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Inference Under Information Constraints III:
Local Privacy Constraints

Jayadev Acharya

Ziteng Sun, and Himanshu Tyagi

Abstract—We study goodness-of-fit and independence testing
of discrete distributions in a setting where samples are distributed
across multiple users. The users wish to preserve the privacy of
their data while enabling a central server to perform the tests.
Under the notion of local differential privacy, we propose sim-
ple, sample-optimal, and communication-efficient protocols for
these two questions in the noninteractive setting, where in addi-
tion users may or may not share a common random seed. In
particular, we show that the availability of shared (public) ran-
domness greatly reduces the sample complexity. Underlying our
public-coin protocols are privacy-preserving mappings which,
when applied to the samples, minimally contract the distance
between their respective probability distributions.

Index Terms—Distributed inference, privacy, goodness-of-fit,
local differential privacy.

I. INTRODUCTION

NFERRING statistical properties of data sources

while maintaining their privacy is a core problem in
privacy-preserving statistics. A widely established notion to
achieve this is local differential privacy (LDP), introduced
in [30], [38]. The data samples are distributed across users
(“players”), who do not trust the centralized data curator,
which can be, e.g., corporate entities or government agen-
cies. The data samples are privatized via a noise addition
mechanism that is locally differentially private (see Eq. 1).
This falls under the general setting of statistical inference
under local information constraints, namely constraints on
information that each player can reveal about its sample.
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Recently, a subset of the authors have initiated a systematic
study of such problems under general constraints. In particu-
lar, [2] provides a framework for deriving lower bounds for
such problems and [3] provides sample-optimal algorithms
for communication constraints. This article, the third in this
series, focuses on local privacy constraints. Specifically, we
consider two of the most fundamental goodness-of-fit tasks,
testing identity and independence of discrete distributions, and
design sample-optimal LDP mechanisms for these tasks. We
restrict to simultaneous message passing protocols and lay spe-
cial emphasis on the availability of public randomness at the
players (i.e., a common random seed shared by all parties)'
and seek to answer the following.

What is the sample complexity of testing identity and
independence of discrete distrbutions under local differen-
tial privacy? Does the sample complexity depend on whether
public randomness is available?

The role of public randomness in the design and analy-
sis of distributed statistical inference has hitherto been largely
overlooked. We fully resolve this question by providing tight
bounds on the sample complexity of identity testing and
independence testing of discrete distributions under local dif-
ferential privacy, both with and without public randomness.
Our results show that, for these two composite hypothesis test-
ing tasks, schemes which allow for public randomness can
achieve significantly smaller sample complexity than those
who do not. Interestingly, this is in contrast with the seminal
work of Tsitsiklis [45], which established that public random-
ness provides no advantage in the context of distributed simple
hypothesis testing without local privacy constraints.

A. Results and Techniques

We study two inference problems over discrete distributions,
identity testing and independence testing under p-LDP (at a
high level, the privacy parameter p > 0 bounds the (worst-
case) statistical leakage of any player’s data, and smaller
values imply stronger privacy guarantees; see Section II for
formal definitions). Our results are summarized in Table I; we
outline and discuss them below.

In the identity testing question, there is a known reference
distribution q over [k] = {1, ..., k}, and the players’ sam-
ples are i.i.d. from an unknown distribution p. The goal is
to test the hypotheses Ho : p = q and H; : dpy(p,q) > €

IWe assume private randomness is always available at the players. Formal
definitions can be found in Section II.
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using p-LDP mechanisms. We seek to characterize the sam-
ple complexity of this task, which is the minimum number
of players to solve this problem with a (small) constant two-
sided error. Without privacy constraints, when the true samples
of p are available to the central data curator (“referee”), the
optimal sample complexity of identity testing is known to be
O k2 /e?).

There are two parts of the problem. The first is to design
privacy-preserving mechanisms that the players use to encode
their data to be sent the server. The second is to design post-
processing algorithms that the server uses to decide the output
of the test given the privatized messages.

We first consider the task of designing optimal post-
processing algorithms for existing o-LDP mechanisms. This is
of interest in cases where the privatization mechanisms are in
place, and changing them is impossible or too expensive—for
instance, when an organization has already deployed a data
aggregation pipeline, and seeks to add a statistical inference
component to it without overhauling the entire system.

Arguably the simplest privatization scheme is k-randomized
response (see [48]). Unfortunately, it was shown in [44]
that the sample complexity of any test relying on this
scheme is ©(k>/2/e2p?), far from optimal. Our first result
considers the now well established privatization scheme
RAPPOR (Randomized Aggregatable Privacy-Preserving
Ordinal Response [29], [37]) (see III-Al). In Theorem 1,
we design an identity testing algorithm that, given sam-
ples from the RAPPOR mechanism, has sample complexity
0(5—@)—21 factor k improvement over randomized response.

The RAPPOR mechanism produces privatized messages
with (k) bits of entropy, and as a result those messages
are k-bit long. Thus, RAPPOR requires a large communi-
cation bandwidth. We provide a new mechanism based on
the recently proposed Hadamard Response (HR) that produces
only one-bit messages, leading to an identity testing algorithm
with the same sample complexity 0(%). This result is given
in Theorem 2.

All the schemes above require no publicly agreed upon ran-
domness, which we refer to as private-coin mechanisms, and
are highly desirable when it is too inefficient or infeasible to
setup a common random seed. However, in [2], it was estab-
lished that any testing algorithm based on any private-coin
o-LDP mechanism must use 9(5—2) players. Therefore, the
algorithms we propose based on RAPPOR and HR are the
best possible, and more significantly, are optimal among all
LDP schemes that do not use public randomness.

This raises the question of building LDP mechanisms that
do use public randomness, which we refer to as public-coin
mechanisms, and post-processing algorithms that require fewer
samples. We emphasize that the public randomness is used
only for added utility and we require the same strong pri-
vacy guarantees. In this context, we design a new public-coin
p-LDP mechanism and a corresponding algorithm whose sam-
ple complexity is 0(#), a factor v/k improvement over the
best possible without using public randomness. Furthermore,
this is asymptotically optimal from the result of [2], and
the mechanism only uses one bit of communication from
each player, making it as communication-efficient as pos-
sible. Our result relies on a randomized one-bit isometry,
where the players use the common random seed to ran-
domly project the original domain [k] to a binary domain and
perform testing over this new domain. This result is given
in Theorem 4.

We then turn to the task of independence testing. Here, the
underlying distribution p is over the product domain [k] x [k],
and the goal is to test whether the marginals of p are indepen-
dent (i.e., if p is a product distribution) or at least ¢ away
from all product distributions. We design schemes without
and with public randomness which achieve sample complexity

0(% and O 85—22), respectively. These results are given
in Theorem 5 and Theorem 8. Interestingly, in the case where
public randomness is available, our protocol relies on a one-
bit isometry similar to the one used in the identity testing
case, but suitably generalized to handle the product structure
of the domain. Finally, we prove the optimality of both these
bounds, establishing matching lower bounds in Theorem 9.
This is done by providing a formal reduction from indepen-
dence testing over [k] x [k] to the identity testing problem over
[k2]. We believe this general reduction, which is not specific
to the locally private setting, to be of independent interest.

The conceptual takeaway message of our results is that, for
composite hypothesis testing problems, public randomness can
prove very helpful, and its availability leads to significantly
more sample-efficient protocols.

We finally remark that although this work is concerned
with noninteractive protocols, more complicated adaptive LDP
schemes are possible where the players sequentially choose
their privatization schemes upon observing the messages of all
previous players and the available public randomness. Recent
works in this setting [5], [12], [17] show that, for identity test-
ing, adaptivity does not allow for more efficient protocols than
public randomness, and by our reduction for independence
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testing this carries over to the independence testing problem
as well.

B. Related Prior Work

Testing properties of distributions from their samples has
a long history in statistics, which dates back more than a
century. Recently, this problem has gathered renewed interest
in the computer science community, with a particular focus
on the study of discrete distributions in the finite-sample
regime. In this section, we only focus on closely related
papers and we refer an interested reader to surveys and
books [13], [21], [34], [43] for a comprehensive treatment.

Following a long line of work, the optimal sample
complexity for identity testing has been established as
G)(kl/ 2/82) [33], [42], [46] under constant error probability.
Reference [25], [35] establish the optimal dependence on
the error probability. Reference [19], [46] also study the
“instance-optimal” variant of the problem, introduced in [46].
The optimal sample complexity for the independence testing
problem where both observations are from the same set [k] was
studied in [16], [41], and shown to be ®(k/82) in [6], [26].

Distribution testing has also been studied under privacy
constraints on the samples. Under the notion of (global) differ-
ential privacy (DP) [28], identity testing has been considered
in [11], [20], with a complete characterization of the sam-
ple complexity derived in [8]. Reference [23] focuses on the
class of product distributions in high dimensions, including
product of Bernoulli’s and Gaussians with known variances.
Both these works show that, in certain parameter regimes,
the sample complexity can match the sample complexity of
the non-private counterpart of the problem, which is in sharp
contrast to the more stringent case of local privacy (LDP)
considered in this article. Finally, [12] and [14] consider uni-
formity testing (a specific case of identity testing) under the
notions of pan-privacy and shuffle privacy, respectively, which
provide privacy guarantees in-between DP and LDP.

Independence testing under differentially privacy has been
studied in [31], [40], [47] and the first algorithm with finite
sample guarantee was given in [10].

The works most closely related to ours are those that
consider distribution testing under LDP constraints [1], [3],
[4], [5], [12], [17], [32], [42]. Reference [44] considers
both identity testing and independence testing with private-
coin, noninteractive schemes. Our results improve upon theirs
by a factor of k and k%, respectively. Reference [3] estab-
lishes lower bounds for identity testing using both private-
coin and public-coin noninteractive schemes, which match
our bounds in both cases and imply the optimality of our
results. Reference [4] considers noninteractive schemes where
only a limited amount of public randomness is available,
and obtains the optimal sample complexity which inter-
polates smoothly between the private-coin and public-coin
cases. References [5], [12], [17] consider identity testing using
sequentially interactive schemes, which combined with our
results prove that interactivity cannot lead to an improve-
ment in the sample complexity over public-coin noninteractive
schemes. We note that the recent work of Joseph et al. [36]

also considers the role of interactivity in LDP hypothesis test-
ing; however, they focus on simple hypothesis testing (as well
as a generalization to convex hypothesis classes). Their results
do not apply to identity testing, and are incomparable to ours.
Another class of problems of statistical inference, density
estimation, requires learning the unknown distribution up to a
desired accuracy of ¢ in total variation distance. The optimal
sample complexity of locally private learning discrete k-ary
distributions is known to be @ (k*/(¢?p?)); see [7], [9], [27],
[29], [37], [49]. The private-coin identity testing schemes
in this article are based on the same LDP randomization
schemes proposed in these papers at the user side. Specifically,
RAPPOR was independently proposed in [9], [27] and ana-
lyzed in [37]. Hadamard Response and its one-bit variant are
proposed in [7], [9]. Also, [15] uses Hadamard transform
together with sampling to reduce user communication to O(1)
bits in a public-coin scheme. Moreover, our private-coin inde-
pendence testing protocol also involves a step that learns both
marginal distributions, which relies on the scheme from [7].

C. Organization

The rest of the article is organized as follows.
In Sections III-Al and III-A2 we provide two private-coin
LDP schemes for identity testing based on RAPPOR and
Hadamard Response respectively, and analyze their sample
complexity. In Section III-B we establish an upper bound on
the sample complexity of public-coin protocols for identity
testing. In Sections IV-A and IV-B we establish the upper
bounds on private-coin and public-coin independence testing,
respectively. Finally, in Section IV-C we provide a reduction
between identity and independence testing and use it to prove
the optimality of the proposed independence tests both for
private- and public-coin protocols.

II. THE SETUP: LOCAL PRIVACY AND INFERENCE
PROTOCOLS

A. Notation

Throughout the article, we denote by log the natural log-
arithm and log, the base 2 logarithm. We use standard
asymptotic notation O(-), 2(-), and O(.) for complexity
orders.?

For a known and fixed discrete domain X let Ay be the
set of probability distributions over X, i.e.,

Ax ={p: X —>[0,1]: |pll; =1},

where we identify a probability distribution to its probability
mass function. We denote by uy the uniform distribution on X
and omit the subscript when the domain is clear from context.

We are mostly interested in k-ary discrete distributions,
and assume without loss of generality that X = [k] =
{1,2,...,k}. We use Apg and Ay interchangeably to denote
the probability simplex consisting of all distributions over [k].

2Namely, for two non-negative sequences (ay), and (by),, we write a, =
O(by) (resp., ap = Q(by)) if there exist C > 0 and N > 0 such that a,, < Cby,
(resp., an > Cby) for all n > N. Further, we write a;, = ®(b;) when both
an, = O(by) and a; = Q(by,) hold.
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The total variation distance between distributions p, q €
Ay is

1
dry(p, @) = sup (p(S) — q($) = = >_Ip(y) — q)l,
scx 2
xeX
namely, dpy (P, q) is equal to half of the £; distance of p and
q. For a distance parameter ¢ € (0, 1], we say that p,q € Ay
are e-far if dpy(p, q) > &. Finally, for two distributions pg
and p; over X, we denote by p; ® p2 the product distribution
over X x X defined by (p; ® p2)(x1, x2) = p1(x1) - p2(x2) for
all X1,X2 € X.

B. Local Differential Privacy and Protocols

For a data domain X and some set )/ (which denotes the
message set), a channel W: X — Y is p-locally differentially
private (p-LDP) mechanism if [28], [29], [30]

wok)
max max <e".
yed xx'exX W(ylx)
where, slightly overloading notation, we write W(-|x) for the
output distribution (on )) for input x € X'. Loosely speaking,
no output message from a user can reveal too much about their
sample. Let W, be the set of all p-LDP channels with output
{0, 1}* the set of all binary strings.

Our setup is depicted in Fig. 1. There are n independent
samples X" = Xi,...,X, from an unknown distribution p
distributed across n players, with player i holding X;. Player
i passes X; through a privatization channel W; € W, and the
output Y; is their message. Note that once the channel W; is
fixed the output distribution of messages is only a function
of X;. We now describe the various communication protocols
which restrict how the choice of W;s can be performed.

We restrict ourselves to simultaneous message passing
(SMP) protocols of communication, i.e., noninteractive LDP
mechanisms, where the W;s are all selected simultaneously.
Within SMP protocols, we distinguish between the case where
a common random seed (public randomness) is available
across players and can be used by them to select the W;s,
and the case there is no public randomness available and they
must choose the W;s independently. In both cases, however,
the players are assumed to have access to private randomness,
which is needed to implement any privatization mechanism.
We describe these two cases in more detail below.

Definition 1 (Private-Coin SMP Protocols): Let
Ui,...,U, be independent random variables, which are
also independent jointly of (Xi,...,X,). U; is the private
randomness available to player i. A p-LDP private-coin SMP
protocol m consists of the following two steps: (a) Player i
selects their channel W; € W, (possibly as a function of U;),
(b) and sends their message Y; € ), which is obtained by
passing X; through W;, to the referee. The referee receives
the messages (Y1,...,Y,) = w(X"). We assume that the
protocol is decided ahead of time, so that the distribution of
the U; is known to the referee, but not their instantiation.

Since the random variables X; and U; are independent
across players, and the message Y; from player i is a ran-
domized function of (Xj, U;) the messages (Y1, ..., Y,) are
all independent across players.

(1)

R p .
¥ Q
A A
Xl X2 o Xn—l Xn
| W Wy Wi-1 Wi |
" Q - -
R
output

Fig. 1. The locally private distributed model, where each Y; € ). In the
private-coin setting the channels Wy, ..., W), are independent, while in the
public-coin setting they are jointly randomized.

Definition 2 (Public-Coin SMP Protocols): In addition to
the private randomness Uy, ..., U, at the players as above,
let V be a random variable jointly independent of the random
variables X; and Uj;, which denotes the public randomness and
is available to all players. A p-LDP public-coin SMP protocol
7 consists of the following two steps: (a) Player i selects their
channel W; € W, as a function of V (and possibly of U;), and
(b) sends their messages Y; € ), by passing X; through W;, to
the referee. The referee receives the messages (Yq,...,Y,) =
(X", V) and the public randomness V, but does not have
access to the private randomness (U, ..., U,) of the players.

In contrast to private-coin protocols, in a public-coin SMP
protocol, the message Y; from player i is a function of V as
well as (X;, U;), so the resulting messages Y; are not inde-
pendent. They are, however, independent conditioned on the
shared randomness V.

We emphasize that private randomness is available even
in the public-coin setting and, as previously mentioned, is
required in order for the protocol to satisfy local privacy
(see Eq. 1). This is because the channels must satisfy the
LDP condition even when all the information available to the
referee, including the public randomness V, is fully “leaked.”

C. Distributed Inference Protocols

We now provide the formal description of the distributed
inference tasks considered in this work, identity and indepen-
dence testing.

a) Identity testing: Let q € Ay be a known reference dis-
tribution. In the (k, &, §)-identity testing problem, we seek
to use n i.i.d. samples from an unknown p € Aj to test
if p equals q or if it is e-far from q in total variation dis-
tance. A private-coin (resp., public-coin) p-LDP protocol for
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(k, &, 8)-identity testing then consists of a private-coin (resp.
public-coin) p-LDP protocol 7 along with a (randomized)
mapping 7 : V" — {0, 1} such that

anirpn[T(n(X")) =1]>1-4, ifp=gq,

XnPNrpn[T(n(X”)) =0]>1-34, if dpy(p.q > e
Namely, after running the protocol 7 on the independent sam-
ples X" held by the players, the referee applies the mapping T
to the resulting messages (Y1, ..., ¥;) = 7w (X"), which should
“accept” with high constant probability if the samples come
from the reference distribution q and “reject” with high con-
stant probability if they come from a distribution significantly
far from q. The special case of identity testing for uy is termed
the (k, &, 8)-uniformity testing problem.

The sample complexity of private-coin (resp. public-coin)
p-LDP (k, €, §)-identity testing is the minimum »n for which
a p-LDP protocol for (k, €, §)-identity testing with n players
exists for q. While this quantity can depend on the reference
distribution q, it is customary to consider sample complexity
over the worst-case q.3

b) Independence testing: In the (k, ¢, §)-independence test-
ing problem, we seek to use samples from an unknown
P € Apxk (with unknown marginals py, p2 € Ag) to testif p
equals p; ®p» or if it is e-far from every product distribution in
total variation distance. A private-coin (resp., public-coin) p-
LDP protocol for (k, e, §)-independence testing then consists
of a private-coin (resp. public-coin) p-LDP protocol 7 along
with a (randomized) mapping 7 : V" — {0, 1} such that

Pr [T(z(X")=1]>1-6, ifp=pi Qp2.

X)l,\,pll
Pr [T(x(X")=0]>1-=6, if inf dry(p,qI®q) > ¢
Xn~p" q1,92€ A

The sample complexity of private-coin (resp. public-coin)
p-LDP (k, ¢, §)-independence testing is the minimum »n for
which a p-LDP protocol for (k, ¢, §)-independence testing
with n players exists for q.

Remark 1: We note that the formulation above can be
generalized to testing independence over [k1] x [ky] for arbi-
trary ki, kp, or even over general discrete product spaces
[k1] x --- X [kq]. Some of our protocols may generalize to
these more general settings, but for simplicity with focus on
the simple and arguably fundamental case of independence
over [k] x [k].

III. LOCALLY PRIVATE IDENTITY TESTING

We begin by recalling lower bounds from [2] which show
that for p € [0, 1), a private-coin protocol p-LDP identity
testing protocol requires at least Q(k’/?/p%e?) players and a
public-coin protocol requires at least Q(k/p%e?) players. In
this section, we propose both private- and public-coin proto-
cols that attain these bounds, establishing a strict separation
between the sample complexity of private- and public-coin

3The sample complexity for a fixed g, without privacy constraints, has been
studied under the “instance-optimal” setting (see [18], [46]); and under local
privacy constraints by [17]. See also Section III for a discussion of the relation
between worst-case and instance-optimal settings.

protocols. In addition, we give protocols with optimal sam-
ple complexity for both settings that require only 1 bit of
communication per player.

We note that our upper bounds for identity are phrased
in terms of the domain size k, or, equivalently, as a worst-
case among all possible reference distributions q. However,
they immediately imply more refined bounds parameterized
by a functional of the reference q itself (i.e., “instance-
optimal” bounds, to follow [46]) via the reduction described
in [3, Appendix D].

A. Private-Coin Protocols

We now present private-coin protocols based on RAPPOR
and Hadamard Response that are both sample-optimal, with
different communication requirements.

1) A Mechanism Based on RAPPOR: We begin by describ-
ing the randomized aggregatable privacy-preserving ordinal
response (RAPPOR) mechanism, which is a po-LDP mech-
anism introduced in [29]. Its simplest implementation, k-
RAPPOR, maps X = [k] to YV = {0, 1}" in two steps. First,
“one-hot encoding” is applied to the input x € [k] to obtain
the vector y € {0, 1}* such that yJ’. = T forall j € X.
The privatized output y € ) of k-RAPPOR is then a k-bit
vector obtained by flipping each bit of y’ independently with
probability ﬁ

Note that if X is drawn from p € Ay, this leads to
Y € {0, 1}* such that the coordinates are (correlated) Bernoulli
random variables, with Y; distributed as Bern(a - p(j) + B),
Jj € [k], with o, B defined as

ePl? — 1

1
IR
2)

Given n independent samples from p, let the output
of RAPPOR applied to these samples be denoted by
Yi,...,Y, € {0, 1}*, where ¥; = (Yi1,..., Yy) for i € [n].
The following fact is a simple consequence of the definition
of RAPPOR.

Fact 1: Leti,j € [n], and x,y € [k].

Pr[Yie = 1,Y), =1]
(ap(x) + B)(ap(y) + B), ifizj

= 1 @p@) + B)(@p(y) + B) —a’Pp@WPQ). if i=j x#y

ap(x) + B, if i=j, x=y,
where «, 8 are defined as in (2). Note that vectors Y; and Y;
are independent for distinct i, j € [n].

We now propose our testing mechanism based on
RAPPOR, which, in essence, uses a privatized version of a
X2-type statistic of [6], [24], [46]. We note that our choice
of using such a x2-type statistic instead of a (perhaps more
natural) “collision-based” unbiased estimator for ||p||% stems
from the fact the latter has a high variance, leading to a
suboptimal sample complexity. For x € [k], let the num-

ber of occurrences of x among the n (privatized) outputs of
RAPPOR be

— _r :
a'_ep/2+1_4+0(p)7 IB

Ne= 3 Tgyyy, 3)
j=1
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Algorithm 1 Locally Private Identity Testing Using RAPPOR

Require: Privacy parameter p > 0, distance parameter ¢ € (0, 1), n

players
1: Set o2 |
e P art
as in (2).

2: Player i applies (p-LDP) RAPPOR to X;, sends result Y; €
{0, 1}k > Time O(k) per user
3: Server computes Ny for every x € [k], as defined in (3) > Time
O(kn)
: Server computes 7', as defined in (4)
Cif T < n(n — Da2e2/k then
return accept
else
return reject

> Time O(k)

A

which by the definition of RAPPOR follows a
Bin(n, ap(x) + B) distribution. We consider the following
test statistic 7

T=Y" ((Nx — (n— D(@q) + B)> — Ny

x€lk]

+ (1= Dege + H)?). )

This statistic is motivated from the fact that it constitutes an
unbiased estimator of the squared ¢, distance between p and
q. Using this property we threshold T to test whether p = q or
not. Keeping in mind that N, is typically concentrated around
its expected value of roughly n/2, our new statistic can be
seen to take the form

T~y (N§ - an) + @(knz),

x€[k]

since B &~ 1/2. In particular, the subtracted linear term
reduces the fluctuation of the quadratic part, bringing down
the variance of the statistic.

This motivates our testing protocol, Algorithm 1, and leads
to the main result of this section below.

Theorem 1: For every k > 1 and p € (0, 1], there exists
a private-coin p-LDP protocol for (k, ¢, §)-identity testing
over [k] using RAPPOR and n = 0(% log %) players.

Proof: Each player reports its data using RAPPOR, which
is a p-LDP mechanism. Thus, we only need to analyze the
error performance of the proposed test, which we do simply
by using Chebyshev’s inequality. Towards that, we evaluate
the expected value and the variance of 7.

The following evaluation of expected value of statistic T
uses a simple calculation entailing moments of a Binomial
random variable. ]

Lemma 1: For T defined in (4), we have

E[T] = n(n — 1)a?|Ip — ql13,

where the expectation is taken over the private coins used
by RAPPOR and the samples drawn from p. In particular,
(i) if p = q, then E[T] = 0; and (ii) if dy(p,q) > ¢, then
E[T] > 4n(n — 1) 2.

Proof: Letting A, = aq(x)+ B, py = apx)+p for x € [k],
and using the fact that N, is Binomial with parameters n and
Iy, We have

BIT) = Y B[V — (0 = Din)? = No+ (2 — D22
x€[k]

= > (B[N = Vo] =200 = DAEIN]

xelk]
+ ((n —1)24n-— 1))\5)

= (n(n — D2 = 2n(n — Dagpty + n(n — 1)A§)

x€[k]
=D =D~ )’
xelk]
=n(n—Da® Y (p() — q(x))’,
xelk]

Claim (i) is immediate; claim (ii) follows upon noting that

dry(® @ = 3l —all; < %*Ip - gl m
Turning to the variance, we are able to obtain the following:
Lemma 2: For T defined in (4), we have

Var [T] < 2kn® 4 5na?(|p — q|13 < 2kn® + 4nE[T).

The proof of this lemma is technical and relies on the anal-
ysis of the covariance of the random variables (Ny)iex], in
view of bounding quantities of the form Cov(f(Ny),f(Ny)).
We defer the details to Appendix A.

With these two lemmata, we are in a position to conclude
the argument.

First, consider the case when p = q. In this case E[T] =0
and Var[T] < 2kn? by Lemmas II1.3 and III.4. Therefore, by
Chebyshev’s inequality we get

2.2

,ale 2k
Pr|T>n 3 <

~ n2atet’

k2 Var [T]
ntatet

. . 3/2
which is at most 1/3 for n > 3"2—2
oce

Next, when dpy(p, q) > &, we get

nn—1) 5,
. ace”,

Var [T] < 2kn® + 4nE[T].

E[T] > 4

2.2

Using Chebyshev’s inequality yields
4 Var [T
Pr[T < nza ¢ ﬂ

1
] <o < L] < 2t

K3 4k
< + :
T 2(n—12a%e*  (n— Da2e?

which is at most 1/3 forn > %ntl and k > 2. Recalling that

o = ®(p) concludes the proof of Theorem 1, for probability
of error § set to 1/3.

Finally, we can reduce this probability of error to an arbi-
trary § > 0, at the cost of a O(log(1/6)) factor in the number
of players, using a standard “amplification” argument: repeat
independently the protocol on O(log(1/5)) disjoint sets of
players and taking the majority output. |

Authorized licensed use limited to: Cornell University Library. Downloaded on December 21,2021 at 03:46:51 UTC from IEEE Xplore. Restrictions apply.



ACHARYA et al.: INFERENCE UNDER INFORMATION CONSTRAINTS III: LOCAL PRIVACY CONSTRAINTS 259

2) A Mechanism Based on Hadamard Response: While
sample-optimal among private-coin protocols, Algorithm 1
requires each player to communicate k bits. We now present a
private-coin protocol that is sample-optimal and requires only
1 bit of communication per player.

Since we seek to send only a 1-bit message per player, each
player can simply indicate if its observation lies in a subset or
not. To make this communication LDP, we flip this bit with
appropriate probability. In fact, we divide n players into K
subgroups and associate a subset C; C [k], 1 < j < K, with
the jth subgroup. Thus, the bits received at the referee can be
viewed as n/K independent samples from a product-Bernoulli
distribution on {0, 1}X.4

Suppose that the mean w(p) of the resulting product-
Bernoulli distribution satisfies [[u(q) — u(P)|, > o if
dry(P,q) = &. Then, we can use a test for mean of
product-Bernoulli distributions (see, for instance, [22, Sec. 2.1]
or [23, Lemma 4.2]) to determine if the mean is u(q) or «-far
from w(q) in ¢, distance.

The key question that remains is how large can o be. The
answer to this question was provided in [7], which intro-
duced the Hadamard Response (HR) mechanism that uses the
Hadamard matrix to select Cjs that yield a large o.

Formally, the HR mechanism can be described as follows.
Let K := 2[o2*+D1 which is the smallest power of two
larger than k, and let H® be the K x K Hadamard matrix. Note
that K < 2k. Let C; be the location of 1s in the jth column,

, Ci=1i€[K]: Hl-(jk) = 1}. For any distribution p over
[k] and C C [K], let p(C) be the probability that a sample from
p falls in set C. Here we assign zero probability to elements
outside [k]. The key property of the sets (Cy, ..., Ck), which
was observed in [7], is the following.

Lemma 3: For any two distributions p, q over [k],

Z(P(CJ) -

=1

K
G))’ = L ql3.

Proof: Let pk,qx be K-dimensional probability vectors
obtained by appending zeros to the end of p and q, respec-
tively, and let p(C) = (p(Cy), p(C2),...,p(Ck)). By the
definition of p(Cj)s, we have

p(© = 3 (H Pk +1x), a(©) = 5 (HSax +1x),
where 1k is an all-one vector of dimension K. Hence by the

fact that (H¥)TH®K) = KT, we obtain

k
> (o( (G))* = Ip©) — q(O)113
j=1
1 T(g©\
= 2k — a0 (H®) H® (px — a0
K 2 K 2
= ZHPK —qkll; = lep —qll.

4A K-dimensional product-Bernoulli distribution is a distribution over
{0, 1}X, whose coordinates are independently distributed.

Algorithm 2 Locally Private Identity Testing Using Hadamard
Response

Require: Privacy parameter p > 0, distance parameter ¢ € (0, 1), n
players

1: Define Cj = i € [K] : , ] € [K].

2: n players are divided into K disjoint subgroups of equal size
(using an explicit partition fixed ahead of time). Players in the
Jjth subgroup, j € [K], are assigned to the set Cj, and they use (5)
to generate their output bits (independent copies of Bj).

3: Taking one player from each block and viewing the resulting
collection of messages as a length-K binary vector, the referee
gets n/K independent copies of (By, B>, ...,Bg) generated a
product-Bernoulli distribution on {0, 1}* with mean vector wu(p).

4: The referee uses these n/K samples to test whether the mean
vector u(p) is (i) a prespecified vector u = u(q) € RK
(ii) at ¢, distance at least « = ¢/2 € (0, 1] from w(q). It can
use the test from, for instance, [22, Sec. 2.1], which requires

0(«/I?(log 1/8)/<x2) samples to do this. It accepts q if the mean
is ;(q), and rejects otherwise.

HO —

In HR, a player observing X € [k] assigned a subset C;
sends a random bit B; with distribution given by

e

Pr[B; = 11X] = { ¢V

g

if XeCj,
otherwise.

(&)

Let w(p) denote the mean of the product-Bernoulli distribution
induced on bits (By, ..., Bx) (corresponding to any K players
assigned sets (Cy, ..., Ckx)) when the observations of players
have distribution p, i.e.,

n(p)j = Ep[Pr[B; = 11X]].

Following the same computations as in [7], we have that for
all j € [K]

e’ —1
up); =y pk = PG
xeC;j
1
e’ + 1
Then, by Lemma 3,
VK = 1)
@) — uw(@l, = WHP —qll,
(e’ — 1)
= —d ) ) 6
= e 1)V e D (6)

where we used the observation that K > k.

Motivated by this observation, we obtain Algorithm 2
for LDP identity testing.’> The result below summarizes the
performance of Algorithm 2.

Theorem 2: For every k > 1 and p € (0, 1], there exists a
private-coin p-LDP protocol for (k, €, §)-identity testing using
one bit of communication per player and n = (k Z 1o og 5)
players.

Proof: We have already outline the proof in the discus-
sion above. It is easy to check that the mechanism in (5)

SWithout loss of generality, we assume K divides n (as otherwise we can
ignore the last (n — K L%J) players without changing the number of samples
by a factor of 2).
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is p-LDP. Further, by (6), the test in [22, Sec. 2.1] gives
the correct outcome with probability of error less than ¢ if
n/K > /Klog(1/8)/a?* with « = £/2, i.e.,

P+ 1)? 1 [SC |
n=0 k3/2% log = | = O<ﬁlog —),
(eF —1)%e2 ~ 348 &2p 5
suffices as claimed. |
Remark 2: From the proof of Theorem 2, it is clear that
the protocol provides a stronger, ¢», guarantee: it allows one

to distinguish with probability 1 — § between ||p — q||% < %
462

and |p — q||% > *- with n = O(% log %) players (by
Cauchy—Schwarz, this implies the total variation testing guar-
antee). Moreover, the protocol does not require the players to
have knowledge of the reference distribution q; it is sufficient
that the referee knows it. Both these points are useful, later,
for our independence testing results.

B. Public-Coin Protocols

The HR based identity testing protocol generates samples
from a product-Bernoulli distribution by assigning different
subsets to different subgroups of players. Specifically, we
found subsets such that, for any two distributions p and q,
the ¢, distance between the means of the induced approxi-
mately k-dimensional product distributions is roughly equal to
the £, distance between p and q.

Interestingly, we can interpret Lemma 3 to get that for
I distributed uniformly over [K], E[(p(C) —q(C))?] =
Ip — qllg /4. This suggests the possibility of finding a random
subset S such that (p(S) — q($))? = &2/k if dry(p, q) > e.
Such a set is very handy: We can simply implement a version
of Algorithm 2 with K = 1 using this set and get a test that
works with roughly k/(p*e?) samples. This saving in sample-
complexity arises from the fact that we were able to retain
the same “per dimension” £, distance as that using HR, while
using much smaller (only one) dimensional observations. But
the players need to use public coins to share this set S. We
formalize this protocol in this section.

The first component of our protocol is the following lemma
from [3], specialized to a target domain of size 2.

Theorem 3 [3, Th. VI.2]: Fix any k-ary distributions p, q.
If S C [k] is a set chosen uniformly at random, we have the
following. (i) if p = q, then p(S) = q(S) with probability one;
and (ii) if dpy(p, q) > ¢, then

2
lgr[(p(a —q()* > %} > c.

where ¢ = 1/228.

Thus, indeed, we can find our desired random set S.

Next, we present an LDP protocol for testing the bias of
coins, our LDP identity testing problem for k£ = 2. The proto-
col below can be viewed as a special case of our protocol
in Section III-A2; we include this simpler result here for
completeness. We have the following.

Lemma 4 (Locally Private Bias Estimation, Warmup): For
every p € (0, 1], there exists a private-coin p-LDP protocol for
(2, &, §)-identity testing using one bit of communication per

Algorithm 3 Locally Private Identity Testing

Require: Privacy parameter p > 0, distance parameter ¢ € (0, 1), n

players
1: Set
oL ¢ DI Y "
cC<— — 8« —, ¢ —, T = , m<— —.
288 T 2(1x0 V2k T

2: Partition the players in T subgroups Gy, ..., Gr of m players
3: for ¢ from 1 to T do > In parallel
: Players in G; generate uniformly at random a common subset
St € [k].

5: for all i € G; do

6: Player i converts their sample X; to Xl/» = Lixes,)-

7: Players in G; (and the referee) run the protocol from Lemma 4
on the samples (X;)ith to test identity of p(S;) to q(Sy), with
distance parameter ¢’ and failure probability 8

8: > At the referee

9: Let t denote the fraction of the T protocols that returned accept

10: if 7 > 1 — (80 + §) then

11: return accept
12: else
13: return reject

player and n = O(# log %) players. Moreover, the players
do not need to know the reference distribution.

Proof: Assume without loss of generality that the refer-
ence distribution is q = Bern(g). The algorithm uses a simple
Randomized Response (RR) scheme [48], where each sam-
ple is flipped with probability 1/(e” + 1). When the input is
Bern(p), the output distribution is Bern((1 + p(e” — 1)/(e” +
1))). Therefore, if p — g > ¢, then the bias of the output dis-
tribution of applying RR to Bern(p), and Bern(g) differ by
(P — q(e” — 1))/(e” + 1), which is Q(ep) for p = O0(1).
To distinguish these two Bernoulli distributions with a con-
stant probability, O(1/ (p%e?)) samples suffice, and the success
probability can be boosted to 1 — § by repeating O(log(1/5)
times. |

Motivated by these observations, we propose Algorithm 3
for public-coin LDP identity testing.

We close this section with a characterization of performance
of our proposed algorithm.

Theorem 4: For every k > 1 and p € (0, 1], there exists a
public-coin p-LDP protocol for (k, &, §)-identity testing using
one bit of communication per player and n = 0(# log %)
players.

Proof: The proof of correctness follows the foregoing out-
line, which we describe in more detail. Let ¢ := 1/288 be
the constant from Theorem 3, let &y := 2(1C+c) = 1/458, and
set ¢/ == &,

Consider the #-th test from Algorithm 3 (where 1 <t <T),
and let b; be the indicator that the protocol run by players
in G; returned accept. If p = q, then by the above we
have Pr[b, = 1] > 1 — §p (where the probability is over the
choice of the random subset S;, and the randomness of protocol
from Lemma 4). However, if p is ¢-far from q, by Theorem 3
it the case that Pr[b; =1] < (1 —¢) +cdg = 1 — (§¢ + %).
Therefore, for a sufficiently large constant in the choice of 7 =
O/ cz) = ©(1), a Chernoff bound argument ensures that we
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Algorithm 4 Locally Private Independence Testing (Private-
Coin)
Require: Priv3acy parameter p > 0, distance parameter ¢ € (0, 1),

n= 0(#) players

1: Partition the players in two groups, L (“learning”) and T (“test-
ing”), each of size %

2: Players in group L run a p-LDP learning protocol to esti-
mate p; ® pp in ¢, distance, obtaining P; ® Pp such that

~ ~ 2 .
Ip1 ®P2 —pP1 ® pzll% < 2'5? (using the protocol of Lemma 5).
3: Players in group T run a p-LDP identity testing protocol

on p, to distinguish between |p —Pj ®ﬁ2||% and

< £
= 2k?

-~ -~ 2 .
lp—pP1 ® pzll% > 2]%2 (using the protocol of Theorem 2).

can distinguish between these two cases with probability at
least 2/3. u

IV. LOCALLY PRIVATE INDEPENDENCE TESTING

In this section, we establish the sample complexity of testing
independence of discrete distrbutions. We present private-coin
and public-coin protocols for LDP independence testing that
require Q( 2;2) and Q(;—zz) players, respectively. In fact,
we show matching lower bounds for these sample complexi-
ties in the final subsection, establishing their optimality among
private-coin and public-coin protocols, respectively. The lower
bound is a consequence of a general reduction between inde-
pendence and uniformity testing, which may be of independent
interest.

A. Private-Coin Protocols

To desi gn a private-coin LDP independence testing protocol

using Og
we can

) players, the first observation we make is that
nd a product distribution P that is &/k-close in £;
distance from the product distribution p; x p2 using 0( 232)
players. When the generating distribution p is not a product
distribution, from the separation between our hypothesis, we
know that p must have ¢, distance exceeding &/k from the
product distribution p we find which is close to p; x py. After
this point, treating p as the reference, we can use an private-
coin LDP identity testing protocol to test if the samples are
generated from a distribution that is close to the (product)
reference distribution (in £, distance) or far from it.

Formally, we describe the algorithm in Algorithm 4, and
present its performance in Theorem 5.

Theorem 5: For every k > 1 and p € (0, 1], there exists a
private-coin p-LDP protocol for (k, ¢, §)-independence test-
ing using one bit of communication per player and n =
0(% log %) where ¢ € (0,1] is the distance
parameter.

Proof: We first note that Algorithm 4 can be implemented
in the SMP setting. Recall that the protocol of Theorem 2
does not require the players to know the reference distribu-
tion, and therefore the protocol can be performed in the SMP
setting, where players all send their messages simultaneously
to the referee. Indeed, in our case, this reference distribution

players,

is the product distribution p; ® p2 computed from the mes-
sages of the players in L, so the fact that the players’ messages
(from the group T') do not require knowledge of the reference
distribution is crucial to obtain an SMP protocol.

Lemma 5: Given samples from a distribution p over [k] x []
with marginals p; and pj, there exists a private-coin p-LDP

protocol with O( players that outputs distributions Ppj,

P2 such that |[p1 ®p2 —p1 ® p2||2 < % with probability at
least 5/6. Moreover, each player sends one bit.
Proof: From the known results on LDP distribution estima-

tion [7], [9], [37], with 0( e /k)2> =0 ) players one
can under p-LDP output dlstrlbutlons P1, p2 such that
2 2

—~ 2< & —~ 2< &
P —p1ll5 < FTER P2 — p2ll5 < 2

with probability at least 5/6. Whenever this guarantee holds,
it implies that

2-P1 ®p2— p1 ®p2ll3
+2-[p1 ® P2 — P1 @ p2l3

1P ®P2 — p1 @ P23 <

&2
<2(1p i e
=2(llp1 —pillz + P2 — p2ll3) < Y5
proving the lemma. The bound on the per-player communica-
tion follows from the protocol of [7]. |

Using the protocol from Lemma 5, we get the follow-
ing with probability 5/6. If p is a product distribution with
marginals p; and p», then

2
PPS 2 PPN 2 _ ¢
IPrep2—pl;=1lpP1®p2—pP1®MPI; = 77
If however p is e-far from being a product distribution, then,
by the Cauchy—Schwarz inequality,
2 4 £
Ip—P1®Pp2ll; = 77llP—Pi Pl > 4k—2-
We can use the protocol from Theorem 2 (specifically, recall-
243/2
ing Remark 2) to distinguish the two cases with O<(k ) ) =

0(%) players, and probability of success 5/6. By a union
bound over the two protocols used, the overall tester is success-
ful with probability at least 2/3. Amplifying the probability
of success to 1 — § by running the protocol in parallel on
O(log(1/8)) disjoint sets of players and taking the majority
output yields the result. |

B. Public-Coin Protocols

We now present our public-coin protocol for LDP indepen-
dence testing. Our approach is similar to the one we followed
for our public-coin LDP identity testing protocol: namely, we
first use public coins to “embed” the problem in a smaller
domain of size k = 2, and then apply an LDP independence
test for k = 2. For this strategy to work, we first need a
result guaranteeing that randomly hashing the domain [k] x [k]
to {0, 1} x {0, 1} while respecting the product structure pre-
serves distances. This is what we provide next, establishing an
analogue of Theorem 3 tailored to the product space setting.
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Theorem 6: Fix any distribution p over [k] x [k] with
marginals pi, p2. If S1,5 C [k] are two sets chosen inde-
pendently and uniformly at random, we have the following.
(1) if p = p1 ® p2, then p(S; x §2) = pi1(S1)P2(S2) with
probability one; and (ii) if dpy(p, p1 ® p2) > ¢, then

2
S}i’gz[(p(& X $2) — p1(S1)P2($2))* > %} > c.

for some absolute constant ¢ > 0. (Moreover, one can take
¢ = 1/4096.)

We emphasize that Theorem 6 is not a direct consequence
of Theorem 3, due to the product structure of the random
subset S1 x S» (while the previous theorem would apply to a
random subset S C [k] x [k]). And indeed, proving Theorem 6
requires the following hashing lemma, proven in a fashion
similar to [3, Th. A.6]:

Theorem 7 (Joint Probability Perturbation Hashing):
Consider a matrix 8§ € R¥*k guch that, for every i, jo € [k],
ek Sioi = etk dijo = 0. Let random variables
X =WX,...,Xx) and Y = (Y1, ..., Yx) be independent and
uniformly distributed over k-length binary sequences. Define
Z =} jyetkix ik 05 XiYj. Then, for every o € (0, 1/16), there
exists a constant ¢, > 0 such that

Pr[22 > a||a||1%] > cq.

The proof of this theorem is deferred to Appendix B. We
now show how this implies Theorem 6.

Proof of Theorem 6: Let p be as in the statement. Item (i) is
from the definition. We just focus on proving item (ii). Define
8 € Rk by 8 = p(i, j) — p1()p2(j) for i,j € [k]. Since p
has marginals p1, p2, § satisfies the assumptions of Theorem 7,
we can apply the theorem, observing that if X (resp. Y) is the
indicator vector of the set S7 (resp. Sz) then

> G = pi)P0))XiY;
(i) elk]x[k]
= p(S1 x $2) — p1(S1)P2(82),

and that [|§]% = [[p — p1 ® 213 > %2 (the inequality being
Cauchy-Schwarz). Taking o« = 1/32 yields the result. |

It only remains to describe an LDP independence testing
protocol for kK = 2. Note that while we can set k = 2 in the
protocol of Theorem 5, it leads to a complicated protocol. We
instead provide a simple test for k = 2.

Lemma 6 (Locally Private Bias Estimation): Let p € (0, 1].
There exists a private-coin p-LDP protocol for (2,2, ¢, §)-
independence testing using one bit of communication per

7 =

player and n = 0(52;2 log %) players.
Proof: Consider a distribution p over {0, 1} x {0, 1} with
marginals p; and p>. We use the fact that

[P0, 0) — p1(0)p2(0)| = [p(x, y) — p1x)p2(W|, x,y € {0, 1},

which holds since

[p0, 1) — p1(O)p2(D)| = [(p1(0) — p(0, 0)) — p1(0)(1 — p2(0))|
= [p1(0)p2(0) — p(0, 0).

Thus, if p is e-far in total variation distance from every product
distribution, it must hold that dpy(p, p1 ® p2) = &, which in

view of the equation above yields [p(0, 0)—p1 (0)p2(0)| > &/2.
Using this observation, we can test for independence using
0(1/(p252)) samples as follows.

The n players are partitioned in 3 sets A, B, C of size n/3.
Since, for any symbol (x,y), p(x,y) (resp. p1(x), p2(y)) can
be estimated up to accuracy ¢ by converting the observation
(X, Y) to the binary observation 1{ix y)=(x,y)} (esp. Lix—y,
1{y—y}) and proceeding as in Lemma 4, we can estimate
p(0, 0), p1(0), and p2(0) up to an additive accuracy £/16 by
assigning |A| = |B| = |C| = 0(1/(p*¢?)log(1/8)) players
for each of them, so that the three estimates are simultane-
ously accurate with probability at least 1 — §. Denote these
estimates by p(0, 0), p1(0), and p,(0), respectively. When
p(0,0) = p1(0)p2(0),

(0, 0) — p1(0)P2(0)| < [B(0, 0) — p(0, 0)| + P1(0) — p1(0)|

- 3
+ [p20) = p2(0)| = e
On the other hand, when |p(0,0) — p1(0)p2(0)] > ¢&/2, we
have

B0, 0) — p1(0)P2(0) |
> [p(0,0) — p1(O)p2(0)] = [B(0, 0) — p(0, 0)|
~ [B10) = p1O)] ~ 120 2] = .
Thus, it is sufficient for the referee to form the estimates
P(0,0), p1(0), and p2(0) and compare [(0, 0) — 1 (0)p2(0)
to the threshold /4. |

We summarize the overall algorithm and its performance
below.

Theorem 8: For every k > 1 and p € (0, 1], there exists
a public-coin p-LDP protocol for (k, &, §)-independence test-
ing using one bit of communication per player and n =
0(% log %) players.

Proof: The proof proceeds as follows: Using the public
randomness, the players select two uniformly random sub-
sets 81,82 € [k], and from their samples allow the referee
to estimate the quantities p(S; x S2), p1(S1), and p2(S>).
By Theorem 6, this in turn is enough to detect (with constant
probability over the choice of Sy, S>) if p is far from p; ® p2;
it then suffices to repeat this in parallel on disjoint groups of
players in order to amplify the probability of success.

To wit, the proof of correctness follows the foregoing out-
line, which we describe in more detail. Let ¢ := 1/4096 be the
constant from Theorem 6, let §p = ﬁ, and set ¢’ := Lk

Consider the #-th test from Algorithm 5 (where 1 <t <T),
and let b; be the indicator that the protocol run by players in
B, returned accept. If p = p; @ p2, then by the above we have
Pr[b; = 1] > 1 — 89 (where the probability is over the choice
of the random subsets S;; and S;2, and the randomness of
protocol from Lemma 6). However, if p is e-far from p; ® pa,
by Theorem 6 it the case that Pr[b; = 1] < (1 —¢) + ¢dp =
1—(80+ %). Therefore, for a sufficiently large constant in the
choice of T = O(1 /c2) = ©(1), a Chernoff bound argument
ensures that we can distinguish between these two cases with
probability at least 2/3. |
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Algorithm 5 Locally Private Independence Testing (Public-
Coin)
Require: Privacy parameter p > 0, distance parameter ¢ € (0, 1), n

players
1: Set
L ¢ e L T=8 "
Cc <« <~ , & «— ——, = , m<— —.
4096 T 2(1+0) NE: 3T
2: Partition the players in T groups
Bi,1.B1,2,B1,3,.B2,1,B822,B23,...,B7,1, Br 2, B 3 of
m players
3: for ¢ from 1 to T do > In parallel
4: Players in B; 1 U B; 2 U B; 3 generate uniformly at random

two common subsets Sq 4, 57 ;  [K].
5: for all i € B; | do

6: Player i converts their sample (X;,Y;) to le =
Lixi.vpesixsa)-

7: for all i € B; ; do

8: Player i converts their sample (X;, ¥;) to le =1 (XieS,1}:

9: for all i € B; 3 do

10: Player i converts their sample (X;, ;) to le = ]l{YieS, NE

11: Players in B; | UB; » UB; 3 (and the referee) run the protocol

from Lemma 4 on the samples (le) i€B, |UB, yUB, 5 to test identity
of p(St.1 % Sr.2) to p1(S,1)P1(St2), with distance parameter &’
and failure probability 8y

12: > At the referee

13: Let t denote the fraction of the T protocols that returned accept

14: if t > 1 — (89 + %) then

15: return accept
16: else
17: return reject

C. Lower Bounds

The following theorem proves the tightness of our upper
bounds for independence testing.
Theorem 9: For every k > 1 and p € (0, 1], every private-

coin (resp., public-coin) p-LDP protocol for (k, e, 1/12)-

K3

independence testing must have 2 players (resp.,

Q(%) players).

Proof: We show the following reduction, which implies our
bounds for independence testing. If there exists a private-
coin (resp., public-coin) p-LDP protocol for (k, e, 1/12)-
independence testing with n players, then there also exists
a private-coin (resp., public-coin) p-LDP protocol for distin-
guishing the “Paninski construction” over [k?] with n players.
Recall that for even integer k and a distance parameter y €
[0, 1/2], the Paninski construction is a family of 2"2/ 2 distri-
butions {p,} over [k?], where for z € {—1, +1}¥/2

e{—1,+12
we have

1-2yz _n;
p:(x) = { 1+]§2VZ:" x=2i—1
e
Note that every p; is then at total variation distance exactly y
from w;2. From the lower bounds on uniformity testing already
established in [2] (listed in Table I), we then obtain the lower
bounds on independence testing.
We first state the following useful fact (see, e.g., [16]) which
states that if a distribution is close to a product distribution,
then it must be close to the product of its own marginals.

. x e[k (7)

, x=2i

Fact 2: Let p,q € Aqgxq with q, a product distribution. If
dry(p. @) < & then dpy(p, p1 ® p2) =< 3e.
Let k = 2¢. For z € {1, +1}2%, let (p.). be the collection
of distributions over [4¢2] = [k?] given in (7), each at a dis-
tance y = 3¢ from the uniform distribution. We construct a
mapping ®: Ap2) — Apkx(ex such that:
1) Both marginals of ®(p;) are ujy; for all z;
2) dpy(P(p2), wpkix2n)) = dpy (P2 ug2), and P(upe) =
W[k % [2k] 5

3) There exists a mapping from [k2] — [2k] x [2k] that
converts a sample from p, into a sample from ®(p,),
and a sample from w2 into a sample from up2x)x[24]-

By Fact 2, for any product distribution q over [2k] x [2k],

dry (D (P2), @) = dpy (P(P2), up2nix(20) /3
= dTV(pZ’ ukZ) =&,

and the distribution ®(p,) is at least e-far from any prod-
uct distribution. Now, by Item 3, if we obtain n samples
from ®(p;) for a uniformly chosen z, we can convert them
to n samples from p,. Therefore, any algorithm for testing
independence can be used to test uniformity for the Paninski
class of distributions over [k?], for which the lower bounds
were established in [2]. This proves Corollary 9, assuming the
mapping ®.

We now describe the function @ satisfying the three con-
ditions. To each i € [2¢?], we associate a collection C; =
{aij, bij}1<j<a C [2k] x [2k] of 8 elements and arrange them
in a “block” B; as

bi,2i|
ai4 |

. |4in
B = [bm
The we can see the set of (2k)2 = 8 - 2¢2 elements C =

Ulzfl C; as a 2k-by-2k matrix B, comprised of the 2¢> blocks
as follows:

bi1
a3

ain
b4

B B, ... By
Bei By By
B = . . .
Boi-n+1 Bee-n+2 By

This matrix B enables us to see the target domain [2k] x [2k]
as this 2¢-by-£ grid of 2-by-4 blocks of elements. Explicitly,
this correspondence is given by the indices

biy = Qri+1,4c; +2),

bir = (2ri+1,4ci +4),

ai1 = Qri+1,4c;i + 1),

aip = 2ri+1,4c¢; + 3),

ai3=Q2ri+1,4c;i+2), biz=QCri+2,4c; + 1),

ai4 = 2ri+1,4ci +4), bia= Q2ri+1,4c;i +3),
where r; = |i/¢] and ¢; = imod ¢, for 1 < i < 2¢2. This

enables us to define our mapping ®: Ap2; — Apkx[24]: given
a distribution p over [k2] = [4¢2], let, for all i € [2¢2],

®(p)(ai1) = @(p)(ai2) = P(p)(ai3) = P(p)(aiq)

= ip(Zi -1,
D (p)(bi,1) = P(p)(bi2) = P(p)(bi3) = P(P)(bi4)
= %p(Zi).
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Heuristically, foreach 1 <i < 202 = k2 /2, recalling the layout
of the block B;, the mapping & “distributes” the probability
masses p(2i — 1) and p(2i) on 8 elements of C; as follows:

l[p@i - p@) pRi-1) p@2) ]
4L p2)  p2i—=1) p@) pQRi-1]

This implies Item 2, since ¢ distance (and thus total variation)
is preserved by this transformation. It also establishes Item 3,
as upon seeing a sample x from p, one can generate a sample
from ®(p) by returning uniformly at random one of the four
corresponding elements from the block Bry/21. Thus, it only
remains to show Item 1. This in turn comes from the fact that
for every i € [2¢%], by construction, the probabilities under
@ (p) of each row (resp., column) of block B; sum to %(p(Zi—
1) + p(2i)) (resp., 2(p(2i — 1) + p(2i))), which are 1/k> and
1/2k? respectively for p, and u[;2), independent of i. |

APPENDIX A
PROOF OF LEMMA 2
In this section, we provide the proof of the variance bound
for the RAPPOR-based statistic of Section III-Al.
Lemma 7 (Lemma 2, Restated): For T defined as in (4), we
have

Var [T] < 2kn* 4 5n°a?||p — q||3 < 2kn® + 4nE[T].

Proof: We let Ay == aq(x)+f and 1, = 1E[N,] = ap(x)+
B for x € [k]. Dropping the constant terms from 7, we define
T’ such that Var [T'] = Var [T] as

=3 (N§ — Q0= D+ 1)Nx> —

g(Nx» )\'X)v
x€[k] ]

xelk
where g: [0,00) x [0,1] — R is given by g(t,A) = 2 —
(2(n—1)A+ 1)t. The key difficulty in the analysis arises from
the fact that the multiplicities of the N, terms that arise from
RAPPOR are correlated random variables. Because g is not
monotone in its first input, the cross covariance terms may be
positive even though the N, terms are negatively associated.
As a result, we fully expand out the variance and analyze the
terms separately. Recall that

Var[T'] = ) Var[g(Ny, 1,)]
xelk]

+ 22 COV(g(Nxs )"x)s g(N)” )"y))' (8)

x<y

We first analyze the sum of variances. A direct computation
gives that, for every x € [k],

Var[g(Ne, Ax)] = 2n(n — Djee(1 — 1)
x (1l = ) + 201 = D0 — )?)
< %n2 +a%n(n — D> (p(x) — q(x))?,

where the inequality holds since p, € [0, 1] so (1 — ) <
1/4. It follows that

1
> VarlgWe, a0] = ok +e?nn = D?Ip — gl 9)
x€[k]

We now turn to the sum of the covariance terms. Fix any
x < y in [k]. By expanding the corresponding covariance term,
we get

Cov(g(Nx, Ay), g(Ny, Ay))
= E[g(Nx, 2)g(Ny. Ay)] — E[s(Nx, 1) [E[g(Ny. 2y)]
= E[NfNyz] — 20— iy + 1)1E[N§Ny]

— Q= Di, + 1)IE[NXNy2]
+ 2 — Dy + D20 — Diy + DE[NN, ]
— (0 — 1) gty (e — 220 (1ty — 221y)

since E[N2 — (2(n — DAy 4+ DN,] = n(n — Dpay(px — 245).
We then proceed by evaluating the expressions for E[NxNy],
]E[N%NV] El[NxNyz], and ]E[N)%NVZ] separately.

First, by Fact 1, we have that

(10)

E[NNy] = > Pr[Yi= 1Y, =1]
1<ij<n
n
= Z(uxuy - a2p(x)p(y)) +2) ity
i=1 i<j

= n* lxity — na*pOP(y)

= n?papty — n(ix = B) (1ty — B)- (11

Second, for E[NZNy], we get

E[N,%Ny] = Y PrfYa=1Yi=17Yy=1]

1<i,j€<n

ny 2
:nPr[Yixz LY, = 1]+6 3 Wyly

+ 2(;) (uxuy + ZMX(quy - azp(x)p(y)))

n
= ity — na’pEPOY) + 6<3> 13ty
ny »
+ n(n— Dpcpy +4 5 Htty

- 4(’;)a2uxp<x)p<y>,

which, gathering the terms, yields

E[N2N, | = ity = @01 = Dy + DG = B) (12 — )

+ 12 (n— D,y (12)
The term E[NXN‘Z,] term follows similarly.
Finally, for E[N)%Nf], note that
E(NINZ] = ) PlYu= 1 Y= 1Y = 1Y, =1]

1<i,ji'j'<n

= n(uxuy - oﬂp(x)p()’)) + (Z)
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X (ZMX/Ly + 4y <V~xﬂy - azp(x)p(y))
+ 4My (Mxﬂy - azp(x)P(Y))

2
+ 4(uxuy - azp(X)p(y)) )
+ (" (6 201y + 6ptyp? + 24
3 My Ky Hox by Mox Ly

x (quy - azp(X)p(y)»

ny 22
+ 24 < 4) Wi ey
where the second equality follows from counting the differ-
ent possibilities for the values taken by i,7,j,j; we divide
into cases based on the number of different values taken and
apply Fact 1 for each subcase. Note that the total number
of terms is n + 14(}) + 36(3) + 24(}) = n*. This can be
simplified to

E[NINZ] = 21 = 1203l + 020 = Dptatty (1 + 11y)
+ 1P gy — 4n(n — 1% (e = B) (1y — B) 1ty
= 2n(n — 1)(puy — ﬂ)(ﬂy - ,3) (Mx + My)
+ 2n(n = V(s — B (1y — B)’
— n(px — .8)(/1«)‘ - ,3),
Plugging the bounds from (11) to (13) into (10) and simpli-
fying, we get
Cov(g(Nx, 1), 8(Ny, 2y))
< 2n(n — D (ptx — B)(1ty — B)
X ((x = B)(1y — B) = 2(n = 1) (ix — A) (1ty — 1y))
= 2a’*n(n — HpXP()
X (p)pQ) — 2 — D(p©) —q@x)(PO) —aq()))

13)

Summing over all distinct X, Y, we have
Y <ay<k PO?PO)? = |IplI3 — Il < I3 and
- Y pWPO(P®) — q@)(PO) — q())
I<x#y=<k
2

= > p@*P® —q®)’ — [ Y p@E® —qw) | .

xelk] xelk]
which is at most 3 g P (p(x)—q(x))? < |Ip — qlI3. Thus,

2 Cov(g(Ny, ). g(Ny. 2y)) < 2a*n?(IpII3

x<y

+ 4a*n’|p — ql3, (14)

completing our bound for the cross-variance terms.

Combining (9) and (14) into (8) lets us conclude that
1
Var[T] < nz<§k + Za“npn%) +a’nlp - ql3 (1 +4a?)
< 2kn* + 5a*n’||p — qll3,

which holds as long as k > 2, proving the lemma. |

APPENDIX B
PROOF OF THEOREM 7

Theorem 10 (Joint Probability Perturbation Concentration,
Restated): Consider a matrix § € R*¥*k such that, for
every io,jo € [kl X jcySio = Lier Sio = O. Let ran-
dom variables X = (Xi,...,Xyx) and ¥ = (Y1,...,Y) be
independent and uniformly distributed over length-k binary
sequences. Define Z = 3 ;cijx [k 85iXi¥j. Then, for every
o € (0, 1/16), there exists a constant ¢, > 0 such that

P22 > alldl}] > ca-
Moreover, one can take ¢, = (1152640,)2.

Proof: The proof is similar in flavor to that of [3, Th. A.6]
(for the case L = 2), as we proceed by bounding E[Z], IE[ZZ],
and IE[Z4], before applying the Paley—Zygmund inequality
to Z2. While we could follow the approach of [3, Th. A.6]
and handle general 4-symmetric random variables by care-
fully keeping track of the various quantities in the expansion
of E[Z*] and E[Z*], for conciseness we choose here to pro-
vide a simpler (albeit less general) proof relying on our specific
choice of random variables.

As a first step, let §; := 2X; — 1 and Oj’ = 2Y; — 1 for
i,j € [k], so that the 6; and 9; are independent Rademacher
random variables. Since the sum of entries of § along any fixed
row or column is zero by assumption, we note that

1
Z=3 > 806
ijelk]

15)

Since 6; and Qj’ are independent and E[6;] = 0, it follows that
E[Z] = 0. For Z?, we again use independence of 6 and 6’ to

obtain
>

IE[ZZ] -
(i1.j1.12.j2) €[K]*

-y

(i1.J1,i2.j2) €Lk]*

Si0i 1o B[ 6101661 |

2Y%1Y%,

5101 3 B 01,0, JE| 0,6, |
Moreover, since the coordinates are independent, we also have
E[6;,6;,] = IE[O-’ 9-’] = 1{j,—i,}. Therefore,

-
E[Z2] = 1 Z 82 — i||5||2
16 TR
(i) lk]?
It remains to bound the fourth moment of Z. Using the rep-

resentation of Z as in (15), we bound the moment-generating
function of Z as®

;A e

’ SI12
log Egg/[¢+2] = log Egg [e49T59] <2 1181l
1

— 5p(578)

2
Jo78)

where p(878) is the spectral radius of 87 8. Now, by a standard
Markov-based argument, we have that IE[Z4] < %E(;@/ [e}‘z]

Vo< A <

6See, e.g., [2, Claim IV.17], and note that the proof goes through even
without the positive semi-definiteness assumption.
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for all A > 0. Therefore, combining the two and using the fact

that \/p(878) < ||8]|p we can write

g B WIE 2
EI:Z4] 5 _4632 17)»2“5”%/45 VO < )\' < s
K HE

L_ for any constant C > 0 yields E[Z4] <

Setting A =l ol

24 . CHe32C-1/4) ||8||§. Optimizing for C > 1/2, we can take
C= %@ and get

Hﬂf%mu (16)

The remainder of the proof follows that of Theorem 3 using
the Paley—Zygmund inequality: for every ¢ € [0, 1]

2
t E[Z2 1 —1)?
HV>—wﬂzuwﬂ[]z( U
16 E[Z4] 256 -4
establishing the theorem (by choosing ¢t = 16« and ¢, =
(1—16a)2) -
1024 .

Remark 3: Although the proof of Theorem 7 uses full
independence of the vectors X and Y (due to the use of
the moment-generating function), it is easy to see that the
statement still holds when X (resp. Y) is only 4-wise inde-
pendent. This is because the Paley—Zygmund-based argument
only relies on bounds on moments up to order four, and
those moments are the same for 4-wise and fully independent
vectors.
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