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Abstract—This paper gives necessary and sufficient conditions
for the Tanner graph of a quasi-cyclic (QC) low-density parity-
check (LDPC) code based on the all-one protograph to have girth
6, 8, 10, and 12, respectively, in the case of parity-check matrices
with column weight 4. These results are a natural extension of the
girth results of the already-studied cases of column weight 2 and
3, and it is based on the connection between the girth of a Tanner
graph given by a parity-check matrix and the properties of
powers of the product between the matrix and its transpose. The
girth conditions can be easily incorporated into fast algorithms
that construct codes of desired girth between 6 and 12; our
own algorithms are presented for each girth, together with
constructions obtained from them and corresponding computer
simulations. More importantly, this paper emphasizes how the
girth conditions of the Tanner graph corresponding to a parity-
check matrix composed of circulants relate to the matrix obtained
by adding (over the integers) the circulant columns of the
parity-check matrix. In particular, we show that imposing girth
conditions on a parity-check matrix is equivalent to imposing
conditions on a square circulant submatrix obtained from it.

I. INTRODUCTION

Optimized irregular quasi-cyclic (QC) low-density parity-
check (LDPC) codes are attractive for implementation pur-
poses due to their algebraic structure that allows for low
complexity encoding [1] and leads to efficiencies in decoder
design [2]. The performance of an LDPC code with parity-
check matrix H depends on cycles in the associated Tanner
graph, since cycles in the graph cause correlation during
iterations of belief propagation decoding. Moreover, these
cycles form substructures found in the undesirable trapping
and absorbing sets that create the error floor. Cycles have also
been shown to decrease the upper bound on the minimum
distance (see, e.g., [3]). Therefore, codes with large girth are
desirable for good performance (large minimum distance and
low error floor). Although significant effort has been made to
design QC-LDPC code matrices with large minimum distance
and girth, e.g., [4]-[9], this can be particularly challenging
for optimized protographs that contain dense subgraphs, such
as those of the AR4JA codes [10] and 5G new radio LDPC
codes [11], which contain a significant number of variable
nodes with degree larger than 3.

In [12], [13], we have used some previous results by Mc-
Gowan and Williamson [14] and the terminology introduced
in Wu et al. [15] that elegantly relate the girth of H with
the girth of By(H) 2 (HHT)"* H(t mod2 ¢ > ¢ o
highlight the role that certain submatrices of HH " play in the
construction of codes of desired girth. In particular, we showed
that the cycles in the Tanner graph of a 2N xn,, N parity-check
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matrix H based on the (2, n, )-regular fully connected (all-one)
protograph, with lifting factor N, correspond one-to-one to the
cycles in the Tanner graph of a N x N matrix, that we call
C12, obtained from H. Similarly, we show that imposing girth
conditions on a 3N xn, N parity-check matrix is equivalent to
imposing girth conditions on a 3N x 3N submatrix of HH T,
which we call C.

In order to investigate large girth constructions from dense
ne X N, protographs, where n. is the number of check nodes
and n, is the number of variable nodes, this paper extends the
results of [12] to the case n, = 4 and shows how the girth
conditions of a 4N X n, N parity-check matrix are reflected
in the corresponding 4N x 4N submatrix C; of HH', and
in particular, in a column of Cy given by the sum (over the
integers) of the circulant columns of the parity-check matrix.
Although we mostly assume the case of an (4, n,)-regular
fully connected protograph, the results can be used to analyze
the girth of the Tanner graph of a parity-check matrix of
zeros and ones. Throughout, we exemplify the techniques and
related algorithms by constructing the Tanner graphs of (4, 6)-
regular QC-LDPC codes with girths of 6, 8, 10, and 12, and
we conclude the paper with computer simulations of some of
the constructed codes with varying block lengths and girths,
confirming the expected robust error control performance.

We note that the motivation of the paper is not only to
construct good (4, n, )-regular QC-LDPC codes, rather we aim
to demonstrate that the approach from [12] can be extended to
higher column weights and that similar efficient algorithms can
be used to construct denser graphs (or sub-graphs) with large
girth. As mentioned above, this is particularly important since
capacity approaching LDPC codes with irregular protographs
often have dense sub-graphs [10]. The necessary and sufficient
girth conditions we present here provide a unifying framework
for a given girth to be achieved in which all constructions must
fit. The proposed algorithms to choose lifting exponents are
extremely fast, in fact they can be evaluated by hand, and
can be used to obtain codes of a given girth for the smallest
graph lifting factor N. We remark that the technique can
be incorporated with other complementary design approaches,
such as pre-lifting [9] and masking [4] to construct irregular
LDPC codes that have low error floors from the (n.,n,)-
regular protographs. Finally, note that the technique can also
be modified to increase the minimum distance and/or mini-
mum trapping/absorbing set size since cycles appear in the
composition of these structures.

Authorized licensed use limited to: New Mexico State University. Downloaded on November 22,2021 at 08:58:18 UTC from IEEE Xplore. Restrictions apply.



II. DEFINITIONS, NOTATIONS AND BACKGROUND

For any positive integer L, let [L] = {1,2,...,L}. An
LDPC code C is defined as the null space of a parity-check
matrix H, where C = {c | Hc' = 0"}. We can associate a
Tanner graph [16] to this matrix H in the usual way. Its girth,
denoted gir(H), is defined as the length of a shortest cycle in
the graph.

A protograph [10], [17] is a small bipartite graph that can
be represented by an n. X n,, parity-check or base biadjacency
matrix B = (b;;), where b;; > 0 is an integer for each pair
(i, 7). The parity-check matrix H of a protograph-based LDPC
block code can be constructed from B in the following way:
each nonzero entry b;; of B is replaced by a summation of
b;; non-overlapping permutation matrices of size N x N, and
each zero entry is replaced by the NV x N all-zero matrix. In
this case we write H = B™ and N is called the lifting factor.
We denote the IV x N circulant permutation matrix where the
entries of the NV x N identity matrix [ are shifted (circularly)
to the left by r positions modulo N, as z".

In this paper we use the triangle operator A\ introduced in
[15]. For two nonnegative integers e and f, define
1 ife>2,f=0

d=eAf =
0 otherwise

This definition can be extended to matrices. Let ' = (e;;)sxt
and F' = (fij)sxt be two s x ¢t matrices. Then we define
the s x t matrix D = (d;j)sx¢ £ EAF entry-wise, where
dij = e;; N f;; for all pairs (i,5) € [s] x [t].

The following theorem found in [14] and [15] describes an
important connection between gir(H) and matrices B;(H) =

(HHT)W2J H mod2) 4 > 0 and offers some insight on
the inner structure of the Tanner graph which simplifies
considerably the search for QC protograph-based codes with
large girth and minimum distance.'

Theorem 1. ([14] and [15]) A Tanner graph of an LDPC
code with parity-check matrix H has giv(H) > 2l if and only
if By(H)ABy_o(H) = 0,t =2,3,...,1.

III. CONSTRUCTING 4 X n, PROTOGRAPH-BASED QC
CODES OF GIVEN GIRTH g < 12

In this section, we will construct QC matrices by lifting a
4 x n,, protograph. To do so, we derive the conditions required
to obtain girth 6 < g < 12 and provide algorithms to construct
the codes.

Let H be the parity-check matrix of an n.N x n,N, n., <
Ny, protograph-based LDPC code given by

I I ... I
_ 1 P22 P2nv
H= I P3 Py, |- M
I Py Py,

For each i € [4], j € [n,], let Py = P1; =1 and

Ci;=CJ; 2 PAP + PoPy+ -+ Py, P ()

VLD

IPlease note the notational distinction between the protograph base matrix
B and the matrices B (H) defined here.
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and define
0 012 013 014
021 0 023 C’24
Cy = . 3
H C31 Czp 0 Oy )
Cu Cigp Cy3 0

The following theorem characterizes the connection between
the matrix Cy and gir(H), derived from the relation estab-
lished in Theorem 1 between gir(H) and the matrices B;(H).

Theorem 2. Let H, C;; and Cy be defined as in (1), (2)
and (3), respectively. Then?

gir(H) >4 < Cy/A0=0,

giI‘(H) >6 ©CygAN0=0 & CyHAH =0,

gir(H) >8 & CyA0=0 & C4,A(I+Ch) =0,
gir(H) > 10 < gir(H) >8 & C4HA(H +CyxH) =0,
gir(H) > 12 & gir(H) > 10 & CLA(I + Cy + C%) = 0.

Proof: Note that

By(H)=HH'" =n,] +Cy, Bs(H)=n,H +CyH,
By(H) = (n,I +Cg)? Bs(H) = (n,I + Cy)?H,
Bs(H) = (n,I + Cg)?, etc..

We obtain the following equivalences, completing the proof:

By(H)AI =0 < Cy /N0 = 0;

Bs(H)AB,(H) =0 CgHAH = 0;

B4(H)AB2(H) =0« (TLUI+ CH)2A(TLUI+ CH) =0
& CHAI+Ch)=0;

Bs(H)AB3(H) =0 (n, + Cg)*HA(ny,I +Cy)H =0
& CRLHNA(H +CyH) = 0;

Bs(H)ABy(H) =0 < (n,I + Cp)*A(nyI + Cy)* =0
& C3NAI+Chy+C%)=0. |

Remark 3. Note that, for practical implementation, it is
desirable to take each P;; to be a circulant x!, for some [, or a
permutation matrix lifted to some circulants. In the remainder
of the paper, we consider the first case. The second case was
investigated in the case of n. = 3 in [9], [12] and is left to
future work for n. > 3. O

Suppose that each matrix P;; is a circulant permutation
matrix, that is Py = 2, Py = 21, Py = 2% for all [ € [n,],
with i1 = j; = k4 = 0 and P;; = 1 for all I € [n,]. The
associated matrix H is then?

1 1 ... 1
1 :L-iZ e minv

H= |, S @
1 gk o

2We write the conditions for gir(H) > 2l, 1l = 5,6, as the conditions for
gir(H) > 21 — 2, which preclude the cycles of length smaller than 2!, along
with the additional necessary conditions to preclude cycles of length 2.

3Note that 0 and 1 = 20 correspond to the all-zero and identity matrices,
respectively, where the dimensions are implied by the context.
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The matrices C;; and C'y are given as

Ty Ny Ny
i ; k
Co = g ", Oz = E 2, Cyy = E x™,
=1 =1 =1
Ny Ny Ny
i—i ki —i ki—j
Cs2 = E 2T Oy = E ¥, Cy3 = E A
=1 =1 =1

®)

Remark 4. Note that the transpose of the matrix
[nvI Ci2 Ci3 014]

is equal to the sum of the n, circulant columns of H and has
an important role in the girth, as we see in Theorem 2. [

Theorem 5. Let H and Cy be defined as in (4) and (3),
respectively. Then gir(H) > 4 if and only if each one of the
Six sets {i17i2, . 7in1,}; {jl,jg, Ce ,jnu}, {kl, kg, ceey kn“},
{i1—J1,02—J2, -« yin, —Jny, b {i1—K1,i2—Fkay .. in, —kn,
and {j1 — k1,52 — ko, ..., jn, — kn,} contains exactly n,
distinct elements.

Proof: By Theorem 2, gir(H) > 4 if and only if
CyAO0 = 0. This is equivalent to C;j;A0 = 0 for all
1 <17 < j < 4. Expanding each of these equations, we obtain

Ny Ty Ny

S A0=0, Y aA0=0, Y aFA0=0,
=1 =1

=1

S AN =0, Y aTRA0=0, Y 2 TMA0=0.
=1 =1 =1

By using the definition of the triangle operator A\, we conclude
that, for each equation, the exponents should be distinct and
the claim follows. u

To choose the exponents i;, j;, and k; satisfying the conditions
in Theorem 5, we provide the following algorithm to construct
a (4,n,)-regular graph with g > 4. In this algorithm, we
first choose i1, j1, k1 such that they are not in the specified
forbidden sets, i.e., sets of values that would create a cycle of
size below the desired girth, then we choose 49, jo, k2, then
we choose 73, j3, k3, and so on.

Algorithm 6. (Construct (4,n,)-regular graph with g > 4)
Step 1: Set 11 =0, j1 =0and k1 = 0. Set [ = 1.
Step 2: Let | := 1+ 1. Choose
W {im|1<m<Ii-1}
Step 3: If | = n,, stop; otherwise go to Step 2.

Example 7. In this example, we construct a 4 x 6 protograph-
based matrix using Algorithm 6. In each iteration [, 2 <[ <
Ny, We choose the smallest positive value for each of i, j;,
and k;. We obtain

1 1 1 1 1 1

1 z 22 23 2 b
= 1 22 = z° 27 2®

1 28 25 o 2% 22
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If we choose lifting factor N = <lr£1la<xﬁ{z'l,jl, kl}) +1 =10,
then H has girth 6. o O

Example 8. Using Algorithm 6, we construct a protograph-
based matrix as in Example 7. In each iteration [, 2 <1 < n,,
however, we choose each of i;, j;, and k; to be one more than
the maximum value in their corresponding forbidden sets. We
obtain

1 1 1 1 1 1
1 = 22 22 z* 2P

H= 1 22 24 46 48 g0 6)
1 2% 28 29 212

If we let N = (max {ir, 41, k1} ) +1 = 16, then the girth
1<1<6

of H is 6. Notice that N = 16 is not the smallest positive
value for which gir(H) > 4. If we choose N = 7, then
gir(H) = 6. We note that (6) is a shortened version of Fan’s
array construction [18] that gives g = 6 for N = 7. ]

Remark 9. We note that, given a set of exponents that meet
the conditions of the corresponding theorem, the algorithms
can be modified to produce a list of all lifting factors N that
achieve girth at least as large as that specified by the algorithm.
Such a modification is detailed in [12], [13]. O

Theorem 10. Let H and Cy be defined as in equations (4)
and (3), respectively. Then gir(H) > 6 if and only if, for any
m € [n,], each one of these four sets is of maximal size*:

{Zm _in7jm _jnakm _kn ‘ n e [nv]vn #m}7

{in,in_jn +jm77;n_kn+kmvip+(jn_jm)+(km_kp) |
n,p € [ny],p # m,n # m},

{]najn_ln""lmvjn_kn+kmvjp+(ln_7/m)+(km_kp> |
n,p € [nv]vp # m,n 7& m}’

{k”, kn _in +irrL7 kn _.jn +jma kp"’ (in _i'm) + (j’m _.]p) |
n,p € [nv]7p 7& m,n # m}

Algorithm 11. (Construct (4, n,)-regular graph with g > 6)
Step 1: Set i1 =0, j1 =0and ky =0. Set | = 1.

Step 2: Let | := [+ 1. Choose

il ¢ {inu (Zm - .]m) “l‘jnv (]m - km) + (kn - .]n) + i[)a (Z.m -
km) + kn, (ki — Gm) + (n — kn) +ip | 1 <m,n,p <1 -1}
]pall+(km_2m)+(]n_kn)v (]m_km)+kn7ll+(jm_km)+
kn_ipa2il+(km_im)+(jn_kn)_ip | 1<m,n,p< l_l}
kl ¢ {km,yjl + km 7jn,7il + km - Z.nvjl + (Zm 7]m) + (Zn -
kn)7 Zm + (kn _in)ajl +Zm _]n + (kp _Z.p)? 2.7l + (Zm _]m) +
(kn _in) _jpv (km _jm) +jna Z‘l + (]m _im) + (kn _jn)a il +
(km _jm) +jn - ipvml + (]m - im) + (kn _jn) - ip | 1 <
m,n,p <l—1}

Step 3: If | = n,, stop; otherwise go to Step 2.

Example 12. In this example, we construct a 4 x 6 protograph-
based matrix using Algorithm 11. In each iteration [, 2 <[ <
n,, we choose the smallest positive value for each of ¢, j;,
and k; as we did in Example 7. We obtain

4For any set, we say that it has maximal size if all the possible values that
can be generated for the set should be distinct.
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1 1 1 1

1 1
1 2 28 28 g0 425

H= 1 23 gl4 520 49 96 |- @)
1 g4 g2 36 55 108

If we choose lifting factor N =

1n<1ax {i1, 71, kl};? +1 =109,
then H has girth 8. The smallest positive integer IV required to
obtain gir(H) > 6 is N = 85. Simulation results are provided
for codes obtained from (7) with N = 85 and N = 347 in
Section IV. d

Example 13. If we choose values of i, j;, and k; one more
than the maximum value in their corresponding forbidden sets
(instead of choosing the smallest positive value for each of
i1, Ji, and k;, as in Example 12) we obtain the following matrix

1 1 1 1 1 1
0o 1 o 28 g4 355 2324
=11 23 223 154 1011 6617

7 53

1 z0 =z 2354

l‘2323 I15203

For these circulants, N = 111 is the smallest value that can
obtain this girth.
Reducing the exponents modulo 111, we obtain

1 1 1 1 1 1

- 1 T {,C8 1.54 {,C22 $104 (8)
- 1 :Z}d I23 1’45 I12 1768 )
1 III7 IIJ53 J}21 IIJ103 .’IJ107

which also has girth 8 for N = 111. Note that the smallest
positive integer to obtain girth 8 in (8) is now N = 105.
Simulation results are provided for codes obtained from (8)
with N = 111 and N = 347 in Section IV. O

Theorem 14. Let H and Cy be defined as in (4) and (3),
respectively. Then gir(H) > 8 if and only if giv(H) > 4
and each one of these sixteen sets is of maximal size for all
U, W € [Ny, u # w:

{(Zu _ju)+jwa (iu_ku)+kw}, {(ju_iu)“‘iwa (]u )+ w}’
{(ku_lu)'i_zun(ku_]u)"_.?w}»{(]u u) jwv(ku_ ) }’
{u—tw, (Gu—ku) = (lw—FKw) } {ku—tw, (ku—ju) = (lw—Juw)},
{(iu_ju)_iwv(ku_ju)_kw}a{zu JUH(’LU« ku) (jw_k )}’
{ku_jwa(ku_iu)_(jw_iw)}»{(iu_ku)_iwv(Ju ) jw}v

{iu _kwa (Zu _]u) - (kw _j'w)}, {Zu _iwaju _jwa ku _kw}a
{ju - jw7 (Zu - ju) - (Zw - jw)a (]u - ku) - (]w - kw)};
{ku - kwv (Zu - kU) - (iw - kw)a (]u - ku) - (Jw - kw)}’
{iu - Z'wv(iu - ]u) - (iw - jw)a(iu - ku) - (iw - kw)}v
{]u - kwu (]u - Zu) - (kw - Zw)}

Example 15. We construct a 4 x 6 matrix H using an
algorithm derived from Theorem 14, where, at each iteration
I, I € [ny], we choose the smallest possible positive value for
each of i;, j;, k;, as we did in Examples 7 and 12.> We obtain

1 1 1 1 1 1
9 28 g4l 75

H— 1 =z =
1 23 221 54 298 4180
1 27 238 293 162 297

SDue to space constraints, we omit algorithms corresponding to Theorems
13 and 15; they can be written in the same way as Algorithms 6 and 10.
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If we choose N = 2 (1r2la<xﬁ{il,jl,kl} + 1 = 595, then H

has girth 10. The smallest N required to obtain gir(H) > 8
is N = 347. The resulting code is simulated in Section IV.OJ

Theorem 16. Let H and Cy be defined as in equations
(4) and (3), respectively. Then gir(H) > 10 if and only if
gir(H) > 8 and, for any | € [n,), each one of these four sets
is of maximal size:

{Zu - iunju - jwaku - kunil + (]u - Zu) - jwail +
(ku_iu)_kluajl+(i’u_ju)_iwajl+(ku_ju)_kwakl+
(iu_ku)_iw>kl+(ju_ku)_jw ‘ U, w € [nv]vu 7é w,u 7é l}’
{( _ju)+jw7(iu_ku)"i'kunil+iu_iw7il+(iu_ju)_
(lw ] ) il+(iu_ku>_(iw_kw)7jl+7;u_jw7jl+(iu_
k) — (]w*kw)vliriu*kwakl+(iu*ju)7(kw*jw)|
u,w € [ny],u # w,w # 1},

{(juiiu)+iwa(ju7ku)+kw7il+ju7iwail+(ju7ku)f
(iw kw)ajl_'_ju_jw7jl+(iw_jw)_(iu_ju)ajl""(ju_
ku) = (Guw = kw)s ki 4 Ju = Kw, ki 4 (Ju = u) — (Kuw — ) |
u,w € [Ny, u # w,w # 1},

{(ku*iu)‘i’iwv(ku7ju)+jw,il+ku*iw,il+(ku7ju)*
(iw_j'w)ajl+ku_jwajl+(ku_iu)_(jw_iw)vkl+ku_
K, ki + (iw _kw) - (Zu _ku)7k3l + (]w - kw) - (Ju - ku) |

u, w € [nyl,u

#w,w # 1}

Example 17. In this example, we construct a 4 X 6 protograph-
based matrix using an algorithm derived from Theorem 16. In
each iteration [, 2 <[ < n,, we choose the smallest positive
value for each of i;, j; and k;. We obtain

1 1 1 1 1

1
o 1 o gl2 45 14T 445
1 231 1260 4320 980
1

{)367 $231 56'636 1‘1626

N W

€T
xT

If we choose N = 2| max {i;,j;,k} ) + 1 = 3253, then
1<I<6

H has girth 12, however, the smallest N required to obtain
gir(H) > 10 is N = 1881. The resulting code is simulated in
Section IV. O

Remark 18. We note that we could also use a computer to
search for the possible values in the same way, one by one,
with techniques such as progressive edge growth (PEG) [19],
but the last values in the matrix are hard to obtain, particularly
as the density of the protograph increases. However, the
proposed algorithms immediately give the next possible value
and can be modified to return the size N needed in a similar
way to the formulation in [12]. The algorithms can also be
modified so that a random value among the possible is chosen
at each time in order to optimize the performance. Or it can
be chosen such that the smallest possible value can be taken
at each point so that the smallest /V is obtained. If a choice
is not possible at some point for a desired N, backtracking
can be added to pick a different value at a previous step, until
a value is available at the current step. Finally, we note that
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1o°E
102 ¢ 1
2
Q‘g 104 E 1
8
= 10°F 1
as] —+Ex11: g =8, n =510, R = 0.3392
4-Ex12: g =8, n =666, R =0.3408
108k Ex11: g =8, n = 2082, R =0.3348 1
=Ex12: ¢ =8, n =2082, R =0.3348
sEx14: g =10, n = 2082, R = 0.3348
Ex16: g = 12, n = 11286, R = 0.3336
-10 ; : ; : | |
10 0 0.5 1 1.5 2 25 3 3.5
Ey/Ny

Fig. 1. Simulated decoding performance in terms of BER for the R ~ 1/3,
(4, 6)-regular QC-LDPC codes from Examples 11-16.

the algorithm can also be modified to increase the minimum
distance and/or minimum trapping/absorbing set size since
cycles appear in the composition of these structures. ]

IV. SIMULATION RESULTS

To verify the performance of the constructed codes, com-
puter simulations were performed assuming binary phase shift
keyed (BPSK) modulation and an additive white Gaussian
noise (AWGN) channel. The sum-product message passing de-
coder was allowed a maximum of 100 iterations and employed
a syndrome-check based stopping rule.

In Fig. 1, we plot the bit error rate (BER) for several
R ~ 1/3 (4,6)-regular QC-LDPC codes from Examples 11-
16 with varying code lengths and girth. For comparison, we
selected a larger lifting factor than the minimum for the codes
from Examples 11 and 12 with (N = 347 corresponding to
block length n = 2082, both codes retain ¢ = 8) to match
the block length of the ¢ = 10 code from Example 14. We
note that the girth g = 8 codes have similar performance, and
a slightly better waterfall, than the girth 10 code, but they
also display the beginning of an error floor at 3.25dB. The
Example 14 and 16 codes with girth ¢ = 10 and g = 12,
respectively, display no indication of an error-floor, at least
down to respective BERs of 10~® and 10~7. The Example
16 code with ¢ = 12 has a larger lifting factor N = 1881
and the resulting code with block length n = 11286 shows
a waterfall approximately 0.58dB from the iterative decoding
threshold (1.67dB) for (4,6)-regular LDPC codes [20] at a
BER of 1077.

V. CONCLUDING REMARKS

In this paper we gave necessary and sufficient conditions
for the Tanner graph of a protograph-based QC-LDPC code
with column weight 4 to have girth 6 < g < 12, successfully
extending the approach of [12] to denser protographs. The
girth conditions were used to write fast algorithms which
were exemplified by constructing the Tanner graphs of (4, 6)-
regular QC-LDPC codes with girths of 6, 8, 10, and 12.
The necessary and sufficient girth conditions we presented
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provide a unifying framework for a given girth to be achieved
in which all constructions must fit. Obtaining large girth
for relatively dense graphs is a challenging and important
topic since capacity approaching irregular LDPC codes often
have such sub-graphs in the protograph. Future work involves
extending the techniques in this paper to optimized irregular
protographs to achieve large girth and low error floors.
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