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Abstract—In this paper, we study the problem of error
propagation in sliding window decoding (SWD) of spatially
coupled LDPC (SC-LDPC) codes. A general decoder model that
accounts for error propagation is proposed and analyzed, and the
decoded block error rate (BLER) is calculated using the model.
In order to improve the BLER performance under decoder
error propagation conditions, adaptive variable node (VN) doping
is proposed, assuming a noiseless binary feedback channel is
available. Example calculations using the proposed model, as well
as numerical simulation results, are used to show that adaptive
VN doping improves the BLER performance compared to the
periodic VN doping and to the undoped case.

Index Terms—Spatially Coupled Codes, Sliding Window De-
coding, Code Doping

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)
codes, first introduced in [1], have drawn considerable at-
tention from the research community in recent years due
mainly to two facts: (1) with low-complexity iterative belief
propagation (BP) decoding they can achieve the maximum a-
posteriori (MAP) decoding threshold of an underlying LDPC
block code (LDPC-BC), termed the threshold saturation effect
[2], [3], and (2) they can be decoded using sliding window de-
coding (SWD) [4], which greatly reduces decoding latency and
complexity compared to other decoding methods. In order to
maintain near optimal performance at moderate-to-high signal-
to-noise ratios (SNRs), the window size W should satisfy
W ≥ 6v, where v is the decoding constraint length. However,
when low latency operation is desired at the lower SNRs
typically used in applications, thus requiring smaller values
of W , infrequent but severe decoder error propagation can
sometimes result, causing significant performance degradation,
particularly for large frame lengths. Also, in a continuous
(streaming) transmission scenario, an unterminated code chain
can result in unlimited decoder error propagation.

During the decoding process, error propagation is triggered
when, after a block decoding error occurs, the decoding of the
subsequent block is also affected, which in turn can cause a
continuous string of block errors, resulting in an unacceptable
performance loss. To address this problem, Klaiber et al. [5]
proposed adapting the number of decoder iterations and/or
shifting the window position in order to limit the effects of
error propagation in SWD of SC-LDPC codes. Also in [6],
we proposed a window extension algorithm, a synchronization
mechanism, and a retransmission strategy to mitigate error
propagation in SWD of braided convolutional codes (BCCs),
a type of SC-LDPC code. Each of these approaches was
directed at altering the design of the decoder. More recently,
we proposed check node (CN) doped SC-LDPC codes [7]

and variable node (VN) doped SC-LDPC codes [8] to limit
error propagation by altering the encoder design. This was
accomplished by inserting doping points periodically into the
code chain to help the decoder recover from error propagation.
However, the required pre-determined distribution of doping
points does not completely eliminate error propagation, since
it can still exist between doping points. In order to address this
deficiency, more doping points are required, but this results in
a significant rate loss.

In this paper, we propose an adaptive doping strategy for
SC-LDPC codes. Instead of inserting doping points periodi-
cally in a pre-determined way, we insert doping points only
as needed, based on the average log-likelihood ratios (LLRs)
in some number of recently decoded blocks. We refer to this
strategy, which assumes the use of an instantaneous noiseless
feedback channel, as adaptive code doping. Compared to
periodic doping, it has the advantage of an almost immediate
truncation of error propagation events while limiting the rate
loss to only what is required to stop the error propagation. The
adaptive approach can be applied to both CN doping and VN
doping. Since both methods have similar performance, but VN
doping is easier to implement, we focus here only on adaptive
VN doping.

II. MODELING THE BEHAVIOR OF SWD

In this section, we introduce a new decoder model to illus-
trate how error propagation affects the block error rate (BLER)
performance of SWD. In [6] and [7], a simple model of SWD
behavior during error propagation was given. The model was
focused on the case of a large protograph lifting factor M ,
corresponding to a strong code that typically performs very
well until error propagation begins, but never recovers from
this condition. In this section, we propose an extended decoder
model, in which we allow for the possibility that the decoder
can recover from a burst of decoded errors and resume correct
decoding. This situation typically occurs for weaker codes
with smaller values of M , where the use of past incorrectly
decoded symbols in the decoding window does not have the
same influence on future decoded blocks as it does for larger
values of M .

Before proceeding with the development of the new decoder
model, we first briefly review protograph-based SC-LDPC
codes. We consider SC-LDPC codes constructed by coupling
together a sequence of L disjoint (J,K)-regular LDPC-BC
protographs into a single coupled chain, where infinite L
results in an unterminated coupled chain and finite L results
in a terminated coupled chain. Without loss of generality,
we consider (3,6)-regular SC-LDPC codes constructed from
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Fig. 1. (a) a sequence of independent (uncoupled) protographs; (b) spreading
edges to the m = 2 nearest neighbors.

protographs as shown in Fig. 1. As an example, we begin
with an independent (uncoupled) sequence of (3,6)-regular
LDPC-BC protographs with base matrix B = [3 3] (see
Fig. 1(a)). The unterminated (3,6)-regular SC-LDPC code
chain is obtained by applying the edge-spreading technique
of [9] to the uncoupled protographs. In this case, the edge
spreading is defined by a set of component base matrices
B0 = B1 = B2 = [1 1] that satisfy B = B0+B1+B2 (see
Fig. 1(b)). In general, an arbitrary edge spreading must satisfy
B =

∑m
i=0 Bi, where m is referred to as the coupling width.

Applying the lifting factor M to the SC-LDPC protograph
of Fig. 1(b) results in an unterminated ensemble of (3,6)-
regular SC-LDPC codes in which each time unit represents a
block of 2M coded bits (variable nodes). SWD, first proposed
in [4], was applied to SC-LDPC codes to reduce decoding
latency, memory, and complexity. As shown in Fig. 1(b), the
rectangular box represents a decoding window of size W
blocks. To decode, (1) a BP flooding schedule is applied to all
the nodes in the window until some stopping criterion is met,
up to some maximum number of iterations I , (2) the target
block of 2M symbols in the first window position is decoded
according to the signs of their LLRs, and (3) the window
shifts one time unit (block) to the right. Decoding continues
in the same fashion until the entire chain is decoded, where
the decoding latency in bits is given by 2MW .

In order to obtain an understanding of decoder error propa-
gation in SWD, we assume the decoder operates in one of three
states: (1) a random error state Sre0, in which, given that the
previous block was decoded correctly, decoding errors in the
next block occur independently with probability p0, resulting
in the decoder transitioning to state Sre1, and the decoder
remains in state Sre0 following a correctly decoded block with
probability 1 − p0, (2) a random error state Sre1, in which,
given that the previous decoded block was in error, decoding
errors in the next block occur independently with probability
p1, resulting in the decoder transitioning to state Sbe, and the
decoder returns to state Sre0 following a correctly decoded
block with probability 1− p1, and (3) a burst error state Sbe,
in which, given that the previous two decoded blocks were in
error, decoding errors in the next block occur independently
with probability 1−r, resulting in the decoder staying in state
Sbe, and the decoder returns to state Sre0 following a correctly
decoded block with probability r.

Fig. 2 shows the state diagram describing this situation,

Fig. 2. The state diagram describing a decoder subject to error propagation.

where we assume the decoder always starts in state Sre0.
Generally, p1 ≥ p0 since one error block means that there
are some incorrectly decoded symbols still connected to the
window that influence the decoding of the next block. Here,
however, for simplicity we assume p1 = p0 = p. With this
assumption, the probability of transitioning from state Sre0 to
Sre1 is p and the probability of transitioning from state Sre1

to Sbe is also p, i.e., the probability of transitioning from
state Sre0 to state Sbe is p2. When r → 0, and hence the error
probability in state Sbe is 1−r → 1, error propagation occurs,
i.e., the decoder will typically not be able to escape the burst
error state. On the other hand, when r > 0, the decoder has
probability r of returning to state Sre0, and the burst errors
are of finite length.

For a given protograph, the channel parameter SNR, the
decoder parameter W , and the code parameter M will all
influence the values of p and r. The probability p is a non-
increasing function of all three of these parameters, whereas r
increases with SNR and W , but decreases with M , since the
larger number of incorrectly decoded LLRs still connected to
the window will have a stronger influence on future decoded
blocks in this case. In other words, stronger codes (large M )
are less likely to reach state Sbe, but once there, they have a
higher probability of staying there, i.e., a higher probability
of unlimited decoder error propagation. Weaker codes (small
M ), on the other hand, will have larger values of p, and thus
will enter into state Sbe more often, but are less likely to
suffer from unlimited decoder error propagation. Instead, they
typically result in more single errors and a larger number of
burst errors of varying lengths. In the following, we will derive
expressions for the BLER, as functions of p and r, of SC-
LDPC codes based on this model for both unterminated (L →
∞) and terminated (finite L) transmission.

A. Asymptotic (L → ∞) Analysis
Let P0 be the probability of being in state Sre0, P1 be the

probability of being in state Sre1, and Pbe be the probability
of being in state Sbe. Then we have

P0 = P1 (1− p) + Pber + P0 (1− p) = [P1 (1− p) + Pber] /p,
P1 = P0p,
Pbe = P1p+ Pbe (1− r) = P0p

2 + Pbe (1− r) = P0p
2
/
r.

The average BLER can now be expressed as

PBL = P0p+ P1p+ Pbe (1− r) = P0

(
rp+p2

r

)
. (1)

Since P0 + P1 + Pbe =
(
1 + p+ p2/r

)
P0 = 1, we have

P0 =
1(

1 + p+ p2
/
r
) =

r

r + pr + p2
. (2)
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Fig. 3. The state diagram describing of a decoder subject to error propagation
for finite L.

Now, using (2) in (1), we obtain

PBL =
rp+ p2

r + rp+ p2
, (3)

where PBL = 1 when r = 0, which corresponds to the
decoder entering state Sbe once and never returning to state

Sre0 (the error propagation case); PBL = p+p2

1+p+p2 when
r = 1, which corresponds to the decoder never making
more than two consecutive errors (due to an error propagation
mitigation method, say); and PBL = p when r = 1 − p,
which corresponds to a pure random error decoder. Since
∂PBL

∂r = − p2

(r+rp+p2) < 0 for all p > 0, we see that PBL

decreases with r for all p, 0 < p ≤ 1/2.

B. Finite L Analysis

For a frame of length L, we group states Sre0 and Sre1

in Fig. 2 into a single random error state Sre, as shown in
Fig. 3, where the transition probability from state Sre to state
Sbe is q ≈ 2p2.1 Based on this model, the decoder stays in
(the combined random error) state Sre for an average of 1/q
time units and in state Sbe for an average of 1/r time units.
Thus, a “round trip” from Sre to Sbe and back to Sre takes an
average of x = 1/q+1/r time units, and the average number
of round trips in a frame of length L is y = L/x. Now write
y = �y�+ z, where z < 1, and let u = r/(r + q) < 1 be the
(average) fraction of a round trip that the decoder spends in
state Sre and v = q/(r + q) = 1 − u < 1 be the (average)
fraction of a round trip that the decoder spends in state Sbe.

Now let nre be the average number of time units spent in
state Sre and let nbe be the average number of time units
spent in state Sbe. Then,

nre = (�y�+ z/u) (1/q) , nbe = �y� (1/r), z < u,
nre = (�y�+ 1) (1/q) , nbe = (�y�+ (z − u) /v) (1/r), z ≥ u,

(4)
and we can write

PBL = [nrep+ nbe (1− r)] /L, (5)

which is a function of p, r, and y (which depends on L).
Unlike the asymptotic analysis presented above, (5) shows an
explicit dependence on the frame length L. We can distinguish
several cases:

• Case 1: x 	 L. In this case, the decoder goes through
many round trips (relatively short error bursts) and the
dependence on L is very slight. This gives us essentially
the same result as the asymptotic analysis.

1Using the model of Fig. 2, q can be calculated as 2p2/(1+ p), which we
approximate as 2p2 for small p.

• Case 2: x > L > 1/q. In this case, the decoder stays
in state Sre for an average of 1/q time units and then
transitions to state Sbe, remaining there for the rest of
the frame. This is the error propagation case, where the
dependence of PBL on L is very strong. (Note that if
r = 0, x is infinite.)

• Case 3: L < 1/q. In this case, the decoder never leaves
state Sre and PBL = p.2

From the above analysis, we see that PBL is always a
decreasing function of r, as in the asymptotic case. In the
absence of error propagation, we again have r = 1−p, which
is typically very close to 1, i.e., the probability of decoding
correctly is the same whether the decoder is in state Sre or
state Sbe. It is precisely decoder error propagation that reduces
the value of r so that the decoder typically stays in state Sbe

for a long time, and in the extreme case, i.e., low SNR, small
W , and large M , r can even go to 0, which causes unlimited
error propagation. In the following section, we discuss two
mitigation methods designed to increase the probability r, and
thus to limit the effect that decoder error propagation has on
the BLER performance of SC-LDPC codes.

III. ADAPTIVE VARIABLE NODE (VN) DOPING

In order to mitigate the effect of error propagation in
SWD, we introduce adaptive VN doping into the coupling
chain of an SC-LDPC code. Instead of inserting doped VNs
periodically into the coupling chain, as was proposed in [8],
adaptive VN doping makes use of an instantaneous noiseless
binary feedback channel to insert doped VNs into the coupling
chain on an “as needed” basis, depending on the average
LLR magnitudes in some number of recently decoded blocks.
Before describing adaptive VN doping in more detail, we first
briefly review periodic VN doping [8].

A. Periodic VN Doping

Motivated by the fact that the boundaries of a coupled
chain have the effect of propagating more reliable information
throughout the chain during iterative decoding, the introduc-
tion of known (or fixed) VNs into a coupled chain can emulate
chain termination, thus truncating any error propagation in
the iterative decoding process. Fig. 4 illustrates a periodic
VN doping scheme for a (3,6)-regular SC-LDPC code, where
each time unit represents a block of 2M coded symbols. The
green VNs at times t = τ1, τ2 = τ1 + s, and τ3 = τ1 + 2s
(generally τk = τ1 + (k − 1)s) represent the doping points,
i.e., they are fixed to known values and spaced s time units
apart. The degrees of the CNs connected to these doped VNs
are thus effectively reduced, introducing an irregularity into
the protograph that results in stronger checks, which have the
effect of truncating decoder error propagation. Unlike the case
of CN doping introduced in [7], SWD of VN doped SC-LDPC
codes requires no change in the decoder structure compared
to undoped SC-LDPC codes.

2We note that the analysis calculates the average BLER in a single decoded
frame. By assuming a probability distribution for the number of time units
the decoder remains in a given state, the analysis can be extended to calculate
the average BLER over multiple decoded frames of a given length L [10].
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Fig. 4. VN doping for a (3,6)-regular SC-LDPC code with fixed VNs spaced periodically throughout the coupled chain.

B. Adaptive VN Doping
Unlike periodic VN doping, adaptive VN doping inserts

doping points based on the average LLR magnitudes in some
number of decoded blocks. In this case, (typically unequally
spaced) doped VNs at times t = τ1, τ2, τ3, . . . are inserted into
the coupling chain in response to requests from the decoder
transmitted over an instantaneous noiseless binary feedback
channel. To trigger a doping request in the SWD process, after
completing all the iterations necessary to decode the target
block at time t, if the average decoded LLR magnitude Lt

satisfies

Lt
Δ
=

1

2M

2M−1∑
i=0

∣∣LLRt
i

∣∣ ≤ η, (6)

where η is some pre-determined threshold, we consider the
target block at time t as failed. If we experience Nr consec-
utive failed target blocks, a doping request is submitted and
the next block of VNs entering the far end of the window is
assumed to be doped.

Assuming that there are d doped positions in a coupled
chain, and letting nc and nv denote the total number of CNs
and the total number of undoped VNs, respectively, the rate
of periodic or adaptive VN doped SC-LDPC codes with frame
length L and d doped VNs is given by

RL,doped = 1− nc/nv = 1− [(L+m)/(L− d)] (1−R) ,
(7)

where R = 1−J/K is the design rate of the uncoupled LDPC-
BC protograph, d = L/s is fixed in the periodic case, and d is
variable, depending on the frequency with which the threshold
test of (6) fails Nr consecutive times, in the adaptive case.
Compared to the design rate RL = 1− [(L+m) /L] (1−R)
of undoped protograph-based SC-LDPC codes [9], we see
from (7) that periodic and adaptive VN doped SC-LDPC
codes result in some rate loss, similar to the CN doping idea
introduced in [7].

C. BLER Analysis of Periodic and Adaptive VN Doping
In order to apply the analysis of Sec. II to periodic and

adaptive VN doping, we distinguish two cases: (1) a “strong
code” case in which the protograph lifting factor M and the
decoder window size W are both large, and (2) a “weak code”
case in which M and W are both small. Based on extensive
experimental observations of SWD of SC-LDPC codes, the
analysis models can be assumed to have p 	 1 and r ≈ 0
for strong codes, while p is larger and r can be greater than
0 for weak codes. In other words, strong codes have very low

block error rates in state Sre and a very small probability of
reaching state Sbe, but once they reach state Sbe they suffer
from unlimited error propagation. For this reason, very large
frame lengths can suffer significant performance degradation
in this case. For weak codes, on the other hand, the block
error rate is much higher in state Sre, making them unsuitable
for capacity-approaching applications, but the decoder can
sometimes recover from error propagation, so large frame
lengths are not necessarily catastrophic.

The VN doping methods presented earlier in this section
typically result in much larger values of r. This allows the de-
coder to escape more quickly from state Sbe, thus significantly
improving the decoded block error rate PBL, particularly at
SNR operating points near capacity. For periodic VN doping,
the transition probability from state Sbe to state Sre increases
to r = 2/s, where s is the spacing between doping points,
since on average we must wait s/2 time units for a doping
point. For adaptive VN doping, based on the design presented
in Sec. III-B, the transition probability from state Sbe to state
Sre is given by r = 2/ (W + 2Nr − 4). We now calculate
PBL, using the asymptotic and finite L analysis models of
the previous section, for both strong code and weak code
examples. Based on these calculations, we then compare
the predicted PBL performance of undoped, periodically VN
doped, and adaptively VN doped codes.

Example 1 (strong code): Choose p = 10−2.

(a) Asymptotic (L → ∞) analysis: For the undoped case

(r = 0), the BLER is calculated using (3) as P undoped
BL = 1.

For periodic doping (s = 200, r = 2/s = 10−2), we obtain

P periodic
BL = 0.0196. For adaptive doping (W = 18, Nr = 2,

r = 1/9), we obtain P adaptive
BL = 0.0108.

For the chosen parameters, we see that both periodic and
adaptive doping significantly reduce PBL compared to the
undoped case, which suffers from unlimited error propagation,
with adaptive doping performing about twice as well as
periodic doping.

(b) Finite L analysis: Choose L = 20, 000. For the undoped

case (r = 0), the BLER is given by P undoped
BL = 0.505.3 For

periodic doping (s = 200, r = 10−2), using (4) and (5) we

obtain P periodic
BL = 0.0149. For adaptive doping (W = 18,

Nr = 2, r = 1/9), we obtain P adaptive
BL = 0.0104.

3When r = 0, the decoder stays in state Sre for an average of 1/q time
units and transitions to state Sbe, where it stays for the remaining L − 1/q
time units. Hence, in (5), nre = 1/q and nbe = L− 1/q.
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Again, we see that both periodic and adaptive doping
significantly reduce PBL compared to the undoped case and
that adaptive doping outperforms periodic doping.

Remark: Here we chose r = 0 since strong codes almost
never recover from decoder error propagation, s = 200 since
this limits the burst length to 100 on average, W = 18 = 6v
since this gives near optimal SWD performance at moderate-
to-high SNRs, and Nr = 2, since anything more than single
isolated errors typically indicates decoder error propagation
has begun.

Example 2 (weak code): Choose p = 10−1.
(a) Asymptotic (L → ∞) analysis: For the undoped case

(r = 0.01), the BLER is calculated using (3) as P undoped
BL =

0.524. For periodic doping (s = 100, r = 2/s = 0.02), we

obtain P periodic
BL = 0.375. For adaptive doping (W = 12, Nr =

4, r = 1/8), we obtain P adaptive
BL = 0.153.

For the chosen parameters, we see that both periodic and
adaptive doping significantly reduce PBL compared to the
undoped case, with adaptive doping again performing better
than periodic doping.

(b) Finite L analysis: Choose L = 2, 000. For the undoped
case (r = 0.01), the BLER is calculated using (4) and (5) as

P undoped
BL = 0.545. For periodic doping (s = 100, r = 0.02),

we obtain P periodic
BL = 0.386. For adaptive doping (W = 12,

Nr = 4, r = 1/8), we obtain P adaptive
BL = 0.163.

Again, we see that both periodic and adaptive doping
significantly reduce PBL compared to the undoped case and
that adaptive doping outperforms periodic doping.

Remark: Here we chose r = 0.01 to reflect the fact that
weak codes are less likely than strong codes to suffer from
unlimited decoder error propagation, s = 100 since s = 200
would give the same result as no doping, W = 12 = 4v (a
weaker decoder than in Example 1), and Nr = 4 to reflect the
fact that, for weak codes, we must wait longer before declaring
that error propagation has begun and sending a doping request.

Finally, we note that, either with or without doping, strong
codes perform much better than weak codes due to the smaller
value of p, since strong codes are much more resilient to
channel errors. Also, for smaller values of L, the gains
achieved by doping are expected to be less dramatic, since
error propagation is not as damaging for small frame lengths.

IV. NUMERICAL RESULTS

In order to verify the effectiveness of the proposed adaptive
VN doping scheme, the BLER performance of the undoped,
periodically doped, and adaptively doped (3,6)-regular SC-
LDPC codes of Fig. 1 with SWD is shown in Fig. 5, as-
suming an AWGN channel with BPSK signaling, M = 2000,
W = 12, Nr = 2, maximum number of iterations I = 50, and
L = 1000, where we use 2 doping points per frame for peri-
odic doping and a maximum of 2 doping points per frame for
adaptive doping.4 The results confirm our analysis in Sec. III
that, when low latency operation is desired at the lower SNRs
typically used in practice, code doping significantly improves
the BLER performance, with adaptive doping outperforming
periodic doping.

4We limit the number of doping points for adaptive doping so that its rate
loss can never exceed that of periodic doping.

0.8 0.82 0.84 0.86 0.88 0.9
10-5

10-4

10-3

10-2

10-1

Fig. 5. Performance comparison of undoped, periodically doped, and adap-
tively doped (3,6)-regular SC-LDPC codes.

V. CONCLUSIONS

In this paper, we proposed a general decoder model for
SWD of SC-LDPC codes subject to infrequent but severe
decoder error propagation. We then introduced an adaptive VN
doping strategy to combat the error propagation. Finally, using
both an analysis based on the decoder model and simulation
results, we showed that adaptive VN doping outperforms both
undoped codes and a periodic VN doping strategy.
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