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Spatially Coupled Generalized LDPC Codes:
Asymptotic Analysis and Finite Length Scaling

David G. M. Mitchell

Abstract— Generalized low-density parity-check (GLDPC)
codes are a class of LDPC codes in which the standard single par-
ity check (SPC) constraints are replaced by constraints defined by
a linear block code. These stronger constraints typically result
in improved error floor performance, due to better minimum
distance and trapping set properties, at a cost of some increased
decoding complexity. In this paper, we study spatially coupled
generalized low-density parity-check (SC-GLDPC) codes and
present a comprehensive analysis of these codes, including: (1)
an iterative decoding threshold analysis of SC-GLDPC code
ensembles demonstrating capacity approaching thresholds via
the threshold saturation effect; (2) an asymptotic analysis of
the minimum distance and free distance properties of SC-
GLDPC code ensembles, demonstrating that the ensembles are
asymptotically good; and (3) an analysis of the finite-length
scaling behavior of both GLDPC block codes and SC-GLDPC
codes based on a peeling decoder (PD) operating on a binary
erasure channel (BEC). Results are compared to GLDPC block
codes, and the advantages and disadvantages of SC-GLDPC
codes are discussed.

Index Terms— Generalized LDPC codes, spatially coupled
codes, iterative decoding thresholds, minimum distance, finite
length scaling.
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I. INTRODUCTION

OW-DENSITY parity-check (LDPC) block codes, with
iterative message passing decoding, were introduced by
Gallager in 1963 [1] as a class of codes whose decoder
implementation complexity grows only linearly with block
length, in contrast to maximum likelihood (ML) and maximum
a posteriori (MAP) decoding methods whose complexity typ-
ically has exponential growth. As a result of the low-density
constraint on the parity-check matrix H, the minimum distance
of LDPC block codes is sub-optimal. However, Gallager
showed that regular constructions, where the variable and
check node degrees of the Tanner graph representation of
H are fixed, maintain linear minimum distance growth with
block length, i.e., they are asymptotically good, although their
iterative decoding thresholds are bounded away from capacity.
Irregular constructions, introduced by Luby et al. in 2001 [2],
where the node degrees are not fixed and can be numerically
optimized, have capacity-approaching thresholds, but typically
involve a large fraction of low degree variable nodes that
can preclude linear distance growth and result in problematic
graphical objects causing failures in sub-optimal decoders. As
a result, irregular codes perform best in the waterfall, or low
signal-to-noise ratio (SNR), portion of the bit-error-rate (BER)
performance curve, while regular codes perform better at high
SNRs, i.e., in the error floor region of the BER curve.
Generalized LDPC (GLDPC) block codes, first proposed by
Tanner in 1981 [3], are constructed by replacing some/all of
the single parity-check (SPC) constraint nodes in the Tanner
graph of a conventional LDPC code by more powerful gener-
alized constraint (GC) nodes corresponding to an (n, k) linear
block code. The n variable nodes connected to a GC node
in the Tanner graph of a GLDPC code are then considered
as the code bits of the corresponding (n, k) code, and the
sub-code associated with each GC node is referred to as
a constraint code. In message passing decoding of GLDPC
codes, the constraint codes are decoded using standard block
code decoders which, in the case of simple constraint codes
such as Hamming codes [4] or Hadamard codes [5], can be
ML or MAP decoders. GLDPC codes have many potential
advantages compared to conventional SPC/LDPC codes, such
as large minimum distance [4], [6], low error floors [7], and
fast iterative decoding convergence [8].
Spatially coupled LDPC (SC-LDPC) codes, also
known as LDPC convolutional codes, were introduced by
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Jimenez-Felstrom and Zigangirov in 1999 [9]. SC-LDPC
codes can be viewed as a sequence of LDPC block codes
whose graph representations are coupled together over
time, resulting in a convolutional structure with block-to-
block memory. A remarkable property of SC-LDPC codes,
established numerically in [10] and analytically in [11], [12],
is that asymptotically their iterative message passing decoding
threshold is equal to the MAP decoding threshold of the under-
lying LDPC block code ensemble under certain conditions,
a phenomenon known as threshold saturation. In other words,
the (exponential complexity) MAP decoding performance of
the underlying block code can be achieved by its coupled
version with (linear complexity) message passing decoding.

Spatially coupled LDPC codes with generalized constraints,
or spatially coupled generalized LDPC (SC-GLDPC) codes,
and related constructions, including braided codes [13], [14],
staircase codes [15], and product codes [16], have been inves-
tigated in the literature [17]-[24]. In particular, it has been
shown that SC-GLDPC codes have good iterative decoding
thresholds [17], [22], including excellent performance with
hard decision iterative decoding [18], [21], [23], linear growth
of minimum distance [19], and robust finite-length scaling
performance [24]. We note that most of the existing work in
this area can be considered as spatially coupled versions of
product codes. Staircase codes, for example, can be seen as
a variation of tightly braided block codes where the graphs
are deterministic and less sparse. In particular, unlike the
GLDPC code ensembles we consider in this paper, such codes
get sparser only when the length of the component codes
is increased.

Motivated to combine the threshold improvement of spatial
coupling with the improved distance properties of generalized
constraints, this paper investigates SC-GLDPC codes with
linear block codes as generalized constraints and presents both
asymptotic (threshold and distance) and finite-length analyses
of SC-GLDPC code ensembles. A principle contribution of
this paper is to extend the results of [17], [19], [20], [24] and
present a unified treatment and analysis of SC-GLDPC codes.
We first extend the threshold analysis of protograph-based SC-
LDPC code ensembles in [10] to GLDPC code ensembles and
use this to perform an iterative decoding threshold analysis
of SC-GLDPC codes ensembles. This method is used to
show numerically that threshold saturation is achieved for SC-
GLDPC code ensembles, i.e., their thresholds coincide with
the maximum a-posteriori (MAP) decoding threshold of the
underlying GLDPC block code ensemble.! This is followed
by a minimum distance analysis of terminated and tail-biting
SC-GLDPC code ensembles and a free distance analysis of
unterminated ensembles, both of which demonstrate that the
ensembles are asymptotically good and have large distance
growth rates. In order to study the finite-length scaling prop-
erties of SC-GLDPC code ensembles, a method to analyze the
finite-length scaling behavior of GLDPC block codes over the

'In a recent paper [25], the authors found that, for a particular class of
doubly-generalized LDPC codes introduced in [26], in which both variable
and check nodes have generalized constraints, no threshold improvement from
spatial coupling is observed. However, as we will demonstrate in this paper,
threshold improvement is achieved with SC-GLDPC codes.
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binary erasure channel (BEC) with peeling decoding (PD) is
first introduced. We then extend this approach to study SC-
GLDPC code ensembles and demonstrate robust finite-length
scaling performance.

ITI. PROTOGRAPH-BASED SC-GLDPC CODES

A protograph [27] is a small bipartite graph that connects
a set of n, variable nodes V' = {v1,v2,...,v,, 6} to a set
of n. constraint nodes C' = {c1,¢2,...,¢,, } by a set of
edges I. The edges connected to a variable node v; of degree
d(v;) or a constraint node ¢; of degree J(c;) are labeled
by e¥, or e, respectively, where a € {1,...,0(v;)} and
be{l,...,0(c;)}. If the a™ edge associated with v; is the
b edge associated with c;, then € .= eib.z In a protograph-
based GLDPC code ensemble, each constraint node ¢; can rep-
resent an arbitrary block constraint code C; with parity-check
matrix H,,, length n“, and m® linearly independent parity-
check equations where, throughout the manuscript, we use
superscript labels on code parameters in order to distinguish
between different constraint codes. The design rate of the
GLDPC code ensemble is then given by
Liym? (1)

Ny

A protograph can be represented by means of an n. X n,
bi-adjacency matrix B, which is called the base matrix of
the protograph. The nonnegative integer entry B;; in row ¢
and column j of B is equal to the number of edges that
connect nodes ¢; and v; in the protograph. In order to construct
ensembles of protograph-based GLDPC codes, a protograph
can be interpreted as a template for the Tanner graph of a
derived code, which is then obtained by a copy-and-permute
or graph lifting operation [27]. In matrix form, the protograph
is lifted by replacing each nonzero entry B;; of B with a
summation of B;; non-overlapping permutation matrices of
size M x M, thereby creating an Mn,.x Mn,, constraint matrix
H of a GLDPC code. Each row in the i set of M rows of
H must satisfy the constraints H., associated with constraint
node c;, where the length n® of the i constraint code equals
the sum of the entries in the i row of B and the constraint
applies to the positions in a row of H with non-zero entries.’
Allowing the permutations to vary over all M ! possible choices
results in an ensemble of GLDPC block codes.

Example 1: Fig. 1 displays the protograph of an (n.,n,) =
(2, 7)-regular GLDPC block code with base matrix

1111111

111111 1| @

R=1-

B

If we suppose both the constraint nodes are (7,4) Hamming
codes with parity-check matrix

1001110
H=|010110 1], 3)
0011011
2This way of labeling will be useful for the density evolution equations
described in Section III, since it takes into account the order of edges
connected to a node and allows one to distinguish among multiple edges

between a given pair of nodes.

3Strictly speaking, H is not a parity-check matrix since each row in the
i set of M rows of H corresponds to m¢i parity-checks. Consequently,
we refer to H as a constraint matrix.
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Fig. 1. Protograph of a (2, 7)-regular GLDPC block code. The white circles
represent generalized constraint nodes and the black circles represent variable
nodes. The labels on the edges indicate the corresponding columns of the
parity-check matrix H. of the generalized constraint code. In this case, both
constraints are defined by the same (7,4) Hamming code, but with different
orderings of columns.

where the constraint code length is n° = 7 and the row rank
of H, is m® = 3, then the resulting ensemble has design rate
R = 1/7. Note that even though both constraints are defined
by the same (7,4) Hamming code, a different ordering of
columns can be used. In Fig. 1, the column of H, that the
variable node is connected to is shown on the edge. (]

A. Unterminated SC-GLDPC Codes

An unterminated SC-GLDPC code can be described by a
convolutional protograph [28] with base matrix

By
B, B,
. B1 .
Booa =15+ | @
By

where w denotes the syndrome former memory or coupling
width of the code and the b. x b, component base matrices
B;,i€{0,1,...,w}, represent the edge connections from the
b, variable nodes at time ¢ to the b. (generalized) constraint
nodes at time ¢ +i.* An ensemble of (in general) time-varying
SC-GLDPC codes can then be formed from By ) using the
protograph construction method described above with lifting
factor M.> The decoding constraint length of the resulting
ensemble is given by vy = (w + 1)Mb,, the design rate is

given by
bc Cq
dicim
by ’
and at each time instant ¢ the encoder creates a block v; of
Mb,, symbols resulting in the unterminated code sequence v =
[Vo, Viy.eooy Vi, .o
Starting from a b, x b, base matrix B of a block code
ensemble, one can construct SC-GLDPC code ensembles with

the same variable and check node degrees as B. This is
achieved by an edge spreading procedure [28] that divides the

R=1- (5)

4We note that in a series of papers by Kudekar et al. [11], [12], the authors
refer to a “smoothing parameter” w which is equal to the syndrome former
memory plus one.

SIn this paper, we restrict our attention to time-invariant protographs.
Consequently, the choice of permutations in the graph lifting stage will
determine if the lifted graph is time-invariant or time-varying. A random lifting
will typically result in a time-varying graph.
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edges connected to each variable node in the base matrix B
among w + 1 component base matrices B;, i € {0,1,...,w},
such that the condition By +B; + - - -+ B,, = B is satisfied.
We now give some examples of constructing SC-GLDPC code
ensembles.

Example 2: For w = 1, we can apply the edge spreading
technique to the (b.,b,) = (2,7)-regular block code base
matrix in (2) to obtain the following component base matrices

00001171
BO_{1110000]’ ©

1111000
Bl_[0001111} M

The convolutional protograph associated with the resulting
base matrix Bjg o) defined in (4) is shown in Fig. 2, where
time indices ¢ are shown above the corresponding set (block)
of variable nodes. We choose the upper and lower constraint
nodes at each time instant to correspond to the (7,4) Hamming
code with n® =7, m® = 3, and parity-check matrix H, from
(3). (Note that the labels indicated on the edges correspond to
columns of the component parity-check matrix H. in (3) and
that the constraint nodes c¢; and co represent shortened codes.)
After lifting, the constraint length of the resulting SC-GLDPC
code ensemble is vs = 140 and the design rate is R = 1/7.

We will refer to this SC-GLDPC code ensemble as Ensem-
ble A7. An extension to the Ensemble A;5 representing
design rate R = 7/15 SC-GLDPC codes corresponding to
the (be,b,) = (2,15)-regular all-ones matrix B, (15,11)
Hamming constraint codes with n¢ = 15 and m® = 4, and
w = 1 edge-spreading based on (6) and (7), and to other
values of b, = n®, m¢, and R, is straightforward. O

To illustrate the flexibility of SC-GLDPC code designs,
multiple edges can also be introduced in the block protograph.

Example 3: Considering shortened (14, 10) Hamming con-
straint codes with n® = 14 and m® = 4 as an example,
where each variable node in a b. x b, = 1 x 7 protograph
is connected with a double edge to a single check node.
We split the corresponding multi-edge base matrix B =
2 2 2 2 2 2 2]into

Bop=B;=[111111 1] (8)

and obtain the protograph of Ensemble Bjs with w = 1,
b. = 1 check node, and b, = 7 variable nodes at each time
instant, a segment of which is illustrated in Fig. 3. From
(5) we see that the design rate of Ensemble B4 is R =
1—4/7 = 3/7. Puncturing the first protograph variable node
at each time instant ¢ results in Ensemble B4 p with design
rate R = 0.5. ]
The protograph-based braided block code (BBC) ensembles
considered in [29] are another example of SC-GLDPC code
ensembles. These can be derived by using the Tanner graph
of a tightly BBC [13] as a protograph. The component base
matrices of such an SC-GLDPC code can be identified as
BO_[l 0 i}’Bf‘_[o e; 0]’ ©)
where ¢ = 1,...,w, ¢, = (0,...,0,1,0,...,0) is the
length w vector with a one at the i position and zeros

Authorized licensed use limited to: New Mexico State University. Downloaded on May 21,2021 at 23:57:18 UTC from IEEE Xplore. Restrictions apply.



MITCHELL et al.: SC-GLDPC CODES: ASYMPTOTIC ANALYSIS AND FINITE LENGTH SCALING

3711

Fig. 2. Convolutional protograph of the (2, 7)-regular SC-GLDPC code ensemble A7. The white circles represent generalized constraint nodes and the black

circles represent variable nodes.

Fig. 3.
Bia.

Segment of the w = 1 convolutional protograph defining Ensemble

elsewhere, 0 is the all-zero vector, and i the all-one vector, of
length w. We will use the term Ensemble C),c when referring
to such SC-GLDPC code ensembles based on constraint codes
of length n® = 2w + 1.

Example 4: For the (b.,b,) = (2, 7)-regular GLDPC base
matrix with (7,4) Hamming constraint codes and design
rate R = 1/7 from Example I, the convolutional proto-
graph resulting from the tightly BBC construction of (9)
with w = 3, n® = 7, and m® = 3, corresponding
to Ensemble C7, is illustrated in Fig. 4, where the upper
constraint nodes correspond to the “horizontal constraints”
and the lower constraint nodes correspond to the “vertical
constraints” of the braided construction. Its girth is equal to
eight, which follows from the structure of the array and is
true for any SC-GLDPC code resulting from a tightly BBC
protograph.

Observe that the sum of the component base matrices in
(9) is equal to the base matrix B in (2) of the corresponding
GLDPC code, i.e., the all-one matrix of dimension b. X b, =
2 x 7. This reflects the fact that the graph in Fig. 4 can be
obtained by repeating the GLDPC graph in Fig. 1 and spread-
ing the edges over w = 3 adjacent time instants. An extension
to the Ensemble C'5, representing SC-GLDPC codes corre-
sponding to the (b, b,) = (2, 15)-regular all-one base matrix
B, (15,11) Hamming constraint codes, and w = 7 edge-
spreading based on (9) with n® = 15, m© = 4, and design rate

R =7/15, as well as to other values of b, = n¢, m¢, and R, is
straightforward. 0

B. Terminated and Tail-Biting SC-GLDPC Codes

Suppose that we start the SC-GLDPC code with convolu-
tional base matrix defined in (4) at time ¢ = 0 and terminate
it after L time instants. The resulting finite-length base matrix
is then given by

" B,
B, By
. B,
Bior-11=| B, . By , (10
B'w Bl
B,

L 4 (L4+w)b. x Lb,

where L is called the coupling length. The matrix Bo p_1
is then the base matrix of a terminated SC-GLDPC code.
The corresponding terminated convolutional protograph is
slightly irregular, with lower constraint node degrees at both
ends. This is illustrated for the A7 ensemble of Example 2
in Fig. 5. The reduced degree constraint nodes at each end
of the convolutional protograph are associated with short-
ened constraint codes, in which the symbols correspond-
ing to the missing edges are removed. For decoding pur-
poses, such a code shortening is equivalent to fixing these
removed symbols and assigning an infinite reliability to them.
Note that the variable node degrees are not affected by
termination.

The constraint matrix Hyo z ;) of the terminated SC-
GLDPC code derived from By ;4 by lifting with some
factor M has Mb,L columns and (L + w)Mb,. rows. It fol-
lows that the rate of the terminated SC-GLDPC code is
equal to
(L +w)bem® — A

Lb, ’

where m* denotes the (constant) number of independent parity
checks associated with each constraint code and A > 0
accounts for a possible rate increase due to the shortened

Ry=1- (11
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Fig. 4.

Convolutional protograph of a SC-GLDPC code with (7,4) Hamming constraint codes, defining Ensemble C'7. The nodes are grouped according

to the time instant ¢ at which the code symbols, designated by the filled circles, are generated. Edge labels 1,2, ...,7, corresponding to the columns of the
component matrix He, are ordered anti-clockwise from the upper left of each constraint node.

Fig. 5.

constraint codes.® If Hjo,z 1) has full rank, the rate increase
parameter is A = 0. However, the shortened constraint
codes at the ends of the graph can cause a reduced rank for
Ho,;, 1], which slightly increases Rp. In this case, A > 0
and depends on both the particular constraint code chosen
and the assignment of edges to the columns of its parity-
check matrix H.. As L — oo, the rate R, of the terminated
SC-GLDPC code converges to the design rate R = 1 —
b.m¢/b, of the underlying GLDPC block code with base
matrix B.”

The generalized convolutional base matrix Bjg . can
also be terminated using tail-biting [30], [31], resulting
in the base matrix of a tail-biting generalized LDPC
(TB-GLDPC) code ensemble. Here, for any A > w,
the last bow rows of the terminated matrix By y_q) are
removed and added to the first b.w rows to form the
Abe X Ab, tail-biting matrix BIE;\) with tail-biting coupling

®We assume here the simplified case where each generalized constraint
code is described by a parity-check matrix H. with m® independent parity
checks. Under this assumption, the rate formula in (1) for GLDPC block codes
becomes R =1 — bem©/by.

7We note here that the (L + w)Mb. rows of Ho,z,—1) should be viewed
as (L+w)b. groups of rows, with M entries in each group, that are decoded
according to the same constraint code with m® rows.

Protograph of the (2, 7)-regular terminated SC-GLDPC code ensemble A7 with coupling length L.

length A
A
Bib)
By B, B
B, By
. . B'u;
Bw B'w—l
= BU}
By
By
Byo1
L Bw Bwfl BO n
(12)

Note that, if w = 1 and A = 1, the tail-biting base matrix is
simply the original block code base matrix, i.e., BE;) = B.
Terminating B ) in such a way preserves the design rate of
the ensemble, i.e., Ry = 1 — Abom®/\b, = 1—b.m/b, = R,
and we see that BEZ?) has exactly the same degree distribution

as the original block code base matrix B.
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III. THRESHOLD ANALYSIS OF SC-GLDPC CODES

We assume belief propagation (BP) decoding, with log-
likelihood ratios (LLRs) acting as messages. At every iteration
¢, first all constraint nodes and then all variable nodes are
updated. The outgoing messages computed at a constraint node
¢; toward its b™ neighboring variable node at iteration ¢ are
then equal to

LB (e ,) = log Z H exp (L(i De iv)(1/2— a:bf))
el U/
~log > J[exp (LU’ (e )(1/2—:51,,)) (13)

xech 1 b'#D

where b, 0" € {1,...,0(c;)}, Lg*l)(ef’b/) is the LLR received
at constraint node ¢; from the variable node connected
to ef’b, at iteration ¢, and we have partitioned C; into
the sets Cf " and Cf !, corresponding to codewords x =
[ 21 @ To(e,) ] € C; for which 2, = 0 and x, =
1, respectively. The message Lg)(e;b) corresponds to the
b extrinsic output generated by an optimal a posteriori
probability (APP) decoder for component code C;, which is
computed from the incoming messages Lt ( Sy ) U # D,
to constraint node ¢;. The incoming messages of the first
iteration are initialized by the channel LLRs L., (v;) of the
neighboring variable nodes, i.e., L(VO)(eg’b,) = Len(v;), where
v;j is the variable node connected to e7,. The outgoing
messages computed at a variable node v; at iteration ¢ are
equal to

L(i)( ] a) - LCh(Uj) + Z Lg)(e;,a’)a
a’#a

(14)

where a,a’ € {1,...

,9(v;)}-

A. Density Evolution for GLDPC Code Ensembles

For transmission over a binary erasure channel (BEC),
the messages that are passed between the nodes represent
either an erasure or the correct symbol values O or 1. In this
case, the BP decoder is particularly simple and exact density
evolution can be described explicitly. Let ¢(*) (e§,) denote the
probability that the check to variable node message sent along
edge €7, in decoding iteration ¢ is an erasure. Assuming a
conventional LDPC code ensemble, where ¢; corresponds to
an SPC code, this is the case if at least one of the incoming
messages from the other neighboring variable nodes is erased,

ie.,
e = 1= T (1-p"De50).
b #b

where the p(~V(eS,.), bb' € {1,...,0(c;)}, denote the
probabilities that the incoming messages to ¢; computed in the
previous iteration are erasures. For a GLDPC code ensemble,
where c¢; corresponds to an arbitrary block code, (15) can be
replaced by the general expression

aO(e5y) = f (P05 Y £ D)

where fbc ‘ is a multi-dimensional input/output transfer function
that characterizes the APP decoder that computes the messages

5)

(16)
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ng)(ez b) corresponding to (13). Note that, for generalized
codes, fr' can be different for each b € {1,...,d(c;)}, which
implies that the ordering of edges can affect the performance
of the ensemble. A method for computing explicit expressions
for the APP decoder output distributions that can be used
in (16) was presented in [32]. This method is based on a
Markov chain analysis of the decoder metrics using a trellis
representation of the block code C;.

The variable to check node message sent along edge ¢ ,
is an erasure if all incoming messages from the channel and
from the other neighboring check nodes are erasures. Thus we

have
EICHETS | PRIC
a’#a

A7)

where a,a’ € {1,...,0(v;)} and € is the erasure probability
of the BEC. The largest channel value e for which (16) and
(17) converge, denoted epp, is the threshold of the BP decoder
for the GLDPC code ensemble.

B. Bounding MAP Thresholds With BP Extrinsic Information
Transfer Functions

The extrinsic probability pgp extr(v;, €) that a symbol asso-
ciated with variable node v; remains erased after ¢ iterations
of BP decoding can be expressed as

H q(é)

Note that here the product is over all incoming messages
to v; and the channel erasure probability € does not appear
in the expression but implicitly involved in the calculation
of q(z) (e}f_a). The BP extrinsic information transfer (EXIT)
function Iin(e) [33] is given by the average of ppp extr(Vj, €)
over all transmitted variable nodes v; € V, i.e., the average is
computed excluding all of the punctured variable nodes.
Example 5: Consider the (2,7)-regular protograph-based
GLDPC block code ensemble with Hamming component
codes of length n® = 7 from Example 1. The BP EXIT
function hpp(e) of this ensemble is shown in Fig. 6. The
vertical line indicates the channel value at which the grey area
below the curve is equal to the rate of the ensemble, which
forms an upper bound eyjap = 0.856 on the threshold of an
optimal MAP decoder. This follows from the area theorem
[34] and the fact that hpp(¢) can never be below the EXIT
function of the MAP decoder. In this case, the calculated BP
threshold is given by egp = 0.756, and we see that there exists
a large gap between the BP and the MAP thresholds, which
indicates the suboptimality associated with BP decoding.® [

PBP extr U37 (18)

C. Threshold Saturation of Terminated SC-GLDPC Code
Ensembles

Assume now that we start encoding at time ¢ = 0 and
terminate after I, time instants. As a result we obtain the
terminated base matrix Bjg 1) from (10). These terminated

8 A detailed analysis of unstructured irregular ensembles, including results
on the tightness of this bound, can be found in [33]. For structured protograph
ensembles, this technique has been applied in [35].
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SC-GLDPC codes can be interpreted as GLDPC block codes
that inherit the structure of convolutional codes. The length
of these codes depends not only on the lifting factor M but
also on the coupling length L. For a fixed L, the BEC density
evolution thresholds egp corresponding to codes with base
matrix Bjg ;1) can be calculated using the method described
in Section III-A. In Fig. 7, the obtained thresholds for the
w = 1 ensembles A7 and A5 are compared with the BBC-
based ensembles C7 and Ci5 for different coupling lengths
L. (The larger thresholds and Shannon limits of ensembles
C7 and Cy5 compared to A7 and A;5 for small to moderate
L is due to the fact that the larger w BBC ensembles C'7
and Ci5 have a larger rate increase parameter A than the
w = 1 ensembles A; and A;s. This difference vanishes as
L — oc0.) The thresholds of all the w = 1 ensembles versus
code rate are shown in Fig. 8. Analogously to SC-LDPC
codes (see [28]) with SPC constraints, it can be observed
that, as L. — oo, the BP thresholds numerically coincide
with the upper bounds on the MAP decoding thresholds of the
underlying block code ensembles, thus exhibiting the threshold
saturation phenomenon (see [10], [11]).

The BP EXIT functions of the terminated codes from
ensemble A; are shown in Fig. 9, where it can be seen
that, with increasing L, the BP and the MAP thresholds of
the terminated SC-GLDPC code ensembles are converging.
Moreover, the MAP thresholds (and hence the BP thresholds)
of the terminated SC-GLDPC code ensemble can also be
observed to converge to the MAP threshold eyjap = 0.856 of
the underlying GLDPC block code ensemble with increasing
L, demonstrating threshold saturation for the ensemble Ar.
We note that the converging BP and MAP thresholds of the
terminated SC-GLDPC code ensembles implies that, asymp-
totically, BP decoding of SC-GLDPC codes provides optimal
(MAP) decoding performance.

Further, we note that large values of L are realistic in
conjunction with sliding window decoders, like those sug-
gested in [36], where decoding delay and storage requirements
depend on the window size W, which is independent of the
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coupling length L (typically W < L) of the transmitted code
sequences. For shorter values of L, which induce rate loss,
BP decoding of terminated SC-GLDPC codes is suboptimal
but still provides a flexible adjustment between code rate and
threshold (see Fig. 8).

IV. DISTANCE ANALYSIS OF SC-GLDPC CODES

In this section, we first perform an asymptotic minimum
distance analysis of terminated and tail-biting SC-GLDPC
code ensembles. We then present an approach to bound the
free distance growth rate of the unterminated periodically time-
varying SC-GLDPC code ensemble from above and below
using the minimum distance growth rates of the terminated
and tail-biting SC-GLDPC code ensembles, respectively, and
provide numerical results. The ensemble free distance growth
rate provides a measure of the strength of SC-GLDPC codes
and an assessment of their ML decoding performance.
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A. Minimum Distance Analysis of Terminated
SC-GLDPC Codes

From the convolutional protograph with base matrix Bg,
in (4), we can form a periodically time-varying M-fold
graph cover with period 7' by applying the graph lifting
operation described in Section II to the b. x b, submatrices
Bo,B;,...,By in the first 7' columns of By ) to form
Mb. x Mb, submatrices Ho(¢),H1(t + 1),...,H,(t + w),
respectively, for ¢ € {0,1,...,7 — 1}. These submatrices
can then be repeated periodically (and indefinitely) to form
a convolutional constraint matrix Hjg . such that H; (t +
T) = H,(t), ¥i,t. An ensemble of periodically time-varying
SC-GLDPC codes with period 7', design rate R = 1 —
Mm®b./Mb, = 1—m°b./b,,” and decoding constraint length
vs = (w+1)Mb, can then be derived by letting the permuta-
tion matrices used to form Ho(¢), Hy (¢t +1),..., H,(t +w),
for t € {0,1,...,T — 1}, vary over all M! choices of an
M x M permutation matrix.

In [37], Abu-Surra, Divsalar, and Ryan presented a
technique to calculate the average weight enumerator and
asymptotic spectral shape function r(d) for protograph-based
GLDPC block code ensembles. The spectral shape function
can be used to test if an ensemble is asymptotically good,
i.e., if the minimum distance typical of most members of
the ensemble is at least as large as dp,inn, where Oy, i the
minimum distance growth rate of the ensemble and n is the
block length.'”

Example 6: Consider the (2, 7)-regular GLDPC block code
protograph with base matrix B from (2) and the generalized
constraint nodes shown in Fig. 1. If we suppose the constraint
codes to be (7,4) Hamming codes with parity-check matrix
H,. from (3), then the resulting ensemble has design rate
R = 1/7, is asymptotically good, and has growth rate
Omin = 0.186 [37]. O

For simplicity, we again assume here the case that each generalized
constraint node ¢; has m® independent parity checks.

10Suppose that the first positive zero crossing of () occurs at § = Gpyin.
If (8) is negative in the range 0 < § < Omin, then dpin is called the
minimum distance growth rate of the code ensemble, see [37].
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We now consider the associated (2, 7)-regular terminated
SC-GLDPC code ensembles A discussed above in Sections II
and III, whose protograph is shown in Fig. 5, with constraints
corresponding to the (7,4) Hamming code with parity-check
matrix H.. After termination, the design rate of the ensemble
is given by
6(L+1)—2

7L ’
where A = 2 in this case because the two leftmost (shortened)
constraint nodes in Fig. 2 correspond to shortened codes
with rate 1/3, i.e., the number of parity checks in these two
constraint nodes is 2, while all the other constraint nodes
have m® = 3 parity-checks. These ensembles were shown to
have thresholds numerically indistinguishable from the MAP
threshold of the underlying GLDPC block code ensemble as
L — oo in Section III.

The asymptotic weight enumerator corresponding to a ter-
minated or tail-biting convolutional protograph can be deter-
mined by applying the general approach of [37]; however,
we note that a useful conjecture regarding simplification of
the numerical evaluation proposed in [37] cannot be applied
to SC ensembles. This conjecture relies on grouping together
nodes of the same type and optimizing them together, but in
the SC-GLDPC case, nodes from different time instants must
be optimized separately, even if they are of the same type.

Fig. 10 shows the asymptotic spectral shape functions for
the SC-GLDPC code ensembles A; with coupling lengths
L e {7,8,10,12,14,16,18,20}. Also shown are the asymp-
totic spectral shape functions for random codes with the
corresponding rates R, calculated using (see [1])

r(8) = H() — (1 — Ry) In(2),

where H(§) = —(1—9)In(1—6)—4In(9) is the binary entropy
function. We observe that the SC-GLDPC code ensembles A7
are asymptotically good and have relatively large minimum
distance growth rates, ranging from about 25% to 65% of the
(optimal) random coding growth rates. This indicates that long
codes chosen from these ensembles have, with probability near
one, a large minimum distance. As L increases, the design rate
Ry, approaches R = 1/7 and the minimum distance growth
rate decreases, as was also observed in the case of SC-LDPC
codes with SPC constraints (see [28]).

Ry =1- (19)

(20)

B. Free Distance Analysis of SC-GLDPC Code Ensembles

In Fig. 10 we saw that the minimum distance growth rates
of terminated SC-GLDPC codes decrease as the coupling
length L increases. However, since SC-GLDPC codes can be
decoded as unterminated (no preset coupling length) convolu-
tional codes by employing a sliding window decoder, a more
appropriate distance measure for assessing their ML decoding
performance is the free distance growth rate of the SC-GLDPC
code ensemble. In this section, we first calculate the minimum
distance growth rates of TB-GLDPC code ensembles and show
that, for sufficiently large coupling lengths, the growth rates
coincide with those calculated for the terminated SC-GLDPC
code ensembles in Section IV-A. We then show that the growth
rates of the TB-GLDPC code ensembles and the terminated
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SC-GLDPC code ensembles can be used to obtain lower
and upper bounds on the free distance growth rate of the
unterminated SC-GLDPC code ensemble, respectively.

1) Minimum Distance Analysis of TB-GLDPC Code Ensem-
bles: We now consider terminating the protograph in Fig. 2
as a TB-GLDPC code with coupling length A. Unlike the
previous termination technique, this results in a (2, 7)-regular
protograph with design rate Ry = 1/7 for all \. The minimum
distance growth rates Sr(ri)n of the TB-GLDPC code ensembles
are presented in Fig. 11 alongside those corresponding to the
terminated SC-GLDPC code ensembles Sl(lﬁfl. We observe that

the TB-GLDPC growth rates remain constant at Sl(lf‘i)n = 0.186
(the growth rate of the original GLDPC block code ensemble
Omin) for A = 1,2,...,8, and then begin to decay to zero
as A\ — oo. Also, as a result of the convolutional structure,
we observe that the TB-GLDPC and SC-GLDPC growth rates
coincide for L, A > 10. This is the same behavior observed
for TB-LDPC and SC-LDPC codes with SPC constraints [38].

2) Free Distance Bounds for SC-GLDPC Code Ensembles:
Now consider an ensemble of periodically time-varying unter-
minated SC-GLDPC codes with rate R = 1 — b.m¢/b, and
period T' constructed from a convolutional protograph with
base matrix B ) (see (4)) as described in Section II-A.
Using a modification of the proof techniques in [38], [39],
we can show that the average free distance of this ensemble
is bounded below by the average minimum distance of an
ensemble of TB-GLDPC codes derived from the base matrix
Bg‘) (see (12)) with coupling length A = T'. Here, we show
that the average free distance of the unterminated SC-GLDPC
ensemble can also be bounded above by the average minimum
distance of the ensemble of terminated SC-GLDPC codes
derived from the base matrix Byg, 1, 1] (see (10)) with coupling
length L =T.

Theorem 1: Consider arate R = 1—b.m° /b, unterminated,
periodically time-varying SC-GLDPC code ensemble with
syndrome former memory w, decoding constraint length
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ensembles and TB-GLDPC code ensembles and calculated upper and lower
bounds on the free distance growth rates of the associated periodically time-
varying unterminated SC-GLDPC code ensembles.

vs = M(w + 1)b,, and period T derived from Bjy . Let
EEHLIL be the average minimum distance of the terminated
SC-GLDPC code ensemble with block length n = Mb,L

and coupling length L. Then the ensemble average free

distance Eg;i of the unterminated SC-GLDPC code ensemble

(L)

is bounded above by d for termination factor L =T, i.e.,

do) <dtl). @1)

Proof: There is a one-to-one relationship between
members of the periodically time-varying unterminated SC-
GLDPC code ensemble and members of the corresponding
terminated SC-GLDPC code ensemble with coupling length

L = T. For any such pair of codes, every codeword
x = |z x Tpmb,L—1 ] in the terminated
SC-GLDPC code can also be viewed as a codeword
X[0,00] = [ To T1 TMb, L—1 0 --- ] in the
unterminated code. It follows that the free distance dg;l of

the unterminated code cannot be larger than the minimum
distance dg) of the terminated code. The ensemble average

result Eg;l < Ef,ifl then follows directly. U

Since there is no danger of ambiguity, we will henceforth
drop the overline notation when discussing ensemble average
distance measures.

3) Free Distance Growth Rates of SC-GLDPC Code Ensem-
bles: For unterminated SC-GLDPC codes, it is natural to
define the free distance growth rate with respect to the decod-
ing constraint length v, i.e., as the ratio of the free distance
dfree to V. By bounding dg;i using (21), we obtain an upper
bound on the free distance growth rate as

5T _ Zfree o %min” 2
free ve (’LU ¥ 1)7 ( )

where 51(5131 = dgi/n = d%) /(Mb,T) is the minimum dis-

min

tance growth rate of the terminated SC-GLDPC code ensemble
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with coupling length I = T" and base matrix By 7_1;. Further,
using a similar argument to that presented in [38], we have

5(T)
(T) > 5minT 23
free = (w + 1)’ (23)
where 6fmr)l is the minimum distance growth rate of the TB-

GLDPC code ensemble with tail-biting coupling length A = T’
and base matrix BEZ‘).

The free distance growth rate 6f(rei that we bound from
above using (22) is, by definition, an existence-type lower
bound on the free distance of most members of the ensemble,
i.e., with high probability a randomly chosen code from the
ensemble has minimum free distance at least as large as st*
as s — 00.

4) Numerical Results: As an example, we consider once
more the (2,7)-regular SC-GLDPC code ensemble A7 with
memory w = 1 and design rate R = 1/7 depicted in Fig. 2.
For this case, we calculate the upper bound on the free distance
growth rate of the perlodlcally tlme -varying unterminated SC-
GLDPC code ensemble as 5free < lnglle/Z using (22) for
coupling lengths L =T > 7. Fig. 11 displays the minimum
distance growth rates 6111131 of the terminated SC-GLDPC code
ensembles defined by Bjy _q) for L € {7,8,10,12,...,20}
that were calculated using the technique proposed in [37] and
the associated upper bounds on the unterminated SC-GLDPC

code ensemble growth rates 5 < 6(TI)1T/ 2 for L ="T. Also

free —

free

shown are the minimum distance growth rates 5x(r:\1)n of the

TB-GLDPC code ensembles defined by base matrix BEZ‘) for
A€ {1,2,4,...,20} and the associated lower bounds on the
unterminated SC GLDPC code ensemble growth rates s5¢-
§I(HT131T/2 for A =T calculated using (23).

We observe that the calculated TB-GLDPC code ensemble
minimum distance growth rates (5ml)n remain constant for A =
1,...,8 and then start to decrease as the coupling length A
grows, tending to zero as A tends to infinity. Correspondingly,

as \ exceeds 8, the lower bound calculated for 5frei levels off

at 5(T) > 0.805. The calculated terminated SC-GLDPC code

free
ensemble minimum distance growth rates 51(11121 are larger for
small values of L (where the rate loss is larger) and decrease
monotonically to zero as L — oo. Using (22) to obtain an
upper bound on 6§£i we observe that, for 7" > 10, the upper
and lower bounds coincide, indicating that, for these values
of the period T, 5&2 = 0.805, significantly larger than the
minimum distance growth rate d,,in = 0.186 of the underlying
GLDPC block code ensemble.!! In addition, we note that,
at the point where the upper and lower bounds on 6§£i
coincide, the minimum distance growth rates for both termina-
tion methods also coincide. Recall that the TB-GLDPC code
ensembles all have rate 1/7, wheras the rate of the SC-GLDPC
code ensembles is a function of the coupling length L given

by (19). Although we have demonstrated the approach only

free -

"Note that the free distance growth rate may also be calculated with respect
to the encoding constraint length v, which corresponds to the maximum
number of transmitted symbols that can be affected by a single nonzero block
of information digits. As a result of normalizing by the decoding constraint
length, it is possible to have free distance growth rates larger than 0.5. For
further details, see [38].
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for ensemble A7, the general technique can be used to bound
the free distance growth rate above and below for any reg-
ular or irregular periodically time-varying protograph-based
unterminated SC-GLDPC code ensemble, thus allowing for
the evaluation and comparison of different SC-GLDPC code
designs from the perspective of minimum distance.

While large free distance growth rates are indicative of
good ML decoding performance, when predicting the itera-
tive decoding performance of a code ensemble in the high
SNR region other graphical objects such as trapping sets,
pseudocodewords, absorbing sets, etc., come into effect. Based
on results from the SPC case [38], we would expect SC-
GLDPC codes with large minimum/free distance growth rates
to also have large trapping set growth rates, indicating good
iterative decoding performance in the high SNR region.

V. FINITE-LENGTH ANALYSIS OF GLDPC BLOCK
AND SC-GLDPC CODES

To analyze the finite-length performance of LDPC codes
over the BEC, a decoding method called peeling decoding
(PD) can be employed [40]. PD is a simple algorithm that is
initialized by removing all of the correctly received variable
nodes, as well as their attached edges, from the Tanner graph
of H after BEC transmission. The algorithm then iteratively
removes degree-one check nodes from the graph, along with
their attached variable nodes and edges. We now describe an
extension of PD to GLDPC block and terminated SC-GLDPC
codes, referred to as generalized peeling decoding (GPD).

A. Type Vectors and Initialization of GPD
Recall that

E={ej,lie{L,2,...,

={efplie{l,2,...,nc},0€{1,2,...,

nyt,a €{1,2,...,0(v;)}}
d(ci)}}

represents the set of edges in a given protograph. In the Tanner
graph of a resulting lifted constraint matrix H (resp. H 1)),
we say that a particular edge is of 7ype e , if it connects a
variable node and a constraint node that are copies of the two
nodes that edge e , connects in the protograph. For a variable
node v in the Tanner graph of H (resp. Hjp 1)), we also
define the variable node type by a binary |E|-dimensional
vector t,,, where each entry is a “1” iff a particular edge type
is connected to variable node v. Similarly, for a constraint
node ¢, we define its type by a binary | F'|-dimensional vector
t.. We denote the set of variable and constraint node types
in the Tanner graph of H (resp. Hjg 1)) by F¢, and Ft,,
respectively. Note that the sets Fi, and Fi, are determined
from the connectivity of the protograph, as will be illustrated
in Example 7 below. Finally, we let Ly, and R¢,_ represent the
number of variable and constraint nodes of type t, and t. in
H (resp. Hg, 1)), respectively.

The details of the GPD algorithm are presented in
Section V-B. We first discuss GPD initialization, which is
identical to PD initialization: the correctly received variable
nodes of H (resp. Hyg ;1)) and their attached edges are
removed from the graph. After initialization, the residual graph
contains constraint nodes with types that are not included in
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Ft., the set of constraint node types in the original graph, but
the set of variable node types Fi, remains the same. We now
define D(t.) as the set of constraint node types that can appear
in the graph of H (resp. Hjg ;1)) after GPD initalization
when a constraint node of type t. € F;, loses one or more
edges. The extended set of all possible constraint node types
which are present in the residual graph after GPD initialization
is then given by F¢. = Uy c 7, D(tc).

Example 7: To illustrate the type vectors, consider the
(2, 7)-regular GLDPC block code protograph of Example 1.
In this case, if we order the protograph edges as

C C C C C C
(81,1a €1,29-+9€17:€2 1,622, 62,7)7

then the type vector for ¢ is t., = (1,1,...,1,0,0,...,0) €
Fi, and the type vector for «co is t, =
(0,0,...,0,1,1,...,1) € F..'2 Both vectors are of
length |E| = 14, the number of edges in the protograph, and
have weight n° = 7, the length of the constraint code. In any
lifted graph with lifting factor A, there are precisely M
copies of each edge, variable node, or constraint node of a
given type, where the types are defined from the protograph
as described above. Corresponding to each of the constraint
node types in this example, 27 = 128 residual types can
appear in the graph when edges are removed. Thus, in total,
F+t. contains 256 constraint node types. U

According to the above definitions, the expected degree
distribution (DD) of the residual graph after initialization can
be expressed as follows:

Ly, (0) = eLg,, (24)
Ry, (0) = Z theltl\(l _ E)W\*\ti\, (25)
t.€F,
t.eD(tc)

for t, € F¢, and t, € Fy,, where L, (0) (resp. Ry (0))
represents the number of variable (resp. constraint) nodes of
type t, (resp. t.) after GPD initialization and |t]| (resp. |t.|)
is the weight of the vector t/, (resp. t.).

B. Decodable Constraint Nodes and the GPD

In general, each constraint node type in the protograph B
(resp. B,z 1)) of a GLDPC code can be associated with
a different constraint code. Let C;, be the constraint code
associated with the constraint nodes in the base matrix B (resp.
Bjg,z,—1)) of type t. € Fi,. By extension, each constraint
node in the graph of H (resp. Hp 1 1)) is associated with a
constraint code according to its type. After GPD initialization,
the type of a given constraint node can be modified from
t. to t., where |t.| < |t.|, and we say that t, is the input
erasure pattern seen by the constraint code C¢.. The question
now is if, by decoding the constraint code Cy_ associated with
a constraint node of type t/, in the residual graph using a
given decoding algorithm, for instance ML decoding or some
suboptimal algorithm, we are able to recover the |t,| variables
still connected to the constraint node. In general, for each

12The ordering of the protograph edges (which can affect the entries of the
type vector) does not matter provided that we use a consistent ordering for
all node types.
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constraint code Ct,, only a subset of input erasure patterns
can be decoded. This subset is denoted by A(t.) C D(t.).
If a constraint node in the residual graph is of type t. €
A(t.), then we say it is a decodable constraint node and
t!. a decodable constraint node type. For example, if all the
constraint codes are SPCs, then only constraint node types
with input erasure patterns containing exactly one erasure are
decodable. However, if the constraint code is a (7,4) Hamming
code with ML decoding, then all input erasure patterns with
one and two erasures and some input erasure patterns of weight
three are decodable.

The set of all decodable constraint node types is defined
as A = Ug er, A(te) C Fy,. Given the discussion above,
the GPD algorithm can now be seen as a straightforward
extension of PD for LDPC codes to GLDPC codes. After
the graph is initialized, GPD chooses one constraint node at
random from the graph that is decodable. This constraint node,
all connected variable nodes, and all attached edges are then
removed from the graph. GPD continues in this way until there
are no further constraint nodes that can be removed from the
graph, which corresponds to a decoding failure, or until there
are no variable nodes left in the graph, which corresponds to
successful decoding.

C. Expected Graph Evolution
We now define the normalized DD at time 7 as

l . R . L
L2 Dy 2 20

where ¢ is the GPD iteration index, Ry (7) (resp. Ly, (7)) is
the number of constraint (resp. variable) nodes in the graph
of type t. (resp. t,) at time 7, and n = Mb, (resp. Mb,L)
is the block (resp. termination) length.

In [41], it is shown that if we apply PD to elements of an
LDPC code ensemble, then the expected DD of the sequence
of residual graphs can be described as the solution of a set
of differential equations. This analysis is based on a result
on the evolution of Markov processes due to Wormald [42].
Furthermore, the deviation of the process w.r.t. the expected
evolution decreases exponentially fast with the LDPC code
block length, and this result was used in [40] to analyze
the finite-length BEC performance of LDPC block codes.
This methodology has been extended to unstructured GLDPC
codes in [43] and also to spatially coupled codes with split-
component codes [23], which can be consider as a particular
sub-class of SC-GLDPC codes. In a similar way, we can
investigate the finite-length BEC performance of GLDPC
codes constructed from protographs by analyzing the statistical
evolution of the normalized DD in (26) during the decoding
process. As shown in [40], the expected value of 7¢_(7) and
l, (7), denoted by 7 (7) and I, (7), respectively, can be
computed as the solution to the following system of differential
equations

8l}ﬂ (T ) -

or
1 .
|t (7 4+ 1) - L[l 0 e Dheen, eem, |

(26)
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27)
Org, (T)
or
1 ~
A (74 3) - R[5 e e, |
(28)

i.e., the derivative of 7¢_(7) w.r.t. 7 in (28) can be evaluated
by computing the variation in the number of constraint nodes
of type t. with GPD iteration given that the normalized DD at
time 7 is at its mean {l¢, (7), 7, (T)}tve]__t“ heﬁc'ls A sim-
ilar interpretation holds for (27). Further, the solution to (27)
and (28) is unique and, with probability 1 — O(e~V™), any
particular realization of the normalized DD in (26) deviates
from its mean by a factor of less than n~'/6 for the initial
conditions

Fe.(0) = Elre, (£ = 0)] = E[Re, (£ = 0)]/n,
lc, (0) = E[ls, (¢ = 0)] = E[Ls, (¢ = 0)]/n,

(29)
(30)
which can be computed from (24) and (25) [40]. The actual
computation of the expectations in (27) and (28) is described

in [20]. The GPD threshold is defined as the maximum value
of e for which the expected fraction of decodable constraint

nodes
> ()

tc€A

a(t) = 31

is positive for any 7 € [0,¢), where a(7) is the mean of the

random process
a(r) =" re (7).
tceA

(32)

Finally, we can compute the expected fraction of variable
nodes in the graph at any time 7, denoted by 9(7), as

i(r)= > g, (1)

to EFt,

(33)

In addition to characterizing the asymptotic behavior, i.e.,
to computing the GPD threshold ensemble, the solution to
the system of equations given by (27) and (28) can be used
to determine the quantities needed to assess the finite-length
performance of GLDPC block and terminated SC-GLDPC
codes. We refer to critical points as the points in time for
which a(7) has a local minima. As shown in [40], the average
(over the ensemble of codes) error probability is dominated by
the probability that the process a(7) survives, i.e., does not go
to zero around the critical points. Therefore, characterizing
the critical points and the expected fraction of decodable
constraint nodes in the graph at those points in time are
the parameters needed to determine the GLDPC block or
terminated SC-GLDPC code finite-length performance, and
they can be computed from (27) and (28).

13This result, based on Wormald’s theorem [42], requires certain conditions
on the random sequence of GLDPC Tanner graphs during GPD to be met.
We do not include the proof that these conditions are met, but an equivalent
proof for unstructured GLDPC codes can be found in [43].
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Fig. 12.  Evolution of the expected fraction of decodable constraint nodes

a(7) in the residual graph during iterations of the GPD for the (2, 7)-regular
GLDPC block code ensemble with (7,4) Hamming constraint codes and an
ML decoder. The dotted curves represent simulated trajectories computed for
e = 0.69 with lifting factor M = 4000.

D. Numerical Results: GLDPC Block Codes

With the tools described above, we can now investigate
the asymptotic and finite-length performance of GLDPC code
ensembles. We start by considering the uncoupled (2,7)-
regular GLDPC block code ensemble from Example 1.

Example 8: Consider the (2, 7)-regular GLDPC block code
ensemble of Example 1. Assume that a (7,4) Hamming code
is associated with each of the two constraint nodes and that
the constraint codes are decoded using ML decoding. The
design rate of this ensemble is R = 1/7. All constraint node
types with one or two erasures can be decoded, as well as
some constraint node types with three erasures. Fig. 12 shows
the evolution of the expected fraction of decodable constraint
nodes a(7) versus the expected fraction of variable nodes
9(7) in the graph for different € values.'* We also include
a set of 10 simulated trajectories of a(7) for ¢ = 0.69 to
demonstrate that they concentrate around the predicted mean.
Note first that a(7) has a single critical point at o(7*) ~ 0.43.
Indeed, we can compute the threshold ¢* as the maximum
value of € for which the minimum is exactly zero, and in this
case we obtain €* ~ 0.7025.

The finite-length error probability is dominated by the
statistics of a(7) around 7*. Following [40], for each n and e
pair, we can estimate the finite-length error probability as

()

Pgiock = Pr(a(T) = 0,2}(’7') > 0) ~Q W

)

(34)

where a(7*) is the expected value of a(7) at 7* and Var[a(7")]
represents its variance. a(7*) was computed using numerical

4Note that the time variable 7 runs backwards in this figure (right to left),
in the sense that small values of 7 correspond to ¥(7) on the right, where
the graph still contains a relatively large fraction of variable nodes, whereas
large values of 7 correspond to small values of ¥(7) on the left.
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Fig. 13.  Simulated performance (solid lines) and estimated performance

using (35) (dashed lines) for the (2, 7)-regular GLDPC block code ensemble
with (7,4) Hamming constraint codes and an ML decoder.

integration of the system of differential equations in (27)-(28),
and Var[a(7*)] was estimated using Monte Carlo simulation.'
Also in [40], the authors showed that the ratio of the expected
number of degree-one constraint nodes to the standard devia-
tion at the critical point approximately scales as a/n(e* —e¢),
where « is a scaling parameter that only depends on the DD.
In the GLDPC case, simulated trajectories for a(7) suggest
that the same scaling holds and that the performance for any
pair (n,€) can be estimated as

Paiock = Q (a\/ﬁ(e* - 6)) . (35)
After computing a(7*)/+/ Var[a(7*)] for a given (n, €) pair,

we estimate « by equating the arguments in (34) and (35),
so that
1 a(t™)

Vn(er =€) \/Varfa(r%)]
For the (2, 7)-regular GLDPC block code ensemble with (7, 4)
Hamming constraint codes and an ML decoder, we thus obtain
o = 1.8024. In Fig. 13, we plot the simulated performance
versus (35), where we observe that the estimate is very
accurate for a sufficiently large lifting factor. U

(36)

o =

E. Numerical Results: SC-GLDPC Codes

We now investigate the asymptotic and finite-length perfor-
mance of a terminated version of the coupled A7 SC-GLDPC
code ensemble from Example 2.

Example 9: Following a similar procedure as in Exam-
ple 8, we now analyze the finite-length behavior of terminated
SC-GLDPC codes. In Fig. 14, we show the evolution of
the expected fraction a(7) of decodable check nodes during
iterations of the GPD for a terminated version of the A; SC-
GLDPC code ensemble of Example 2 (corresponding to the

SVar[a(7*)] can be obtained from the solution of the covariance evolution
system of differential equations, first presented in [40] for LDPC code
ensembles
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Fig. 14.  Evolution of the expected fraction of decodable constraint nodes
a(7) in the residual graph during iterations of the GPD for the terminated
(2, 7)-regular A7 SC-GLDPC code ensemble with coupling lengths L = 50,
100, and 150, (7,4) Hamming constraint codes, and an ML decoder. The
dotted curves represent simulated trajectories for L = 150 and lifting factor
M = 1000.

GLDPC block code ensemble of Example 1) with coupling
lengths L = 50, 100, and 150, lifting factor M = 1000,
and a channel parameter ¢ = 0.75. Also included is a set
of simulated decoding trajectories of a(7), computed for L =
150. Unlike the GLDPC block code, the expected evolution
a(7) displays a constant critical phase that corresponds to a
decoding wave traveling towards the central positions of the
graph. Further, the critical value a(7*) during such a phase
does not depend on L, and the length of the critical phase is
roughly proportional to L. The threshold €* is given by the
maximum value of e for which the critical value is exactly
zero, and in this case we obtain ¢* = 0.8.1° Similar effects
were first described in [44] for (non-generalized) terminated
SC-LDPC codes.

As also suggested in [44], using simulated decoding trajec-
tories we should observe that Var[a(7)] is fairly flat during
the critical phase and that the covariance CoVar[a(7), a()]
decays exponentially fast with |7 — £|, with a rate of decay
that we denote by 6. Fig. 15 demonstrates that this is indeed
the case. In Fig. 15(a), we show the empirical variance of the
process a(7) computed from 500 simulated trajectories with
L =100 and M = 2000. In Fig. 15(b), we show the empirical
covariance CoVara(7), a(§)] of the process obtained from the
same set of simulations, where the covariance is normalized by
Var[a(§)] so that the maximum value is equal to one. Observe
that an exponentially decaying function provides an accurate
estimate of the normalized covariance, in which the parameter
0 = 0.87 was obtained by a least squares fit. Based on this

19The threshold ¢* = 0.8 computed here for GPD differs from the value
€* =~ 0.85 obtained earlier for the terminated A7 ensemble with L = 150
(see Fig. 8) due to a difference in the method of decoding the constraint codes
(ML decoding in this example vs. BCJR decoding in Fig. 8). If we change the
component decoder from blockwise ML to bitwise MAP (BCJR), the scaling
law in (37) that predicts the finite-length performance of the SC-GLDPC code
will be the same, but with different scaling parameters.
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simulations, where the covariance is normalized by Var[a(£)] so that the maximum value is equal to one.

evidence, the survival probability of the a(7) process during
the critical phase follows a scaling law of the same form as
the one proposed in [44], and thus the block error probability
Pgiock can be estimated as

el

) av/M(e* —e)
—W/ @(z)e%zzdz
0

BPiock = 1 —exp

0

where ®(z) is the c.d.f. of the standard Gaussian distribution,
N(0,1), €L is the length of the critical phase, and, as in
the uncoupled case, av/M (e* — €) corresponds to the ratio
of the expected number of decodable constraint nodes during
the critical phase to the standard deviation of a(7). Both 6 and
« are parameters that depend on the underlying GLDPC block
code and the edge spreading. Given the results in Fig. 14 and
Fig. 15, we estimate that o = 5.66.

Fig. 16 shows a comparison between the simulated per-
formance (solid lines) and estimated error probability using
(37) (dashed lines) for the terminated A7 SC-GLDPC code
ensemble with L = 50 and (7,4) Hamming constraint codes
decoded with ML decoding. We again note that, as the lifting
factor M increases, the performance estimate becomes very
accurate.!” We also show the corresponding results for the
uncoupled (2, 7)-regular GLDPC block code ensemble of
Fig. 1 with ML-decoded (7,4) Hamming constraint codes and
comparable lifting factors. Besides the advantage enjoyed by
the SC-GLDPC codes in decoding threshold, we see that they
also exhibit better finite-length scaling behavior than GLDPC

17 An improved scaling law for terminated SC-LDPC codes over the BEC
was recently presented in [45], where the decoding process is modeled as
two independent Ornstein-Uhlenbeck processes. Such an approach should also
improve the performance estimate for terminated SC-GLDPC codes.
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Fig. 16.  Simulated performance (solid lines) and estimated performance
(dashed lines) for the (2,7)-regular GLDPC block code and the termi-
nated (2, 7)-regular A7 SC-GLDPC code ensembles with M/ = 500 and
M = 1000.

block codes, in the sense that their performance converges
more quickly to the threshold. 0

VI. CONCLUDING REMARKS

Generalized LDPC (GLDPC) codes can offer significant
performance improvements when compared to LDPC codes
with SPC constraints at the expense of an increase in decoding
complexity (depending on the particular constraint codes and
decoders chosen), albeit with the advantage of a typically
smaller number of message passing iterations. In this paper,
we presented a comprehensive study of spatially coupled gen-
eralized LDPC (SC-GLDPC) codes, including both asymptotic
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and finite-length analyses. Specifically, terminated SC-GLDPC
code ensembles were shown to numerically achieve threshold
saturation with near-capacity iterative decoding thresholds,
thus assuring SC-GLDPC codes of having better waterfall
performance than their underlying GLDPC block codes. They
were also shown to be asymptotically good and to possess
large minimum distance growth rates, thus assuring them
of also having excellent error floor performance. Finally,
terminated SC-GLDPC codes were shown to outperform their
GLDPC block code counterparts in the finite length regime.
Based on these results, we believe SC-GLDPC codes are an
attractive choice for applications requiring excellent perfor-
mance throughout the entire range of decoded error rates with
a limited number of decoding iterations.
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