Quantum Science and Technology

PAPER You may also like

Constant depth fault-tolerant Clifford circuits for e gy o

. . Clare Horsman, Austin G Fowler, Simon
multi-qubit large block codes Devitt et al.

- Quantum circuit dynamics via path

R, ' . integrals: Is th lassical action f
To cite this article: Yi-Cong Zheng et al 2020 Quantum Sci. Technol. 5 045007 g}sir;?;tiée De;tehif assiearacion ot

Mark D Penney, Dax Enshan Koh and
Robert W Spekkens

- Constructing quantum circuits with global

gates

View the article online for updates and enhancements. John van de Wetering

This content was downloaded from IP address 68.181.17.137 on 21/12/2021 at 05:52


https://doi.org/10.1088/2058-9565/aba34d
/article/10.1088/1367-2630/14/12/123011
/article/10.1088/1367-2630/14/12/123011
/article/10.1088/1367-2630/aa61ba
/article/10.1088/1367-2630/aa61ba
/article/10.1088/1367-2630/aa61ba
/article/10.1088/1367-2630/abf1b3
/article/10.1088/1367-2630/abf1b3
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv6jUSNg1nrLhKDsIIa3o4tupYUWo_hQjw9xJiPRn11X6cEQlS3IHi1PT_KyQEsudjVIldweuCIr98yiSML7Nfk8lw9wd0sy2ykyf4c91Ybw42yZuCJdKY4gXvj-1k6O_Vu1V9qfU_55T6up3cqytwFC7dSvKtY2T5aptg_VDpQodWHX_8GLbacF80iyzJ2JqnE17vRX0IHxwyHMnPwnjh85RV9eHzc_GvtYOII5o9_NdayI4a6n-QpB_qygga9tf7VxT-18_TIICosMNLbrnssZuM3jiGe4wY&sig=Cg0ArKJSzH5ZrWrq9eM8&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

10P Publishing

® CrossMark

RECEIVED
4 April 2020

REVISED
28 June 2020

ACCEPTED FOR PUBLICATION
6 July 2020

PUBLISHED
28 July 2020

Quantum Sci. Technol. 5 (2020) 045007 https://doi.org/10.1088/2058-9565/aba34d

Quantum Science and Technology

PAPER

Constant depth fault-tolerant Clifford circuits for multi-qubit
large block codes

Yi-Cong Zheng"**?{9, Ching-Yi Lai'(®, Todd A Brun®® and Leong-Chuan
Kwek? "¢

Tencent Quantum Lab, Tencent, Shenzhen, Guangdong, 518057, People’s Republic of China

Centre for Quantum Technologies, National University of Singapore, 117543, Singapore

Yale-NUS College, 138527, Singapore

Institute of Communications Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089,
United States of America

MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

Institute of Advanced Studies, Nanyang Technological University, 639673, Singapore

National Institute of Education, Nanyang Technological University, 637616, Singapore

Author to whom any correspondence should be addressed.

L N S R

© ® N o

E-mail: yicongzheng@tencent.com

Keywords: fault-tolerant quantum computation, large block codes, quantum error correction, Clifford circuit

Abstract

Fault-tolerant quantum computation (FTQC) schemes using large block codes that encode k > 1
qubits in n physical qubits can potentially reduce the resource overhead to a great extent because of
their high encoding rate. However, the fault-tolerant (FT) logical operations for the encoded
qubits are difficult to find and implement, which usually takes not only a very large resource
overhead but also long in situ computation time. In this paper, we focus on
Calderbank—Shor—Steane [[n, k, d]] (CSS) codes and their logical FT Clifford circuits. We show
that the depth of an arbitrary logical Clifford circuit can be implemented fault-tolerantly in O(1)
steps in situ via either Knill or Steane syndrome measurement circuit, with the qualified ancilla
states efficiently prepared. Particularly, for those codes satisfying k/n ~ ©(1), the resource scaling
for Clifford circuits implementation on the logical level can be the same as on the physical level up
to a constant, which is independent of code distance d. With a suitable pipeline to produce ancilla
states, our scheme requires only a modest resource cost in physical qubits, physical gates, and
computation time for very large scale FTQC.

1. Introduction

Quantum error-correcting codes (QECCs) [1-5] and the theory of fault-tolerant quantum computation
(FTQC) [5—12] have shown that large-scale quantum computation is possible if the noise is not strongly
correlated between qubits and its rate is below certain threshold [7, 11-16].

Large QECCs with high encoding rates typically encode many logical qubits with high distance. FTQC
architectures based on these codes may potentially outperform smaller codes and topological codes, like
surface codes [9, 17] and color codes [18], in terms of the overall resource required and the error correction
ability [19-23]. However, for an [[#n, k, d]] code with k, d > 1, it may be extremely difficult (or even
impossible) to find all required fault-tolerant (FT) logical gates. For Calderbank—Shor—Steane (CSS) codes
[2, 3], one way to resolve this challenge is to implement logical circuits indirectly through Knill or Steane
syndrome extraction circuits [11, 24] with additional blocks of encoded ancilla qubits prepared in specific
states [21, 24—26]. Unfortunately, the distillation processes for each encoded ancilla state are complicated,
and different ancilla states are usually required for each logical gate. As an example, a Clifford circuit on k
qubits requires Ok /log k) Clifford gates [27, 28] with circuit depth O(k); if an [[n, k, d]] CSS code is used,
it requires O(k* /log k) logical Clifford gates [28], and in general, O(k* /log k) different ancilla states need to
be prepared, and the same number of Knill/Steane syndrome extraction steps are required.

© 2020 IOP Publishing Ltd
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A natural question arises: can one implement logical circuits on those multi-qubit large block codes
(k> 1) in a quicker and more efficient way? In this paper, we show that for Clifford circuits, the answer is
positive for CSS codes: one can implement an arbitrary logical Clifford circuit fault-tolerantly using O(1)
qualified encoded ancilla states and a constant number of Knill/Steane syndrome measurement steps. Thus
the depth of a logical Clifford circuit can be reduced to O(1) in situ. Furthermore, we show that with the
distillation protocol proposed in [29, 30], these ancilla states can be distilled off-line in ancilla factories with
yield rate close to O(1) asymptotically, if the physical error rate is sufficiently low. Especially, for those
families of large block codes with k/n ~ O(1), the number of physical qubits and physical gates required for
an arbitrary logical Clifford circuit can scale as O(k) and O(k* /log k) respectively on average. These results
suggest that the resource cost of Clifford circuits on the logical level can scale the same as on the physical
level, if the distillation circuits and large block quantum codes are carefully chosen. With a proper pipeline
structure of ancilla factories to work in parallel, we are also convinced that the scaling of the required
resources including the overall number of qubits, physical gates and the computation time, can be very
modest for large scale FTQC.

The structure of the paper is as follows. We review preliminaries and set up notation in section 2. In
section 3, we propose our scheme to implement FT logical Clifford circuits via a constant number of Knill
or Steane syndrome measurement. The resource overhead for the scheme is carefully analyzed. In section 4,
we compare our scheme to some other closely-related FTQC schemes according to the resource overhead
and real-time computational circuit depth.

2. Preliminaries and notation

2.1. Stabilizer formalism and CSS codes
Let P, = P;{" denote the n-fold Pauli group, where

Py = {£[, +il, £X, +iX, £Y, +iY, +2Z, +iZ},

1 0 0 1 1 0 . . .
andI—<O 1>,X—<1 0>,Z—<0 _1>,andY—lXZarethePauhmatrlces.

Let X, Y}, and Z; act as single-qubit Pauli matrices on the jth qubit and trivially elsewhere. We also
introduce the notation X?, fora = a; - - - a, € Z}, to denote the operator ®]’.1:1X”j and let
supp(a) = {j:a; = 1}. For a,b € Z}, define Z,;, = supp(a) (| supp(b) and let 75, = |Zyp| be the size of Zqp.
An n-fold Pauli operator can be expressed as

i@ X492l =iXx*7° abeZj 1€{0,1,2,3}. (1)

Then (a|b) is called the binary representation of the Pauli operator i'’X*Z" up to an overall phase 7. In
particular, i X*Z?, which is Hermitian, has eigenvalues 4-1. From now on we use the binary
representation and neglect the overall phase for simplicity when there is no ambiguity. We define the weight
of E, wt(E), as the number of terms in the tensor product which are not equal to the identity.

Suppose S is an abelian subgroup of P, with a set of n — k independent and commuting generators
{§y = i xnzbr S, ;= ik Xk ZPk} and S does not include —I®". An [[n, k]] quantum
stabilizer code C(S) is defined as the 2¥-dimensional subspace of the n-qubit state space (C?") fixed by S,
which is the joint +1 eigenspace of Sy, . .., S,—k. Then for a codeword |v) € C(S),

Sl) = [¥)

forall S € S. We also define N(S) to be the normalizer of the stabilizer group. Thus any non-trivial logical
Pauli operator on codewords belongs to N(S)\S and let Xj;, Yj; and Z;; be logical Pauli operators acting
on the jth logical qubit. The distance d of the code is defined as

d= min wt(L).
LEN(S)\S

Suppose S’ € P, is another abelian subgroup containing S with k = 0, then C(S’) has only one state |¢)
up to a global phase. This state is called a stabilizer codeword of S, whose binary representation is

a | by

a, | b,
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If a Pauli error E corrupts [¢)), some eigenvalues of Sy, . . ., S, may be flipped, if they are measured on
E|4)). Consequently, we gain information about the error by measuring the stabilizer generators
S15 .. .»Su—k> and the corresponding measurement outcomes (in bits) are called the error syndrome of E. A
quantum decoder has to choose a good recovery operation based on the measured error syndromes.

CSS codes are an important class of stabilizer codes for FTQC. Their generators are tensor products of
the identity and either X or Z operators (but not both) [2, 3]. More formally, consider two classical codes,
Cz and Cx with parameters [n, kz, d] and [, kx, dx], respectively, such that Cx C Cz. The corresponding
parity-check matrices are Hy ((n — kz) x n) and Hx ((n — kx) X n) with full rank. One can form an
[[n,k = kx + kz — n,d]] CSS code, where d > min{dy, dx}. In general, a logical basis state can be
represented as:

e = 3 et ub),

L
x€Cx

where u € Z% and D is a k x n binary matrix, whose rows are the coset leaders of Cz/Cy . The stabilizer
generators of a CSS code in binary representation are:
0
Hx )/’

H,

0
where Hx(H) is made of Z(X) type Pauli operators. For the special case that Cx = Cz, we call such a code
self-dual CSS code.

2.2. Clifford circuits
Clifford circuits are composed solely of Hadamard (H), Phase (P), and controlled-NOT (CNOT) gates,

defined as
1 1 1 1 0
e L) (09, ovors

The n-qubit Clifford circuits form a finite group, which, up to overall phases, is isomorphic to the binary
symplectic matrix group defined in [28]:

S O O
o O = O
— O O O
S = O O

Definition 1 (Symplectic group). The group of 2n x 2n symplectic matrices over Z, is defined in:

Sp(2n,Z,) = {M € GL(2n,Z,) : MJ,M' = J,}}

0| I
under matrix multiplication. Here J,, = ( I (;1 ) :
n

(319

where Q, R, S and T are n X n square matrices satisfying the following conditions:

In general, M € Sp(2n, Z,) has the form

QR' =RQ', ST'=TS, QT+RS=I,.

In other words, the rows of (Q|R) are symplectic partners of the rows of (S|T). Thus, an n-qubit Clifford
circuit can be represented by a 2n x 2n binary matrix with respect to the basis of the binary representation
of Pauli operators in (1). Then UX*Z°U' is represented by (a, b)My, where My is the binary symplectic
matrix corresponding to U. For example, the idle circuit (no quantum gates) is represented by I, the
2n X 2n identity matrix. The representation of consecutive Clifford circuits My, . . ., M; is their binary
matrix product

M=M,---M;

We emphasize here that the symplectic matrix M acts on the binary representation of a Pauli operator from
the right. The binary representations of Pauli operators and Clifford unitaries omit the overall phases of full
operators. If needed, such overall phases can always be compensated by a single layer of gates consisting
solely of Z and X gates [31] on some subsets of qubits [28, 32].

Let C(j, I) denote a CNOT gate with control qubit j and target qubit I. The actions of appending a
Hadamard, Phase, or CNOT gate to a Clifford circuit M can be described as follows:
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Figure 1. The quantum circuit for Knill syndrome measurement and gate teleportation for an [[n, k, d]] stabilizer code. For a
logical Clifford circuit Uy, if [U''*) is prepared before logical Bell measurement, Uy |)) can be obtained up to some Pauli
correction of X*ZP on the output block, depending on the logical Bell measurement results.

(a) A Hadamard gate on qubit j exchanges columns j and n + j of M.
(b) A Phase gate on qubit j adds column j to column # + j (mod 2) of M.
(c) C(j,1) adds column j to column / (mod 2) of M and adds column # + I to column n + j (mod 2) of M.

3. Constant depth FT Clifford circuit

3.1. FT syndrome measurement

The goal of an error correction protocol in FTQC is to find the most likely errors during computation,
based on the extracted syndromes. However, the circuits to perform a syndrome measurement may
introduce additional errors to the system or get wrong syndromes with high probability. Therefore, the
error correction may fail, if not treated properly.

In this section, we briefly review two major protocols used in this paper—XKnill and Steane syndrome
measurements [11, 24]. Each scheme has its own advantages in different computation scenarios [33], such
as a better threshold or a better ability to handle particular types of noise, and both can be used to construct
arbitrary FT logical Clifford circuits.

3.1.1. Knill syndrome measurement

For an arbitrary [[#, k, d]] stabilizer code, one can use the logical teleportation circuit in figure 1 to extract
the error syndrome [24], as proposed by Knill [11]. Here, two blocks of ancilla qubits are maximally
entangled in a logical Bell state |®;)*F = % (10r) ®@0r) + |11) @ \1L>)®k. The upper block of ancilla
qubits are encoded to the same code protecting the data state, while the lower ones can be protected by an
arbitrary stabilizer code encoding k logical qubits. In this paper, we restrict ourselves to the same [[n, k, d]]
CSS code for all blocks.

The logical Bell measurement in the dashed box teleports the encoded state to the lower ancilla block up
to a logical Pauli correction (depending on the Bell measurement outcomes), and simultaneously obtains
the error syndrome of on the input data blocks. Both logical Bell measurement outcomes and syndromes
are calculated from the bitwise measurement results. The circuit is intrinsically FT because it consists solely
of transversal CNOT gates and bitwise measurements.

One particular virtue of the teleportation syndrome measurement circuit is that it can also provide a
straightforward way to produce any logical circuit Uy, (on the teleported state) of the Clifford hierarchy Cy
(up to a Cy_; correction depending on the logical measurement outcomes) via the very same syndrome
measurement circuit [25], if one can construct the ancilla state

oy = (1@ up|ef ). 2)

This construction is very useful when implementing logical circuits for large block codes. In this paper, we
focus on U € Cy, the Clifford circuit. In this case, all the | are stabilizer states that can be prepared by
Clifford circuits.

3.1.2. Steane syndrome measurement

Now we consider a CSS code [[n, k, d]] for convenience in later discussion. For CSS codes, Steane suggested
a syndrome measurement circuit as shown in figure 2 [24]. Here, two logical ancilla blocks of the same code
are used that protects the data state. Two transversal CNOT gates propagate Z and X errors from the data
block to ancilla blocks and corresponding error syndromes are calculated from the bitwise measurement
outcomes. If the two ancilla blocks are prepared in a tensor product state [0;)“% @ |+ )®*, the circuit
extracts the error syndromes without disturbing the encoded quantum information. Like the Knill
syndrome measurement, the circuit is intrinsically FT.
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) # T s
ab 7 \l/ Z(D
2 <, S

Figure2. The quantum circuit for Steane syndrome measurement using an [[n, k, d]] CSS code. One can simultaneously
measure a Hermitian Pauli operator i X ZP, when the two ancilla blocks are prepared in the state
197) = J5 (I + X} © 27) [0,)% @ |[+1) %,

Moreover, one can simultaneously measure an arbitrary Hermitian logical Pauli operator of the form
i X2 7 while extracting syndromes, if |Q2°) is prepared in
1

V2

It is easy to prove the functionality of the circuit: start with the joint state [))|Q2), after two transversal
CNOTs, the state becomes

) = —= (I+ X} ® Z7) |00)™* @ [+1)™*. (3)

1
V2

Let the measurement outcomes of the jth logical qubit in the upper and lower blocks be v and v € {0, 1},
respectively. Then the joint output state is:

(19)100) H2) ™" + ™ XFZP9) X3 [01) "2 |+1) ) -

1 I+(-1)"X, I+(-1)%z L
ﬁ|¢>®]"‘:1 f\oﬁ ®, f\‘i‘ﬁ +\/§“"XLZ?|1/J>
I+(-1)"X; a I+(=1)%2Z
g, [ EEED Koy | o, (LD A
2 2
1 X VZ T a
=5 1+ I eof I oirxiz | )
lesupp(a) lesupp(b)
I+ (=1)X I+(-1)%Z
b, | — =50 | ok, [ ———+) | (4)

2 2

which is the state after the measurement of i X2Z? on |1)) with measurement outcome

[T <o JI o
) (b)

lesupp(a lesupp

This circuit also allows measuring several commuting logical Pauli operator simultaneously. Here, we
restrict ourselves to a commuting set of m < k logical Pauli operators and suppose that the set of
commuting Pauli operators to be measured is {XZIZ{1 s...,XEmZim ) These operators can be simultaneously
measured by replacing [Q2°) with:

m

1 e f: . .

EF Teof, k k

9F) = o511 (147X © 20 ) 10 @ 4+1)°*. (5)
j=1

Note that [Q2FF) is also a stabilizer state. Like logical circuit teleportation, one can also effectively construct

any logical Clifford circuit via such Pauli measurements [8, 21].

3.2. Single-shot FT logical circuit teleportation and Pauli measurement

Ideally, if the ancilla qubits are clean and measurements are perfect, one can extract the error syndrome of
the data block with logical circuit teleportation or Pauli measurements in a single round of Knill/Steane
syndrome measurement.
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Figure 3. The effective error model of the Knill (part (a)) and Steane (part(b)) syndrome measurement circuits. While E; and E;
are in general correlated in time, they are spatially uncorrelated, if the ancilla states are qualified.

In practice, ancillas may contain different types of errors after preparation, while the measurement
outcomes can also be noisy. One needs to make sure that high weight errors do not propagate from ancilla
qubits to data blocks. At the same time, reliable values of syndromes and logical operators must be
established from measurement outcomes. For error correction, one can repeat the syndrome measurements
several rounds to establish reliable syndromes of the data state via majority vote [6, 22]. However, for the
purpose of logical circuit teleportation or Pauli measurements, one needs reliable values of logical operators
right after the first round of measurement for subsequent correction. Otherwise, it will cause a logical error
on the data state. Thus, a single-shot FT logical circuit teleportation or Pauli measurement protocol is
required.

Actually, we will see this is possible if the blocks of ancilla qubits for Knill/Steane syndrome
measurements do not contain any correlated errors. Here, we define an uncorrelated error as follow [34]:

Definition 2. For an [[n, k, d]] code correcting any Pauli error on ¢t = L%J qubits, we say that an error E

on the code block is spatially uncorrelated if the probability of E is

wt(E), ifwt(E) < t;
t, ifwt(E) > t,

for some s

Pr(E) ~ O(p") :

ARV

for some s

where the coefficients behind O are not unreasonably large.

Otherwise, E is said to be correlated. For those uncorrelated errors satisfying this definition, they should
have a distribution similar to the binomial distribution. Thus, the errors on the code block can be regarded
as independent. We say that an ancilla is qualified if it is free of correlated errors.

It is obvious that no correlated error will be propagated back to the data blocks if ancilla blocks are
qualified. Even more, we have:

Lemma 1 (Effective error model). During imperfect logical state teleporation via Knill syndrome extraction,
or logical Pauli measurements via Steane syndrome measurement, if errors in the same block (data or ancilla)
are spatially uncorrelated according to definition 2, then the errors are equivalent to spatially uncorrelated
effective errors acting only on the data code block before and after the process, as shown in figure 3.

It has already been shown in reference [21] that this statement is true for Steane syndrome
measurement. The basic idea is that failures occurring in any location of the circuit can be commuted
forward or backward to the data code block, allowing the ancillas to be treated as clean and the
measurements as perfect. Thus we can leave Ey to the next round of syndrome measurements and analyze as
if only E; (and E from the previous round) have occurred, followed by perfect syndrome measurements.
The same argument is also applicable to Knill syndrome measurements and hence one has:

Theorem 1. The Knill/Steane syndrome measurement circuit can implement FT logical circuit
teleportation/Pauli measurements in a single round.
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After a single-shot Knill/Steane syndrome measurement and correction, the final data state is:
W}f> o8 Ef “R- OL -Lc - Ecomb|/(/)i>~ (6)

Here, Ecomp includes both E; in current stage and Ey from previous stage; Oy, is the logical operation (either a
teleported logical circuit, or logical Pauli measurements); L is the Pauli correction based on the outcomes
of logical measurements; R is the recovery operation based on the measured syndromes, O,

and Lc.

3.3. Constant depth Clifford circuit via FT circuit teleportation
For a CSS code with k logical data qubits, it requires O(k* /log k) logical Clifford gates [27, 28] for a logical
Clifford circuit. If we implement these gates one by one in a FT manner, it will require O(k* /log k) qualified
ancilla states using O(k*/log k) times of the Knill/Steane single-shot syndrome measurements circuit. In this
and next subsections, we show that O(1) qualified ancilla states and O(1) steps of the Knill/Steane syndrome
measurements are sufficient for arbitrary logical Clifford circuits, up to a permutation of qubits.

It is well known that any Clifford circuit has an equivalent circuit comprising 11 stages, each using only
one type of gate: -H-C-P-C-P-C-H-P-C-P-C- [28]. That can be further reduced to a nine-stage
-C-P-C-P-H-P-C-P-C- [32]. More specifically, one has:

Theorem 2. (Bruhat decomposition [32]). Any symplectic matrix M of dimension 2k x 2k can be decomposed
as
M = MOMOMEMI MY . MY («Mg)w*l) MY (wMgw) . (7)

Here, M(Cj) are -C- stage matrices containing only CNOT gates C(q, r) such that q < 1; MI(,j) and Mg) are -P- and
-H- stage matrices; T is a permutation matrix.

In a -P- stage, since P* = I, effectively there are three types of single-qubit gates: P, P> = Z and
P? = P' = PZ. Note that we will postpone all the Z gates to the final stage, and thus the -P- layer consists of
at most k individual Phase gates. The symplectic matrix of a -P- stage on a set of m qubits is in general of

the form:
MP - (Ik Ak) >
0r | ] (8)

where A} is an k x k diagonal matrix with m 1s.
Similar to the -P- stage, since H> = I, an -H- stage contains at most k individual H gates. The
symplectic matrix of an -H- stage on an arbitrary set of m qubits can be written as

(LAT] A}
MH‘( AP [ LA7)

(9)

The corresponding symplectic matrix of a -C- stage can be written as:

e
<\ [(u)) (10)

where U is an invertible k x k upper triangular matrix.

Clearly, if one can implement each stage in O(1) steps fault-tolerantly, an arbitrary logical Clifford
circuit can be implemented in O(1) steps. For Knill syndrome measurements, it is straightforward—one
can prepare the ancilla for the circuit in each stage directly as:

W) =12 Un(lon) @ [00) + 1) @ 1))
\\IJSH> = 1® Un(|0r) ® |0) + 1) x |1.)%, (11)
‘\I/fc> = 1® Uc(|0y) ® [05) + [11) @ [1,))%*

where Up, Uy and Ug are the corresponding unitaries for the -P-, -H- and -C- stages, respectively.
Obviously, these are all CSS states up to local Clifford operations, whose binary representations at the

logical level are:
\IIUP:<I;( Lo A,’f))
L 0 0| I (12)
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pUn _ <1k L+A |0 AY )
L 0 A;T Iy I+ A;T (13)
assuming -P- or -H- is applied to a set of m qubits, and
\IIUC o Ik U 0 0
oo o (un)')
k (14)

If these states are all qualified for all the stages, by theorems 1 and 2, one can implement an arbitrary logical
Clifford circuit in 9 rounds of single-shot Knill syndrome measurements. Later, we will show that all the
three types of ancilla states can be prepared fault-tolerantly and efficiently.

3.4. Constant depth Clifford circuit FT Pauli measurement

Unlike Knill syndrome measurement, it is not so obvious how to implement the logical Clifford group using
Steane syndrome measurement. In this section, we provide a constructive proof showing that by
introducing k extra auxiliary logical qubits (labeled as Ay, . .., Ay), each stage of a logical Clifford circuit on
k data logical qubits (Qq, . .., Q) can be implemented via a constant number of Pauli operator
measurements, up to a permutation of qubits. We choose an [[n, 2k, d]] CSS code and put the logical qubits
in the following order: {Ay, ..., A, Q1,. .., Q-

3.4.1. -P- stage
Consider a pair of qubits {A;, Qj} with A; in the [0r) state. Measure operators X,,1 Yo, and then Zq, ;. After
swapping A; and Q;, the overall effect is a Phase gate on Q; up to a Pauli correction depending on the
measurement outcomes. The swap does not need to be done physically. Instead, one can just keep a record
of it in software.

For m Phase gates on a logical qubit set .2, since {Xa,1 Yo, 1| j € A} and {Zq,1| j € 4} are
commuting operator sets, it requires only two steps of Pauli measurements by preparing two ancilla states
with 4k logical qubits:

1 ] 7 ,
‘QEI> NG H (I+ [ ()(f,L)(j+k,L) ®Zj+k,L) ‘0L>®2k ® |+L>®2k (15)
je M
and
‘QEZ> = _|0L>®2k Q H (I+ZJ,L) |_|_L>®2k , (16)
2 je

whose binary representations at the logical level are

0 0 0 O A o0 o
Qg [AF AT 0 0f0 L0 A
L 0 0 L 0/0 o0 0 0|
0 0 0 L|O0 A 0 O (17)

and
0 O 0 Ly 0 0

02=10 L 0 0 0 0 |,
0 0 Ik—‘rA;{n 0 0 Akm (18)

respectively. Note that [€2}2) is a CSS state. |€2}') is the joint +1 eigenstate of
{Zi1Zivk1 @ Ly Zigir @ Xigk 1> X Yirkr @ Zigwr | j € A},

which is also a CSS state up to Phase gates on logical qubits {j + k| j € .#} of the upper block, and
Hadamard gates on the logical qubits {j + k| j € .#} of the lower block.

3.4.2. -H- stage

Like the -P- stage, we consider only a single H on a data qubit. For a pair of qubits {A;j, Q;} with A; in the
|0.) state, measure XAj,LZQj,L and then XqjL- After swapping A; and Q;, the overall effect is a Hadamard gate
on Q; with A; in the |+) up to a Pauli correction depending on the measurement outcome.
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For m Hadamard gates on a logical qubits set ., since {Xx,1Zq;1 | j € #} and {Xq,1 | j € 4} are
both commuting sets, we need just two steps of Pauli measurements and an ancilla state with 4k logical
qubits for an -H- stage. If Hadamard gates are applied to a set .# of qubits, the required ancilla states are

1
’Q§l> = —F= H (I + XL ®Zj+k,L) ‘0L>®2k ® |+L>®2k, (19)
V2
jeH
and
g ®2k @2k
‘QL2> VT I (+X) loo) ® |+1)%%, (20)

jeH

whose binary representations at the logical level are:

A" 0 0 O|L+A" 0 0 AV

g _ [0 0 0 0 0 L 0 0

L7110 o0 L o 0 0 0, 0
0 0 0 I Al 0 0 0 (21)

and
0. 0 0| 0 0

Q2=(0 A" 0|0 L+A" o |,

0 0 ILi|o 0 0 (22)

respectively. Note that ’Q?Z is a CSS state. ’Q?1> is the joint 41 eigenstate of
{Xit ® Zitk1,Zjr @ Xjyxr | j € A}, and thus, it is a CSS state up to Hadamard gates.

3.4.3. -C- stage

We first introduce the generalized stabilizer formalism that is helpful later. Consider a 2F dimensional
subspace C(G) of the N logical qubit Hilbert space, where G has N — k stabilizer generators. We focus on
the effects of Clifford circuits on the k logical qubits stabilized by G. Consider a set of matrices Cg of the
form:

Q/ R/
ST
A | B (23)

Here, (A|B) corresponds to the stabilizer generators of G; (Q'|R") and (S'|T’) are k x 2N binary matrices
orthogonal to (A|B) with respect to the symplectic inner product, and which are symplectic partners of each
other. They can be regarded as ‘encoded operators’ on C(G). We define the following equivalence relation
Z in Cg: two matrices

Q | R QR
C=1\{S | T, and G=1(6S5, | T, |,
A1 B] AZ BZ

are equivalent if (a) (A;|B;) and (A;|B,) generate the same stabilizer group G; and (b) (2,1 l;}) differs
1 1

/ /
from <Q2 2) by multiplication of elements in G. Thus, there is a one-to-one correspondence between

S, T,
Cg /% and Sp(2k, Z,). Therefore, Cg/Z captures the behavior of stabilizer circuits on C(G). The circuit
representation of equation (23) is called the generalized stabilizer form (GSF) of G.
The following lemma will also be used in the circuit construction:

Lemma 2. Let Ly be an n x n lower triangular matrix with the diagonal elements being zeros. Suppose
L=, L)).

Then there exists a full-rank matrix L' = (L,L3), where L, and Ls are two n X n lower triangular matrices, such
that the rows of L' are linear combinations of rows of L and

r G”) =L, + 1L =1, (24)

Proof. See appendix A for details. |
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We now construct the sequence of Pauli measurements which can generate any -C- stage on logical
qubits Qy, . .., Qx of an [[n, N = 2k, d]] CSS code. We start with the GSF of an arbitrary -C- circuit with
auxiliary logical qubits Ay, ..., Ay in |[4+1)%*:

0, U /|0 0x
0r 0 | O (Ut)_l >
I O | O 0 (25)

and reduce it to the idle circuit by a series of row operation. This set of operations in reverse will effectively
implement the target CNOT circuit.
As mentioned before, U is an invertible upper triangular matrix. The GSF is then equivalent to

U+ U]| 0 0
0 0| 0 (U)!
Iy 0 | O 0% (26)

since all the nonzero row vectors of (U + L 0| O Ok) can be generated by (Ik 0 | 0, Ok) and we add
these vectors to the first row.
Since U is of full rank, the diagonal elements of U + Iy must be all zeros. Observe that
(Ok 0 | I (UH!+ Ik) commutes with the logical operators and is a symplectic partner of the stabilizer
generators, since
(I (U '+ L) (U+L U =0,

and
(Ik 0 |0k Ok) ( Iy (Ut)_1 + I ‘ 0 Ok)t = L.

One can measure k commuting logical Pauli operators (Ok 0 | I (UH+ Ik) simultaneously. The GSF
will then be transformed into

U+1, U]| 0 0x
0 00,  (UHY' |.
0, 0| Ik (UN'"+1I (27)

(Meanwhile, we can perform the Pauli measurements (Ik 0 | Ok Ok) to reverse the process (from
equation (27) to equation (26))).
Now, adding the third row of equation (27) to the second row, one can obtain an equivalent GSF

U+ U| 0 0
0r 0 | Iy Iy .
0 O | Ik (U)'+1I (28)

Let L= (It L), where L; = (U")~! + I, is a lower triangular matrix with all the diagonal elements being
0. By lemma 2, the GSF can be equivalently transformed into

U+ U |0 O
0 O | Ik Ik ],
Ok Ok L2 L3 (29)

where (L, L3)(Ix Ix)' = It. One can measure a set of k Pauli operators (I I | 0x 0f) simultaneously and

transform the GSF into
U+L U0 O

0r O | I I | .
Iy Ir | O O (30)

Meanwhile, measuring (Ok 0 | L, L3) will transfer the GSF of equation (30) into equation (29). Note that
the measurement of (Ok 0 | Ly La) is equivalent to measuring (Ok 0 | I, (UHN '+ Ik).

Now, since the stabilizer generators in equation (30) are of the form (Ik I | O Ok) , one can add
(U + I U+ | 0 Ok) to the first row of equation (30), which equivalently reduces the GSF to:

0y I | 0p O
0r O | It I .
I I | O O (31)

10
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The final step is to eliminate the left-most I; in the second row of equation (31). This can be done by
measuring (Ok 0 | Ik Ok) and adding the third row to the second. This will then transform the GSF into
the second matrix in:

0y I | 0 O
0 O0p| 0 I |,
0, Or| I O (32)

Meanwhile, one can measure the set of k logical Pauli operators (Ik Iy | Ok Ok) to transform equation (32)
to equation (31).

To reverse the whole procedure above and start from equation (32), we initially set A, . .., Ax to |07)%*
and perform the following three sets of Pauli measurements:

L (I I | 0 0f),
2. (06 O | I (U)'+1), (33)
3. (Ik 0 ‘ 0x Ok).

The measurements require three 4k logical qubits CSS ancilla states, which are

k
1
‘QSI> = ﬁ 1_[1 (I"‘Xj,LXj+k,L) |OL>®2k ® |+L>®2k) (34)
i
k
1 u; ‘
9F) = lo* e I1 (1+27) 0 |, (35)
i
and
Qgs> — (|+L>®k\0L>®k) ®Q |+L>®2k- (36)

Here, u; is the jth row of (Ik (UH=t+ Ik). The binary representations of these states are:

I I, 0,0 O O

Q'=(0 0o oL L o],
0 0 In| 0 0 Oy (37)
031 0 0] 0 LI (UY'+1I
%=1 o [(Ut)_ly+lk Lo o 0 :
0 0 0|y 0 0 (38)

and
I, 0 0|0 O O

Q*=(0 o o0 L o ].
0 0 Inx| 0 0 0y (39)

o > is actually a k-fold tensor product of Bell states. ‘ng> is the key resource state in our procedure to

reduce the depth of -C- stage computation. All the ancillas here are CSS states. The net effect is the desired
-C- stage acting on Qy, . . ., Qg, and the auxiliary qubits Ay, . . ., Ay are reset to \—&—L)@k (up to logical Z
corrections). One can transform Ay, . . ., Ag back into |0;)®* or just keep them and start with |+;)®F for the
next stage. The procedure with Ay, ..., A initially in the |4+ )®F state for -C- stage is similar. As a
conclusion, one has the following theorem:

Theorem 3. For an [[n, 2k, d]] CSS code, any logical Clifford circuit on k logical qubits can be realized
fault-tolerantly by 22 rounds of single-shot Steane syndrome measurement.

3.5. FT preparation of qualified ancilla states
The ancilla states listed in the last subsection can be prepared fault-tolerantly by using Shor syndrome
measurement to measure all stabilizer generators and logical Pauli operators, which will be discussed in
section 4.1. In this subsection, we generalize the FT state preparation protocol in [29, 30] to show that all
the logical stabilizer ancilla states required in the previous subsection can be prepared fault-tolerantly by
distillation with almost constant overhead in terms of the number of qubits.

Since all logical ancilla states we considered are stabilizer states, once the eigenvalues of all their
stabilizers are known, one can remove the errors completely. The basic idea of distillation is shown in

11
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Figure4. FT ancilla state distillation circuit for )\IIEJL > Ancilla states are prepared and encoded via noisy quantum circuits Upyep,

and Up,,. Then they are fed to the distillation circuit and output the qualified ancilla state. The preparation of |QFF) is similar.

figure 4—many copies of the logical ancilla states are prepared in the physical level via the same Upyep and
then encoded by Upy to the same large block code. Both Uprep and Ugy are noisy in practice. They are sent
into a distillation circuit (which is also noisy) and certain blocks are measured bitwise. The eigenvalues of
all the stabilizers in group S and the logical Pauli operators of the output blocks can be estimated if the
distillation circuit is constructed based on the parity-check matrix of some classical error-correcting
code—the flipped eigenvalues caused by errors during state preparation and distillation can be treated as
classical noise and thus be decoded. Since correlated errors remaining on a block can cause its estimated
eigenvalues not compatible with each other, each output block needs further check for compatibility.
Postselection (rejecting the blocks whose estimated eigenvalues are incompatible) is then done to remove
the blocks likely containing correlated errors. Error correction is then applied based on the estimated
eigenvalues of stabilizers to the remaining blocks.

The distillation circuit can be synthesized according the parity-check matrix of an [n, k, d.] classical
code, which has the form H = (I,,__.| A.). Consider a group of n, ancilla blocks. Choose the first
re = n. — k¢ ancillas blocks to hold the classical parity checks, and do transversal CNOTs from the
remaining k. ancillas onto each of the parity-check ancillas according to the pattern of 1s in the rows of A.:
if [A.];j = 1, we apply a transversal CNOT from the (r, + j)th ancilla to the ith ancilla block. Then measure
all the qubits on each of the first r, ancilla blocks in the Z basis, which destroys the states of those blocks
and extracts information to estimate the eigenvalues of all Z types stabilizers and logical operators of the
remaining k. blocks. In the low error regime, after filtering out the blocks with incompatible estimated
eigenvalues of stabilizers, the output blocks will contain no correlated X errors after subsequent error
correction if d, is larger than the distance of the underlying CSS code [30]. Correlated Z errors can be
removed in a similar manner.

One can concatenate two stages of distillation (with the output blocks of the first stage randomly

shuffled) to remove both correlated X and Z errors. Figure 5 shows the overall circuit to distill

\I/gc> using
the 3, 1, 3] code for both stages. For a two-stage distillation protocol based on two classical [n,, k,, d, ]
and [n,,, k,, d.,] codes, the number of input and output blocks are n. n., and Y(p) - n,, n, respectively.
Here, Y(p) is the yield rate defined as

_ kako (1= Ri(p)(A = Ra(p))

Ne, N,

Y(p)

(40)

where R;(p) is the block rejection rate for postselection in the ith stage of distillation for a
gate/measurement error rate p. Asymptotically, the rejection rate for each round of distillation is O(p?),
because at least two failures are needed to cause a rejection of the output blocks. Thus, it is likely that R, (p)
and R,(p) negligible in the small p regime. On the other hand, good capacity-achieving classical codes exist

ke ke . . .
such that .2 can be independent of the code distance of the underlying CSS code to ensure d. > d, so
e

that the distillation circuits are still able to output qualified ancilla states. Hence, Y(p) can achieve almost
O(1) for sufficiently low p.

12
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Figure 5. Two-stage FT ancilla state distillation circuit for \\I/gc) The distillation circuit is based on the parity-check matrix of
the [1, 3, 3] code for both stages. Actually this circuit can distill any logical CSS states fault-tolerantly.

As shown in the last subsection, one needs several ancilla states, which can be grouped into three types:

Type I—These are CSS states including ‘\Ilgc>, sz> ‘QIL{Z>, Qo >, sz>, and ‘Qf3> They are
stabilized by logical operators which are tensor products of either X or Z. They can be prepared and distilled
by the circuit in figure 5: eigenvalues of the Z (X) stabilizer generators and Z (X) logical operators are
checked at the first (second) round to remove correlated X (Z) errors.

Type II—These are CSS states up to logical Hadamard gates applied to some logical qubits, including

‘\IIEIH> and ‘QLHI > In this case, we distill the upper block to remove correlated X errors and the lower block

to remove correlated Z errors in the first round and reverse the order in the second round, as shown in
figure 6.
Type III—This set of states are type I or II states up to logical Phase gates applied to some logical qubits,

including |®}* ) and [Q;? ). We will confine our attention to doubly even and self-dual CSS codes and set
the weight of logical X operators X; to odd numbers for all j.
For ‘\I/gp >, one could first prepare a qualified CSS state of the form

\PU; _ (Ik A] o 0)

L 0 0| A} L (41)
via the distillation circuit in figure 5. Then, Phase gates are applied bitwise to the lower ancilla block, which
will transform the state to

\IJU}/,/ _ (Ik APl O A;f)
L 0 0| A L (42)

This is because the bitwise Phase gates will preserve the stabilizer group while implementing logical Phase
gates on all the logical qubits. Then one can apply logical CNOT: (assisted by some CSS states) from the

upper block to the lower block on the remaining k — m logical qubits to obtain a qualified ‘\I/gp >

Similarly, for QEI >, one can prepare a qualified type II state of the form

I, 0 0 o]0 0 0 0
QP/I_ 0 A 0 0|0 L+A" 0 AY
L7110 o I o]0 0 0, 0
0 0 0 I]0 AP 0 O (43)

13
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Figure 6. Two-stage FT ancilla state distillation circuit for )\Ifi}“> based on the parity-check matrix of 3, 1, 3] code. This circuit
can be used to prepare any logical CSS states up to logical Hadamard gates fault-tolerantly.

by the circuit in figure 6. After that, bitwise Phase gates are applied to the upper block to transform ’Qil >

to
I, 0 0 0/0 0 o0 O
QPII/ [0 AF 0 o]0 L 0 AY
L 0 0 L 0[O0 0 0 O
0 0 0 L|0 A" 0 0o (44)

We can then measure the operators (0 0 | I, A}") (assisted by some CSS states) on the upper block and
obtain

0 0 0 O|L A 0 o

O = AP AP 0 0[O0 L 0 A}

L 0 0 I 0/0 0 0 O
0 0 0 |0 A;T 0 0 (45)

up to logical Pauli corrections.

3.6. Resource overhead
We estimate the average number of qubits and physical gates to implement a logical Clifford circuit in this
subsection.

For both Knill and Steane syndrome measurements, one only needs a constant rounds of circuit
teleportations or Pauli measurements. Asymptotically, the FT ancilla state distillation protocol dominates
the resource cost. We can recycle the ancilla qubits after they are used to further reduce the redundancy.
However, it will not change the asymptotic scaling of resource cost.

As discussed in the previous section, the overall number of qubits required for a two-stage state
distillation protocol based on the parity-check matrices of two classical codes is

N, = cnng ne,,

where ¢ is some constant. The numbers of gates for each Uprep and Uy in figure 4 are ok /log k) and
O(n?* /logn), respectively. Therefore, the total number of gates for noisy logical stabilizer state preparation at
the physical level is

cn’ne ng,

Nenc =
log n
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with depth O(n).
The number of gates for the two-round distillation circuit depends on A, which has O(k?) 1s. Hence,
the number of gates required for Uy for two stages is

_ 2
Naise = a1kZ nne, + cok2 n,

with depth O (rnax{kcl, ke, }) , where ¢y, ¢; are constants. Therefore, the overall depth of ancilla state
preparation is
O(max{n, k., k., }).

Note that there are Y(p)n, n., output ancilla blocks per round of distillation and hence the same
number of identical circuits can be implemented. On average, one needs

_ Che N, 1
N,= —12— ~0(n)
1 Y(P)nq ncz

qubits for a logical Clifford circuit. On the other hand, the physical gates required for raw state preparation

1S

_ cn’ng ng,

Nene = ~ O(nz/log n).

Y(p)ne ne, log n
If two good classical capacity-achieving codes are used(e.g., low-density parity-check (LDPC) codes [35])
with k;, /n,, = ©(1), i = 1, 2, and if we restrict ourselves to k., S n/log nand k., /n., = ©(1), the average
number of physical gates required for distillation will be

_ okl nne, + 6kl n

_ - 2
Yo, O(n*/log n).

dist —

To sum up, an arbitrary logical Clifford circuit requires Ngye = O(n*/ log n) physical gates on average. If
one considers the family of large CSS block codes (e.g. quantum LDPC codes) with k/n ~ ©(1), only O(k)
physical qubits and O(k* /log k) physical gates are needed on average to implement any logical Clifford
circuit, with off-line circuit depth O (max{k, ke s ke, }) for ancilla preparation. These results suggest that the
numbers of qubits and gates required for logical Clifford circuits have the same scaling as the physical level,
when the physical error rate is sufficiently low and good classical LDPC codes are used.

Remark 1. One can achieve very high efficiency of resource utilization with our scheme in the following
scenario: a small batch of finite Clifford circuits are repeatedly applied in an algorithm for a certain period
of time. This is because our distillation process has high throughput—it can produce a large number of
identical ancilla states (and thus generate the same number of identical Clifford circuits), and each state
preparation is efficient. Several questions are raised here naturally: is there any useful quantum algorithm
whose quantum circuits have such structure? In other words, is there an ansatz to adapt our FTQC
architecture to design a circuit for some particular algorithm? Is there a good computation architecture to
efficiently generate the large amount of identical ancilla states? These questions are all open and need
further investigation. One promising candidate here is the Hamiltonian simulation algorithm for quantum
simulations [36—41]. In that case, the target Hamiltonian changes slowly during the computation. In a
certain period of time, the Trotter decomposition can be regarded as identical. Another candidate is the
optimization type algorithms like quantum approximate optimization algorithm (QAOA) [42], which needs
to rapidly apply Hadamards. On the other hand, to generate large mount ancilla states, single instruction
multiple data (SIMD) style architecture [43, 44] that apply the same quantum gates on multiple qubits in
the same region simultaneously, maybe particularly useful.

3.7. Summary

In conclusion, we provided two methods implementing logical Clifford circuits fault-tolerantly via constant
number of steps of Knill or Steane syndrome measurement circuits in situ. Each method requires certain
types of logical stabilizer states as ancillas. We showed that all ancilla states listed can be prepared
fault-tolerantly through two-stage distillation. Our method transfers the complexity of Clifford circuits on
logical level to the complexity of state preparation Uprep, on physical level completely, which can be done
offline. Surprisingly, if one chooses large block codes with encoding rate k/n ~ ©(1), the overall numbers
of qubits and physical gates required for a Clifford circuit on [[n, k, d]] CSS circuit are around O(k) and
O(K /log k), respectively, which are independent of the distance of the underlying CSS code. This is the
same scaling as a perfect Clifford circuit acting on k physical qubits.
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Table 1. Resources required for a Clifford circuit on k logical qubits at the physical and logical levels for an [[n, k, d]] CSS code. The
physical operations counts all state preparation, gates, measurements including ancilla preparation and error correction. We assume
k/n ~ ©(1) for the large block codes and w is the maximum weight of the stabilizers. Sufficient parallelization are also considered to
minimize the depth.

#. Physical #. Physical #. Ancilla in situ Off-line
Method/average resource cost qubits operatation states depth depth
Standard circuit model O(k) ok /logk) N/A O(k) N/A
Circuit model FTQC (this paper) O(k) O(K* /log k) o(1) o(1) O(max{k, k., k., })
Circuit model FTQC (as in reference [25, 26]) O(max{k, wd}) O(kwd) O(kd) O(kd) O(kd)
Circuit model FTQC (as in references [19-21]) O(k) O(max{kwd, k*/log k}) O(K*/logk) O(K’ /logk) O(max{k,k,,k.,})
one-way QC (as in reference [45]) O(ks/log k) O(k3/log k) N/A o(1) N/A
FT one-way QC (as in references [46, 47]) O (Kd*/log k) O (K¥d®/log k) N/A o(1) N/A
Surface code (as in reference [17]) O(kd?) O(k3d3/10g k) N/A O(kzd/log k) N/A

4. Discussion

In this section, we compare the method proposed in this paper with some other related FT protocols in the
literature including one-way quantum computation. Then we estimate the numbers of physical qubits and
gates required for each scheme. The results are summarized in table 1. Since different FTQC schemes have
different working regions and performance, these results only provide a rough insight of resource scaling.
We also discuss the potential improvements on ancilla state preparation for further reduce the overhead.

4.1. Related FTQC protocols

In this paper, we implement FT logical circuit teleportation via the single-shot Knill syndrome
measurement protocol and FT ancilla distillation. It is worthwhile to compare this with the original
teleportation-based FTQC in references [25, 26]. Rather than Knill syndrome measurement, Shor syndrome
measurement [6] is used for error correction and ancilla state preparation. Our construction of logical
Clifford circuits through a constant number of steps of teleportation is also possible in that scenario, where
the ancilla state preparation again dominates the resource cost.

In references [25, 26], O(1) logical ancilla states of size O(n) is required. To prepare qualified logical
ancilla states, one applies Shor syndrome measurement to measure # stabilizers, including stabilizer
generators and logical operators. Each measurements needs one cat state. Fach cat state consists O(w)
qubits, which takes O(w) CNOTSs to prepare, where w is the maximum weight of the stabilizers. A
verification is also required after the raw preparation of each cat state, which also takes O(w) CNOTs and
rejects the states with probability around O(p). Transversal CNOTs from the verified cat state to the code
block are then applied to extract the eigenvalues of the stabilizers, which takes O(w) CNOTs. To establish
reliable eigenvalues for the stabilizers of an [[n, k, d]] code, O(d) rounds of Shor syndrome measurements
and a majority vote are required for each stabilizer. Thus the overall number of physical gates required for
state preparation is O(max{nwd, n* /logn}) with depth O(nd).

For large block codes with k/n ~ O(1), the number of physical gates required for ancilla state
preparation is O(max{kwd, k* /logk}) with depth O(kd). Meanwhile, O(1) logical ancilla states are required,
which needs O(k) physical ancilla qubits altogether. It also takes O(kd) rounds of serial Shor syndrome
measurements (since the stabilizers are in general highly overlapped) to do error correction on the data
block, each round consumes a verified cat states. Hence, the depth for a logical Clifford circuit is O(kd) and
the same number of verified cat states are needed. Assuming the qubits supporting cat states are recycled
after they are measured, one needs O(wd) ancilla qubits for cat states throughout the process after
parallelization. The number of all ancilla qubits is thus O(max{k, wd}). This way of implementing logical
Clifford circuits needs more physical gates when w is large and takes a much longer computation time for
large k and d.

Our scheme also greatly simplifies the block-code based FTQC using Steane syndrome measurement in
references [19—-21]. There, logical Clifford gates are implemented one by one, and thus O(k* /log k) different
ancilla states of size 211 qubits are required and O(k? /log k) rounds of Steane syndrome measurements are
needed. With the same ancilla distillation protocol and ancilla recycling, one needs k* /(log k)? gates and
O(k) qubits for every single circuit on average for finite rate codes with k/n ~ O(1).

4.2. One-way quantum computing

For one-way QC, one initially prepares a cluster state consisting of a large number of qubits. Quantum
information is then loaded onto the cluster and processed through single-qubit measurements on the
cluster state substrate. It can be shown that all quantum circuits can be mapped to the form of one-way QC.
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In general, one-qubit measurements are performed in a certain temporal order and in a spatial pattern of
adaptive measurement bases based on previous measurement outcomes. Interestingly, for those qubits
supporting Clifford circuits, no measurement bases have to be adjusted (i.e., those of which the operator X,
Y or Z is measured). Thus, for any given quantum circuit, all of its Clifford gates can be realized
simultaneously in the first round of single-qubit measurements, regardless of their space-time locations in
the circuit [45], if a sufficiently large cluster state is provided to support the whole computation circuit.
Specifically, for a cluster state in 2D, it requires O(k’ /log k) supporting cluster qubits and single-qubit
measurements for an instantaneous Clifford circuit without error correction.

However, it is difficult to control errors if a cluster state large enough to support the entire quantum
computation is used, since the computation might reach certain qubits only after a long time, so that these
qubits would already suffer significant errors. This scheme is not FT. By contrast, if the computation is split,
then the size of sub-circuits may be adjusted so that each of them can be performed within some constant
time. The measured qubits are then recycled to entangle with the unmeasured qubits to form a new cluster
for the next computation step. In this way, each cluster qubit is exposed to constant decoherence time
before being measured and the error rate is bounded. In this case, FT one-way QC is possible [45]. Note
that it is still possible to perform a Clifford circuit during the computation in one time step, if O(k’ /log k)
qubits are provided at the same time, but it is no longer possible to finish all the Clifford gates in the
computation in a single time step.

To complete the discussion, here we consider FT one-way QC in 3D lattice as in references [46, 47]. The
Clifford circuits are performed through single-qubit measurements in the Z basis to create topologically
entangled defects in the 3D lattice. The remaining qubits are measured in the X basis to provide syndrome
information for 3D topological error correction [48]. For k encoded qubits in [47] with distance d
boundary surface codes, the number of cluster qubits needed in a single 2D slice is O(kd”) and it requires
O(K* /log k) slices for an arbitrary Clifford circuit in the worst case. Thus, it takes the volume of a cluster
state comprising O(k’d’ /log k) qubits and the same number of single-qubit measurements. As a
comparison, the variants of FT one-way QC in 2D based on the surface code [17] need kd” physical qubits
for encoding and each logical CNOT gate takes O(d) time steps.

In conclusion, even though one-way QC can in principle implement the Clifford gates of a circuit in a
single time step, it requires many more physical qubits, whether it is implemented in a FT manner or not. It
is worth noting that the FT one-way QC and its 2D variants require only local operation, which is a great
practical advantage, since the codes considered in our scheme are highly non-local in general. However, our
results suggest the potential for huge resource reduction for FTQC if non-local operations are
allowed.

4.3. More efficient ancilla state preparation

The distillation protocol mentioned in this paper is basically the same as the one in reference [30]. The
main difference is that the ancilla states distilled here can generate a whole circuit rather than a single gate
on the data code block. These will cause an extra complexity on Uy stage in figure 4 up to O(k*/log k)
gates with an extra depth O(k). Meanwhile, the overall number of gates and depth for the whole distillation
protocol (Upreps Uene and Ugiqe combined) also scale as ok /log k) and O(k). Note that the extra depth of
ancilla preparation is negligible if they are produced in a pipeline manner. Thus, in the worst case, it will
cause a constant decrease of distillation quality. But in practice, Upyep, may only take a small portion of the
whole protocol. On the other hand, since we generate a circuit rather than a single gate at one time, it will
reduce the quality requirement of the output ancilla states to support FTQC, and hence the error rate
requirement for each operation as well. The overall effect of extra preparation complexity on distillation
needs further exploration.

The two-stage distillation protocol gives O(1) yield rate on average. However, the number of input
ancilla blocks required simultaneously is O(#,, n, ), which can be huge in practice. Consequently, the
distillation circuit is still relatively complicated and error can occur in many positions. As a result, the
typical acceptable error rate (or threshold for distillation) is less than 10™* [30], which is challenging with
current technologies like superconducting qubits [49]. Meanwhile, in many cases, one does not need as
many as O(k,, k,) identical ancilla states to generate that large number of the same Clifford
circuits.

There are two ways to further simplify the distillation process and reduce overall number of qubits: in
stead of two-stage distillation, one can filter out one type of correlated errors at the beginning by
single-round stabilizer measurements with Steane Latin rectangle method [34], which takes advantage of
the fact that only a small set of correlated errors needs to be removed according to the degeneracy of
quantum code. Then we remove the other type of correlated errors through distillation. The depth of such
preparation is also O(max{k, k.}). Here, only O(n,) input code blocks are required simultaneously and it
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generates O(k.) identical output states. It not only reduces the complexity of preparation circuit but also
gives more flexibility. The second method is to take advantage of the symmetry of the underlying CSS
codes: the qubits of different code blocks are permuted in different ways after raw preparation (though
finding such permutation may be challenging), so that the correlation of errors between code blocks can be
suppressed [50]. Consequently, it may require less input code blocks for distillation. In principle, these two
methods can also be combined together and their effect needs further investigation.
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Appendix A. Proof of lemma 2

Proof. Let l]{ denote the jth row vector of L’ and ¢, be the pth column vector of (I, I,)*. Equation (24) is
equivalent to
l;Cp = 5] 5 1 g]yp g n, (Al)

where 9 is the Kroneker delta function.
Let J; denote the jth row vector of L. Obviously, /; = (1,0, ...,0), satisfying lyc, = d1,. Let I} = ;.
It is easy to see that lic, = 0 for p > j, since L, is a lower triangular matrix. With all the diagonal
elements of L; being 0, one has
licg = 1. (A2)

Define the set #; = {p | lic, = 1,p < j}.Forj=2,...,n,let

=1+ 1, (A3)
peS fi
We also define a matrix L'0) that contains the rows [}, . . ., l]'-:
L
'O —

Since L; is lower triangular, and the summation of I, in equation (A3) only counts the terms with p < j, L'0)

o — (Lg) Lé”) ,

can be written as

where Lg " and ng) are also lower triangular matrices. Eventually, we have L, = L\ and L; = L{".

It remains to prove equation (A1). We prove this by induction. For j = 2, if L¢; = 1, one has
I, =L + I. Thus lye; = 0 and e, = 1, since lic; = 1 and l;c; = 0. Also, Iy, = 0 for p > 2 since L and
Lg(z) are lower triangular matrices. So l,¢, = &5, holds for 1 < p < n.

Now assume l/1 ¢ = O1ps - - o lJ/»cp = 0jp holds. Then

! 4
Liicqg = liyicg + Z lcq-
PEITjt

Consider g < j+ 1 first. If [ 1¢; = 1, then g€ &}, and

S heg= ) Gy =1.

PEIin PEIin

Then ]/»ch =0.1Ifliy1c; =0, theng ¢ ;. and zpeﬂﬁll;cq = 0. Again, l]{ﬂcq =0.Wheng=j+1,
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l]/» 11641 = Lip1cip1 = 1 by equation (A2). For g > j+ 1, since LgH'l) and ng+1) are both lower triangular,

]/»ch = 0. Thus, l]{cp = 0jp holds for 1 < j,p < n.
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