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The recent curation of large-scale databases with 3D surface scans of
shapes has motivated the development of tools that better detect global pat-
terns in morphological variation. Studies, which focus on identifying differ-
ences between shapes, have been limited to simple pairwise comparisons and
rely on prespecified landmarks (that are often known). We present SINA-
TRA, the first statistical pipeline for analyzing collections of shapes without
requiring any correspondences. Our novel algorithm takes in two classes of
shapes and highlights the physical features that best describe the variation be-
tween them. We use a rigorous simulation framework to assess our approach.
Lastly, as a case study we use SINATRA to analyze mandibular molars from
four different suborders of primates and demonstrate its ability recover known
morphometric variation across phylogenies.

1. Introduction. Subimage analysis is an important open problem in both medical imag-
ing studies and geometric morphometric applications. The problem asks which physical fea-
tures of shapes are most important for differentiating between two classes of 3D images or
shapes, such as computed tomography (CT) scans of bones or magnetic resonance images
(MRI) of different tissues. More generally, the subimage analysis problem can be framed as a
regression-based task: given a collection of shapes, find the properties that explain the great-
est variation in some response variable (continuous or binary). One example is identifying
the structures of glioblastoma tumors that best indicate signs of potential relapse and other
clinical outcomes (Crawford et al. (2020)). From a statistical perspective the subimage se-
lection problem is directly related to the variable selection problem, given high-dimensional
covariates and a univariate outcome, we want to infer which variables are most relevant in
explaining or predicting variation in the observed response.

Framing subimage analysis as a regression presents several challenges. The first challenge
centers around representing a 3D object as a (square integrable) covariate or feature vector.
The transformation should lose a minimum amount of geometric information and apply to
a wide range of shape and imaging datasets. In this paper we use a tool from integral ge-
ometry and differential topology, called the Euler characteristic (EC) transform (Crawford
et al. (2020), Curry, Mukherjee and Turner (2019), Ghrist, Levanger and Mai (2018), Turner,
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Mukherjee and Boyer (2014)), which maps shapes into vectors without requiring prespecified
landmark points or pairwise correspondences. This property is central to our innovations.

After finding a vector representation of the shape, our second challenge is quantifying
which topological features are most relevant in explaining variation in a continuous outcome
or binary class label. We address this classic take on variable selection by using a Bayesian
regression model and an information theoretic metric to measure the relevance of each topo-
logical feature. Our Bayesian method allows us to perform variable selection for nonlinear
functions; we discuss the importance of this requirement in Method Overview and Results.

The last challenge deals with how to interpret the most informative topological features
obtained by our variable selection methodology. The EC transform is invertible; thus, we
can take the most informative topological features and naturally recover the most imforma-
tive physical regions on the shape. In this paper we introduce SINATRA, a unified statistical
pipeline for subimage analysis that addresses each of these challenges and is the first subim-
age analysis method that does not require landmarks or correspondences.

Classically there have been three approaches to modeling random 3D images and shapes:
(i) landmark-based representations (Cates, Elhabian and Whitaker (2017), Kendall (1989)),
(i1) diffeomorphism-based representations (Dupuis, Grenander and Miller (1998)) and (iii)
representations that use integral geometry and excursions of random fields (Worsley (1995)).
Landmark-based analysis uses points on shapes that are known to correspond with each other.
As aresult, any shape can be represented as a collection of 3D coordinates. Landmark-based
approaches have two major shortcomings. First, many modern datasets are not defined by
landmarks; instead, they consist of 3D CT scans (Boyer et al. (2016), Goswami (2015)).
Second, reducing these detailed mesh data to simple landmarks often results in a great deal
of information loss.

Diffeomorphism-based approaches have bypassed the need for landmarks. Many tools
have been developed that efficiently compare the similarity between shapes in large databases
via algorithms that continuously deform one shape into another (Boyer et al. (2011, 2015),
Gao, Kovalsky and Daubechies (2019), Gao et al. (2019), Hong, Golland and Zhang (2017),
Ovsjanikov et al. (2012)). Unfortunately, these methods require diffeomorphisms between
shapes: the map from shape A to shape B must be differentiable, as must the inverse of the
map. Such functions are often called “correspondence maps,” since they take two shapes and
place them in correspondence. There are many applications with no such transformations be-
cause of qualitative differences. For example, in a dataset of fruit fly wings some mutants
may have extra lobes of veins (Miller (2015)), or, in a dataset of brain arteries many of the ar-
teries cannot be continuously mapped to each other (Bendich et al. (2016)). Indeed, in large
databases, such as the MorphoSource (Boyer et al. (2016)), the CT scans of skulls across
many clades are not diffeomorphic. Recent algorithms have attempted to overcome this issue
by constructing more general “functional” correspondences (Huang et al. (2019), Rustamov
et al. (2013)) which can be established even across shapes having different topology. How-
ever, there is a real need for 3D image analysis methods that do not require correspondences.

Previous work (Turner, Mukherjee and Boyer (2014)) introduced two topological trans-
formations for shapes, the persistent homology (PH) transform and the EC transform. These
tools from integral geometry first allowed for pairwise comparisons between shapes or images
without requiring correspondence or landmarks. Since then, mathematical foundations of the
two transforms and their relationship to the theory of sheaves and fiber bundles have been es-
tablished (Curry, Mukherjee and Turner (2019), Ghrist, Levanger and Mai (2018)). Detailed
mathematical analyses have also been provided (Curry, Mukherjee and Turner (2019)). A
nonlinear regression framework, which uses the EC transform to predict outcomes of disease
free survival in glioblastoma (Crawford et al. (2020)), is most relevant to this paper. This
works shows that the EC transform reduces the problem of regression with shape covari-
ates into a problem in functional data analysis (FDA) and that nonlinear regression models
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are more accurate than linear models when predicting complex phenotypes and traits. The
SINATRA pipeline further enhances the relation between FDA and topological transforms
by enabling variable selection with shapes as covariates.

Beyond the pipeline, this paper includes software packaging to implement our approach
and a detailed design of rigorous simulation studies which can assess the accuracy of sub-
image selection methods. The freely available software comes with several built-in capabili-
ties that are integral to subimage analyses in both biomedical studies and geometric morpho-
metric applications. First, SINATRA does not require landmarks or correspondences in the
data. This means that the algorithm can be implemented on both datasets with raw unaligned
shapes, as well as those that have been axis-aligned during preprocessing (see Supplementary
Material; Wang et al. (2021)). Second, given any dataset of 3D images, SINATRA outputs
evidence measures that highlight the physical regions on shapes that explain the greatest
variation between two classes. In many applications, users may suspect a priori that certain
landmarks have greater variation across groups of shapes (e.g., via the literature). To this
end, SINATRA also provides P-values and Bayes factors that detail how likely any region is
identified by chance (Sellke, Bayarri and Berger (2001)).

In this paper we describe each mathematical step of the SINATRA pipeline and demon-
strate its power and utility via simulations. We also use a dataset of mandibular molars from
four different genera of primates to show that our method has the ability to: (i) further under-
standing of how landmarks vary across evolutionary scales in morphology and (ii) visually
detail how known anatomical aberrations are associated to specific disease classes and/or
case-control studies.

2. Method overview. The SINATRA pipeline implements four key steps (Figure 1).
First, SINATRA summarizes the geometry of 3D shapes (represented as triangular meshes)
by a collection of vectors (or curves) that encode changes in their topology. Second, a nonlin-
ear Gaussian process model, with the topological summaries as input, classifies the shapes.
Third, an effect size analog and corresponding association metric is computed for each topo-
logical feature used in the classification model. These quantities provide evidence that a given
topological feature is associated with a particular class. Fourth, the pipeline iteratively maps
the topological features back onto the original shapes (in rank order according to their associ-
ation measures) via a reconstruction algorithm. This highlights the physical (spatial) locations
that best explain the variation between the two groups. Details of our implementation choices
are detailed below, with theoretical support given in the Supplementary Material (Wang et al.
(2021)).

2.1. Topological summary statistics for 3D shapes. In the first step of the SINATRA
pipeline, we use a tool from integral geometry and differential topology called the Euler
characteristic (EC) transform (Crawford et al. (2020), Curry, Mukherjee and Turner (2019),
Ghrist, Levanger and Mai (2018), Turner, Mukherjee and Boyer (2014)). For a mesh M, the
Euler characteristic is an accessible topological invariants derived from

(1) X =#V(M) —#EM) +#F (M),

where {#V (M), #E (M), #F (M)} denote the number of vertices (corners), edges and faces
of the mesh, respectively. An EC curve x, (M) tracks the change in the Euler characteristic
with respect to a given filtration of length / in direction v (Figure 1(a) and (b)). Theoretically,
we first specify a height function 4, (x) = xTv for vertex x € M in direction v. We then use
this height function to define sublevel sets (or subparts) of the mesh M¢ in direction v, where
hy(x) < a. In practice, the EC curve is x (M¢) computed over a range of / filtration steps in
direction v (Figure 1(b)).
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FI1G. 1. Schematic overview of SINATRA, a novel statistical framework for feature selection and association
mapping with 3D shapes. (a) The SINATRA algorithm requires the following inputs: (i) Aligned shapes represented
as meshes; (ii) y, a binary vector denoting shape classes; (iii) r, the radius of the bounding sphere for the shapes;
(iv) ¢, the number of cones of directions; (v) d, the number of directions within each cone; (vi) 0, the cap radius
used to generate directions in a cone and (vii) [, the number of sublevel sets (i.e., filtration steps) to compute the
Euler characteristic (EC) along a given direction. Guidelines for how to choose the free parameters are given
in Supplementary Table 1. (b) We select initial positions uniformly on a unit sphere. Then, for each position we
generate a cone of d directions within angle 6 using Rodrigues’ rotation formula (Belongie (1999)), resulting in
a total of m = ¢ x d directions. For each direction we compute EC curves with | sublevel sets. We concatenate the
EC curves along all the directions for each shape to form vectors of topological features of length p =1 x m. Thus,
for a study with n-shapes, an n X p design matrix is statistically analyzed using a Gaussian process classification
model. (¢) Evidence of association for each topological feature vector are determined using relative centrality
measures. We reconstruct corresponding shape regions by identifying the vertices (or locations) on the shape that
correspond to “statistically associated” topological features. (d) This enables us to visualize the enrichment of
physical features that best explain the variance between the two classes. The heatmaps display vertex evidence
potential on a scale from [0 — 100]. A maximum of 100 represents the threshold at which the first shape vertex is
reconstructed, while 0 denotes the threshold when the last vertex is reconstructed.

The EC transform is the collection of EC curves across a set of directions v=1,...,m,
and maps a 3D shape into a concatenated p = (I x m)-dimensional feature vector. For a study
with n-shapes, an n x p design matrix X is statistically analyzed, where the columns denote
the Euler characteristic computed at a given filtration step and direction. Each sublevel set
value, direction and set of shape vertices used to compute an EC curve are stored for the
association mapping and projection phases of the pipeline. Previously, Curry et al. proved
sufficiency, stating that the theoretical upper bound on the minimum number of directions
m required for the EC transform to preserve all information for a family of 3D shapes (see
Theorem 7.14 in Curry, Mukherjee and Turner (2019)) is estimated by

) 82

where § is a lower bound on the “curvature” at every vertex on the mesh and b; is a uniform
upper bound on the number of critical values for the Euler characteristic curves when viewed
in any given §-ball of directions. While this upper bound may not yield optimal results in
practice, we do use this theory to guide the collection of topological statistics with the general

372 3bs\°
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notion that considering larger values of m will lead to more robust summarization of shape
variation. In this paper we use a series of simulations and sensitivity analyses to outline
empirical trends and develop intuition behind practically choosing the number of directions
m and setting the granularity of sublevel filtrations / for real data.

2.2. Statistical model for shape classification. In the second step of the SINATRA
pipeline, we use (weight-space) Gaussian process probit regression to classify shapes based
on their topological summaries generated by the EC transformation. Namely, we specify
the following (Bayesian) hierarchical model (Neal (1997, 1999), Nickisch and Rasmussen
(2008), Rasmussen and Williams (2006), Williams and Barber (1998)):

3) y~Bm), gm=o'm)=f f~N(©OK),

where y is an n-dimensional vector of Bernoulli distributed class labels, & is an n-
dimensional vector representing the underlying probability that a shape is classified as a
“case” (i.e., y = 1), g(+) is a probit link function with ®(-) the cumulative distribution func-
tion (CDF) of the standard normal distribution and f is an n-dimensional vector estimated
from the data.

The key objective of SINATRA is to use the topological features in X to find the physical
3D properties that best explain the variation across shape classes. To do so, we use kernel
regression, where the utility of generalized nonparametric statistical models is well estab-
lished due to their ability to account for various complex data structures (Cheng et al. (2019),
Heckerman et al. (2016), McDonald et al. (2019), Rodriguez-Nieva and Scheurer (2019),
Swain et al. (2016), Zhang, Dai and Jordan (2011)). Generally, kernel methods posit that
[ lives within a reproducing kernel Hilbert space (RKHS) defined by some (nonlinear) co-
variance function, which implicitly account for higher-order interactions between features,
leading to more complete classifications of data (Jiang and Reif (2015), Pillai et al. (2007),
Scholkopf, Herbrich and Smola (2001)). To this end, we assume f is normally distributed
with mean vector 0, and the covariance matrix K is defined by the radial basis function
K;; = exp{—0|x; — x; 1} with bandwidth 6 set using the median heuristic to maintain nu-
merical stability and avoid additional computational costs (Chaudhuri et al. (2017)). The full
model specified in equation (3) is commonly referred to as “Gaussian process classification”
or GPC.

2.3. Interpretable feature (variable) selection. To estimate the model in equation (3),
we use an elliptical slice sampling Markov chain Monte Carlo (MCMC) algorithm (Supple-
mentary Material, Section 1.1, Wang et al. (2021)). Since we take a “weight-space” view on
Gaussian processes, the model fitting procedure scales with the number of 3D meshes in the
data, rather than with the number of topological features. The MCMC algorithm allows sam-
ples from the approximate posterior distribution of f (given the data) and also allows for the
computation of an effect size analog for each topological summary statistic (Singleton et al.
(2017), Crawford et al. (2018, 2019)),

) B =(XTX)'XTf,

where (XTX)" is the generalized inverse of (XTX).

These effect sizes represent the nonparametric equivalent to coefficients in linear regres-
sion using generalized least squares. SINATRA uses these weights and assigns a measure of
relative centrality to each summary statistic (first panel Figure 1(c)) (Crawford et al. (2019)).
This criterion evaluates how much information in classifying each shape is lost when a par-
ticular topological feature is removed from the model. This loss is determined by computing
the Kullback—Leibler divergence (KLD) between: (i) the conditional posterior distribution
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p(B_;1Bj = 0) with the effect of the jth topological feature set to zero and (ii) the marginal
posterior distribution p(B_;) with the effects of the jth feature integrated out,

N pB_))
(5) KLD(IBJ) - '/;—j 10g<m

which has a closed form solution when the posterior distribution of the effect sizes is as-
sumed to be (approximately) Gaussian (Supplementary Material, Section 1.2, Wang et al.
(2021)). Finally, we normalize to obtain an association metric for each topological feature,
yj =KLD(8,)/ S KLD(B)).

There are two main takeaways from this formulation. First, the KLD is nonnegative and
equals zero if and only if the posterior distribution of B_; is independent of the effect 8;.
Intuitively, this says that removing an unimportant shape feature has no impact on explaining
the variance between shape classes. Second, p is bounded on the unit interval [0, 1] with the
natural interpretation of providing relative evidence of association for shape features; higher
values suggest greater importance. For this metric the null hypothesis assumes that every
feature equally contributes to the total variance between shape classes, while the alternative
proposes that some features are more central than others (Crawford et al. (2019)). As we
show in the Results and Supplementary Material, when the null assumption is met, SINATRA
displays association results that appear uniformly distributed and effectively indistinguishable
(Wang et al. (2021)).

)pB B =1,

2.4. Shape reconstruction. After obtaining association measures for each topological
feature, we map this information back onto the physical shape (second panel Figure 1(c) and
(d)). We refer to this process as reconstruction, as this procedure recovers regions that ex-
plain the most variation between shape classes (Supplementary Material, Section 1.3, Wang
et al. (2021)). Intuitively, we want to identify vertices on the shape that correspond to the
topological features with the greatest association measures.

Begin by considering d directions within a cone of cap radius or angle ¢, which we de-
note as C(0) = {vy, ..., vg]0}. Next, let Z be the set of vertices whose projections onto the
directions in C(#) are contained within the collection of “significant” topological features;
for every z € Z, the product z - v is contained within a sublevel set (taken in the direction
v € C(0)) that shows high evidence of association in the feature selection step.

A reconstructed region is then defined as the union of all mapped vertices from each cone,
or R :=J; Z;. We use cones because vectors of Euler characteristics, taken along directions
close together, express comparable information. That similiarity lets us leverage findings be-
tween them to increase our power of detecting truly associated shape vertices and regions—as
opposed to antipodal directions where the lack of shared information may do harm when de-
termining reconstructed manifolds (Supplementary Material, Section 1.4, Wang et al. (2021))
(Curry, Mukherjee and Turner (2019), Fasy et al. (2018), Oudot and Solomon (2018)).

2.5. Visualization of enriched shape regions. Once shapes have been reconstructed, we
can visualize the relative importance or “evidence potential” for each vertex on the mesh
with a simple procedure. First, we sort the topological features from largest to smallest ac-
cording to their association measures y| > y» > --- > y,,. Next, we iterate through the sorted
measures Ty = yi (starting with k£ = 1) and reconstruct the vertices corresponding to the
topological features in the set {j : y; > Tx}.

The evidence potential for each vertex is defined as the largest threshold 7} at which it is
reconstructed for the first time, because vertices with earlier “birth times” in the reconstruc-
tion are more important relative to vertices that appear later. We illustrate these values via
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heatmaps over the reconstructed meshes (Figure 1(d)). For consistency across different ap-
plications and case studies, we set the coloring of these heatmaps on a scale from [0 — 100].
A maximum value of 100 represents the threshold value at which the first vertex is born,
while 0 denotes the threshold when the last vertex on the shape is reconstructed. Under the
null hypothesis, where there are no meaningful regions differentiating between two classes
of shapes, (mostly) all vertices appear to be born relatively early and at the same time (Sup-
plementary Figure 4). This is not the case under the alternative.

2.6. Algorithm and implementation. Source code for replication is available in the Sup-
plementary Materials (Wang et al. (2021)) and freely available online at https://github.com/
lcrawlab/SINATRA. The SINATRA algorithm requires these inputs:

e shapes represented as meshes (unaligned or preprocessed and axis-aligned);

e y, a binary vector denoting shape classes;

e r, the radius of the bounding sphere for the shapes (which we usually set to 1/2 since we
work with meshes normalized to the unit ball);

¢, the number of cones of directions;

d, the number of directions within each cone;

0, the cap radius used to generate directions in a cone;

[, the number of sublevel sets (i.e., filtration steps) to compute the Euler characteristic (EC)
along a given direction.

A table with general guidelines for how set these free parameters in practice is given in Sup-
plementary Table 1. In the next section we discuss strategies for choosing values for the free
parameters through simulation studies. A table detailing the scalability for the current algo-
rithmic implementation of SINATRA can also be found in the Supplementary Material (see
Supplementary Table 2). For some context, runtime for SINATRA is dependent upon both
the number of meshes in a given study (n) as well as the number of cones of directions (c),
directions within each cone (d) and sublevel sets (/) used to compute the EC curves. Note
that the latter three parameters all contribute to the total number of topological statistics used
summarize each mesh (i.e., p =1 x m EC features taken over m = ¢ x d total directions).
Overall, the SINATRA algorithm scales (approximately) linearly in the number of shapes.
For example, while holding the values of {c = 25,d = 5,1 = 25} constant, it takes ~60 and
~196 seconds to analyze datasets with n = 25 and n = 100 shapes, respectively. The rate
limiting step in the SINATRA pipeline is the computation of the association metric for each
topological summary statistic (see equation (5)). To mitigate this burden, we use approxima-
tions such that the cost of calculating each y; is made up of p-independent O ( p?) operations
which can be parallelized (see derivations provided in Supplementary Material, Section 1.2,
Wang et al. (2021)).

3. Results.

3.1. Simulation study: Perturbed spheres. We begin with a proof-of-concept simulation
study to demonstrate both the power of our proposed pipeline and how different parameter
value choices affect its ability to detect associated features on 3D shapes. Again, a table with
general guidelines for how set the free parameters within the SINATRA pipeline can be found
in Supplementary Table 1. Here, we take 100 spheres and perturb regions, or collections of
vertices, on their surfaces to create two classes with a two-step procedure:

1. We generate a fixed number of (approximately) equidistributed regions on each
sphere—some number u regions to be shared across classes and the remaining v regions
to be unique to class assignment.
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FIG. 2.  Power and sensitivity analysis for detecting associated vertices across different classes of perturbed
spheres. We generate 100 shapes by partitioning unit spheres into regions 10 vertices wide, centered at 50 equidis-
tributed points. Two classes (50 shapes per class) are defined by shared (blue protrusions) and class-specific (red
indentations) characteristics. The shared or “nonassociated” features are chosen by randomly selecting u regions
and pushing the sphere outward at each of these positions. To generate class-specific or “associated” features, v
distinct regions are chosen for a given class and perturbed inward. We vary these parameters and analyze three
increasingly more difficult simulation scenarios: (a) u = 2 shared and v = 1 associated; (b) u = 6 shared and
v = 3 associated, and (c) u = 10 shared and v =5 associated. In panels (d)—(f), ROC curves depict the ability
of SINATRA to identify vertices located within associated regions as a function of increasing the number of cones
of directions used in the algorithm. These results give empirical evidence that seeing more of a shape (i.e., using
more unique directions) generally leads to an improved ability to map back onto associated regions. Other SINA-
TRA parameters were fixed: d = five directions per cone, 0 = 0.15 cap radius used to generate directions in a
cone and | = 30 sublevel sets per filtration. Results are based on 50 replicates in each scenario.

2. To create each region, we perturb the k closest vertices {x1, x2, ..., X} by a prespeci-
fied scale factor o and add some random normally distributed noise €; ~ N (0, 1) by setting
x’i=xja+efori=1,... k.

We consider three scenarios based on the number of shared and unique regions between
shape classes (Figure 2(a)—(c)). We choose (u, v) = (2, 1) (scenario I), (6, 3) (scenario II)
and (10, 5) (scenario III) and set all regions to be k = 10 vertices.

Each sequential scenario represents an increase in degree of difficulty, because class-
specific regions should be harder to identify in shapes with more complex structures. We ana-
lyze 50 unique simulated datasets for each scenario. In each dataset only the v-region vertices
used to create class-specific regions are defined as true positives, and we quantify SINATRA’s
ability to prioritize these true vertices using receiver operating characteristic (ROC) curves
plotting true positive rates (TPR) against false positive rates (FPR) (Supplementary Material,
Section 2, Wang et al. (2021)). We then evaluate SINATRA’s power as a function of its free
parameter inputs: ¢ number of cones, d number of directions per cone, direction generating
cap radius 6 and / number of sublevel sets per filtration. We iteratively vary each parameter
while holding the others as constants {c =25,d =5, 6 =0.15, ] = 30}. Figures displayed in
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the main text are based on varying the number of cones (Figure 2(d)—(f)), while results for
the other sensitivity analyses can be found in the Supplementary Material (Supplementary
Figures 1-3).

As expected, SINATRA’s performance is consistently better when shapes are defined by a
few prominent regions (e.g., scenario I) vs. when shape definitions are more complex (e.g.,
scenarios I and III), because each associated vertex makes a greater individual contribution to
the overall variance between classes (i.e., V(y)/10 > V(y) /30 > V(y)/50). Similar trends in
performance have been shown during the assessment of high-dimensional variable selection
methods in other application areas (Crawford et al. (2017), Li et al. (2015), Zhu and Stephens
(2018)).

This simulation study also demonstrates the general behavior and effectiveness of the
SINATRA algorithm as a function of different choices for its free input parameters. First,
we assess how adjusting the number of cones of directions used to compute Euler character-
istic curves changes power. Computing topological summary statistics over just a single cone
of directions (i.e., ¢ = 1) is ineffective at capturing enough variation to identify class-specific
regions (Figure 2(d)—(f)) which supports the intuition that seeing more of a shape leads to an
improved ability to understand its complete structure (Crawford et al. (2020), Curry, Mukher-
jee and Turner (2019), Turner, Mukherjee and Boyer (2014)). Our empirical results show that
more power can be achieved by summarizing the shapes with filtrations taken over multi-
ple directions. In practice, we suggest specifying multiple cones ¢ > 1 and utilizing multiple
directions d per cone (see monotonically increasing power in Supplementary Figure 1).

While the other two parameters (¢ and /) do not have monotonic properties, their effects on
SINATRA’s performance still have natural interpretations. For example, when changing the
angle between directions within cones from 8 € [0.05, 0.5] radians, we observe that power
steadily increases until & = 0.25 radians and then slowly decreases afterward (Supplementary
Figure 2). This supports previous theoretical results that cones should be defined by directions
in close proximity to each other (Curry, Mukherjee and Turner (2019)) but not so close that
they explain the same local information with little variation.

Perhaps most importantly, we must understand how the number of sublevel sets / (i.e., the
number of steps in the filtration) used to compute Euler characteristic curves affects the per-
formance of the algorithm. As we show in the next section, this function depends on the types
of shapes being analyzed. Intuitively, for very intricate shapes, coarse filtrations with too few
sublevel sets cause the algorithm to miss or “step over” very local undulations in a shape.
For the spheres simulated in this section, class-defining regions are global-like features, and
so finer filtration steps fail to capture broader differences between shapes (Supplementary
Figure 3); however, this failure is less important when only a few features decide how shapes
are defined (e.g., scenario I). In practice, we recommend choosing the angle between direc-
tions within cones 6 and the number of sublevel sets / via cross validation or some grid-based
search.

As a final demonstration, we show what happens when we meet the null assumptions of the
SINATRA pipeline (Supplementary Figure 4). Under the null hypothesis our feature selection
measure assumes that all 3D regions of a shape equally contribute to explaining the variance
between classes; that is, no one vertex (or corresponding topological characteristics) is more
important than the others. We generate synthetic shapes under the two cases when SINATRA
fails to produce significant results: (a) two classes of shapes that are effectively the same (up
to some small Gaussian noise) and (b) two classes of shapes that are completely dissimilar.
In the first simulation case there are no “significantly associated” regions, and, thus, no group
of vertices stand out as important (Supplementary Figure 4(a)). In the latter simulation case,
shapes between the two classes look nothing alike; therefore, all vertices contribute to class
definition, but no one feature is key to explaining the observed variation (Supplementary
Figure 4(b)).
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3.2. Simulation study: Caricatured shapes. Our second simulation study modifies com-
puted tomography (CT) scans of real Lemuridae teeth (one of the five families of Strepsirrhini
primates commonly known as lemurs) (Boyer et al. (2011)) using a well-known caricaturiza-
tion procedure (Sela, Aflalo and Kimmel (2015)). We fix the triangular mesh of an individual
tooth and specify class-specific regions centered around known biological landmarks (Fig-
ure 3) (Boyer et al. (2011)). For each triangular face contained within a class-specific region,
we apply a corresponding affine transformation, positively scaled, that smoothly varies on
the triangular mesh and attains its maximum at the biological landmark used to define the
region (Supplementary Material, Section 3, Wang et al. (2021)). We caricature 50 different
teeth with two steps (Figure 3(a)):

1. Assign v of a given tooth’s landmarks to be specific to one class and v’ to be specific to
the other class.

2. Perform the caricaturization: Multiply each face in the v and v’ class-specific regions
by a positive scalar (i.e., exaggerated or enhanced). Repeat 25 times (with some small noise
per replicate) to create two equally-sized classes of 25 shapes.

We explore two scenarios by varying the number of class-specific landmarks v and v’
that determine the caricaturization in each class. First, we set both v, v/ = 3; next, we fix
v, v’ = 5. Like the simulations with perturbed spheres, the difficulty of the scenarios in-
creases with the number of caricatured regions. We evaluate SINATRA’s ability to identify
the vertices involved in the caricaturization using ROC curves (Supplementary Material, Sec-
tion 2, Wang et al. (2021)), and we assess this estimate of power as a function of the algo-
rithm’s free parameter inputs. While varying each parameter, we hold the others as constants
{c=15,d =5,60 =0.15,1 = 50}. Figures in the main text are based on varying the number
of cones ¢ (Figure 3(b) and (c)); results for the other sensitivity analyses can be found in the
Supplementary Material (Supplementary Figures 5-7).

Overall, using fewer caricatured regions results in better (or at least comparable) perfor-
mance. Like the simulations with perturbed spheres, SINATRA’s power increases monoton-
ically with an increasing number of cones and directions used to compute the topological
summary statistics (Figures 3(b), 3(c) and Supplementary 5). For example, at a 10% FPR
with ¢ = 5 cones, we achieve 30% TPR in scenario I experiments and 35% TPR in scenario
II. Increasing the number of cones to ¢ = 35 improves power to 52% and 40% TPR for sce-
narios I and II, respectively. Trends from the previous section continue when choosing the
angle between directions within cones (Supplementary Figure 6) and the number of sublevel
sets (Supplementary Figure 7). Results for the perturbed spheres suggest that there is an opti-
mal cap radius for generating directions in a cone. Since we are analyzing shapes with more
intricate features, finer filtrations lead to more power.

3.3. Simulation study: Method comparisons. In this subsection we compare the power of
SINATRA to other state-of-the-art sub-image selection methods. Here, we revisit the same
simulation scenarios using the perturbed spheres and caricatured teeth simulation schemes,
respectively. Once again, we use ROC curves plotting TPR vs. FPR to assess the ability of
each method to identify vertices in class-specific associated regions. For SINATRA we use
a grid search to choose the algorithm’s free parameters. This led to us setting {c = 60,d =
5,6 = 0.15,1 = 30} for the perturbed spheres and {c =35,d = 5,60 = 0.15,1 = 50} for the
caricatured teeth. Note that these final values follow the trends we observed from the sen-
sitivity analyses presented in the previous two subsections. We then consider the following
three types of competing approaches:

o Vertex-level regularization (baseline): Using the fact that all the vertices within a set of
simulated meshes are in one-to-one correspondence, we vectorize the shapes by concate-
nating the (x, y, z)-coordinates of each vertex into a single vector. In this way we have
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FIG. 3. Power and sensitivity analysis for detecting associated vertices across different classes of caricatured
shapes. (a) We modify real Lemuridae molars using the following caricaturization procedure: (i) Fix the triangular
mesh of an individual tooth; (ii) Assign v of the known landmarks for the tooth (Boyer et al. (2011)) to be specific
to one class and V' to be specific to the other. The caricaturization is performed by positively scaling each face
within these regions so that class-specific features are exaggerated. We repeat 25 times (with some small added
noise) to create two classes of 25 shapes. (iii) The synthetic shapes are analyzed by SINATRA to identify the
associated regions. We consider two scenarios by varying the number of class-specific landmarks that determine
the caricaturization in each class. In scenario I, we set v, v’ = 3; and in scenario II, v,v' = 5. In panels (b) and
(c), ROC curves depict the ability of SINATRA to identify vertices located within associated regions, as a function
of the number of cones of directions used in the algorithm. Other SINATRA parameters were fixed: d = 5 directions
per cone, 8 = 0.15 cap radius used to generate directions in a cone and | = 50 sublevel sets per filtration. Results
are based on 50 replicates in each scenario.
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a (3 x g)-dimensional vector representation of each shape in our dataset, where g is the
number of vertices that each mesh contains. In other words, each vertex is directly rep-
resented by the three entries of the vector (once for each dimension of the shape). This
results in a final n x (3 x ¢) design matrix, where #n is the total number of shapes in the
data. To perform subimage selection, we implement elastic-net regularization (Zou and
Hastie (2005)) using the glmnet package (Friedman, Hastie and Tibshirani (2010)) in R
(with the penalization term chosen via cross-validation) to assign sparse individual coeffi-
cients to each column of the design matrix. Power is then determined by either ranking the
mean or maximum of the three coefficients corresponding to the (x, y, z)-coordinates for
each vertex.

e Landmark-level regularization: We implement this method by taking advantage of the fact
that the simulated objects in our study are generated from perturbations of a base shape.
Here, we generate landmarks by selecting v = {500, 2000} equidistributed points on a base
shape (in the sense of Euclidean distance). Next, we concatenate the (x, y, z)-coordinates
of the k closest vertices to each point and obtain landmark-specific vectors in R3. This
results in a final n x (3 x v x k) design matrix, where, again, n is the total number of
shapes in the data. To perform subimage selection with this method, we use a logistic re-
gression model with group-lasso regularization (Simon et al. (2013)), where the groups are
predefined as the coordinates belonging to a given landmark and the group-based penal-
ization term is chosen via cross-validation with the gglasso (Yang and Zou (2015)) in
R. Note that we consider a group-lasso penalty in order to encourage selection of impor-
tant landmarks as a whole, rather than individual vertices. True and false positives are then
determined by ranking each landmarks based on the magnitude of their coefficients.

e Limit shapes algorithm (Huang et al. (2019)): This algorithm builds upon a “functional
map network” consisting of (dual representations of) point-by-point pairwise correspon-
dences between all pairs of shapes in a dataset. From here, a consistent latent basis can be
extracted and used for constructing a “limit shape” underlying the given collection of 3D
objects but represented in a latent space. Deviations of individual shapes from this “limit
shape,” represented as functions defined on these shapes, provide a visual guide highlight-
ing sources of variability that often carry rich semantic meanings. In our simulations we
generate maps between all mesh pairs using a state-of-the-art pipeline that searches for
the optimal “bounded-distortion map” and interpolates as many “Gaussian process land-
marks” as possible (Gao et al. (2019)). These point-to-point maps of bounded conformal
distortion are then converted into functional maps which are essentially the same maps but
represented under a different system of bases of eigenfunctions of the discrete Laplace—
Beltrami operators. The resulting functional maps are directly fed into the limit shapes
workflow (Huang et al. (2019)). To perform subimage selection, we compute a vertex im-
portance vector using the first 10 eigenfunctions of the discrete Laplace—Beltrami operator
corresponding to the 10 smallest eigenvalues. Vertex weights were summarized within the
eigenfunctions by scaling the absolute value of each entry y; by the maximum vertex
weight within that eigenfunction such that w; = ||/ max{|y], ..., [¥,[}. After norming
weights within the eigenfunctions, we obtain a final vector of vertex weights by taking
the entrywise maximum of each vertex across the 10 eigenfunctions. Using this procedure
enables us to rank features from limit shapes and to generate ROC curves. To imitate re-
alistic conditions where point-by-point maps are not known a priori, we also introduce a
(misspecified) variation of limit shapes in which the functional map network is partially
scrambled.

Figures 4 and 5 display the performance of SINATRA and each of the competing methods on
the perturbed spheres and caricatured teeth, respectively, across 50 replicates in each simula-
tion scenario. There are a few important takeaways from these comparisons. First, the group
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FIG. 4. Receiver operating characteristic (ROC) curves comparing the performance of SINATRA with compet-
ing methods in the perturbed sphere simulations. Here, we generate 100 shapes by partitioning unit spheres into
regions 10 vertex-wide, centered at 50 equidistributed points. Two classes (50 shapes per class) are defined by the
number of shared u and class-specific v characteristics. We vary these parameters and analyze three increasingly
more difficult simulation scenarios: (a) u = 2 shared and v = 1 associated; (b) u = 6 shared and v = 3 associated,
and (c) u = 10 shared and v =5 associated. The ROC curves depict the ability of SINATRA to identify vertices
located within associated regions using parameters {¢c = 60,d = 5,0 = 0.15,1 = 30} chosen via a grid search.
We compare SINATRA to three methods. The first baseline concatenates the (x,y, z)-coordinates of all vertices
on the sphere and treats them as features in a data frame. It then uses elastic-net regularization to assign sparse
individual coefficients to each coordinate. For this method we assess power by either taking the mean or maximum
of the coefficient values corresponding to each vertex. The second method assumes 500 or 2000 equally spaced
landmarks across each mesh and implements a group-lasso penalty on the collection on vertices within these
regions to rank associated features. Lastly, we compare the limit shapes algorithm (Huang et al. (2019)) where
normalized vertex weights are used to determine true and false positives. Note that the limit-shapes algorithm
requires a functional correspondence map between all pairs of meshes in the data; therefore, we display results
for this algorithm both when a correspondence map is known and when the map has been misspecified. Results in
each ROC curve are based on 50 replicates in each scenario.
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FIG. 5. Receiver operating characteristic (ROC) curves comparing the performance of SINATRA with com-
peting methods in the caricatured teeth simulations. Here, we modify real Lemuridae molars using a carica-
turization procedure where we assign a v number of known landmarks for a tooth (Boyer et al. (2011)) to
be specific to one class and v' to be specific to the other. We then consider two scenarios by varying the
number of class-specific landmarks. In scenario I we set v, v/ =3, and in scenario II, v,v' = 5. The ROC
curves depict the ability of SINATRA to identify vertices located within associated regions using parameters
{c=35,d=5,0=0.15,1 = 50} chosen via a grid search. We compare SINATRA to three methods. The first base-
line concatenates the (x, y, z)-coordinates of all vertices on each caricatured tooth and treats them as features in
a data frame. It then uses elastic-net regularization to assign sparse individual coefficients to each coordinate. For
this method we assess power by either taking the mean or maximum of the coefficient values corresponding to each
vertex. The second method assumes 500 or 2000 equally spaced landmarks across each mesh and implements a
group-lasso penalty on the collection on vertices within these regions to rank associated features. Lastly, we com-
pare the limit-shapes algorithm (Huang et al. (2019)) where normalized vertex weights are used to determine true
and false positives. Note that the limit-shapes algorithm requires a functional correspondence map between all
pairs of meshes in the data; therefore, we display results for this algorithm both when a correspondence map is
known and when the map has been misspecified. Results in each ROC curve are based on 50 replicates in each
scenario.

lasso landmark-based method consistently performs the worst among all approaches that we
consider, regardless of the number of landmarks used. This is likely due to overregularization
where landmarks containing only a few vertices with nonzero effects are still be treated as
nonassociated with class variation. The vertex-level elastic net baselines perform the best un-
der the perturbed sphere simulations, particularly when the variation between shape classes
is sparsely driven by just a few associated regions (see Figure 4). Furthermore, since this
approach uses a simple regression, it scales linearly with the number of vertices on each
shape. The limit shapes algorithm also had a quicker runtime than SINATRA which took ap-
proximately 30 minutes to run per analysis (Supplementary Table 2). While the limit shapes
approach performs generally well in each simulation scenario, its performance drops signifi-
cantly when the functional mapping input into the algorithm is misspecified. This highlights
an important and practical advantage of SINATRA which maintains its utility even when
such user-specified point-by-point correspondences are unknown. Overall, the performance
of SINATRA remains competitive in all settings but clearly becomes the best approach in
the caricatured teeth simulations where there is an increase in the overall complexity of the
meshes that are analyzed (see Figure 5). We hypothesize that the simple vertex-level reg-
ularization approaches struggle on the caricatured teeth because the coordinate-based rep-
resentation becomes less effective at capturing the varying topology and geometry between
shapes.

3.4. Recovering known morphological variation across genera of primates. As an appli-
cation of our pipeline, with “ground truth” or known morphological variation, we consider a
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FI1G. 6. [llustration of the relationship between the phylogenetics and unique paraconids in molars belonging to
primates in Tarsius genus. We carry out three pairwise comparisons to analyze the physical differences between
Tarsius molars and teeth from: (i) Saimiri, (ii) Mirza and (iii) Microcebus genus. Here, we depict the phylogentic
relationship between these groups. Morphologically, we know that tarsier teeth have an additional high cusp
(highlighted in red) which allows this genus of primate to eat a wider range of foods (Crompton, Savage and
Spears (1998)). With these data we want to assess SINATRA’s ability to find this region of interest (ROI).

dataset of CT scans of n = 59 mandibular molars from two suborders of primates: Haplorhini
(which include tarsiers and anthropoids) and Strepsirrhini (which include lemurs, galagos
and lorises). From the haplorhine suborder, 33 molars came from the genus Tarsius (Boyer
et al. (2011), Gao (2015, 2021)) and nine molars from the genus Saimiri (St Clair and Boyer
(2016)). From the strepsirrhine suborder, 11 molars came from the genus Microcebus and six
molars from the genus Mirza (Boyer et al. (2011), Gao (2015, 2021)); both are lemurs.

We chose this specific collection of molars because morphologists and evolutionary an-
thropologists understand variations of the paraconid, the cusp of a primitive lower molar.
The paraconids are retained only by Tarsius and do not appear in the other genera (Figure 6)
(Guatelli-Steinberg (2003), St Clair and Boyer (2016)). Using phylogenetic analyses of mi-
tochondrial genomes across primates, Pozzie et al. estimate divergence dates of the subtree
composed of Microcebus and Mirza from Tarsius at five million years before the branching
of Tarsius from Saimiri (Pozzi et al. (2014)). We want to see if SINATRA recovers the infor-
mation that the paraconids are specific to the Tarsius genus. We also investigate if variation
across the molar is associated to the divergence time of the genera.

For these analyses we consider two types of data preprocessing procedures. In the first,
the meshes of all teeth were pre-aligned, centered at the origin, and normalized within a unit
sphere using the auto3dgm software (Puente (2013)) (Supplementary Figure 8). In the sec-
ond, we first conduct the Euler characteristic transformation on the raw data for each tooth,
and then we implicitly normalize the 3D meshes by aligning their EC curves (Supplementary
Figures 9 and 10). This latter analysis is used to demonstrate the effectiveness of SINATRA
in settings where a priori correspondences between shapes are unavailable (details in Sup-
plementary Material, Section 4, Wang et al. (2021)). Since Tarsius is the only genus with the
paraconid in this sample, we use SINATRA to perform three pairwise classification compar-
isons (Tarsius against Saimiri, Mirza and Microcebus, respectively) and assess SINATRA’s
ability to prioritize/detect the location of the paraconid as the region of interest (ROI). Based
on our simulation studies, we run SINATRA with ¢ = 35 cones, d = 5 directions per cone,
a cap radius of # = 0.25 to generate each direction and / = 75 sublevel sets to compute
topological summary statistics. In each comparison we evaluate the evidence for each vertex
based on the first time that it appears in the reconstruction: this is the evidence potential for a
vertex. A heatmap for each tooth provides visualization of the physical regions that are most
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distinctive between the genera (Figure 7). In this figure we also display results from imple-
menting the limit-shapes algorithm (Huang et al. (2019)) on the aut o3dgm prealigned data
as a baseline. Once again, for this method we use the normalized vector weights to determine
the importance of each vertex in the data.

To assess the ability of the limit shapes and SINATRA to find Zarsius-specific paraconids,
we use a null-based scoring method. We place a paraconid landmark on each Tarsius tooth
and consider the K = {10, 50, 100, 150, 200} nearest vertices surrounding the landmark’s
centermost vertex. This collection of K + 1 vertices defines our ROIL. Within each ROI we
weight the limit shape or SINATR A-computed evidence potentials by the surface area (or area
of the Voronoi cell) encompassed by their corresponding vertices and then sum the scaled
potentials together across the ROI vertices. This aggregated value, which we denote as 7%,
represents a score of association for the ROI. To construct a “null” distribution and assess the
strength of any score ¥, we randomly select N = 500 other “seed” vertices across the mesh
of each Tarsius tooth and uniformly generate N-“null” regions that are K -vertices wide. We
then compute similar (null) scores 71, ..., Ty for each randomly generated region. A “P-
value”-like quantity (for the ith molar) is then generated by

| n

(6) P;

= — ]I * < s
N+1t:1 (Tl —Tt)

where I(-) is an indicator function and a smaller P; means more confidence in either method’s
ability to find the desired paraconid landmark. To ensure the robustness of this analysis, we
generate the N-random null regions in two ways: (i) using a K -nearest neighbors (KNN)
algorithm on each of the N-random seed vertices (Cover and Hart (2006)) or (ii) manually
constructing K -vertex wide null regions with surface areas equal to that of the paraconid ROI
(Supplementary Material, Section 5, Wang et al. (2021)). In both settings we take the median
of the P; values in equation (6) across all teeth and report them for each genus and choice
of K combination; see the first half of Tables 1-2 for the SINATRA implementations and
Supplementary Table 3 for results with limit shapes, respectively.

Using P-values as a direct metric of evidence can cause problems. For example, moving
from P =0.03 to P = 0.01 does not increase evidence for the alternative hypothesis (or
against the null hypothesis) by a factor of 3. To this end, we use a calibration formula that
transforms a P-value to a bound/approximation of a Bayes factor (BF) (Sellke, Bayarri and
Berger (2001)), the ratio of the marginal likelihood under the alternative hypothesis Hj vs.
the null hypothesis Hy,

7 BF(P;)10=[—eP;log(P)] ™",

for P; < 1/e and BF(P;)19 is an estimate of Pr(H{| M)/ Pr(Hy|. M), where M are the molars
as meshes and Hyp and H; are the null and alternative hypotheses, respectively. The second
half of Tables 1-2 and Supplementary Table 3 report these calibrated Bayes factor estimates.

Overall, the limit-shapes algorithm performs generally well on these data; however, the
sparsity in the resulting vertex weights hinders clear visual enrichment of the paraconid in the
Tarsius molar (e.g., Figure 7(a)). As a reminder, there is the additional limitation of needing
correctly specified point-by-point maps between each tooth in the data to achieve sufficient
power. Based on our simulations, if these user inputs had been misspecified, the limit-shapes
approach would have experienced an even more difficult time identifying the region of in-
terest. When using SINATRA on the prealigned data, the paraconid ROI is most strongly
enriched in the comparisons between the Tarsius and either of the strepsirrhine primates,
rather than for the Tarsius-Saimiri comparison (e.g., Figure 7(b)). This trend remains con-
sistent even when SINATRA is implemented on the raw data without correspondence maps
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F1G. 7. Real data analysis aimed at detecting unique paraconids in molars belonging to primates in the Tarsius
genus. We carry out three pairwise comparisons to analyze the physical differences between Tarsius molars and
teeth from: (i) Saimiri, (ii) Mirza and (iii) Microcebus genus. Here, we consider the region of interest (ROI) to be
the additional high cusp in the Tarsius molars (highlighted in red in Figure 6). In this figure we give an example of
the mesh reconstruction from each class comparison using the Limit Shapes algorithm (Huang et al. (2019)) and
SINATRA. Panels (a) and (b) show results on shapes that were prealigned with the auto3dgm software (Puente
(2013)). Panel (c) illustrates results using SINATRA without any prior knowledge of pairwise correspondence
maps between shapes in the data. In this experiment we first conduct the Euler characteristic transformation on the
raw data for each tooth. Then, we implicitly normalize the meshes by aligning the EC curves via the approximate
grid search procedure detailed in Section 4 of the Supplementary Material. Overall, results are consistent with the
phylogeny of the primates as well as with our previous simulation studies. Genetically, Tarsius differ more from
the Mirza and Microcebus genera, rather than from Saimiri. As a result, SINATRA finds the unique paraconid
in the former two comparisons because of the appropriate genetic distance, rather than in the latter case where
molar structures are more similar. This trend occurs whether or not we have prealigned data. The heatmaps in
each panel display vertex evidence potential on a scale from [0 — 100]. A maximum of 100 represents the threshold
at which the first shape vertex is reconstructed, while O denotes the threshold when the last vertex is reconstructed.
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TABLE 1

Null region experiment to evaluate SINATRA’s ability to find paraconids in Tarsius molars using meshes with
correspondence maps. Here, we assess how likely it is that SINATRA finds the region of interest (ROI) by chance.
In this experiment, meshes were aligned using the auto3dgm software (Puente (2013)). To produce the results
above, we generate 500 “null” regions on each Tarsius tooth using: (i) a KNN algorithm and (ii) an equal-area

approach (Supplementary Material, Section 5). Next, for each region we sum the evidence potential or “birth
times” of all its vertices. We compare how many times the aggregate scores for the ROl is less than those for the
null regions. The median of these “P-values” (P), and their corresponding calibrated Bayes factors (BF) when

median P < 1/e, across all teeth are provided above for the three primate comparisons. Results with values

P-values less than 0.1 and BF's greater than 1.598 are in bold.

Test Region Size  Tarsius vs. Saimiri  Tarsius vs. Mirza  Tarsius vs. Microcebus
P-values KNN 10 475 x 107! 3.39 x 107! 2.14 x 107!
50 2.89 x 107! 2.10x 107! 1.56 x 101
100 2.14 x 107! 2.20 x 102 6.19 x 102
150 1.99 x 107! 1.80 x 10~2 6.59 x 102
200 222 x 107! 2.99 x 102 9.18 x 102
Equal-Area 10 3.21 x 1071 2.10 x 1071 1.84 x 107!
50 281 x 107! 1.72 x 1071 1.26 x 107!
100 2.40 x 107! 4.39 x 10~2 8.78 x 102
150 259 x 107! 3.79 x 10~2 8.18 x 102
200 2.55x 107! 4.39 x 10~2 9.98 x 102
Bayes Factors KNN 10 — 1.003 1.115
50 1.025 1.122 1.269
100 1.115 4.381 2.136
150 1.145 5.087 2.053
200 1.101 3.505 1.678
Equal-Area 10 1.009 1.122 1.181
50 1.031 1.215 1.409
100 1.074 2.681 1.722
150 1.051 3.016 1.796
200 1.055 2.681 1.599

(e.g., Figure 7(c))—although we note that the enrichment of the ROI is not as distinct which
is most likely due to shape alignments being slightly less precise with topological summary
statistics vs. using known landmarks. We suspect that the difference in enrichment across pri-
mate comparisons is partly explained by the divergence times between the genera: Tarsius is
more recently diverged from Saimiri than from the strepsirrhines. This conjecture is consis-
tent with the intuition from our simulation studies, where classes of shapes with sufficiently
different morphology result in more accurate identification of unique ROI. On the other hand,
the Tarsius-Saimiri comparison is analogous to the simulations under to the null model: with
too-similar molars, no region appears key to explaining the variance between the two classes
of primates.

4. Discussion. In this paper we introduce SINATRA, the first statistical pipeline for sub-
image analysis that does not require landmarks or correspondence points between images. We
use simulations to demonstrate properties of SINATRA, and we illustrate the practical utility
of SINATRA on real data. There are many potential extensions to our proposed framework.
First, in its current formulation and software implementation SINATRA is limited to binary
classification, but we believe that extensions to multi-class problems and regression with
continuous responses are trivial. To analyze continuous traits and phenotypes in many evolu-
tionary applications, one must first disentangle adaptation and heredity (Anderson, Willis and



656 B. WANG ET AL.

TABLE 2
Null region experiment to evaluate SINATRA's ability to find paraconids in Tarsius molars using meshes without
any prior knowledge of correspondence maps. Here, we assess how likely it is that the SINATRA algorithm finds
the region of interest (ROI) by chance. In this experiment we first conduct the Euler characteristic transformation
on the raw data for each tooth. Then, we implicitly normalize the collection of 3D meshes by aligning their EC
curves; see the description of approximate grid search and alignment procedure detailed in Section 4 of the
Supplementary Material. To produce the results in the table above, we generate 500 “null” regions on each
Tarsius tooth using: (i) a KNN algorithm and (ii) an equal-area approach (Supplementary Material, Section 5).
Next, for each region we sum the evidence potential or “birth times” of all its vertices. We compare how many
times the aggregate scores for the ROI is less than those for the null regions. The median of these “P-values”
(P) and their corresponding calibrated Bayes factors (BF) when median P < 1/e, across all teeth are provided
above for the three primate comparisons. Results with values P-values less than 0.1 and BFs greater than 1.598

are in bold.
Test Region Size  Tarsius vs. Saimiri  Tarsius vs. Mirza  Tarsius vs. Microcebus
P-values KNN 10 3.99 x 107! 6.09 x 107! 2.06 x 107!
50 4.15% 107! 3.23 x 107! 9.58 x 102
100 3.83x 107! 1.72 x 1071 7.59 x 102
150 3.79 x 107! 1.16 x 1071 8.38 x 102
200 3.97 x 107! 1.52 x 1071 1.00 x 101
Equal-Area 10 2.97 x 1071 4.49 x 1071 1.54 x 107!
50 3.37x 107! 3.39 x 107! 1.20 x 10~!
100 3.87 x 107! 2.16 x 107! 7.58 x 102
150 4.43 x 107! 1.66 x 10! 9.18 x 102
200 457 x 107! 2.25%x 107! 8.98 x 102
Bayes Factors KNN 10 — — 1.131
50 — 1.008 1.637
100 — 1.216 1.882
150 — 1.474 1.770
200 — 1.286 1.598
Equal-Area 10 1.020 — 1.278
50 1.004 1.003 1.447
100 — 1.119 1.881
150 — 1.235 1.678
200 — 1.095 1.700

Mitchell-Olds (2011), Chen et al. (2012), Gienapp et al. (2008), Lai et al. (2019)). The stan-
dard approach for this disentanglement is to explicitly account for the hierarchy of descent
by adding genetic covariance or kinship across species to the likelihood, either via phyloge-
netic regression (Graven (1989)) or linear mixed models (e.g., the animal model) (Henderson
(1984)). Modeling covariance structures also arises in statistical and quantitative genetics ap-
plications where individuals are related (Kang et al. (2008, 2010), Zhou and Stephens (2012)).
The SINATRA framework uses a Bayesian hierarchical model that is straightforward to adapt
to analyze complex covariance structures in future work.

A second natural extension would be to apply the SINATRA framework to radiomic stud-
ies where the goal is to detail the correlation between clinical imaging features and genomic
assays (Crawford et al. (2020)). This would require improving the efficacy of SINATRA’s
subimage selection capabilities in data settings where intraclass heterogeneity is high. For
example, when studying the progression of glioblastoma multiforme (GBM)—a glioma that
materializes into aggressive, cancerous tumor growths within the human brain—magnetic
resonance images (MRIs) can vary greatly between patients harboring the same oncogenic
mutations. As demonstrated in the current work, SINATRA is generally most powered in sce-
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narios where just a few global features drive the variation between phenotypic classes (e.g.,
Figures 2-5 and Supplementary Figures 1-7). In the examples that we consider here, class
definitions are derived from base shapes or governed by some rule of phylogeny. This keeps
intraclass heterogeneity low and facilitates the ability of SINATRA to detect varying patterns
between shape topologies. As a result, SINATRA is well suited for anthropologic-based ap-
plications and other similar domains. However, in the radiomics context it is possible that the
signature of a given tissue type is made up of small focal lesions that are collectively impor-
tant in explaining clinical outcomes. Moving forward, more work needs to be done to transfer
the utility of SINATRA to cases where inter-class variation is driven by local fluctuations in
shape morphology.

Code availability. Source code for replication is available in the Supplementary Materi-
als (Wang et al. (2021)). A package for implementing the SINATRA pipeline is freely avail-
able at https://github.com/Icrawlab/SINATRA and is written in R (version 3.5.3). As part of
this procedure: (i) inference for the Gaussian process classification (GPC) model using el-
liptical slice sampling was carried out using the R package FastGP (version 1.2) (Gopalan
and Bornn (2015)) and (ii) the computation of effect sizes and association measures for the
Euler characteristic curves was done with the “RelATive cEntrality (RATE)” source code in R
(version 1.0.0; https://github.com/lorinanthony/RATE) (Crawford et al. (2019)). Visualizing
the reconstructed regions outputted by SINATRA was done using the package rgl (version
0.100.19) (Adler, Nenadic and Zucchini (2003)) and general utility functions for triangular
meshes from the package Rvcg (version 0.18) (Schlager et al. (2017)). Furthermore, prepro-
cessing steps for the meshes examined in the study were performed using Morpho (version
2.60) (Schlager et al. (2017, 2018)) and auto3dgm (Version 1.00) (Puente (2013)).

Data availiability. The current study makes use of two real shape datasets. The first
consists of Lemuridae teeth, a specific genera of Cercopithecidae (Old World monkeys;
http://www.wisdom.weizmann.ac.il/~ylipman/CPsurfcomp/) (Boyer et al. (2011)). The sec-
ond is comprised of mandibular molars from two different suborders of the primate: Hap-
lorhini (“dry-nosed” primates; https://gaotingran.com/codes/codes.html) and Strepsirrhini
(“moist-nosed” primates; http://morphosource.org/Detail/ProjectDetail/Show/project_id/89).
From the first suborder we have 33 molars from the Tarsius (Boyer et al. (2011), Gao
(2015, 2021)) and nine molars from the Saimiri (St Clair and Boyer (2016)) genera. In the
second suborder, we have 11 molars from the Microcebus and six molars from the Mirza
genera (Boyer et al. (2011), Gao (2015, 2021)). In the initial analysis the meshes of all teeth
were aligned using auto3dgm (Puente (2013)). This algorithm establishes correspondences
between uniformly placed landmarks on each tooth such that each mesh has the same ori-
entation (e.g., Supplementary Figure 8). After alignment the molars were translated to be
centered at the origin and normalized to be enclosed within a unit ball. In a secondary analy-
ses we demonstrate how to implement SINATRA in settings where a priori correspondences
between shapes are unavailable. Here, we first conduct the Euler characteristic transformation
on the raw data for each tooth, and then we “implicitly” normalize the meshes by aligning
the EC curves (e.g., Supplementary Figures 9 and 10). Details on the approximate grid search
procedure used to do this is given in full detail in Section 4 of the Supplementary Material
(Wang et al. (2021)). These auto3dgm and ECT quality controlled meshes were then used
to demonstrate the utility of the SINATRA pipeline, respectively.

Acknowledgments. We would like to thank the Editor, Associate Editor and two anony-
mous referees for their constructive comments. We would also like to thank Ani Eloyan,
Anthea Monod, Jenny Tung, Katharine Turner and Christine Wall for helpful conversations
and suggestions. We are also very appreciative to Ruqi Huang and Maks Ovsjanikov for
sharing their MATLAB implementation of limit shapes.


https://github.com/lcrawlab/SINATRA
https://github.com/lorinanthony/RATE
http://www.wisdom.weizmann.ac.il/~ylipman/CPsurfcomp/
https://gaotingran.com/codes/codes.html
http://morphosource.org/Detail/ProjectDetail/Show/project_id/89

658 B. WANG ET AL.

Funding. This research was partly supported by grants P20GM 109035 (COBRE Center
for Computational Biology of Human Disease; PI Rand) and P20GM 103645 (COBRE Center
for Central Nervous; PI Sanes) from the NIH NIGMS, 2U10CA180794-06 from the NIH NCI
and the Dana Farber Cancer Institute (PIs Gray and Gatsonis), an Alfred P. Sloan Research
Fellowship and a David & Lucile Packard Fellowship for Science and Engineering awarded
to LC. A majority of this research was conducted using computational resources and services
at the Center for Computation and Visualization (CCV), Brown University. SM would like to
acknowledge partial funding from HFSP RGP005, NSF DMS 17-13012, NSF BCS 1552848,
NSF DBI 1661386, NSF IIS 15-46331, NSF DMS 16-13261 as well as high-performance
computing partially supported by grant 2016-IDG-1013 from the North Carolina Biotechnol-
ogy Center. Lastly, TG was supported by NSF Grant No. DMS-1439786 while in residence
at the Institute for Computational and Experimental Research in Mathematics (ICERM) in
Providence, RI, during the Computer Vision Semester Program in Spring 2019 and partially
by NSF DMS-1854831 afterward. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect the
views of any of the funders.

Author contributions statement. LC conceived the study. SM and LC developed the
methods. BW, TS, and HK developed the algorithms and implemented the software. DB
designed sampling strategy for the molar analysis. TG constructed the shape caricaturiza-
tion and provided the baseline of correspondence-based methods. All authors performed the
analyses, interpreted the results and wrote and revised the manuscript. BW, TS, and HK con-
tributed equally to the study. Correspondences for the manuscript should be addressed to SM
and LC.

Competing financial interests. The authors have declared that no competing interests
exist.

SUPPLEMENTARY MATERIAL

Supplement to “A statistical pipeline for identifying physical features that differen-
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supplementary derivations, figures, and tables referenced in the main text.
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