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Abstract—This paper revisits the connection between the girth
of a protograph-based LDPC code given by a parity-check matrix
and the properties of powers of the product between the matrix
and its transpose in order to obtain the necessary and sufficient
conditions for a code to have given girth between 6 and 12, and
to show how these conditions can be incorporated into simple
algorithms to construct codes of that girth. To this end, we
highlight the role that certain submatrices that appear in these
products have in the construction of codes of desired girth. In
particular, we show that imposing girth conditions on a parity-
check matrix is equivalent to imposing conditions on a square
submatrix obtained from it and we show how this equivalence is
particularly strong for a protograph based parity-check matrix
of variable node degree 2, where the cycles in its Tanner graph
correspond one-to-one to the cycles in the Tanner graph of a
square submatrix obtained by adding the permutation matrices
(or products of these) in the composition of the parity-check
matrix. We end the paper with exemplary constructions of codes
with various girths and computer simulations. Although, we
mostly assume the case of fully connected protographs of variable
node degree 2 and 3, the results can be used for any parity-check
matrix/protograph-based Tanner graph.

I. INTRODUCTION

Low-density parity-check (LDPC) codes, in particular
quasi-cyclic LDPC (QC-LDPC) codes, are now found in many
industry standards. One of the main advantages of QC-LDPC
codes is that they can be described simply, and as such
are attractive for implementation purposes since they can be
encoded with low complexity using simple feedback shift-
registers [1] and their structure leads to efficiencies in decoder
design [2]. The performance of an LDPC code with parity-
check matrix H depends on cycles in the associated Tanner
graph, since cycles in the graph cause correlation during
iterations of belief propagation decoding [3]. Moreover, these
cycles form substructures found in the undesirable trapping
and absorbing sets that create the error floor. Cycles have also
been shown to decrease the upper bound on the minimum
distance (see, e.g., [4]). Therefore, codes with large girth are
desirable for good performance (large minimum distance and
low error floor). Significant effort has been made to design
QC-LDPC code matrices with large minimum distance and
girth, see [5]-[10] and references therein.

In this paper, we will use some previous results by Mc-
Gowan and Williamson [11] and the terminology introduced
in Wu et al. [12] that elegantly relate the girth of H with the
girth of B, (H) 2 (HHT)"? Hn med2) > 1 We take
this connection in a new direction. Our purpose is to showcase
certain submatrices of HH" of importance when looking for
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cycles in the Tanner graph of H and thus to highlight the role
that these matrices have in the construction of codes of desired
girth. In particular, we show that the cycles in the Tanner graph
of a 2N x n, N parity-check matrix H based on the (2,n,)-
regular fully connected (all-one) protograph, with lifting factor
N, correspond one-to-one to the cycles in the Tanner graph
of a N x N matrix, that we call C;o, obtained from H. In
fact, the minimum distance of the code is precisely the girth
of Co;. Similarly, we show that imposing girth conditions on
a 3N x n, N parity-check matrix is equivalent to imposing
girth conditions on a 3N X 3N submatrix of HH T which we
call C'y. Although we mostly assume the case of an (n.,n,)-
regular fully connected protograph, for n. = 2, 3, the results
can be used to analyze the girth of the Tanner graph of any
parity-check matrix.

We use the results to construct codes of girth 6, 8§, 10,
and 12. We also show that, by following a two-step lifting
procedure called pre-lifting [10], girth 12 codes can be pre-
lifted in a deterministic way in order to obtain a girth 14
code and to increase the minimum distance. We conclude
the paper with computer simulations of some of these codes,
confirming the expected robust error control performance. We
emphasize that we do not visit other constructions found in the
literature because what we present is a unifying framework, in
particular providing necessary and sufficient conditions for a
given girth to be achieved, and thus all constructions must fit
in this framework. The proposed algorithms to choose lifting
exponents are extremely fast, in fact they can be evaluated by
hand, and could display codes of a given girth for the smallest
graph lifting factor N.

II. DEFINITIONS, NOTATIONS AND BACKGROUND

We use the following notation, for any positive integer L,
[L] denotes the set {1,2,...,L}. As usual, an LDPC code C
is described as the null space of a parity-check matrix H to
which we associate a Tanner graph [13] in the usual way. The
girth girth(H) of a graph is the length of the shortest cycle
in the graph.

A protograph [14], [15] is a small bipartite graph rep-
resented by a parity-check or base biadjacency matrix B
with non-negative integer entries b;;. The parity-check matrix
H of a protograph-based LDPC block code can be created
by replacing each non-zero entry b;; by a sum of b;; non-
overlapping N x N permutation matrices and a zero entry
by the N x N all-zero matrix. Graphically, this operation is
equivalent to taking an NN-fold graph cover, or “lifting”, of

380



the protograph. We denote the N x N circulant permutation
matrix where the entries of the N x N identity matrix [ are
shifted to the left by r positions modulo N as z".

We use the elegant triangle operator introduced in [12]
between any two non-negative integers e, f to define

déeAfé{l ife>2,f=0

0 otherwise

)

and between two sxt matrices £ = (e;;)sx¢ and F' = (fi;)sxt
with non-negative integer entries to define the matrix D =
(dij)sxt = EAF entry-wise as d;; = e;jAfi;, foralli €
[s],5 € [£].

The following theorem found in [11] and [12] describes
an important connection between girth(H) and matrices
B,(H) = (HHT)Ln/2J H mod2) ' > 1 and offers some
insight on the inner structure of the Tanner graph which
simplifies considerably the search for QC protograph-based
codes with large girth and minimum distance.

Theorem 1. ([11] and [12]) A Tanner graph of an LDPC
code with parity-check matrix H has girth(H) > 2g if and
only if B(H)ABy_o(H)=0,t=2,3,...,9.

Lastly, we extend the theorem on cycles in all-one pro-
tographs from [10] that gives the algebraic conditions imposed
by a cycle of length 2] in the Tanner graph of an all-one
protograph to the more general case of any protograph.

Theorem 2. Let C be a code described by a protograph-based
parity-check matrix H where each (i,7) entry is the N x N
zero matrix or a sum of non-overlapping N X N permutation
matrices, denoted P;;. Then, a 2l-cycle in the Tanner graph
of H exists if and only if there exists a sequence of permu-
tation matrices Piojo? Piljo’ Piljl s 131'2]'1, ey Pil—ljl—l s Piojl—l
(with no two equal adjacent permutations) such that

(Paogo Py Pais Py, -+ P Pl +1) 500!

i1jo7 1J17 d2j, t—1j1-14 dgji—1

III. THE CASE OF A (2,n,)-REGULAR PROTOGRAPH

We start the results of this paper with the case of 2 xn,, base
matrices because, although it has limited practical importance
in its own, it becomes essential when seen as part of a larger
protograph since each n. x n, base matrix of girth g, with
ne > 2, has (") 2 x n, base matrices that must have girth at
least g.

Theorem 3. Let P; denote permutation matrices, i € [n,],
I I - I T &

n, > 3. Let H = P P P, and Cy = C,
Zv P;. Then girth(H) = 2 girth(Cy1).

1=1

Proof: From Theorem 2, the Tanner graph associated
with H has a cycle of length 2] if and only if there exist
indices i1,142,...,4; € {1,...,n,}, such that i; # i511 and
such that IPiTlPileIPgPuIT---PllPilITAI # 0 <«

?

A 2i-cycle in the Tanner graph of H is a lifted cycle of a 2i-cycle in the
protograph, i.e., it visits sequentially the groups of nodes of the same type in
the lifted graph in the same order in which the cycle visits the nodes of the
original protograph.

PP,PIP, --- Pl Py,AI # 0. Equivalently, there exist
mi,Ma,...,m; such that Pi1 (mg, ml) = Pi2 (mg, mg) =

-+« = P;(my,my) = 1, which is equivalent to having an
l-cycle in Co;.

Corollary 4. Let P;,QQ; be permutation matrices, i € [n,

Py P p,,
Ny > 3. Let H = {Q(()) Q11 an] and Cy1 = Cirz

Zv PTQ;. Then girth(H) = 2 girth(Cay).
i=1
Proof: The graph of H is equivalent to the graph of
I I

(>

I
the matrix which, based on
LPJQO PlTQl PJQn
Theorem 3 has twice the girth of Cs;. |
. . I I 1T
Example 5. To insure that the matrix H = I P, P of

size 2N x 3N has girth 8 we only need to choose matrices
P, P3 such that the matrix I + P, + P3 has entries O or 1,
while in order for H to have girth 12, we need to choose
Ps, P; such that the girth of I + P, 4+ P has girth 6. For
example, the 7 x 7 parity-check matrix of the cyclic projective
code given by the parity-check polynomial matrix 1+ x + 23
has girth 6 giving a 14 x 21 matrix H with girth 12. Since
the girth of I + P, + P cannot exceed the upper bound 6
if P5, P3 are circulant, we need to take them non-circulant to
obtain a larger girth. The matrix H with

z 0 0 0 = O
Po=10 2% 0| and Ps= |0 0 22
0 0 2 z 0 0

has girth 8 for a circulant size N = 7, girth 10 for N = 11,
and girth 12 for N = 31. Therefore, the modulo 31 polynomial
matrix (or the 6 - 31 x 9 - 31 scalar parity-check matrix)
constructed with these matrices P, P53 has girth 24. ([l

IV. THE CASE OF A (3, ’nv)—REGULAR PROTOGRAPH

We now provide results for the case of a general 3 X n,
base matrix. These results will be used in Section V to form
simple constructive algorithms.

Theorem 6. Let H be the 3N x n,N parity-check matrix of
a protograph-based LDPC code such that: P, = Q1 = I and

I I ... I 0 Ci2 Cis
H=|P P Py, | ,Cu® [Car 0 Co
Q1 Q2 Qn, Cs1 Cs 0

Cia=C3, 2 Pl,.Cis=C 2> Q]
=1 i=1

ny
Cys = C3p 2> P,QJ.
j=1
Then the following equivalences hold.
1) girth(H) > 4 < girth(C;;) > 2 < Cg A0 =0;
2) girth(H) > 6 < Cy /A0 =0 and CyHAH = 0;
3) girth(H) > 8 & girth (Cy) = 6 & CHAI = 0;
4) girth(H) > 10 < girth(Cp) =6
CH}HAH+CyH)=0"
girth(Cpy) =6

5) girth(H) > 12 & CLA(T+ Cy +C%) =0
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Proof: Note that

By(H)=HH" =n,J+Cy, Bs(H)=n,H+ CyH,
By(H) = (n,I + Cy)?,Bs(H) = (n,I + Cy)*H,
Bs(H) = (n,I + Cy)?, etc..

Then 1) Bo(H)AI =0 < Cyg A0 = 0;

2) Bs(H)AB1(H) =0 CyHAH = 0;

3) B4(H)ABy(H) =0 < (nyI + Cg)*A(nl +Cl) =0
& C4LA(I + Cy) = 0. A 2- or 4-cycle can happen in Cy
if and only if it happens in one of the matrices [C12 Cis],
[021 ngl, [031 032} . Since girth (OH) =6 1is equiv-
alent to CzAI = 0 we obtain that the weaker condition
C%A(I+Cy) = 0 must hold. The conditions for girth(H) >
10 and 12 follow the same approach and are omitted due to
space constraints. [ |

Remark 7. 1) A similar theorem can be stated for the case
ne > 3, however, girth(C) > 4 is only a necessary but not
sufficient condition for H to have girth 10.

2) Note that n. > 3, girth(Cy) < 6, while for n. > 4,

girth(Cg) < 4, no matter the matrix H. O

We exemplify these results on a 3 x 4 base matrix lifted to
a protograph-based parity-check matrix of girth 10 from [10].

I I I I
Example 8. Let H = |I P, P; Py| =

I Q2 Qs Q4
1 0|1 0O 1 0 1 0
0 110 1 0 1 0 1
1 0lx O 0 0] 0 28
0 110 25(z° o [z 0
1 0[]0 47 ) x2 0
0 12" o| 0 2«41 0 z¢

The polynomial matrices C;;j(x) and Cy(x) associated with
H, C;; and Cp are as follows.

14z 2104218

Ca(z) = CL(m) = _xlo 4+ 13 1425 |7

M1+ 224 g1 27
Cai(z) = Cng(x) = i 27 1424 _|_ x“ )

[ 1
Cas(z) = 03T2(='U) = _m—l 424 g1 }
The girth of Cy is 6. So the 3N x 3N much denser (8, 8)-
regular matrix C'y has girth 6 while, equivalently, the (3,4)-

regular H has girth 10, or larger. (]

V. CONSTRUCTING (3, n,)-REGULAR PROTOGRAPH-BASED
QC-LDPC CODES OF GIVEN GIRTH g < 12

In this section, we will show how the equivalent conditions
from Section IV can be used to construct QC matrices

1 1 ... 1
H(z)= |z az* z's ' | i =451 =0, (1)
i gpi2 s xInv

such that they have girth 6 < g < 12. We work with the
polynomial matrices C;;(x) and Cy(z) associated with the
QC-scalar matrices C;; and Cp, defined as

Cra(z) = Cfy(z) 2 Yo
Cis(z) = Ch(z) & Yo it | 2)
=1
Cos(z) = Ch(x) £ 3 it

=1

Theorem 9. Let H(x) and Cy(x) be defined as in (1) and
(2). Then
1) girth(H(z)) > 4 if and only if each one of the sets
{ilv cee ain,,}a{jlw o ajn,,}a {il - jlv SER) - jnv}
contains non-equal values.
2) girth(H (x)) > 6 if and only if, for any | € [n,)], each
one of the three sets below contains non-equal values:

in,

{ie —ids, i — Js | s € [no], s # 1,
{isis —Js +a1 | s €[], s # 1},
{Js)ds —is +ir | s € [ny], s # 1}
Equivalently, girth(H(x)) > 6 if and only if
Ju & it e—is), is+(e—ir), Js+(ie—d) [ 1 < st <}
3) girth(H (x)) > 8 if and only if each two of the following
sets of differences contain non-equal values:
{iw — 1y | U £ v,u,v € [ny]},
{Ju = Jv [u #v,u,0 €[]},
{(tu = ju) = (v = jo) [ 7 v,u,v € [ny]}.
4) girth(H (x)) > 10 if and only if, for all | € [n,),
a) each two of the four sets contain non-equal values:

{iy — iy |u £ v,u,v € [ny],u # 1},
{]u_]v |UJ7£U,U/,’U€ [nv]7u7él}a
{7jU+j'U7i'U Jr,l:l ‘ u¢v7u7v€ [nv}’v#l}7
{=ty + iy —Jo+Ji |u#v,u,v € [n,],v #£ 1}

b) each two of the four sets contain non-equal values:

{Z.u_ju +.]v |u7év,u,v€ [nv]vv#l}a
{iw — o + 9 | u £ v,u,v € [Ny],v £ 1},
{(Zu _Ju) - (iv
{iu_jv +jl |u7$v,u,v€ [nv]vv#l}'

¢) each two of the four sets contain non-equal values:

{ju - Z'u + iq) | u 7£ v,u,v S [n,,],v # l}a

{]u — iy + 1 |’LL7£'U,U,’U € [TLU],’U#l},

{Ju _j’u +Jl ‘ U#U,U,U S [nva#l}a

{ju_iu+iv _jv +jl | u#v,u,v € [’I’LU],U#Z}-
Proof: 1) In order to avoid 4-cycles, we impose

Cij(x)A0 = 0, for all 1 < ¢ < j < 3. Equivalently, the
claim on the three sets above holds.
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2) In order to avoid 6-cycles, we impose, for all [ € [n,],
Cra(x)x" + Cz(x)x' Al =0,
021(1') -+ CQg(Z)SUJ" Al’“ = 0,
Cs1(z) + Csa(z)z" Azl = 0,
which is equivalent to the conditions below, from which the
claim follows: for all | € [n,] and all s,t € [n,] \ {l},

Ny

Z (xizfis _Ar_lefjs) Al =0

s=1

nll o _ git=is o£ gii=ii
> (@t ot I Aatt =0y ) e £ gie—detin
s=1 . . . .
sl Js Jt =ttt
Ny X X . ) . z # z

> (IJS + x]s*Zs‘i”Ll) Azt =
s=1

s#l

Conditions 3 and 4 are obtained in similar fashion. |

Since the condition sets from Theorem 9 have relatively
few elements, they can be integrated into simple algorithms to
generate the lifting exponents for the desired girth. For exam-
ple, we present two exemplary recursive algorithms to choose
these exponents: Type A in which we alternately choose the
exponents i1, j1,%2, J2, - - - , in, s Jn,; and Type B in which we
first choose i1, 72, . . ., ip, and then choose ji, j2,. .., Jn,. We
state below the steps followed in our algorithms for girth 8
and for girth 10 codes.

Algorithm Type A for girth 8
Stepl: Set i1 = 0,51 = 0. Set [ = 1.

Step 2: Let [ := [4+1. Choose i; & {js+(ir—7ji) | 1 < s,t <}
and then j; ¢ {i; + (ji —is),0s + (je —it),| 1 < st < 1}
Step 3: If [ = n,, stop, otherwise, go to Step 2.

Algorithm Type B for girth 10
Stepl: Set ¢; = 0. Set [ = 1.

Step 2: Let ! := I+1. Letd; ¢ {i,+is—i | 0 <w,t,s <I—1}.
Step 3: If | = n,, stop, otherwise, go to Step 2.

Step 4: Set j; = 0. Set [ = 1.

Step 5:Letl:=1+1. Ji ¢ {ju +Js —Jts Jutia 7ibaju+(js -
is)_'_(jt_it)ail"’(ju_iu)—’—(ia_ib)ail+(ju_iu)+(jv_iv)_
(Js—ts) i+ (Ju—tu) + s —3¢) | 0 < a,b < myyu, 8, t <1}
Step 6: If [ = n,, stop, otherwise, go to Step 5.

Example 10. We use the algorithm Type B for girth 10 to
obtain the following (3, 8)-regular protograph-based code C
of girth 10 with H(z) from (1). We follow Steps 1-3 and
choose i1 = 0, ia = 1, i3 — iy ¢ {is — i1}, SO we may
choose i3 = 2io + 1 = 3. Similarly, 74 = 2i3 +1 = 7. We
can choose, e.g., i5 = 2i4 + 1, but in this case, this is not
the smallest possible value i4. So we instead choose i5 =
i4 + min* (Z \ {’i4 — 13,74 — 12,04 — 11,13 — 9,13 — 11,

i —i1}) = 7T+min* (Z\ {4,6,7,2,3,1}) = 7+5 = 12.2 We
continue in the same way, by choosing the minimum positive
value not in the respective forbidden set, to obtain:

[mil mig:l — [1 T 1‘3 1‘7 1‘12 3720 .1330 1‘44} .

Therefore, C1o = 1+ 2+ 23 + 27 + 22 + 220 4+ 230 + 2% has
girth 6 over, e.g., N =14 2 x 44 = 89. (N is chosen such
that the negative differences are not equal to positive ones.)

>The min* operator returns the minimum positive value from a set.

We now choose the row [z 78] following Steps
4 and 5 that will ensure the conditions of Theorem 9 are
satisfied. The following matrix has girth 10 for N = 554 (for
example) was obtained with this algorithm

1 1 1 1 1 1 1 1

1 T 113 117 .’1712 .’1?20 .1‘30 $44
x194 (E274

1 £E66 £C461 xlOG {E144 (E385

H =

Note that C12, Ci3, and Cys all have girth 6, giving three
(2,8) codes of girth 12. O

Remark 11. The smallest N for which a code of girth 10
exists can also be computed from Theorem 9 as: Ny, =
min” (Z \ {ia +ip — b — tds Ju — Jo T ta — b,

ju _jv +js _jtvju - jv + (]s - Z's) - (]t - it)7

(js - Zs) - (]t - Zt) + (]u - Zu) - (jv - iv)7

(Js —is) — (Jt — t) + ta — G, | Gy b, S, t,u, v € [Ny]}) . Simi-
larly, based on Theorem 9, we can obtain the minimum lifting
factor Ny, for each desired girth g < 12.3 O

The following theorem allows a fast way to choose the
lifting exponents by taking increasing values that are larger
than the ones in the “forbidden" sets. We provide a girth 10
statement, but similar rules can be obtained for other girths.

Lemma 12. Let H(z) and Cy(x) be defined as in (1) and
(2). Let i; and j; be defined recursively as:
i1 =0 and 191 =002 = 14z + 24y,
i =14+24_1,1>2 Ji=1+251+74,l>3.
Then the Tanner graph of the code with parity-check matrix
H(x) has girth 10 for some N (which is not too large).

Example 13. We construct a (3, 7)-regular matrix based on
Lemma 12 as

1 1 1 1 1 1 1
Hz)=|1 =z 3 2T S 23 2% | =

1 .7;128 .7;260 1‘528 :L‘1072 .%‘2176 .’L‘4416

1 1 1 1 1 1 1

1 T xB 337 1‘15 J:31 3363

1 .73128 :C%O :L‘95 .%'206 xll :US6

The first matrix has girth 10 for N = 433, or larger. The
second matrix obtained by reducing the exponents modulo
N = 433 has the minimum value N = 347 for which the
girth is 10. We write 260 = —87 and obtain

1 1 1 1 1 1 1
H(z)=|1 =z 3 2T P g3l o83
1 128 =87 295 ,—141 11 86

which has the minimum value N = 327 for which the girth
is 10. We update —141 = 186 and —87 = 240 for N = 327,
and rewrite the matrix as

1 1 1 1 1 1 1
3 7T 15 31 63

1 T x x
1 128 240 95 186 11 .86

3While the specific code examples presented may not be globally optimal
in terms of minimal block length, the minimal N in terms of those specific
circulants is easily determined as shown here. If it is desired, the framework
can be (efficiently) utilized in conjunction with a circulant optimization/search
to minimize the block length to achieve a given girth.
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The minimum N for which this matrix has girth 10 is now
N = 278. We note that N = 278 is not the minimum for
which a code can be found (the minimum found with the
algorithm is N = 219), but it is easily obtained by hand. [J

The following is another example obtained using the algo-
rithm Type B for girth 12 (omitted due to space constraints),
where the values chosen are of some random non-forbidden
values rather than the minimum value possible at each point.

I 1 1 1 1
Example 14. The matrix H = |1 = 27 '8 %
1 232 P4 pl41 133

has girth 12 for N = 245 (length n = 1225), for example. [

VI. OBTAINING QC-LDPC CODES WITH GIRTH LARGER
THAN 12 AND/OR INCREASED MINIMUM DISTANCE

To achieve girth larger than 12 and/or a minimum distance
larger than the known upper bound (n. + 1)! [16], we cannot
take H in the form (1), so we need to consider permutation
matrices P; and (); such that some (at least) are not circulant.
In [10], we showed how to increase the minimum distance
by composing them of a sub-array of circulant matrices by
first choosing the pre-lifting protograph and then choosing the
circulant matrices to be placed according to this protograph.
A similar method can be applied not only to increase the
minimum distance, but to also to obtain codes with Tanner
graph of girth 14 or larger. We exemplify the process below.

Example 15. Let P, = Q1 = I, and let the indices in the ma-
trices P, ..., Ps be [1,0,0],[3,9,17],[39,4,11], [29, 59, 71],
respectively, according to the protograph [x x 2% 2%,
this means that, e.g., P, has non-zero entries z',x2°,2°
in the 3 X 3 permutation matrix corresponding to x.
The indices in the matrices Qs,...,Q5 are [118,32,209],
[136,479, A], [290, B, 800], [353,C, —319], respectively, ac-
cording to the protograph [z e x 1] where e is a (non-
circulant) permutation matrix with its non-zero positions on
(1,3),(2,2),(3,1). Substituting A, B, and C by 0 (masking)
gives a girth 14 irregular code for N = 891. Choosing
any of A, B,C to be non-zero restricts the girth to 12,
because a 2 x 3 all-one protograph is included. Substituting
A = 1199, B = 1239,C = —579 gives a girth 12 code
for which many 12-cycles were eliminated by choosing the
majority of the exponents to give an (irregular) H of girth 14.
Both codes are simulated for N = 891 (or length n = 13, 365)
in Section VIL (]

The final example demonstrates a construction of a girth 14
regular code obtained from a 3-cover (prelifted all-ones 3 x 5
base matrix) that meets the conditions. Here, we must ensure
that the 3-cover does not have any 2 x 3 all-one submatrix.

Example 16. Let H such that the indices in the matrices
Py, ..., Psare [1,0,7], [3,5,11], [6,23,29], [15,19,42], ac-
cording to the protograph [z 2 1 27|, and Qa,...,Qs
are [25,64,9], [61,180,143], [94,239,256], [153,358,474]
according to [1 2?2z x} , respectively, where the notation

[1,0,7], for example, means that P, has x!,2° 27 in the

nonzero entries of the 3 x 3 permutation matrix x. This graph
has girth 14 for, e.g., N = 903 (or length n = 13,545). O

VII. SIMULATION RESULTS

To verify the performance of the constructed codes, com-
puter simulations were performed assuming binary phase shift
keyed (BPSK) modulation and an additive white Gaussian
noise (AWGN) channel. The sum-product message passing de-
coder was allowed a maximum of 100 iterations and employed
a syndrome-check based stopping rule. In Fig. 1, we plot the
bit error rate (BER) for the R ~ 2/5 QC-LDPC codes from
Examples 14-16. Along with the performance of the (3,5)-
regular QC-LDPC code with girth 12 from Example 14, we
show the performance of constructed (3, 5)-regular QC-LDPC
codes of the same rate and length with girths 6 and 8. At lower
SNRs, the higher girth codes perform slightly worse, but this
ordering reverses in the error floor. With respect to the longer
codes from Examples 15-16, we remark that the codes display
no indication of an error-floor, at least down to a BER of 10~ 7.
The regular codes from Examples 15 (reduced multiplicity of
12 cycles) and 16 (with girth 14) have similar performance
in the simulated range, but we anticipate deviation at higher
SNRs where the 12-cycles are involved in trapping sets.

10 ©-Ex14: Reg, n =1225,g = 12
=Reg., n=1225,9 =6
107 I~ <Reg., n=1225,g =8

»Ex15: Irreg, n = 13,365, = 14
> Ex15: Reg., n = 13,365, = 12

Bit Error Rate
)
-

15 2 25 3
EI)/NO

Fig. 1. Simulated decoding performance in terms of BER for the R = 2/5
QC-LDPC codes from Examples 14-16.

VIII. CONCLUDING REMARKS

In this paper we gave necessary and sufficient conditions
for the Tanner graph of a protograph-based QC-LDPC code
to have girth 6 < g < 12. We also showed how these girth
conditions can be used to write fast algorithms to construct
such codes and exemplified them for codes of girth 10. We
also showed that in order to exceed girth 12 a double graph-
lifting procedure called pre-lifting can be employed, which
was demonstrated to construct QC-LDPC codes with girth
14. Extending the results to more general protographs, e.g.,
higher column weights and irregular protographs (such as the
5G base graphs), as well as establishing connections between
the proposed conditions and absorbing/trapping sets will be
explored in our future work.

This material is based upon work supported by the National Science
Foundation under Grant Nos. OIA-1757207 and HRD-1914635.
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