. (2019).
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Figure 1. Distributions of bolometric temperature (7Ty,,; left) and luminosity (Ly,; right) in our sample. A vertical dashed line denotes Ty, of 70 K. If Ty and Ly, of a
sample source only have upper limits, the upper limits are plotted. Details are given in Table 1.

In our calculations of the mean magnetic field orientations, between their outflows and the mean magnetic field. They are
each polarization detection was weighted equally. We have considered as independent measurements in the following
also computed the mean orientations by weighting the analysis.
individual detections with their polarized intensities or signal-
to-noise ratios. The differences between the mean orientations 4. Results
calculated with the different weightings are typically less than
5°, and are less than 9° in all the sources, except for L1448 mm 4.1. Magnetic Structures in Example Sources
and L1443C-S, where the differences are 19°. The mean Figure 2 presents the results of our core/clump identification in
magnetic field orientations in L1448 mm and L1448C-S also the Perseus B1 region as an example. The contours delineate the
have larger uncertainties (30°) than all the other sources. The area of the dense cores or clumps associated with our sample
comparisons of the mean magnetic field orientations computed protostars identified by Clumpfind. The locations of the sample
with different weightings are listed in Appendix B. The protostars and their outflow directions are also plotted. The results
computed mean orientation is not sensitive to the exact area or of the core/clump identification for the remaining sample
boundary of a dense core identified by Clumpfind, as discussed protostars are shown in Appendix A. The detected magnetic field
below. In addition, we note that in some dense cores or clumps orientations in individual dense cores and clumps associated with
there could be multiple protostars, which could have different our sample protostars are shown in Figures 3 and 4 and
outflow directions. In this case, we consider all the protostars in Appendix C. In most of the dense cores and clumps on scales of
this dense core or clump to have the same mean magnetic field 0.05-0.5pc in our sample, the magnetic fields tend to show
orientation, but we report different degrees of misalignment uniform structures, so representative mean orientations can be
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Figure 2. Stokes / intensity map (gray scale; in units of Jy beam ") obtained with
the JCMT POL-2 observations and the results of the core/clump identification
using Clumpfind in the Perseus B1 region. Contours delineate the area of identified
dense cores or clumps associated with our sample protostars. Yellow dots show the
locations of our sample protostars, and blue and red arrows represent the
orientations of their blue- and redshifted outflow lobes.

derived. Figure 3 shows the maps of the detected magnetic field
segments in Bl-a, NGC 1333 IRAS 4B, and NGC 1333 IRAS 7
as examples. The distributions of the magnetic field orientations
inferred from the individual polarization detections in these
protostellar sources are clustered and peak close to the derived
mean orientations of the magnetic fields in their dense cores
(middle panels). In addition, there is no significant dependence of
the magnetic field orientations on the radial distances of the
individual detections from the positions of the protostars (right
panels). Thus, our results show that the magnetic field orientations
do not change significantly as a function of position within these
dense cores, although there are a few sources showing broader
distributions of the magnetic field orientations in the dense cores,
such as L1448 IRS 3Ba,b, L1448-mm (L1448C-S), HH 211-mms,
L1527, and Serpens SMM4A (Appendix C).

We note that in a few sources, the magnetic field orientations at
larger distances of >6000-10,000au from the protostars are
different from those closer to them. In Figure 4, we present the
results for GSS 30IRS 3, B1-bN, and VLA 1623A as examples.
In GSS 30 IRS 3, the magnetic field segments at distances larger
than 6000 au show different orientations from those at smaller
distances, but the number of these segments is relatively small. As
a result, the mean magnetic field orientation in GSS 301RS 3 is
not affected by those detections at larger distances. The other
source, B1-bN, shows a similar trend in which the magnetic field
orientations change by ~40° at distances larger than 10,000 au,
and those polarization detections at the larger distances also do not
affect the computed mean orientation significantly. VLA 1623A is
an extreme case in our sample. The magnetic field orientations in
VLA 1623A clearly change as a function of distance to the
protostar. In VLA 1623A, the magnetic field close to the protostar
within a radius of 6000 au is more misaligned with the outflow,
and the magnetic field becomes more aligned with the outflow as
the distance to the protostar increases. Nevertheless, the number of
sample sources showing clear distance dependence is small (<5)
compared with the total sample size (Appendix C). We have
confirmed that only including the polarization detections at
distances less than 6000 au or 10,000 au from the protostars has
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little impact on the final statistics, and does not affect our
discussions and conclusions.

4.2. Distribution of the Misalignments

We computed the misalignment angle between the outflow
orientation and the mean orientation of the magnetic field in the
dense core or clump for each sample protostar. The misalign-
ment angle is defined to be between 0° and 90°. Figure 5
presents the distribution of the misalignment angles, where the
bin size is 10°. The distribution peaks at misalignment angles
between 15° and 35°, and there are fewer protostars with their
magnetic fields perfectly aligned with or perpendicular to the
outflows. The fraction of our sample sources having misalign-
ment angles larger than 45° is 40% (25/62) and that larger than
70° is 13% (8/62). To investigate whether there is any potential
bias in our results due to source properties and spatial
resolutions, we compared the misalignment angles with the
sizes, total fluxes, mean intensities, and mean polarization
percentages of the dense cores as well as the distances to the
sources, and found there is no dependence of the misalignment
angles on these parameters (Appendix D).

Due to projection effects, two misaligned vectors in three-
dimensional (3D) space have a higher probability of appearing
more aligned on the plane of the sky. Thus, to study the intrinsic
distribution of the misalignment in 3D space, we generated mock
samples of pairs of vectors assuming different probability
distributions of the 3D misalignment. Then, we randomly
defined a line-of-sight direction and projected these pairs of
vectors on the assumed plane of the sky to compare with the
observations. We assumed three different probability distribu-
tions of the 3D misalignment: (1) two vectors are randomly
oriented with respect to each other, (2) the misalignment
between two vectors has uniform probability from 0° to 90°, and
(3) the probability distribution of the misalignment is a Gaussian
function. The probability distributions of the 3D misalignment
for these scenarios are shown in Figure 6(a). In the case of two
randomly oriented vectors, there is a higher probability of having
an orthogonal configuration in 3D space. Figure 6(b) presents
the cumulative distributions of the 3D misalignment. Then
we projected these distributions onto the plane of the sky
(Figure 6(c)).

If two vectors are randomly oriented with respect to each other
in 3D space (red dashed curves in Figure 6), the distribution of the
projected misalignment angles is flat (when projected onto the
plane of the sky), which is different from the observed
distribution. We performed a Kolmogorov—Smirnov (K-S) test
on these mock and observed samples. The probability that the two
are drawn from the same distribution is 20%. For the mock
sample with a uniform probability distribution of the 3D
misalignment (blue dotted curves in Figure 6), after the projection,
the distribution of the misalignment is not uniform, and there are
more sources showing smaller misalignment angles. The K-S test
on these mock and observed samples suggests that the probability
that the two are drawn from the same distribution is <1%. For the
mock samples with the Gaussian probability distribution of the 3D
misalignment, we generated several different samples by varying
the center 6, and dispersion &y of the Gaussian probability
distributions. Then, we projected these distributions of the 3D
misalignments and performed the K-S tests. We found that the
probability of the mock and observed samples being drawn from
the same distribution is higher than 90% when 6, is close to 50°
and & is close to 15° (green dashed—dotted curves in Figure 6).
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Figure 3. Magnetic field orientations in B1-a (upper row), NGC 1333 IRAS 4B (middle row), and NGC 1333 IRAS 7 (lower row; including Per-emb 21 and 49)
observed by JCMT POL-2. Bl-a is located in the Perseus B1 region (Figure 2). NGC 1333 IRAS 4B and NGC 1333 IRAS 7 are located in the NGC 1333 region in
Perseus (Figure 10). Left panels show the Stokes / maps (gray scale) of the dense cores, where the sample protostars are embedded, and green contours delineate the
area of the dense cores identified by Clumpfind. Yellow dots show the locations of the protostars, and blue and red arrows represent the orientations of their blue- and
redshifted outflows. Black horizontal segments denote the spatial scale of 0.02 pc (or ~4000 au). Middle panels present the distributions of the position angles of the
individual magnetic field orientations detected with the JCMT POL-2 observations. Right panels present the distributions of the position angles of the magnetic field
orientations as a function of distance from the protostars. If multiple protostars are present in one core, the distances between the magnetic field orientations and the
protostar closest to the Stokes / intensity peak are calculated. In the middle and right panels, black dashed lines denote the mean magnetic field orientations computed
from the averaged Stokes Q and U emission in the area of the dense cores, and red solid and dashed—dotted (if there are multiple outflows) lines show the position
angles of the outflows. The names of the protostars are labeled in the order from western to eastern sources above the middle panel in each row.
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Figure 4. Same as Figure 3, but for GSS 30 IRS 3 (top row), BI1-bN (middle row), and VLA 1623A (bottom row).

Therefore, our results show that the 3D misalignment angles
between the outflows and magnetic fields in our sample sources
are not uniformly distributed. Our results could suggest that the
outflows tend to be misaligned with the mean magnetic field
orientations in the associated dense cores or clumps by 50° + 15°

and are less likely randomly oriented with respect to the magnetic
fields in 3D space. Nevertheless, our results do not rule out the
possibility of random orientations of the outflows and the
magnetic fields. A similar trend that outflows may have preferred
orientations with respect to the magnetic fields has also been
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Figure 5. Distribution of the misalignment angles between the outflow
orientations and the mean magnetic field orientations in the dense cores and
clumps (thick step curve). The gray area represents the 1o uncertainty of the
distribution, assuming that there is a 10° uncertainty in each measurement of
the misalignment. We note that the total number count is conserved when
interpreting the uncertainty of the distribution. If the number count in one bin
decreases, the number counts in nearby bins increase.

suggested in the high-mass star-forming region W43-MM1 (Arce
et al. 2020), although the possibility of random orientations of
outflows and magnetic fields is also not ruled out in that study.

4.3. Dependence of the Misalignments on Ty,; and Spatial
Scale

Figure 7(a) compares the misalignment angles with the
bolometric temperatures (7},,) of our sample protostars. Ty, can
be an evolutionary indicator (e.g., Chen et al. 1995), although it
also depends on the inclination and structures of the central disk
and inner envelope in a protostellar source (Young & Evans 2005;
Crapsi et al. 2008). Our results show that there is no clear
dependence of the misalignment on the evolution as measured by
Tvo. For any given range of Ty, there is a wide range of
misalignment angles. The correlation coefficient between Ty, and
the misalignment angles is computed to be 0.1. Nevertheless, we
note that the Class 0 and I sources may have different distributions
of the misalignments. The misalignment angles in the Class I
sources are clustered in a smaller range from 20° to 60°
(Figure 7(b)). However, in our sample, the number of Class I
sources is smaller than the number of Class 0 sources by a factor
of three. A more uniform sample is needed to examine any
possible difference in the distributions of the misalignments
between the Class 0 and I sources.

We also compared the misalignments on small and large scales
(Figure 8). For each protostar, we computed the small-scale
misalignment from the single polarization detection closest to the
position of the protostar. Considering the resolution of the JCMT
POL-2 observations of 14", the magnetic field orientation inferred
from the detection closest to the protostar could represent the
averaged magnetic field structure in the protostellar envelopes on a
scale of 1000-3000 au at the distances to our sample protostars.
This spatial scale is also comparable to those probed by
interferometric polarimetric observations with CARMA and
SMA (e.g., Hull et al. 2013, 2014; Galametz et al. 2018). As
shown in previous studies that compare single-dish and interfero-
metric results (e.g., Hull et al. 2014; Yen et al. 2019; Doi et al.
2020), single-dish measurements at stellar positions can generally
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present the mean orientations of magnetic field on small scales
observed by interferometers. In 17 of our sample sources, the mean
magnetic field orientations on a 1000 au scale were also measured
with the CARMA, SMA, and/or Atacama Large Millimeter/
submillimeter Array (ALMA) observations (Hull et al. 2014;
Galametz et al. 2018; Sadavoy et al. 2019). We compared our
JCMT POL-2 and those interferometric results. Our measured
small-scale misalignments are indeed correlated with the interfero-
metric measurements (Appendix E).

In Figure 8, most of the data points are scattered around the
diagonal dashed line, suggesting that in most cases the difference
in the magnetic field orientations on the large and small scales is
approximately 10°-20° or less. The orientations of the large- and
small-scale magnetic fields in 48% (30/62) of the sample
sources are consistent within 10°, and those in 78% (47/62)
within 20°. The comparison between the large-scale misalign-
ments observed by JCMT and the small-scale misalignments
observed by the interferometers also shows the same trend as
above, i.e., that the difference between large- and small-scale
magnetic fields is mostly 10°-20° (Appendix E). In addition, in
Figure 8 there are several data points distributed in the upper left
half of the plot, but only a few in the lower right half. In 11
(18%) of our sample protostars, the misalignment angles on the
small scale are more than 20° larger than those on the large scale,
and only four protostars (6%) show the opposite. Thus, our
results also suggest that the degrees of misalignment on the small
scale tend to remain the same or become larger than those on the
large scale in our sample.

5. Discussion
5.1. Comparison with Interferometric Results

The CARMA observations of ~20-30 low-mass protostars
show that the magnetic fields in the protostellar envelopes on a
scale of a few hundred to a few thousand astronomical units are
randomly oriented with respect to the outflows (Hull et al.
2013, 2014). The SMA observations of 12 protostars suggested a
bimodal distribution of the misalignment angles, where the
magnetic fields in protostellar envelopes are either aligned with
or perpendicular to the outflows (Galametz et al. 2018). Our JCMT
POL-2 results show a number distribution of the misalignment
angles different from the random or bimodal distributions. In these
JCMT POL-2 data of 62 protostars, more than half of the sample
sources have their magnetic fields misaligned with the outflows by
15°-45° on the plane of the sky. The different number distributions
of misalignment found by the JCMT POL-2 and interferometric
observations could be due to the different spatial scales probed by
these observations. The large-scale magnetic fields observed with
JCMT might have still preserved the initial morphologies. On the
other hand, as the infalling and rotational velocities increase with
decreasing radii in the protostellar sources, the small-scale
magnetic fields could be shaped by the gas motions, as suggested
by the interferometric studies (Hull et al. 2014; Galametz et al.
2018). In addition, several interferometric observations at high
angular resolutions, which well resolved the magnetic field
structures in the protostellar envelopes on a scale of hundreds of
astronomical units, revealed tangled, pinched, and/or wrapped
magnetic fields (Girart et al. 2006; Stephens et al. 2013; Rao et al.
2014; Hull et al. 2017, 2017, 2020; Cox et al. 2018; Maury et al.
2018; Sadavoy et al. 2018, 2019; Kwon et al. 2019; Le Gouellec
et al. 2019; Lee et al. 2019; Yen et al. 2019, 2020; Ko et al. 2020).
Our JCMT POL-2 results also show that in 11 of our sample
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Figure 6. (a) Distributions of the misalignment angles in 3D space in our mock samples. (b) Cumulative distributions of the 3D misalignment angles in our mock
samples. (c) Distributions of the misalignment angles projected onto the plane of the sky in our mock samples in comparison with the observed distribution. (d)
Cumulative distributions of the projected misalignment angles in our mock samples in comparison with the observations. Blue dotted and green dashed—dotted curves
show the cases where the probability distribution of the 3D misalignment is uniform and a Gaussian function, respectively. This Gaussian function has a center at 50°
and a lo dispersion of 15°. Red dashed curves show the case where two vectors are randomly oriented with respect to each other in 3D space. The observed
distributions are shown by solid black step curves. The bin size in (a) and (c) is 10°. The step size of the observed cumulative distribution in (d) is 5°.

sources the magnetic field orientations inferred from the detections
closest to the protostars are more misaligned with the outflows than
the magnetic field measured on larger scales, and there are only
four sources showing the opposite trend. These results demonstrate
the changes in the magnetic field structures from the large to small
scales, which are possibly due to the dynamics of collapsing and
rotating dense cores.

5.2. Implications for Core Formation

Given the assumption that the outflow directions trace the
directions of the angular momenta of the dense cores in our
sample sources’” (e.g., Blandford & Payne 1982; Pudritz &
Norman 1983; Ciardi & Hennebelle 2010; Hirano et al. 2020),
our JCMT POL-2 results could suggest that the angular
momenta of the dense cores tend to be misaligned with the
magnetic fields by 50° + 15° if the distribution of the angles
between the magnetic fields and the outflows in 3D space is a

47 We note that in numerical simulations with turbulence, rotation in dense
cores could be nonuniform (e.g., Dib et al. 2010; Zhang et al. 2018; Verliat
et al. 2020). In this case, the outflow direction may not represent the direction
of the net angular momentum of an entire dense core but is related to the
angular momentum of the material that has been accreted to form the central
star—disk system.
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Gaussian function, although we do not rule out the possibility
that the outflows are randomly oriented with respect to the
magnetic fields (Section 4.2). In addition, several dense cores
in our sample harbor multiple protostars with their outflows
oriented in different directions, which could hint at nonuniform
rotation in these dense cores. In the classical picture of core
formation without consideration of turbulence, the angular
momentum is expected to align with the magnetic field because
the efficiency of magnetic braking is higher when the angular
momentum and the magnetic field are perpendicular (e.g.,
Mouschovias & Paleologou 1979). Our results do not support
this classical picture.

Properties of the magnetic field and angular momentum of
dense cores formed in magnetized and turbulent molecular
clouds have been often studied with numerical simulations
(e.g., Burkert & Bodenheimer 2000; Gammie et al. 2003; Li
et al. 2004; Dib et al. 2010; Chen & Ostriker 2014, 2015; Lee
et al. 2017a; Kuznetsova et al. 2020). Chen & Ostriker (2018)
compared the distributions of the misalignment between the
angular momenta and the magnetic fields in the dense cores
formed in their 3D turbulent MHD simulations of converging
flows with different degrees of the magnetization and
turbulence. Their simulations can be roughly classified into
three groups: dominant magnetic field (M5 and B20), dominant



THE ASTROPHYSICAL JOURNAL, 907:33 (21pp), 2021 January 20

T T T
90_(a) E . : + _|
| 2 I _
/580 . ; ; :
g0 s el * . 7
> : :
o 60 LN ; B
=3 T E ! .
o 50 ‘o I . Y =
) |
g 40— { §o L } —
£ LT .
5 30 i : .
S . . . « ii .
2 20f RETLINRS ; ; -
10F A2 } -
. [] |
Or } I _
1 n n n n n - 1
10 100
Toor (K)
T T T T T T T T
1017(b) —Class 0
o ----Class |
87 —
- 7k _
C
= L
S 6r N
5 s .
=z 4,7
3 IR ! =
2+ === |
! |
1+ e
I
O | 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Misalignment between B field and outflow (deg)

Figure 7. (a) Angles between the outflow orientations and the mean
orientations of the large-scale magnetic field in the dense cores and clumps
as a function of bolometric temperature (7o) of our sample protostars. A
vertical dashed line denotes Ty, of 70 K, which has been adopted to classify
Class 0 and I protostars (Chen et al. 1995). Error bars represent the
uncertainties in the mean magnetic field orientations from the error propagation
of the uncertainties of the individual polarization detections. For several
sources, the error bars are smaller than the symbol size. There is an additional
uncertainty in the misalignment angles due to the uncertainty in the outflow
orientations, which is typically 10°. If T, of a protostar in our sample only has
an upper limit (Table 1), then that upper limit is plotted as a left-facing triangle.
(b) Distributions of the misalignment angles of the Class O (blue step curve)
and I (red dashed step curve) protostars in our sample.

turbulence (B5S and M20), and moderate magnetic field and
turbulence (M10B10), where the labels in the parentheses are
those adopted in Chen & Ostriker (2018) to represent different
simulations. Figure 9(a) presents the distributions of the 3D
misalignment angles between the magnetic fields and the
angular momenta in the dense cores in these simulations. In the
simulations, the dense cores may not have uniform rotation and
magnetic field structures. These misalignment angles are the
angles between the mean magnetic field orientations and
directions of the net angular momentum of the simulated dense
cores. In the simulations with dominant turbulence (B5 and
M?20), the distributions peak at large misalignment angles of
50°=70°. In contrast, the simulations with the dominant
magnetic field (M5 and B20) show flatter distributions of the
misalignment angles without a dominant peak. The distribution
of the misalignment angles in the simulation with the moderate
magnetic field and turbulence (M10B10) follows this trend. It
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Figure 8. Comparison of the misalignment between the outflows and the
magnetic field orientations on two different scales. The vertical axis shows the
angles between the outflows and the small-scale (1000-3000 au) magnetic
fields, and the horizontal axis shows the angles between the outflows and the
large-scale (0.05-0.5 pc or 10*-10° au) magnetic fields. Two dotted lines
denote a difference in angle of 420°. Horizontal error bars represent the
uncertainties in the mean magnetic field orientations from the error propagation
of the uncertainties of the individual polarization detections. For several
sources, the horizontal error bars are smaller than the symbol size. Vertical
error bars are the uncertainties in the polarization angles of the detections
closest to the protostars.

has a peak at a misalignment angle of 30° on top of a flat
distribution. As pointed out by Chen & Ostriker (2018), the
misalignment angle between the magnetic field and the angular
momentum tends to increase as turbulence becomes more
dominant. This trend is also seen in other simulations (e.g.,
Joos et al. 2013). Our observational results suggest that the
distribution of the misalignment between the magnetic fields
and the outflows on a 0.05-0.5 pc scale is not flat (Figure 6).
This is different from the distributions in the simulations with
dominant magnetic field (B20 and MS5). In addition, our
observational results could suggest a predominantly large
number of protostars with their magnetic fields misaligned with
the outflows by 50° 4+ 15° on a 0.05-0.5pc scale. This
observed distribution is more similar to those from the
simulations M10B10 and BS5, which also peak at misalignment
angles of 30°-60°, but differs from that of the simulation with
the strongest turbulence (M20). In the most turbulent
simulation (M20), there is a larger fraction of cores (~45%)
with misalignment angles larger than 60° compared to the
observations (~25%). Therefore, the comparison between our
observational results and these numerical simulations suggests
that the magnetic field is unlikely dominant during the core
formation, and our results also hint at significant turbulence in
the environment where these dense cores form.

The distributions presented in Figure 9(a) are the misalign-
ment angles measured in 3D space. To make a more direct
comparison with the observational data, we projected these
angles on an assumed plane of the sky, similar to the analysis in
Section 4.2. We repeated this process 50,000 times. Each time
we randomly selected a direction of the line of sight, and
computed the number distributions of the projected misalign-
ment angles. All the misalignment angles of individual dense
cores in the simulations were treated independently, and we did
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Figure 9. (a) Distributions and (b) cumulative distributions of the misalignment angles between the magnetic fields and the angular momenta in the simulated dense
cores in 3D space (Chen & Ostriker 2018). Different lines with different colors show the distributions from different simulations (see Section 5.2). Red solid and
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onto the plane of the sky. In (c) and (d), the black step curves show the observed distributions of the misalignment angles in our sample sources. The bin size in (a) and

(c) is 10°. The step size of the observed cumulative distribution in (d) is 5°.

not consider any possible correlations between the directions of
the magnetic fields or angular momenta of different cores,
although they formed in the same molecular clouds. Never-
theless, this simplification is appropriate because our sample
protostars are located in several different molecular clouds.
Finally, we computed number counts for different misalign-
ment angles from these 50,000 iterations. The distributions of
the misalignment angles of these simulated dense cores
projected onto the plane of the sky are plotted in Figure 9(c),
and the cumulative distributions are plotted in Figure 9(d).
The most turbulent simulation (M20), which has a distribution
of the 3D misalignment skewed toward larger angles, shows a flat
distribution after the projection, and this is different from the
observed distribution (Figure 9(c)). In contrast, the simulations
with dominant magnetic field (M5 and B20), which have flatter
distributions of the 3D misalignment angles, show distributions of
the misalignment skewed toward smaller angles and peaking at
<20° after the projection. The simulation B5, where turbulence
dominates over the magnetic field, also shows a similar distribution
after the projection, because there is a significant fraction of dense
cores with well aligned magnetic fields and angular momenta in
this simulation (Figure 9(a)). Compared to the observations, these
three simulations have more sources showing projected misalign-
ment angles smaller than 20°. Among these five simulations, the
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distribution of the projected misalignment angles from M10B10 is
the one most similar to that observed. The K-S test suggests a
probability of 85% that the observed distribution and the
distribution in M10B10 are drawn from the same distribution,
while for all the other models, the possibilities are below 30%
(27% for B20, 3% for M5, 2% for BS, and 16% for M20).
Nevertheless, we note that the numbers of dense cores in these
simulations (55 in B20, 32 in M5, 43 in B5, and 28 in M20 and
M10B10) may not be large enough to unveil underlying
distributions of the misalignment in the simulated environments.
Therefore, this comparison with the simulations only qualitatively
demonstrates that to reproduce the observed distribution of the
misalignment, there are likely only a few protostellar sources
having very small or large misalignment angles, and a dominant
fraction of sources have intermediate misalignment angles, like
~30° in the case of M10B10. Overall, the observed distribution is
more like the one in the simulation with the moderate magnetic
field and turbulence (M10B10), and deviates more from those
from the simulations with a dominant magnetic field or dominant
turbulence (B20, M5, B5, and M20), but we do not rule out the
scenarios of dominant magnetic field or turbulence in the
environments of core formation from the comparison with these
simulations.
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5.3. Implication for Disk Formation

Ideal MHD simulations of a nonturbulent, rotating, and
collapsing dense core with its magnetic field aligned with the
rotational axis show that magnetic braking is very efficient to
transfer the angular momentum of collapsing material outward
and suppress the formation of a Keplerian disk larger than
10 au around the central protostar (e.g., Allen et al. 2003;
Mellon & Li 2008). This is the so-called “magnetic-braking
catastrophe”. Misalignment between the magnetic field and
rotational axis in a dense core has been proposed to be a
mechanism to reduce the efficiency of magnetic braking and to
enable formation of a large Keplerian disk with a size of tens of
astronomical units (e.g., Joos et al. 2012; Krumholz et al.
2013).

Keplerian disks with sizes larger than tens of astronomical
units have often been observed around protostars (Williams &
Cieza 2011). In the ALMA survey of the Lupus star-forming
regions (Ansdell et al. 2018), 95 Class II sources were
observed, 71 of them were detected in the 1.3 mm continuum,
and 32 disks were resolved in the continuum. The resolutions
of these observations are 072-0"3, corresponding to ~40 au,
so these observations are able to resolve Keplerian disks with
sizes of tens of astronomical units. The line emission in the
disks in a subset of the Lupus sample is bright, and the
Keplerian rotation is indeed detected (e.g., Ansdell et al. 2018;
Yen et al. 2018). Thus, the fraction of resolved Keplerian disks
in the Lupus star-forming regions is 34% (32/95) of the full
sample and 45% (32/71) of the detected sources. Similar
surveys have also been conducted toward the p Ophiuchus star-
forming regions at similar spatial resolutions of ~30 au (Cieza
et al. 2019; Williams et al. 2019). Cieza et al. (2019) presented
observational results for 21 Class I protostars, 41 protostars
with flat spectra, and 120 Class II protostars. The disks around
12, 16, and 31 of these Class I, flat-spectrum, and Class II
protostars were resolved in the 1.3 mm continuum, corresp-
onding to fractions of resolved Keplerian disks of 57%, 39%,
and 26%, respectively. In the Orion star-forming regions, an
ALMA survey found that 36% (153/421) of the Class 0, I, and
flat-spectrum protostars have disk radii larger than 50 au in the
continuum emission (46% for Class 0, 38% for Class I, and
27% for flat-spectrum; Tobin et al. 2020). Therefore, these
ALMA surveys suggest that the fractions of large Keplerian
disks with sizes larger than 30-50au around Class 0-II
protostars range from approximately 30% to 60%.

These fractions should be considered as lower limits. This is
because these are shallow surveys with integration times of one
or a few minutes per source, and hence faint large disks and
large disks with steep intensity profiles may not be detected or
resolved. In addition, the disk radii tend to be larger in the line
emission than in the continuum (Ansdell et al. 2018; Yen et al.
2018), but these shallow surveys are not sensitive enough to
detect line emission in most of the targeted disks. We note that
here we only consider large disks with sizes of tens of
astronomical units, and the fraction of protostars surrounded by
a disk is much higher (e.g., Haisch et al. 2001; Williams &
Cieza 2011). Whether the mechanism of the misalignment is
able to explain the observed numbers of large Keplerian disks
has been discussed in the literature assuming random alignment
between the magnetic field and the rotational axis in the natal
dense cores (see, e.g., Krumholz et al. 2013; Li et al. 2013).
Here we revisit this question with our new constraint on the
distribution of the misalignment angles and the observed
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number fractions of large Keplerian disks from the recent
ALMA surveys.

The effects of the misalignment between the magnetic field
and the rotational axis on disk formation have been studied
with numerical simulations with ideal MHD conditions (Joos
et al. 2012; Li et al. 2013), which exclude other possible
mechanisms to reduce the efficiency of magnetic braking.
These simulations show that when the median observed
strength of the magnetic field of a mass-to-flux ratio*® of two
to three is adopted (Crutcher 2012), large Keplerian disks with
sizes of tens of astronomical units only form if the initial
magnetic field is almost perpendicular to the rotational axis.
Our observational results show that fewer than 5% of protostars
have projected misalignment angles larger than 80°. Even if we
consider projection effects, based on our inferred Gaussian
distributions of the 3D misalignment angles or the distribution
in the numerical simulations M10B10 (the one most similar to
our observational results; Section 5.2), the fractions of
protostars having misalignment angles larger than 80° are
estimated to be lower than 10%-20% (Figure 9). These
numbers are approximately two to three times smaller than the
lower limits of the observed fractions of large Keplerian disks
with sizes larger than 30-50 au. We note that these MHD
simulations may not be able to resolve formation of small
Keplerian disks with sizes of <10 au. In our discussion of the
observed fractions of the Keplerian disks, we only considered
large Keplerian disks with sizes of tens of astronomical units.
Therefore, with the typical mass-to-flux ratio of two to three,
the misalignment between the magnetic field and the rotational
axis of a dense core cannot be the primary mechanism to enable
the formation of a large Keplerian disk.

On the other hand, Crutcher et al. (2010) suggest that the
probability distribution of the mass-to-flux ratios in dense cores
could be uniform with a minimum ratio of one. Joos et al.
(2012) show that if the initial mass-to-flux ratios are larger than
five, large Keplerian disks form when the misalignment angles
are larger than 70°, and if the initial mass-to-flux ratios are
larger than 17, large Keplerian disks always form regardless of
the misalignment angles. Simulations with different initial
density and velocity distributions by Li et al. (2013) show that
large Keplerian disks form when the initial mass-to-flux ratios
are larger than 10 and the misalignment angles are larger than
45°. Following discussions in Krumholz et al. (2013), we
estimate the expected number fraction of large Keplerian disks

(faisk) as

Jaix = H (G -10) x fang(>70°)

+ A/00-17) x fang(>45°) + A >17), (1)

where £,(5-10), f,(10-17), and f,(>17) are the fractions of
sources having mass-to-flux ratios of 5-10, 10-17, and >17,
respectively, and f,,,(>70°) and f,,,(>45°) are the fractions of
sources having misalignment angles larger than 70° and 45°,
respectively. With a uniform distribution of the mass-to-flux
ratio and our observed distributions of misalignment angles, the
expected number fraction of large Keplerian disks is estimated
to be ~10%, which is more than a factor of three lower than the
observed number fraction. If we also consider the parameters of
mass-to-flux ratios of 3-5 and misalignment angles of 20°—45°

*8 Mass-to-flux ratio is defined as L, where @ is the magnetic flux and
G is the gravitational constant (Nakano & Nakamura 1978).



THE ASTROPHYSICAL JOURNAL, 907:33 (21pp), 2021 January 20

that form sub-Keplerian disks with flat rotational profiles,
which are supported by both rotation and magnetic pressure, in
the MHD simulations by Joos et al. (2012), the expected
number fraction increases to ~20%, but this fraction is still
lower than the observed value. These estimated expected
number fractions are similar to the minimal possibility
estimated by Krumholz et al. (2013), but are lower than their
maximum possibility because Krumholz et al. (2013) include
the parameters with which the simulations form sub-Keplerian
disks or no disks in their estimation. On the other hand,
observationally, large disks around protostars are often found
to be Keplerian (e.g., Piétu et al. 2007; Simon et al. 2017).
Thus, those cases of sub-Keplerian disks in the simulations
may not represent observed disks. In addition, our observed
distribution of the misalignment suggests a lower fraction of
sources with large misalignments compared to the random
distribution.

In summary, the numerical simulations suggest that in the
limit of ideal MHD, the mass-to-flux ratio needs to be larger
than 5-10 together with a misalignment angle between the
magnetic field and the rotational axis larger than 45° to form a
Keplerian disk with a size of tens of astronomical units (Joos
et al. 2012; Li et al. 2013). Observationally, the fraction of
protostars having misalignment angles larger than 45° is likely
~50% (Section 4), and the probability of a dense core with a
mass-to-flux ratio larger than 5-10 is 10%—20% (Crutcher et al.
2010). Therefore, with the misalignment alone, the expected
fraction of large Keplerian disks with sizes of tens of
astronomical units would be <10%—-20%, a factor of two to
three lower than the lower limits estimated from the
observations. The combination of the observations and the
MHD simulations suggests that the misalignment is unlikely a
dominant mechanism to reduce the efficiency of magnetic
braking and to enable formation of the large number of
observed Keplerian disks with sizes larger than 30-50 au.
Nevertheless, our results do not exclude the possibility that the
misalignment could still reduce the efficiency of magnetic
braking and prompt disk formation in individual sources, such
as the case in HH 211 (Lee et al. 2019), but the number of
sources with sufficiently large misalignment angles to have
significant effects is small in our sample. In contrast,
protostellar sources with well aligned magnetic fields and
outflows can also exhibit significant rotational motion on a
1000 au scale, such as L1448 IRS 2 (Yen et al. 2015; Kwon
et al. 2019; Gaudel et al. 2020). Thus, overall, the misalignment
is unlikely a primary mechanism, and other mechanisms, such
as nonideal MHD effects, could play a more important role in
disk formation and growth (Tsukamoto et al. 2017; Zhao et al.
2016, 2018; Masson et al. 2016; Matsumoto et al. 2017; Lam
et al. 2019; Wurster et al. 2019; Wurster & Bate 2019).

6. Summary

We measured the mean orientations of the magnetic fields in
the dense cores on scales of 0.05-0.5 pc associated with 62
Class 0 and I protostars using the JCMT BISTRO-1 and
archival POL-2 data. We compared the mean magnetic field
orientations with the orientations of the outflows launched from
those protostars. The main results are summarized below.

1. The observed distribution of the misalignment between
the magnetic field and the outflow on the plane of the sky
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is not flat, but rather peaks at 15°-35°. There are 23%
(14/62) of the sample sources having the misalignment
on the plane of the sky smaller than 20° and only 13%
(8/62) larger than 70°. We have compared the measured
misalignment angles with the sizes, total fluxes, mean
intensities, and mean polarization percentages of the
sample dense cores and clumps as well as the distances to
the sample sources. The measured misalignment angles
do not depend on these source properties and the spatial
resolutions. Thus, we expect that there is no bias in the
observed distribution of the misalignment introduced by
the source properties or the nonuniform spatial resolu-
tions in the sample.

. After considering projection effects, the K-S test suggests

that the observed distribution of the misalignment is
different from a uniform distribution, and is also less
likely (20% probability) a random distribution of outflow
and magnetic field orientations. If the distribution of the
misalignment in 3D space is assumed to be a Gaussian
function, the K-S tests suggest that the probability of
most (68%) of the sample sources having misalignment
angles of 50° + 15° between the magnetic field and the
outflow in the 3D space is higher than 90%.

. There is no significant correlation between the misalign-

ment angles and bolometric temperatures of the proto-
stars. For any given range of the bolometric temperatures,
there is a wide range of the misalignment between the
magnetic fields and the outflows in our sample. Thus,
there is no clear sign of time evolution of the
misalignment angles.

. The observed distribution of the misalignment is different

from the results obtained with the CARMA and SMA
observations, which suggest random or bimodal distribu-
tions of the misalignment. The difference is most likely
due to different spatial scales probed by the JCMT POL-2
and interferometric observations. The magnetic field on a
0.05-0.5 pc scale observed with the JCMT might have
preserved the initial morphology, while the magnetic field
in the protostellar envelopes on scales from hundreds to
thousands of astronomical units observed with the
interferometers can be already shaped by the infalling
and rotational motions in the envelopes. As a matter of
fact, the JCMT POL-2 observations, when limited to the
vicinity of the protostar, show that the magnetic field
orientations become more misaligned with the outflows
than the large-scale magnetic field in several sample
sources. Thus, these results suggest changes in the
magnetic field structures from the dense cores to the
inner protostellar envelopes.

. Given the assumption that the directions of the outflows

trace the directions of the angular momenta of the dense
cores in our sample sources, we compared the observed
distribution of the misalignment with the turbulent MHD
simulations of core formation in converging flows. The
observed distribution is more similar to that in the
simulations with moderate turbulence and magnetic field,
where there are more dense cores with misalignment
angles of 30°-40° between the magnetic field and the
rotational axis. The simulations with a dominant magn-
etic field show flat distributions of the misalignment
angles between the magnetic fields and rotational axes of
dense cores, while the most turbulent simulation has a
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high fraction (>45%) of cores having misalignment
angles larger than 60°. The distributions of the misalign-
ments in these simulations are different from our
observational results. Therefore, our results could suggest
that in the environment of the core formation, the energy
density in the magnetic field is comparable to that in the
turbulent velocity field of the gas, but the comparisons
with these simulations do not have sufficient statistical
significance to rule out the scenarios of dominant
magnetic field or turbulence.

6. Misalignment between the magnetic field and rotational
axis in a dense core has been proposed to be a mechanism
to reduce the efficiency of magnetic braking and enable
the formation of a large Keplerian disk with a size of tens
of astronomical units around a protostar. MHD simula-
tions show that when the mass-to-flux ratio is larger than
5-10 and the misalignment angle between the magnetic
field and rotational axis is larger than 45° in a dense core,
a large Keplerian disk with a size of tens of astronomical
units can form even in the ideal MHD limit. Based on our
observed distribution of the misalignment between the
magnetic field and rotational axis in our sample and
the assumption of a uniform probability distribution of
the mass-to-flux ratios, the expected number fraction of
protostars surrounded by a large Keplerian disk with a
size of tens of astronomical units is <10%-20%. This is a
factor of two to three lower than the number fractions
(>30%—-60%) of large disks with sizes larger than
30-50 au around protostars in nearby star-forming
regions observed with the recent ALMA surveys.
Consequently, our results suggest that the misalignment
is not the primary mechanism to reduce the efficiency of
magnetic braking and to enable formation of the observed
number of large Keplerian disks with sizes larger than
30-50 au.
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Appendix A
Identification of Core and Clumps

Figure 10 presents the Stokes I maps and the area of
individual cores and clumps identified using Clumpfind.
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in our sample. The name of the region is labeled in the upper right or left corner in each panel.
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Appendix B
Mean Magnetic Field Orientations

Table 2 shows the mean magnetic field orientations
computed without weighting and by weighting the individual
polarization detections with their polarized intensities, signal-
to-noise ratios, and Stokes [ intensities. The differences
between the mean orientations computed without weighting
and with weighting by the polarized intensity and the signal-to-
noise ratio are typically less than 5°, and are less than 9° in all
the sources, except for L1448 mm and L.1448C-S. The mean
orientations computed with weighting by the Stokes [ intensity
tend to show larger differences. This is because the dense cores
typically exhibit high intensity contrast between the center and
outer regions, and the resultant mean orientations are more
biased by the central detections when the weighting by the
Stokes / intensity is applied.

Table 2
Sample List
Name By nw By py Bysn By,
L1448 IRS 2 138° £ 2° 136° £ 2° 137° £ 2° 129° £ 2°
L1448 IRS 2E 9° +2° 10° £ 2° 8° + 2° 8° +2°
L1448 IRS 3Bc 169° £ 1° 168° £ 1° 168° £ 1° 167° £ 2°
L1448 IRS 3Ba 17° + 3° 26° + 3° 19° + 3° 37° £ 3°
L1448 IRS 3Bb 17° £ 3° 26° £ 3° 19° £ 3° 37° £ 3°
L1448-mm 21° + 31° 40° 4+ 17° 30° + 30° 47° £+ 16°
L1448C-S 21° £ 31° 40° 4+ 17° 30° + 30° 47° £+ 16°
Per-emb 17 65° + 4° 64° + 4° 64° + 4° 70° £ 5°
L1455 IRS 4 80° + 3° 81° + 3° 75° + 3° 84° + 3°
Per-emb 3 53° £+ 6° 55° + 6° 55° + 6° 53° £+ 6°
NGC 1333 60° £ 1° 60° £ 1° 60° £ 1° 60° £ 1°
IRAS 4A
NGC 1333 71° + 1° 68° + 1° 67° + 1° 70° + 1°
IRAS 4B1
NGC 1333 71° + 1° 68° + 1° 67° + 1° 70° + 1°
IRAS 4B2
NGC 1333 92° + 1° 93° + 1° 93° + 1° 95° + 1°
IRAS 7
Per-emb 21 92° + 1° 93° + 1° 93° + 1° 95° + 1°
NGC 1333 79° + 2° 74° £+ 1° 74° £+ 1° 74° £+ 1°
IRAS 2A1
NGC 1333 79° £ 2° 74° £+ 1° 74° £+ 1° 74° £+ 1°
IRAS 2A2
NGC 1333 83° 4+ 8° 79° + 8° 81° + 8° 84° + 5°
IRAS la
NGC 1333 83° + §° 79° + 8° 81° + 8° 84° + 5°
IRAS 1b
NGC 1333 55° + 4° 57° + 4° 58° + 4° 69° + 3°
IRAS 2B
SVS 13A 164° £+ 1° 163° £+ 1° 163° £+ 1° 163° £ 1°
RNO15-FIR 164° + 1° 163° + 1° 163° + 1° 163° + 1°
Per-emb 37 131° £ 3° 132° + 3° 131° £ 3° 127° £+ 4°
Per-emb 49 92° + 1° 93° + 1° 93° 4+ 1° 95° + 1°
Per-emb 50 175° £ 1° 174° £ 1° 174° £+ 1° 171° £+ 1°
Per-emb 58 119° + 2° 117° 4+ 2° 117° 4+ 2° 120° £ 2°
SVSI13B 164° + 1° 163° £ 1° 163° £ 1° 163° £ 1°
SVS 13C 164° + 1° 163° + 1° 163° + 1° 163° + 1°
Per-emb 6 144° £ 2° 143° £ 2° 143° £ 2° 147° £ 2°
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Table 2
(Continued)
Name Bynw By pi By sn By,
Per-emb 10 156° + 1° 153° £ 1° 153° £ 1° 153° £ 1°
Bl-a 146° + 1° 148° + 1° 147° + 1° 146° + 1°
Bl-c 95° £+ 1° 100° £ 1° 101° £+ 1° 100° £ 1°
Bl-b 157° £ 1° 157° £ 1° 156° £ 1° 153° £ 2°
B1-bN 157° £+ 2° 155° £ 1° 155° £ 1° 149° + 2°
B1-bS 157° + 1° 157° + 1° 156° + 1° 153° + 2°
HH 211-mms 152° £ 1° 155° + 1° 156° + 1° 154° £+ 1°
IC 348 MMSa 153° 4+ 2° 153° + 2° 152° + 2° 154° + 2°
IC 348 MMSb 153° £ 2° 153° £ 2° 152° £ 2° 154° 4 2°
Per-emb 16 113° + 3° 113° + 3° 113° + 3° 113° + 4°
Per-emb 28 113° £ 3° 113° £ 3° 113° £ 3° 113° £ 4°
Per-emb 62 145° 4+ 9° 145° + 8° 145° + 9° 145° + 9°
IRAS 102° + 6° 104° + 4° 104° £ 5° 104° £ 5°
04169+2702
IRAS 47° £ 3° 47° £ 3° 47° £+ 3° 47° £+ 4°
04166+2706
L1521F 21° £ 6° 19° £ 5° 18° £ 5° 26° + 5°
L1527 82° 4+ 12° 81° + 10° 83° + 10° 40° + 6°
HH 212 35° + 4° 34° + 3° 32° + 4° 35° + 3°
HH 111 67° + 2° 66° + 2° 65° + 2° 62° + 2°
GSS 30IRS3 79° £+ 1° 80° £ 1° 80° £ 1° 80° + 1°
VLA 1623A 75° £ 1° 70° + 1° 71° + 1° 60° + 1°
Elias 32 151° + 3° 145° £ 2° 142° + 2° 154° + 3°
Elias 33 153° 4+ 2° 152° + 2° 151° + 2° 151° + 1°
S68N 85° £ 1° 83° £ 1° 83° £+ 1° 83° 4+ 1°
S68Ncl 85° + 1° 83° £+ 1° 83° + 1° 83° + 1°
S68Nb1 85° + 1° 83° + 1° 83° £ 1° 83° £+ 1°
Serpens 98° + 1° 100° + 1° 98° + 1° 114° + 1°
SMM1b
Serpens SMM1a 98° £+ 1° 100° £ 1° 98° +1° 114° £ 1°
Serpens 98° + 1° 100° + 1° 98° + 1° 114° + 1°
SMM1d
Serpens 48° + 3° 41° £ 2° 39° + 2° 51° £ 3°
SMM4B
Serpens 48° + 3° 41° £ 2° 39° £ 2° 51° + 3°
SMM4A
Serpens 94° + 1° 94° + 1° 93° 4+ 1° 94° + 1°
SMMI11
B335 111° + 2° 110° + 2° 111° + 2° 104° + 3°
L1157 159° £+ 1° 157° £ 1° 156° £+ 1° 157° £ 1°

Note. By nw, Bo.pi, Bosn, and By are the mean magnetic field orientations of
the dense cores or clumps computed from the mean Stokes Q and U without
any weighting and with weighting by the polarized intensity, signal-to-noise
ratio, and Stokes [/ intensity of the individual polarization detections,
respectively. The uncertainties in the mean magnetic field orientations are
calculated with the error propagation of the uncertainties of the individual
polarization detections.

Appendix C
Number and Radial Distributions of Magnetic Field
Orientations

Figures 11 and 12 present close-ups of the Stokes I maps,
number distributions of the detected magnetic field orienta-
tions, and their radial dependences for all the sample sources
expect for those presented in Figures 3 and 4.
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20 b
L1448 IRS 2
5 T T T L T T T T ‘ T
|
7 °f 1 |
5 A Al 1 & 150} % T
& § F-e--8------]
- ) I ~
ﬁ E 3 | g e o L4
5] B 1 s}
F -20 1 3 | 5 100} hd 1
b ! kE
g 2F | 1 )
z | o
s - | 2 or ]
1F 1 1 2}
! ° o®
| | | 0 1 1 L ot 1 1 1 1 1 1 |
20 0 -20 0 50 100 150 0 2 4 6 8 10 12
RA offset (arcsec) B field orientations (deg) Distance (10% ou)

Figure 12. Same as Figures 3 and 4, but left panels only present the magnetic orientations (small orange segments) detected in the 40” x 40" regions (dashed open
squares) around the sample protostars as well as the mean orientations of the magnetic field (long thick orange segments) in the individual dense cores/clumps. The
complete magnetic field structures in these sources will be presented separately and discussed in detail in the forthcoming papers by the BISTRO team. Middle and
right panels still present the number distributions of all the magnetic field orientations detected in the dense cores and clumps.

(The complete figure set (16 images) is available.)

Appendix D
Dependences of Misalignment on Source Properties

Figure 13 compares the measured misalignment angles with
the sizes, total fluxes, mean intensities, and mean polarization
percentages of the dense cores and the distances to the sources.
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The total flux and mean intensity are expected to be
proportional to the total mass and mean column density of a
dense core, respectively. These comparisons show that the
measured misalignments do not depend on the mass and
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density of the dense cores. We note that the magnetic field
structures in the nearby sources can be better resolved than in
the distant sources. The comparison also shows that the
measured misalignments do not depend on the distances to the
sources, even though the spatial resolutions are not uniform in
the sample. Therefore, there is no bias due to the properties of
the dense cores or the spatial resolutions in our results.
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Appendix E

Comparison between JCMT and Interferometric Results

In 17 of our sample sources, the mean magnetic field
orientations on a 1000 au scale were also measured with the
CARMA, SMA, and/or ALMA observations (Hull et al. 2014;
Galametz et al. 2018; Sadavoy et al. 2019). We compared the
large- and small-scale misalignments measured with our JCMT
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POL-2 data and the misalignments measured with the interfero-
metric data (Figure 14). The comparison with the large-scale
misalignments measured with JCMT and the interferometric
results show the same trend that in most of the sources the
difference between the large- and small-scale magnetic field
orientations is 10°-20°. In addition, our measured small-scale
misalignments are correlated with the interferometric measure-
ments. Thus, the magnetic field orientations close to the stellar
positions observed with JCMT can represent the overall orienta-
tions of the magnetic field structures on a 1000 au scale in the
protostellar sources.
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