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Abstract
Fault-tolerant quantum computation (FTQC) schemes using large block codes that encode k > 1
qubits in n physical qubits can potentially reduce the resource overhead to a great extent because of
their high encoding rate. However, the fault-tolerant (FT) logical operations for the encoded
qubits are difficult to find and implement, which usually takes not only a very large resource
overhead but also long in situ computation time. In this paper, we focus on
Calderbank–Shor–Steane [[n, k, d]] (CSS) codes and their logical FT Clifford circuits. We show
that the depth of an arbitrary logical Clifford circuit can be implemented fault-tolerantly in O(1)
steps in situ via either Knill or Steane syndrome measurement circuit, with the qualified ancilla
states efficiently prepared. Particularly, for those codes satisfying k/n ∼ Θ(1), the resource scaling
for Clifford circuits implementation on the logical level can be the same as on the physical level up
to a constant, which is independent of code distance d. With a suitable pipeline to produce ancilla
states, our scheme requires only a modest resource cost in physical qubits, physical gates, and
computation time for very large scale FTQC.

1. Introduction

Quantum error-correcting codes (QECCs) [1–5] and the theory of fault-tolerant quantum computation
(FTQC) [5–12] have shown that large-scale quantum computation is possible if the noise is not strongly
correlated between qubits and its rate is below certain threshold [7, 11–16].

Large QECCs with high encoding rates typically encode many logical qubits with high distance. FTQC
architectures based on these codes may potentially outperform smaller codes and topological codes, like
surface codes [9, 17] and color codes [18], in terms of the overall resource required and the error correction
ability [19–23]. However, for an [[n, k, d]] code with k, d � 1, it may be extremely difficult (or even
impossible) to find all required fault-tolerant (FT) logical gates. For Calderbank–Shor–Steane (CSS) codes
[2, 3], one way to resolve this challenge is to implement logical circuits indirectly through Knill or Steane
syndrome extraction circuits [11, 24] with additional blocks of encoded ancilla qubits prepared in specific
states [21, 24–26]. Unfortunately, the distillation processes for each encoded ancilla state are complicated,
and different ancilla states are usually required for each logical gate. As an example, a Clifford circuit on k
qubits requires O(k2/log k) Clifford gates [27, 28] with circuit depth O(k); if an [[n, k, d]] CSS code is used,
it requires O(k2/log k) logical Clifford gates [28], and in general, O(k2/log k) different ancilla states need to
be prepared, and the same number of Knill/Steane syndrome extraction steps are required.
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A natural question arises: can one implement logical circuits on those multi-qubit large block codes
(k � 1) in a quicker and more efficient way? In this paper, we show that for Clifford circuits, the answer is
positive for CSS codes: one can implement an arbitrary logical Clifford circuit fault-tolerantly using O(1)
qualified encoded ancilla states and a constant number of Knill/Steane syndrome measurement steps. Thus
the depth of a logical Clifford circuit can be reduced to O(1) in situ. Furthermore, we show that with the
distillation protocol proposed in [29, 30], these ancilla states can be distilled off-line in ancilla factories with
yield rate close to O(1) asymptotically, if the physical error rate is sufficiently low. Especially, for those
families of large block codes with k/n ∼ Θ(1), the number of physical qubits and physical gates required for
an arbitrary logical Clifford circuit can scale as O(k) and O(k2/log k) respectively on average. These results
suggest that the resource cost of Clifford circuits on the logical level can scale the same as on the physical
level, if the distillation circuits and large block quantum codes are carefully chosen. With a proper pipeline
structure of ancilla factories to work in parallel, we are also convinced that the scaling of the required
resources including the overall number of qubits, physical gates and the computation time, can be very
modest for large scale FTQC.

The structure of the paper is as follows. We review preliminaries and set up notation in section 2. In
section 3, we propose our scheme to implement FT logical Clifford circuits via a constant number of Knill
or Steane syndrome measurement. The resource overhead for the scheme is carefully analyzed. In section 4,
we compare our scheme to some other closely-related FTQC schemes according to the resource overhead
and real-time computational circuit depth.

2. Preliminaries and notation

2.1. Stabilizer formalism and CSS codes
Let Pn = P⊗n

1 denote the n-fold Pauli group, where

P1 = {±I,±iI,±X,±iX,±Y ,±iY ,±Z,±iZ},

and I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, and Y = iXZ are the Pauli matrices.

Let Xj, Yj, and Zj act as single-qubit Pauli matrices on the jth qubit and trivially elsewhere. We also
introduce the notation Xa, for a = a1 · · · an ∈ Zn

2, to denote the operator ⊗n
j=1Xaj and let

supp(a) = {j : aj = 1}. For a, b ∈ Zn
2 , define Iab = supp(a)

⋂
supp(b) and let τab = |Iab| be the size of Iab.

An n-fold Pauli operator can be expressed as

il · ⊗n
j=1Xaj Zbj = ilXaZb, a, b ∈ Z

n
2 , l ∈ {0, 1, 2, 3}. (1)

Then (a|b) is called the binary representation of the Pauli operator ilXaZb up to an overall phase il. In
particular, ±iτab XaZb, which is Hermitian, has eigenvalues ±1. From now on we use the binary
representation and neglect the overall phase for simplicity when there is no ambiguity. We define the weight
of E, wt(E), as the number of terms in the tensor product which are not equal to the identity.

Suppose S is an abelian subgroup of Pn with a set of n − k independent and commuting generators
{S1 = iτa1b1 Xa1 Zb1 , . . . , Sn−k = iτan−kbn−k Xan−k Zbn−k}, and S does not include −I⊗n. An [[n, k]] quantum
stabilizer code C(S) is defined as the 2k-dimensional subspace of the n-qubit state space (C2n

) fixed by S,
which is the joint +1 eigenspace of S1, . . . , Sn−k. Then for a codeword |ψ〉 ∈ C(S),

S|ψ〉 = |ψ〉

for all S ∈ S. We also define N(S) to be the normalizer of the stabilizer group. Thus any non-trivial logical
Pauli operator on codewords belongs to N(S)\S and let Xj,L, Yj,L and Zj,L be logical Pauli operators acting
on the jth logical qubit. The distance d of the code is defined as

d = min
L∈N(S)\S

wt(L).

Suppose S′ ∈ Pn is another abelian subgroup containing S with k = 0, then C(S′) has only one state |ψ〉
up to a global phase. This state is called a stabilizer codeword of S, whose binary representation is

2
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If a Pauli error E corrupts |ψ〉, some eigenvalues of S1, . . . , Sn−k may be flipped, if they are measured on
E|ψ〉. Consequently, we gain information about the error by measuring the stabilizer generators
S1, . . . , Sn−k, and the corresponding measurement outcomes (in bits) are called the error syndrome of E. A
quantum decoder has to choose a good recovery operation based on the measured error syndromes.

CSS codes are an important class of stabilizer codes for FTQC. Their generators are tensor products of
the identity and either X or Z operators (but not both) [2, 3]. More formally, consider two classical codes,
CZ and CX with parameters [n, kZ, dZ] and [n, kX, dX], respectively, such that C⊥

X ⊂ CZ . The corresponding
parity-check matrices are HZ ((n − kZ) × n) and HX ((n − kX) × n) with full rank. One can form an
[[n, k = kX + kZ − n, d]] CSS code, where d � min{dZ, dX}. In general, a logical basis state can be
represented as:

|u〉L =
∑
x∈C⊥X

|x + uD〉,

where u ∈ Zk
2 and D is a k × n binary matrix, whose rows are the coset leaders of CZ/C⊥

X . The stabilizer
generators of a CSS code in binary representation are:

where HX(HZ) is made of Z(X) type Pauli operators. For the special case that CX = CZ , we call such a code
self-dual CSS code.

2.2. Clifford circuits
Clifford circuits are composed solely of Hadamard (H), Phase (P), and controlled-NOT (CNOT) gates,
defined as

H =
1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
, CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

The n-qubit Clifford circuits form a finite group, which, up to overall phases, is isomorphic to the binary
symplectic matrix group defined in [28]:

Definition 1 (Symplectic group). The group of 2n × 2n symplectic matrices over Z2 is defined in:

Sp(2n,Z2) ≡ {M ∈ GL(2n,Z2) : MJnMt = Jn}

under matrix multiplication. Here Jn =

In general, M ∈ Sp(2n,Z2) has the form

where Q, R, S and T are n × n square matrices satisfying the following conditions:

QRt = RQt , STt = TSt , QtT + RtS = In.

In other words, the rows of (Q|R) are symplectic partners of the rows of (S|T). Thus, an n-qubit Clifford
circuit can be represented by a 2n × 2n binary matrix with respect to the basis of the binary representation
of Pauli operators in (1). Then UXaZbU† is represented by (a, b)MU, where MU is the binary symplectic
matrix corresponding to U. For example, the idle circuit (no quantum gates) is represented by I2n, the
2n × 2n identity matrix. The representation of consecutive Clifford circuits M1, . . . , Mj is their binary
matrix product

M = M1 · · ·Mj.

We emphasize here that the symplectic matrix M acts on the binary representation of a Pauli operator from
the right. The binary representations of Pauli operators and Clifford unitaries omit the overall phases of full
operators. If needed, such overall phases can always be compensated by a single layer of gates consisting
solely of Z and X gates [31] on some subsets of qubits [28, 32].

Let C(j, l) denote a CNOT gate with control qubit j and target qubit l. The actions of appending a
Hadamard, Phase, or CNOT gate to a Clifford circuit M can be described as follows:

3
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Figure 1. The quantum circuit for Knill syndrome measurement and gate teleportation for an [[n, k, d]] stabilizer code. For a
logical Clifford circuit UL , if |ΨUL

L 〉 is prepared before logical Bell measurement, UL|ψ〉 can be obtained up to some Pauli
correction of Xa

LZb
L on the output block, depending on the logical Bell measurement results.

(a) A Hadamard gate on qubit j exchanges columns j and n + j of M.

(b) A Phase gate on qubit j adds column j to column n + j (mod 2) of M.

(c) C(j, l) adds column j to column l (mod 2) of M and adds column n + l to column n + j (mod 2) of M.

3. Constant depth FT Clifford circuit

3.1. FT syndrome measurement
The goal of an error correction protocol in FTQC is to find the most likely errors during computation,
based on the extracted syndromes. However, the circuits to perform a syndrome measurement may
introduce additional errors to the system or get wrong syndromes with high probability. Therefore, the
error correction may fail, if not treated properly.

In this section, we briefly review two major protocols used in this paper—Knill and Steane syndrome
measurements [11, 24]. Each scheme has its own advantages in different computation scenarios [33], such
as a better threshold or a better ability to handle particular types of noise, and both can be used to construct
arbitrary FT logical Clifford circuits.

3.1.1. Knill syndrome measurement
For an arbitrary [[n, k, d]] stabilizer code, one can use the logical teleportation circuit in figure 1 to extract
the error syndrome [24], as proposed by Knill [11]. Here, two blocks of ancilla qubits are maximally

entangled in a logical Bell state |Φ+
L 〉⊗k = 1√

2

(
|0L〉 ⊗ |0L〉+ |1L〉 ⊗ |1L〉

)⊗k
. The upper block of ancilla

qubits are encoded to the same code protecting the data state, while the lower ones can be protected by an
arbitrary stabilizer code encoding k logical qubits. In this paper, we restrict ourselves to the same [[n, k, d]]
CSS code for all blocks.

The logical Bell measurement in the dashed box teleports the encoded state to the lower ancilla block up
to a logical Pauli correction (depending on the Bell measurement outcomes), and simultaneously obtains
the error syndrome of on the input data blocks. Both logical Bell measurement outcomes and syndromes
are calculated from the bitwise measurement results. The circuit is intrinsically FT because it consists solely
of transversal CNOT gates and bitwise measurements.

One particular virtue of the teleportation syndrome measurement circuit is that it can also provide a
straightforward way to produce any logical circuit UL (on the teleported state) of the Clifford hierarchy Ck

(up to a Ck−1 correction depending on the logical measurement outcomes) via the very same syndrome
measurement circuit [25], if one can construct the ancilla state

∣∣ΨUL
L

〉
= (I ⊗ UL)

∣∣Φ+
L

〉⊗k
. (2)

This construction is very useful when implementing logical circuits for large block codes. In this paper, we
focus on U ∈ C2, the Clifford circuit. In this case, all the |ΨUL

L 〉 are stabilizer states that can be prepared by
Clifford circuits.

3.1.2. Steane syndrome measurement
Now we consider a CSS code [[n, k, d]] for convenience in later discussion. For CSS codes, Steane suggested
a syndrome measurement circuit as shown in figure 2 [24]. Here, two logical ancilla blocks of the same code
are used that protects the data state. Two transversal CNOT gates propagate Z and X errors from the data
block to ancilla blocks and corresponding error syndromes are calculated from the bitwise measurement
outcomes. If the two ancilla blocks are prepared in a tensor product state |0L〉⊗k ⊗ |+L〉⊗k, the circuit
extracts the error syndromes without disturbing the encoded quantum information. Like the Knill
syndrome measurement, the circuit is intrinsically FT.

4
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Figure 2. The quantum circuit for Steane syndrome measurement using an [[n, k, d]] CSS code. One can simultaneously
measure a Hermitian Pauli operator iτab Xa

LZb
L , when the two ancilla blocks are prepared in the state

|Ωab
L 〉 = 1√

2

(
I + iτab Xa

L ⊗ Zb
L

)
|0L〉⊗k ⊗ |+L〉⊗k.

Moreover, one can simultaneously measure an arbitrary Hermitian logical Pauli operator of the form
iτab Xa

LZb
L while extracting syndromes, if |Ωab

L 〉 is prepared in

|Ωab
L 〉 = 1√

2

(
I + iτab Xa

L ⊗ Zb
L

)
|0L〉⊗k ⊗ |+L〉⊗k. (3)

It is easy to prove the functionality of the circuit: start with the joint state |ψ〉|Ωab
L 〉, after two transversal

CNOTs, the state becomes

1√
2

(
|ψ〉|0L〉⊗k|+L〉⊗k + iτab Xa

LZb
L |ψ〉Xa

L|0L〉⊗kZb
L |+L〉⊗k

)
.

Let the measurement outcomes of the jth logical qubit in the upper and lower blocks be vx
j and vz

j ∈ {0, 1},
respectively. Then the joint output state is:

1√
2
|ψ〉⊗k

j=1

⎛
⎝ I + (−1)v

x
j XL

2
|0L〉

⎞
⎠⊗k

j=1

⎛
⎝ I + (−1)v

z
j ZL

2
|+L〉

⎞
⎠+

1√
2

iτab Xa
LZb

L |ψ〉

⊗k
j=1

⎛
⎝ I + (−1)v

x
j XL

2
X

aj
L |0L〉

⎞
⎠⊗k

j=1

⎛
⎝ I + (−1)v

z
j ZL

2
Z

bj
L |+L〉

⎞
⎠

=
1√
2

⎛
⎝I +

∏
l∈supp(a)

(−1)v
x
l

∏
l∈supp(b)

(−1)v
z
l iτab Xa

LZb
L

⎞
⎠ |ψ〉

⊗k
j=1

⎛
⎝ I + (−1)v

x
j XL

2
|0L〉

⎞
⎠⊗k

j=1

⎛
⎝ I + (−1)v

z
j ZL

2
|+L〉

⎞
⎠ , (4)

which is the state after the measurement of iτab Xa
LZb

L on |ψ〉 with measurement outcome

∏
l∈supp(a)

(−1)v
x
l

∏
l∈supp(b)

(−1)v
z
l .

This circuit also allows measuring several commuting logical Pauli operator simultaneously. Here, we
restrict ourselves to a commuting set of m � k logical Pauli operators and suppose that the set of
commuting Pauli operators to be measured is {Xe1

L Zf1
L , . . . , Xem

L Zfm
L }. These operators can be simultaneously

measured by replacing |Ωab
L 〉 with:

|ΩEF
L 〉 = 1√

2m

m∏
j=1

(
I + i

τej fj X
ej
L ⊗ Z

fj
L

)
|0L〉⊗k ⊗ |+L〉⊗k. (5)

Note that |ΩEF
L 〉 is also a stabilizer state. Like logical circuit teleportation, one can also effectively construct

any logical Clifford circuit via such Pauli measurements [8, 21].

3.2. Single-shot FT logical circuit teleportation and Pauli measurement
Ideally, if the ancilla qubits are clean and measurements are perfect, one can extract the error syndrome of
the data block with logical circuit teleportation or Pauli measurements in a single round of Knill/Steane
syndrome measurement.

5
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Figure 3. The effective error model of the Knill (part (a)) and Steane (part(b)) syndrome measurement circuits. While Ei and Ef

are in general correlated in time, they are spatially uncorrelated, if the ancilla states are qualified.

In practice, ancillas may contain different types of errors after preparation, while the measurement
outcomes can also be noisy. One needs to make sure that high weight errors do not propagate from ancilla
qubits to data blocks. At the same time, reliable values of syndromes and logical operators must be
established from measurement outcomes. For error correction, one can repeat the syndrome measurements
several rounds to establish reliable syndromes of the data state via majority vote [6, 22]. However, for the
purpose of logical circuit teleportation or Pauli measurements, one needs reliable values of logical operators
right after the first round of measurement for subsequent correction. Otherwise, it will cause a logical error
on the data state. Thus, a single-shot FT logical circuit teleportation or Pauli measurement protocol is
required.

Actually, we will see this is possible if the blocks of ancilla qubits for Knill/Steane syndrome
measurements do not contain any correlated errors. Here, we define an uncorrelated error as follow [34]:

Definition 2. For an [[n, k, d]] code correcting any Pauli error on t = � d−1
2 
 qubits, we say that an error E

on the code block is spatially uncorrelated if the probability of E is

Pr(E) ∼ O(ps) :

⎧⎨
⎩

for some s � wt(E), if wt(E) � t;

for some s � t, if wt(E) > t,

where the coefficients behind O are not unreasonably large.

Otherwise, E is said to be correlated. For those uncorrelated errors satisfying this definition, they should
have a distribution similar to the binomial distribution. Thus, the errors on the code block can be regarded
as independent. We say that an ancilla is qualified if it is free of correlated errors.

It is obvious that no correlated error will be propagated back to the data blocks if ancilla blocks are
qualified. Even more, we have:

Lemma 1 (Effective error model). During imperfect logical state teleporation via Knill syndrome extraction,
or logical Pauli measurements via Steane syndrome measurement, if errors in the same block (data or ancilla)
are spatially uncorrelated according to definition 2, then the errors are equivalent to spatially uncorrelated
effective errors acting only on the data code block before and after the process, as shown in figure 3.

It has already been shown in reference [21] that this statement is true for Steane syndrome
measurement. The basic idea is that failures occurring in any location of the circuit can be commuted
forward or backward to the data code block, allowing the ancillas to be treated as clean and the
measurements as perfect. Thus we can leave Ef to the next round of syndrome measurements and analyze as
if only Ei (and Ef from the previous round) have occurred, followed by perfect syndrome measurements.
The same argument is also applicable to Knill syndrome measurements and hence one has:

Theorem 1. The Knill/Steane syndrome measurement circuit can implement FT logical circuit
teleportation/Pauli measurements in a single round.

6
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After a single-shot Knill/Steane syndrome measurement and correction, the final data state is:

|ψf 〉 ∝ Ef · R · OL · LC · Ecomb|ψi〉. (6)

Here, Ecomb includes both Ei in current stage and Ef from previous stage; OL is the logical operation (either a
teleported logical circuit, or logical Pauli measurements); LC is the Pauli correction based on the outcomes
of logical measurements; R is the recovery operation based on the measured syndromes, OL

and LC.

3.3. Constant depth Clifford circuit via FT circuit teleportation
For a CSS code with k logical data qubits, it requires O(k2/log k) logical Clifford gates [27, 28] for a logical
Clifford circuit. If we implement these gates one by one in a FT manner, it will require O(k2/log k) qualified
ancilla states using O(k2/log k) times of the Knill/Steane single-shot syndrome measurements circuit. In this
and next subsections, we show that O(1) qualified ancilla states and O(1) steps of the Knill/Steane syndrome
measurements are sufficient for arbitrary logical Clifford circuits, up to a permutation of qubits.

It is well known that any Clifford circuit has an equivalent circuit comprising 11 stages, each using only
one type of gate: -H-C-P-C-P-C-H-P-C-P-C- [28]. That can be further reduced to a nine-stage
-C-P-C-P-H-P-C-P-C- [32]. More specifically, one has:

Theorem 2. (Bruhat decomposition [32]). Any symplectic matrix M of dimension 2k × 2k can be decomposed
as

M = M(1)
C M(1)

P M(2)
C M(2)

P M(1)
H · M(3)

P

(
πM(3)

C π−1
)

M(4)
P

(
πM(4)

C π−1
)
π. (7)

Here, M(j)
C are -C- stage matrices containing only CNOT gates C(q, r) such that q < r; M(j)

P and M(j)
H are -P- and

-H- stage matrices; π is a permutation matrix.

In a -P- stage, since P4 = I2, effectively there are three types of single-qubit gates: P, P2 = Z and
P3 = P† = PZ. Note that we will postpone all the Z gates to the final stage, and thus the -P- layer consists of
at most k individual Phase gates. The symplectic matrix of a -P- stage on a set of m qubits is in general of
the form:

(8)

where Λm
k is an k × k diagonal matrix with m 1s.

Similar to the -P- stage, since H2 = I2, an -H- stage contains at most k individual H gates. The
symplectic matrix of an -H- stage on an arbitrary set of m qubits can be written as

(9)

The corresponding symplectic matrix of a -C- stage can be written as:

(10)

where U is an invertible k × k upper triangular matrix.
Clearly, if one can implement each stage in O(1) steps fault-tolerantly, an arbitrary logical Clifford

circuit can be implemented in O(1) steps. For Knill syndrome measurements, it is straightforward—one
can prepare the ancilla for the circuit in each stage directly as:

∣∣∣ΨUP
L

〉
= I ⊗ UP(|0L〉 ⊗ |0L〉+ |1L〉 ⊗ |1L〉)⊗k,

∣∣∣ΨUH
L

〉
= I ⊗ UH(|0L〉 ⊗ |0L〉+ |1L〉 × |1L〉)⊗k,

∣∣∣ΨUC
L

〉
= I ⊗ UC(|0L〉 ⊗ |0L〉+ |1L〉 ⊗ |1L〉)⊗k

(11)

where UP, UH and UC are the corresponding unitaries for the -P-, -H- and -C- stages, respectively.
Obviously, these are all CSS states up to local Clifford operations, whose binary representations at the
logical level are:

(12)

7
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(13)

assuming -P- or -H- is applied to a set of m qubits, and

(14)

If these states are all qualified for all the stages, by theorems 1 and 2, one can implement an arbitrary logical
Clifford circuit in 9 rounds of single-shot Knill syndrome measurements. Later, we will show that all the
three types of ancilla states can be prepared fault-tolerantly and efficiently.

3.4. Constant depth Clifford circuit FT Pauli measurement
Unlike Knill syndrome measurement, it is not so obvious how to implement the logical Clifford group using
Steane syndrome measurement. In this section, we provide a constructive proof showing that by
introducing k extra auxiliary logical qubits (labeled as A1, . . . , Ak), each stage of a logical Clifford circuit on
k data logical qubits (Q1, . . . , Qk) can be implemented via a constant number of Pauli operator
measurements, up to a permutation of qubits. We choose an [[n, 2k, d]] CSS code and put the logical qubits
in the following order: {A1, . . . , Ak, Q1, . . . , Qk}.

3.4.1. -P- stage

Consider a pair of qubits {Aj, Qj} with Aj in the |0L〉 state. Measure operators XAj ,LYQj,L and then ZQj,L. After
swapping Aj and Qj, the overall effect is a Phase gate on Qj up to a Pauli correction depending on the
measurement outcomes. The swap does not need to be done physically. Instead, one can just keep a record
of it in software.

For m Phase gates on a logical qubit set M , since {XAj,LYQj ,L| j ∈ M} and {ZQj ,L| j ∈ M} are
commuting operator sets, it requires only two steps of Pauli measurements by preparing two ancilla states
with 4k logical qubits:

∣∣∣ΩP1
L

〉
=

1√
2m

∏
j∈M

(
I + i

(
Xj,LXj+k,L

)
⊗ Zj+k,L

)
|0L〉⊗2k ⊗ |+L〉⊗2k (15)

and ∣∣∣ΩP2
L

〉
=

1√
2m

|0L〉⊗2k ⊗

⎛
⎝∏

j∈M

(
I + Zj,L

)
|+L〉⊗2k

⎞
⎠ , (16)

whose binary representations at the logical level are

(17)

and

(18)

respectively. Note that |ΩP2
L 〉 is a CSS state. |ΩP1

L 〉 is the joint +1 eigenstate of

{Zj,LZj+k,L ⊗ I2n, Zj+k,L ⊗ Xj+k,L, Xj,LYj+k,L ⊗ Zj+k,L | j ∈ M},

which is also a CSS state up to Phase gates on logical qubits {j + k| j ∈ M} of the upper block, and
Hadamard gates on the logical qubits {j + k| j ∈ M} of the lower block.

3.4.2. -H- stage
Like the -P- stage, we consider only a single H on a data qubit. For a pair of qubits {Aj, Qj} with Aj in the
|0L〉 state, measure XAj,LZQj ,L and then XQj,L. After swapping Aj and Qj, the overall effect is a Hadamard gate
on Qj with Aj in the |+L〉 up to a Pauli correction depending on the measurement outcome.

8
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For m Hadamard gates on a logical qubits set M , since {XAj,LZQj,L | j ∈ M} and {XQj ,L | j ∈ M} are
both commuting sets, we need just two steps of Pauli measurements and an ancilla state with 4k logical
qubits for an -H- stage. If Hadamard gates are applied to a set M of qubits, the required ancilla states are

∣∣∣ΩH1
L

〉
=

1√
2m

∏
j∈M

(
I + Xj,L ⊗ Zj+k,L

)
|0L〉⊗2k ⊗ |+L〉⊗2k, (19)

and ∣∣∣ΩH2
L

〉
=

1√
2m

⎛
⎝∏

j∈M

(
I + Xj,L

)
|0L〉⊗2k

⎞
⎠⊗ |+L〉⊗2k, (20)

whose binary representations at the logical level are:

(21)

and

(22)

respectively. Note that
∣∣∣ΩH2

L

〉
is a CSS state.

∣∣∣ΩH1
L

〉
is the joint +1 eigenstate of

{Xj,L ⊗ Zj+k,L, Zj,L ⊗ Xj+k,L | j ∈ M}, and thus, it is a CSS state up to Hadamard gates.

3.4.3. -C- stage
We first introduce the generalized stabilizer formalism that is helpful later. Consider a 2k dimensional
subspace C(G) of the N logical qubit Hilbert space, where G has N − k stabilizer generators. We focus on
the effects of Clifford circuits on the k logical qubits stabilized by G. Consider a set of matrices CG of the
form:

(23)

Here, (A|B) corresponds to the stabilizer generators of G; (Q′|R′) and (S′|T ′) are k × 2N binary matrices
orthogonal to (A|B) with respect to the symplectic inner product, and which are symplectic partners of each
other. They can be regarded as ‘encoded operators’ on C(G). We define the following equivalence relation
R in CG : two matrices

are equivalent if (a) (A1|B1) and (A2|B2) generate the same stabilizer group G; and (b)

(
Q′

1 R′
1

S′1 T ′
1

)
differs

from

(
Q′

2 R′
2

S′2 T ′
2

)
by multiplication of elements in G. Thus, there is a one-to-one correspondence between

CG/R and Sp(2k,Z2). Therefore, CG/R captures the behavior of stabilizer circuits on C(G). The circuit
representation of equation (23) is called the generalized stabilizer form (GSF) of G.

The following lemma will also be used in the circuit construction:

Lemma 2. Let L1 be an n × n lower triangular matrix with the diagonal elements being zeros. Suppose

L = (In L1).

Then there exists a full-rank matrix L′ = (L2L3), where L2 and L3 are two n × n lower triangular matrices, such
that the rows of L′ are linear combinations of rows of L and

L′
(

In

In

)
= L2 + L3 = In. (24)

Proof. See appendix A for details. �
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We now construct the sequence of Pauli measurements which can generate any -C- stage on logical
qubits Q1, . . . , Qk of an [[n, N = 2k, d]] CSS code. We start with the GSF of an arbitrary -C- circuit with
auxiliary logical qubits A1, . . . , Ak in |+L〉⊗k:

(25)

and reduce it to the idle circuit by a series of row operation. This set of operations in reverse will effectively
implement the target CNOT circuit.

As mentioned before, U is an invertible upper triangular matrix. The GSF is then equivalent to

(26)

since all the nonzero row vectors of
(
U + Ik 0k | 0k 0k

)
can be generated by

(
Ik 0k | 0n 0k

)
and we add

these vectors to the first row.
Since U is of full rank, the diagonal elements of U + Ik must be all zeros. Observe that(

0k 0k | Ik (Ut)−1 + Ik

)
commutes with the logical operators and is a symplectic partner of the stabilizer

generators, since (
Ik (Ut)−1 + Ik

)
(U + Ik U)t = 0k,

and (
Ik 0k |0k 0k

) (
Ik (Ut)−1 + Ik | 0k 0k

)t
= I2k.

One can measure k commuting logical Pauli operators
(

0k 0k | Ik (Ut)−1 + Ik

)
simultaneously. The GSF

will then be transformed into

(27)

(Meanwhile, we can perform the Pauli measurements
(
Ik 0k | 0k 0k

)
to reverse the process (from

equation (27) to equation (26))).
Now, adding the third row of equation (27) to the second row, one can obtain an equivalent GSF

(28)

Let L = (Ik L1), where L1 = (Ut)−1 + In is a lower triangular matrix with all the diagonal elements being
0. By lemma 2, the GSF can be equivalently transformed into

(29)

where (L2 L3)(Ik Ik)t = Ik. One can measure a set of k Pauli operators (Ik Ik | 0k 0k) simultaneously and
transform the GSF into

(30)

Meanwhile, measuring
(

0k 0k | L2 L3

)
will transfer the GSF of equation (30) into equation (29). Note that

the measurement of
(

0k 0k | L2 L3

)
is equivalent to measuring

(
0k 0k | Ik (Ut)−1 + Ik

)
.

Now, since the stabilizer generators in equation (30) are of the form
(
Ik Ik | 0k 0k

)
, one can add(

U + Ik U + Ik | 0k 0k

)
to the first row of equation (30), which equivalently reduces the GSF to:

(31)

10
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The final step is to eliminate the left-most Ik in the second row of equation (31). This can be done by
measuring

(
0k 0k | Ik 0k

)
and adding the third row to the second. This will then transform the GSF into

the second matrix in:

(32)

Meanwhile, one can measure the set of k logical Pauli operators
(
Ik Ik | 0k 0k

)
to transform equation (32)

to equation (31).
To reverse the whole procedure above and start from equation (32), we initially set A1, . . . , Ak to |0L〉⊗k

and perform the following three sets of Pauli measurements:

1.
(
Ik Ik | 0k 0k

)
,

2.
(

0k 0k | Ik (Ut)−1 + Ik

)
,

3.
(
Ik 0k | 0k 0k

)
.

(33)

The measurements require three 4k logical qubits CSS ancilla states, which are

∣∣∣ΩC1
L

〉
=

1√
2k

⎛
⎝ k∏

j=1

(
I + Xj,LXj+k,L

)
|0L〉⊗2k

⎞
⎠⊗ |+L〉⊗2k, (34)

∣∣∣ΩC2
L

〉
=

1√
2k
|0L〉2k ⊗

⎛
⎝ k∏

j=1

(
I + Z

uj
L

)
|+L〉⊗2k)

⎞
⎠ , (35)

and ∣∣∣ΩC3
L

〉
=

(
|+L〉⊗k|0L〉⊗k

)
⊗ |+L〉⊗2k. (36)

Here, uj is the jth row of
(
Ik (Ut)−1 + Ik

)
. The binary representations of these states are:

(37)

(38)

and

(39)∣∣∣ΩC1
L

〉
is actually a k-fold tensor product of Bell states.

∣∣∣ΩC2
L

〉
is the key resource state in our procedure to

reduce the depth of -C- stage computation. All the ancillas here are CSS states. The net effect is the desired
-C- stage acting on Q1, . . . , Qk, and the auxiliary qubits A1, . . . , Ak are reset to |+L〉⊗k (up to logical Z
corrections). One can transform A1, . . . , Ak back into |0L〉⊗k or just keep them and start with |+L〉⊗k for the
next stage. The procedure with A1, . . . , Ak initially in the |+L〉⊗k state for -C- stage is similar. As a
conclusion, one has the following theorem:

Theorem 3. For an [[n, 2k, d]] CSS code, any logical Clifford circuit on k logical qubits can be realized
fault-tolerantly by 22 rounds of single-shot Steane syndrome measurement.

3.5. FT preparation of qualified ancilla states
The ancilla states listed in the last subsection can be prepared fault-tolerantly by using Shor syndrome
measurement to measure all stabilizer generators and logical Pauli operators, which will be discussed in
section 4.1. In this subsection, we generalize the FT state preparation protocol in [29, 30] to show that all
the logical stabilizer ancilla states required in the previous subsection can be prepared fault-tolerantly by
distillation with almost constant overhead in terms of the number of qubits.

Since all logical ancilla states we considered are stabilizer states, once the eigenvalues of all their
stabilizers are known, one can remove the errors completely. The basic idea of distillation is shown in

11
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Figure 4. FT ancilla state distillation circuit for
∣∣∣ΨUL

L

〉
. Ancilla states are prepared and encoded via noisy quantum circuits Uprep

and Uenc. Then they are fed to the distillation circuit and output the qualified ancilla state. The preparation of |ΩEF
L 〉 is similar.

figure 4—many copies of the logical ancilla states are prepared in the physical level via the same Uprep and
then encoded by Uenc to the same large block code. Both Uprep and Uenc are noisy in practice. They are sent
into a distillation circuit (which is also noisy) and certain blocks are measured bitwise. The eigenvalues of
all the stabilizers in group S and the logical Pauli operators of the output blocks can be estimated if the
distillation circuit is constructed based on the parity-check matrix of some classical error-correcting
code—the flipped eigenvalues caused by errors during state preparation and distillation can be treated as
classical noise and thus be decoded. Since correlated errors remaining on a block can cause its estimated
eigenvalues not compatible with each other, each output block needs further check for compatibility.
Postselection (rejecting the blocks whose estimated eigenvalues are incompatible) is then done to remove
the blocks likely containing correlated errors. Error correction is then applied based on the estimated
eigenvalues of stabilizers to the remaining blocks.

The distillation circuit can be synthesized according the parity-check matrix of an [nc, kc, dc] classical
code, which has the form H = (Inc−kc | Ac). Consider a group of nc ancilla blocks. Choose the first
rc = nc − kc ancillas blocks to hold the classical parity checks, and do transversal CNOTs from the
remaining kc ancillas onto each of the parity-check ancillas according to the pattern of 1s in the rows of Ac:
if [Ac]i,j = 1, we apply a transversal CNOT from the (rc + j)th ancilla to the ith ancilla block. Then measure
all the qubits on each of the first rc ancilla blocks in the Z basis, which destroys the states of those blocks
and extracts information to estimate the eigenvalues of all Z types stabilizers and logical operators of the
remaining kc blocks. In the low error regime, after filtering out the blocks with incompatible estimated
eigenvalues of stabilizers, the output blocks will contain no correlated X errors after subsequent error
correction if dc is larger than the distance of the underlying CSS code [30]. Correlated Z errors can be
removed in a similar manner.

One can concatenate two stages of distillation (with the output blocks of the first stage randomly

shuffled) to remove both correlated X and Z errors. Figure 5 shows the overall circuit to distill
∣∣∣ΨUC

L

〉
using

the [3, 1, 3] code for both stages. For a two-stage distillation protocol based on two classical [nc1 , kc1 , dc1 ]
and [nc2 , kc2 , dc2 ] codes, the number of input and output blocks are nc1 nc2 and Y(p) · nc1 nc2 respectively.
Here, Y(p) is the yield rate defined as

Y(p) =
kc1 kc2 (1 − R1(p))(1 − R2(p))

nc1 nc2

, (40)

where Ri(p) is the block rejection rate for postselection in the ith stage of distillation for a
gate/measurement error rate p. Asymptotically, the rejection rate for each round of distillation is O(p2),
because at least two failures are needed to cause a rejection of the output blocks. Thus, it is likely that R1(p)
and R2(p) negligible in the small p regime. On the other hand, good capacity-achieving classical codes exist

such that
kc1 kc2
nc1 nc2

can be independent of the code distance of the underlying CSS code to ensure dc > d, so

that the distillation circuits are still able to output qualified ancilla states. Hence, Y(p) can achieve almost
Θ(1) for sufficiently low p.

12



Quantum Sci. Technol. 5 (2020) 045007 Y-C Zheng et al

Figure 5. Two-stage FT ancilla state distillation circuit for |ΨUC
L 〉. The distillation circuit is based on the parity-check matrix of

the [1, 3, 3] code for both stages. Actually this circuit can distill any logical CSS states fault-tolerantly.

As shown in the last subsection, one needs several ancilla states, which can be grouped into three types:

Type I—These are CSS states including
∣∣∣ΨUC

L

〉
,
∣∣∣ΩP2

L

〉 ∣∣∣ΩH2
L

〉
,
∣∣∣ΩC1

L

〉
,
∣∣∣ΩC2

L

〉
, and

∣∣∣ΩC3
L

〉
. They are

stabilized by logical operators which are tensor products of either X or Z. They can be prepared and distilled
by the circuit in figure 5: eigenvalues of the Z (X) stabilizer generators and Z (X) logical operators are
checked at the first (second) round to remove correlated X (Z) errors.

Type II—These are CSS states up to logical Hadamard gates applied to some logical qubits, including∣∣∣ΨUH
L

〉
and

∣∣∣ΩH1
L

〉
. In this case, we distill the upper block to remove correlated X errors and the lower block

to remove correlated Z errors in the first round and reverse the order in the second round, as shown in
figure 6.

Type III—This set of states are type I or II states up to logical Phase gates applied to some logical qubits,

including
∣∣∣ΨUP

L

〉
and

∣∣∣ΩP2
L

〉
. We will confine our attention to doubly even and self-dual CSS codes and set

the weight of logical X operators Xj,L to odd numbers for all j.

For
∣∣∣ΨUP

L

〉
, one could first prepare a qualified CSS state of the form

(41)

via the distillation circuit in figure 5. Then, Phase gates are applied bitwise to the lower ancilla block, which
will transform the state to

(42)

This is because the bitwise Phase gates will preserve the stabilizer group while implementing logical Phase
gates on all the logical qubits. Then one can apply logical CNOTs (assisted by some CSS states) from the

upper block to the lower block on the remaining k − m logical qubits to obtain a qualified
∣∣∣ΨUP

L

〉
.

Similarly, for
∣∣∣ΩP1

L

〉
, one can prepare a qualified type II state of the form

(43)
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Figure 6. Two-stage FT ancilla state distillation circuit for
∣∣∣ΨUH

L

〉
based on the parity-check matrix of [3, 1, 3] code. This circuit

can be used to prepare any logical CSS states up to logical Hadamard gates fault-tolerantly.

by the circuit in figure 6. After that, bitwise Phase gates are applied to the upper block to transform

∣∣∣∣ΩP′1
L

〉

to

(44)

We can then measure the operators (0 0 | Ik Λm
k ) (assisted by some CSS states) on the upper block and

obtain

(45)

up to logical Pauli corrections.

3.6. Resource overhead
We estimate the average number of qubits and physical gates to implement a logical Clifford circuit in this
subsection.

For both Knill and Steane syndrome measurements, one only needs a constant rounds of circuit
teleportations or Pauli measurements. Asymptotically, the FT ancilla state distillation protocol dominates
the resource cost. We can recycle the ancilla qubits after they are used to further reduce the redundancy.
However, it will not change the asymptotic scaling of resource cost.

As discussed in the previous section, the overall number of qubits required for a two-stage state
distillation protocol based on the parity-check matrices of two classical codes is

Nq = cnnc1 nc2 ,

where c is some constant. The numbers of gates for each Uprep and Uenc in figure 4 are O(k2/log k) and
O(n2/logn), respectively. Therefore, the total number of gates for noisy logical stabilizer state preparation at
the physical level is

Nenc =
cn2nc1 nc2

log n
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with depth O(n).
The number of gates for the two-round distillation circuit depends on Ac, which has O(k2

c ) 1s. Hence,
the number of gates required for Udist for two stages is

Ndist = c1k2
c1

nnc2 + c2k2
c2

n,

with depth O
(
max{kc1 , kc2}

)
, where c1, c2 are constants. Therefore, the overall depth of ancilla state

preparation is
O(max{n, kc1 , kc2}).

Note that there are Y(p)nc1 nc2 output ancilla blocks per round of distillation and hence the same
number of identical circuits can be implemented. On average, one needs

N̄q =
cnc1 nc2 n

Y(p)nc1 nc2

∼ O(n)

qubits for a logical Clifford circuit. On the other hand, the physical gates required for raw state preparation
is

N̄enc =
cn2nc1 nc2

Y(p)nc1nc2 log n
∼ O(n2/ log n).

If two good classical capacity-achieving codes are used(e.g., low-density parity-check (LDPC) codes [35])
with kci/nci = Θ(1), i = 1, 2, and if we restrict ourselves to kc1 � n/ log n and kc2/nc1 = Θ(1), the average
number of physical gates required for distillation will be

N̄dist =
c1k2

c1
nnc2 + c2k2

c2
n

Y(p)nc1 nc2

∼ O(n2/ log n).

To sum up, an arbitrary logical Clifford circuit requires N̄gate = O(n2/ log n) physical gates on average. If
one considers the family of large CSS block codes (e.g. quantum LDPC codes) with k/n ∼ Θ(1), only O(k)
physical qubits and O(k2/log k) physical gates are needed on average to implement any logical Clifford
circuit, with off-line circuit depth O

(
max{k, kc1 , kc2}

)
for ancilla preparation. These results suggest that the

numbers of qubits and gates required for logical Clifford circuits have the same scaling as the physical level,
when the physical error rate is sufficiently low and good classical LDPC codes are used.

Remark 1. One can achieve very high efficiency of resource utilization with our scheme in the following
scenario: a small batch of finite Clifford circuits are repeatedly applied in an algorithm for a certain period
of time. This is because our distillation process has high throughput—it can produce a large number of
identical ancilla states (and thus generate the same number of identical Clifford circuits), and each state
preparation is efficient. Several questions are raised here naturally: is there any useful quantum algorithm
whose quantum circuits have such structure? In other words, is there an ansatz to adapt our FTQC
architecture to design a circuit for some particular algorithm? Is there a good computation architecture to
efficiently generate the large amount of identical ancilla states? These questions are all open and need
further investigation. One promising candidate here is the Hamiltonian simulation algorithm for quantum
simulations [36–41]. In that case, the target Hamiltonian changes slowly during the computation. In a
certain period of time, the Trotter decomposition can be regarded as identical. Another candidate is the
optimization type algorithms like quantum approximate optimization algorithm (QAOA) [42], which needs
to rapidly apply Hadamards. On the other hand, to generate large mount ancilla states, single instruction
multiple data (SIMD) style architecture [43, 44] that apply the same quantum gates on multiple qubits in
the same region simultaneously, maybe particularly useful.

3.7. Summary
In conclusion, we provided two methods implementing logical Clifford circuits fault-tolerantly via constant
number of steps of Knill or Steane syndrome measurement circuits in situ. Each method requires certain
types of logical stabilizer states as ancillas. We showed that all ancilla states listed can be prepared
fault-tolerantly through two-stage distillation. Our method transfers the complexity of Clifford circuits on
logical level to the complexity of state preparation Uprep on physical level completely, which can be done
offline. Surprisingly, if one chooses large block codes with encoding rate k/n ∼ Θ(1), the overall numbers
of qubits and physical gates required for a Clifford circuit on [[n, k, d]] CSS circuit are around O(k) and
O(k2/log k), respectively, which are independent of the distance of the underlying CSS code. This is the
same scaling as a perfect Clifford circuit acting on k physical qubits.
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Table 1. Resources required for a Clifford circuit on k logical qubits at the physical and logical levels for an [[n, k, d]] CSS code. The
physical operations counts all state preparation, gates, measurements including ancilla preparation and error correction. We assume
k/n ∼ Θ(1) for the large block codes and w is the maximum weight of the stabilizers. Sufficient parallelization are also considered to
minimize the depth.

#. Physical #. Physical #. Ancilla in situ Off-line
Method/average resource cost qubits operatation states depth depth

Standard circuit model O(k) O(k2/log k) N/A O(k) N/A
Circuit model FTQC (this paper) O(k) O(k2/log k) O(1) O(1) O(max{k, kc1 , kc2})
Circuit model FTQC (as in reference [25, 26]) O(max{k,wd}) O(kwd) O(kd) O(kd) O(kd)
Circuit model FTQC (as in references [19–21]) O(k) O

(
max{kwd, k2/ log k}

)
O(k2/log k) O(k2/log k) O(max{k, kc1 , kc2})

one-way QC (as in reference [45]) O(k3/log k) O(k3/log k) N/A O(1) N/A
FT one-way QC (as in references [46, 47]) O

(
k3d3/ log k

)
O

(
k3d3/ log k

)
N/A O(1) N/A

Surface code (as in reference [17]) O(kd2) O(k3d3/log k) N/A O(k2d/log k) N/A

4. Discussion

In this section, we compare the method proposed in this paper with some other related FT protocols in the
literature including one-way quantum computation. Then we estimate the numbers of physical qubits and
gates required for each scheme. The results are summarized in table 1. Since different FTQC schemes have
different working regions and performance, these results only provide a rough insight of resource scaling.
We also discuss the potential improvements on ancilla state preparation for further reduce the overhead.

4.1. Related FTQC protocols
In this paper, we implement FT logical circuit teleportation via the single-shot Knill syndrome
measurement protocol and FT ancilla distillation. It is worthwhile to compare this with the original
teleportation-based FTQC in references [25, 26]. Rather than Knill syndrome measurement, Shor syndrome
measurement [6] is used for error correction and ancilla state preparation. Our construction of logical
Clifford circuits through a constant number of steps of teleportation is also possible in that scenario, where
the ancilla state preparation again dominates the resource cost.

In references [25, 26], O(1) logical ancilla states of size O(n) is required. To prepare qualified logical
ancilla states, one applies Shor syndrome measurement to measure n stabilizers, including stabilizer
generators and logical operators. Each measurements needs one cat state. Each cat state consists O(w)
qubits, which takes O(w) CNOTs to prepare, where w is the maximum weight of the stabilizers. A
verification is also required after the raw preparation of each cat state, which also takes O(w) CNOTs and
rejects the states with probability around O(p). Transversal CNOTs from the verified cat state to the code
block are then applied to extract the eigenvalues of the stabilizers, which takes O(w) CNOTs. To establish
reliable eigenvalues for the stabilizers of an [[n, k, d]] code, O(d) rounds of Shor syndrome measurements
and a majority vote are required for each stabilizer. Thus the overall number of physical gates required for
state preparation is O(max{nwd, n2/log n}) with depth O(nd).

For large block codes with k/n ∼ Θ(1), the number of physical gates required for ancilla state
preparation is O(max{kwd, k2/log k}) with depth O(kd). Meanwhile, O(1) logical ancilla states are required,
which needs O(k) physical ancilla qubits altogether. It also takes O(kd) rounds of serial Shor syndrome
measurements (since the stabilizers are in general highly overlapped) to do error correction on the data
block, each round consumes a verified cat states. Hence, the depth for a logical Clifford circuit is O(kd) and
the same number of verified cat states are needed. Assuming the qubits supporting cat states are recycled
after they are measured, one needs O(wd) ancilla qubits for cat states throughout the process after
parallelization. The number of all ancilla qubits is thus O(max{k,wd}). This way of implementing logical
Clifford circuits needs more physical gates when w is large and takes a much longer computation time for
large k and d.

Our scheme also greatly simplifies the block-code based FTQC using Steane syndrome measurement in
references [19–21]. There, logical Clifford gates are implemented one by one, and thus O(k2/log k) different
ancilla states of size 2n qubits are required and O(k2/log k) rounds of Steane syndrome measurements are
needed. With the same ancilla distillation protocol and ancilla recycling, one needs k4/(log k)2 gates and
O(k) qubits for every single circuit on average for finite rate codes with k/n ∼ Θ(1).

4.2. One-way quantum computing
For one-way QC, one initially prepares a cluster state consisting of a large number of qubits. Quantum
information is then loaded onto the cluster and processed through single-qubit measurements on the
cluster state substrate. It can be shown that all quantum circuits can be mapped to the form of one-way QC.
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In general, one-qubit measurements are performed in a certain temporal order and in a spatial pattern of
adaptive measurement bases based on previous measurement outcomes. Interestingly, for those qubits
supporting Clifford circuits, no measurement bases have to be adjusted (i.e., those of which the operator X,
Y or Z is measured). Thus, for any given quantum circuit, all of its Clifford gates can be realized
simultaneously in the first round of single-qubit measurements, regardless of their space-time locations in
the circuit [45], if a sufficiently large cluster state is provided to support the whole computation circuit.
Specifically, for a cluster state in 2D, it requires O(k3/log k) supporting cluster qubits and single-qubit
measurements for an instantaneous Clifford circuit without error correction.

However, it is difficult to control errors if a cluster state large enough to support the entire quantum
computation is used, since the computation might reach certain qubits only after a long time, so that these
qubits would already suffer significant errors. This scheme is not FT. By contrast, if the computation is split,
then the size of sub-circuits may be adjusted so that each of them can be performed within some constant
time. The measured qubits are then recycled to entangle with the unmeasured qubits to form a new cluster
for the next computation step. In this way, each cluster qubit is exposed to constant decoherence time
before being measured and the error rate is bounded. In this case, FT one-way QC is possible [45]. Note
that it is still possible to perform a Clifford circuit during the computation in one time step, if O(k3/log k)
qubits are provided at the same time, but it is no longer possible to finish all the Clifford gates in the
computation in a single time step.

To complete the discussion, here we consider FT one-way QC in 3D lattice as in references [46, 47]. The
Clifford circuits are performed through single-qubit measurements in the Z basis to create topologically
entangled defects in the 3D lattice. The remaining qubits are measured in the X basis to provide syndrome
information for 3D topological error correction [48]. For k encoded qubits in [47] with distance d
boundary surface codes, the number of cluster qubits needed in a single 2D slice is O(kd2) and it requires
O(k2/log k) slices for an arbitrary Clifford circuit in the worst case. Thus, it takes the volume of a cluster
state comprising O(k3d3/log k) qubits and the same number of single-qubit measurements. As a
comparison, the variants of FT one-way QC in 2D based on the surface code [17] need kd2 physical qubits
for encoding and each logical CNOT gate takes O(d) time steps.

In conclusion, even though one-way QC can in principle implement the Clifford gates of a circuit in a
single time step, it requires many more physical qubits, whether it is implemented in a FT manner or not. It
is worth noting that the FT one-way QC and its 2D variants require only local operation, which is a great
practical advantage, since the codes considered in our scheme are highly non-local in general. However, our
results suggest the potential for huge resource reduction for FTQC if non-local operations are
allowed.

4.3. More efficient ancilla state preparation
The distillation protocol mentioned in this paper is basically the same as the one in reference [30]. The
main difference is that the ancilla states distilled here can generate a whole circuit rather than a single gate
on the data code block. These will cause an extra complexity on Uprep stage in figure 4 up to O(k2/log k)
gates with an extra depth O(k). Meanwhile, the overall number of gates and depth for the whole distillation
protocol (Uprep, Uenc and Udist combined) also scale as O(k2/log k) and O(k). Note that the extra depth of
ancilla preparation is negligible if they are produced in a pipeline manner. Thus, in the worst case, it will
cause a constant decrease of distillation quality. But in practice, Uprep may only take a small portion of the
whole protocol. On the other hand, since we generate a circuit rather than a single gate at one time, it will
reduce the quality requirement of the output ancilla states to support FTQC, and hence the error rate
requirement for each operation as well. The overall effect of extra preparation complexity on distillation
needs further exploration.

The two-stage distillation protocol gives O(1) yield rate on average. However, the number of input
ancilla blocks required simultaneously is O(nc1 nc2 ), which can be huge in practice. Consequently, the
distillation circuit is still relatively complicated and error can occur in many positions. As a result, the
typical acceptable error rate (or threshold for distillation) is less than 10−4 [30], which is challenging with
current technologies like superconducting qubits [49]. Meanwhile, in many cases, one does not need as
many as O(kc1 kc2 ) identical ancilla states to generate that large number of the same Clifford
circuits.

There are two ways to further simplify the distillation process and reduce overall number of qubits: in
stead of two-stage distillation, one can filter out one type of correlated errors at the beginning by
single-round stabilizer measurements with Steane Latin rectangle method [34], which takes advantage of
the fact that only a small set of correlated errors needs to be removed according to the degeneracy of
quantum code. Then we remove the other type of correlated errors through distillation. The depth of such
preparation is also O(max{k, kc}). Here, only O(nc) input code blocks are required simultaneously and it
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generates O(kc) identical output states. It not only reduces the complexity of preparation circuit but also
gives more flexibility. The second method is to take advantage of the symmetry of the underlying CSS
codes: the qubits of different code blocks are permuted in different ways after raw preparation (though
finding such permutation may be challenging), so that the correlation of errors between code blocks can be
suppressed [50]. Consequently, it may require less input code blocks for distillation. In principle, these two
methods can also be combined together and their effect needs further investigation.
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Appendix A. Proof of lemma 2

Proof. Let l′j denote the jth row vector of L′ and cp be the pth column vector of (In In)t. Equation (24) is
equivalent to

l′j cp = δjp, 1 � j, p � n, (A1)

where δ is the Kroneker delta function.
Let lj denote the jth row vector of L. Obviously, l1 = (1, 0, . . . , 0), satisfying l1cp = δ1p. Let l′1 = l1.
It is easy to see that ljcp = 0 for p > j, since L1 is a lower triangular matrix. With all the diagonal

elements of L1 being 0, one has
ljcj = 1. (A2)

Define the set I j = {p | ljcp = 1, p < j}. For j = 2, . . . , n, let

l′j = lj +
∑
p∈I j

l′p. (A3)

We also define a matrix L′(j) that contains the rows l′1, . . . , l′j:

L′(j) =

⎛
⎜⎝

l′1
...
l′j

⎞
⎟⎠ .

Since L1 is lower triangular, and the summation of lp in equation (A3) only counts the terms with p < j, L′(j)

can be written as
L′(j) =

(
L(j)

2 L(j)
3

)
,

where L(j)
2 and L(j)

3 are also lower triangular matrices. Eventually, we have L2 = L(n)
2 and L3 = L(n)

3 .
It remains to prove equation (A1). We prove this by induction. For j = 2, if l2c1 = 1, one has

l′2 = l2 + l1. Thus l′2c1 = 0 and l′2c2 = 1, since l1c1 = 1 and l1c2 = 0. Also, l′2cp = 0 for p > 2 since L′(2)
2 and

L′(2)
3 are lower triangular matrices. So l′2cp = δ2p holds for 1 � p � n.

Now assume l′1cp = δ1p, . . ., l′jcp = δjp holds. Then

l′j+1cq = lj+1cq +
∑

p∈I j+1

l′pcq.

Consider q < j + 1 first. If lj+1cq = 1, then q∈ I j+1 and

∑
p∈I j+1

l′pcq =
∑

p∈I j+1

δpq = 1.

Then l′j+1cq = 0. If lj+1cq = 0, then q /∈ I j+1 and
∑

p∈I j+1
l′pcq = 0. Again, l′j+1cq = 0. When q = j + 1,

18



Quantum Sci. Technol. 5 (2020) 045007 Y-C Zheng et al

l′j+1cj+1 = lj+1cj+1 = 1 by equation (A2). For q > j + 1, since L(j+1)
2 and L(j+1)

3 are both lower triangular,
l′j+1cq = 0. Thus, l′jcp = δjp holds for 1 � j, p � n.
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