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Abstract In some mammals and many social insects, highly cooperative societies are
characterized by reproductive division of labor, in which breeders and nonbreeders become
behaviorally and morphologically distinct. While differences in behavior and growth between
breeders and nonbreeders have been extensively described, little is known of their molecular
underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and
gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding
‘queen’ status versus nonbreeder status to age-matched littermates, we confirm that queens
experience vertebral growth that likely confers advantages to fecundity. However, they also
upregulate bone resorption pathways and show reductions in femoral mass, which predicts
increased vulnerability to fracture. Together, our results show that, as in eusocial insects,
reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive
morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by
costs to bone strength.

Introduction

A hallmark of highly cooperative societies is reproductive division of labor. This phenomenon is best
understood in eusocial insects, where environmental cues lead to reproductively and morphologi-
cally specialized castes, including one or few highly fecund ‘queens’ (Wilson, 1971). These changes
help support the reproductive role of queens by differentiating them from nonbreeding colony
members, who forage, care for young, and engage in colony defense (Wilson, 1971; Keller and
Genoud, 1997). Queens are frequently much larger than their sterile colony mates (e.g., twice as
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elLife digest Some social animals are highly cooperative creatures that live in tight-knit colonies.
Bees and ants are perhaps the most well-known examples of social insects, while Damaraland mole-
rats and naked mole-rats, two rodent species found in southern and eastern Africa, are among the
most cooperative mammal species. In these colony-forming animals, only one or a few females
reproduce and these fertile females are frequently referred to as “queens”.

When an animal becomes a queen, her body shape can change dramatically to support the
demands of high fertility and frequent reproduction. The molecular basis of such changes has been
well-described in social insects. However, they are poorly understood in mammals.

To address this knowledge gap, Johnston et al. studied how transitioning to queen status affects
bone growth and structural integrity in Damaraland mole-rats, as well as body shape and size. The
experiments compared non-breeding female mole-rats with other adult females recently paired with
a male to become the sole breeder of a new colony. Johnston et al. also used bone-derived cells
grown in the laboratory to assess underlying gene regulatory changes in new queen mole-rats.

Johnston et al. showed that transitioning to the role of queen leads to a cascade of skeletal
changes accompanied by shifts in the regulation of genetic pathways linked to bone growth. Queen
mole-rats show accelerated growth in the spinal column of their lower back. These bones are called
lumbar vertebrae and this likely allows them to have larger litters. However, queen mole-rats also
lose bone growth potential in their leg bones and develop thinner thigh bones, which may increase
the risk of bone fracture. Therefore, unlike highly social insects, mole-rats do not seem to have
escaped the physical costs of intensive reproduction.

This work adds to our understanding of the genes and physical traits that have evolved to
support cooperative behaviour in social animals, including differences between insects and
mammals. It also shows, with a striking example, how an animal’s genome responds to social cues to
produce a diverse range of traits that reflect their designated social role.

large in honey bees and Pharaoh ants; Berndt and Eichler, 1987, Page and Peng, 2001), reflecting
dramatically altered growth and development programs that are explained by changes in gene regu-
lation (Smith et al., 2008). Social insects thus exemplify the tight evolutionary links between repro-
ductive division of labor, cooperative behavior, and extreme morphological plasticity.

Systems in which breeding is restricted to a single female supported by multiple nonbreeding
helpers are also observed in vertebrates, including birds and mammals (Koenig and Dickinson,
2016). Here, breeding status is not determined during early development, but instead occurs in
adulthood, and breeding is only achieved by those individuals who have the opportunity to transition
into a reproductive role. In some species, new breeders undergo a period of accelerated growth,
which may be important either for maintaining dominance or for supporting high fecundity (Clutton-
Brock et al., 2006; Huchard et al., 2016; O’Riain et al., 2000; Russell et al., 2004; Thorley et al.,
2018; Young and Bennett, 2010). While substantial gene regulatory divergence with breeding sta-
tus has been described for the brain and some peripheral organs (Bens et al., 2018;
Mulugeta et al., 2017, Sahm et al., 2020), we know little about the gene regulatory shifts responsi-
ble for breeder-associated patterns in growth. Because morphological change is often crucial for
ramping up offspring production, these processes are key to understanding both the basis for, and
limits of, status-driven differences in growth and development.

Here, we investigate the morphological and molecular consequences of experimental transitions
to breeding status in female Damaraland mole-rats (Fukomys damarensis). Like naked mole-rats
(Heterocephalus glaber), Damaraland mole-rats are frequently classified as 'eusocial’ (Bennett and
Faulkes, 2000; Jarvis, 1981; Jarvis and Bennett, 1993), and female helpers who transition to
queens experience accelerated vertebral growth associated with increases in fecundity
(ORiain et al., 2000; Thorley et al., 2018). However, it is not clear what triggers skeletal remodel-
ing, where it is localized within the vertebral column, or whether it extends to other parts of the skel-
eton. Further, the gene regulatory changes that support skeletal remodeling in mole-rat queens are
not known, nor are their consequences for skeletal growth potential and integrity. To address these
questions, we experimentally assigned age-matched, female littermates to become queens or
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remain as nonbreeders and evaluated gene regulatory and morphological changes induced by the
transition to queen status. Our results indicate that, as in eusocial insects, females that acquire
breeding status experience substantial morphological remodeling, associated with pathway-specific
changes in gene regulation. Notably, we found that queens not only experience lengthening of their
lumbar vertebrae (LV), but also show reductions in the growth potential and structural integrity of
their long bones. These changes result from increased rates of bone resorption that may increase
the risk of fracture, indicating that the presence of helpers does not annul the costs of reproduction
to queens.

Results

Adaptive plasticity in the skeleton of Damaraland mole-rat queens

Adult female Damaraland mole-rats were randomly assigned to either transition to queen status
(n = 12) or remain as nonbreeders (n = 18) for the duration of the experiment (Figure 1A-C;
Supplementary file 1). Age at assignment (mean age = 19.4 + 4.4 s.d. months) was consistent with
the age at dispersal observed in wild Damaraland mole-rats (1-3 years, Thorley and Clutton-Brock,
unpublished data). To resolve whether skeletal changes are a function of the queen transition per se
versus release from reproductive suppression in the natal colony, nonbreeders were either kept in
their natal colonies as helpers or placed into solitary housing in the absence of a breeding queen,
recapitulating extended periods of dispersal in this species (Jarvis and Bennett, 1993) (n = 10 help-
ers and n = 8 solitaires). At the time of assignment, females assigned to the queen, helper, and soli-
taire treatments were statistically indistinguishable in body mass, age, and vertebral length (as
measured by LV5; unpaired t-tests between all pairwise combinations of treatments: p>0.05; Fig-
ure 1—figure supplement 1). When possible, we assigned age-matched littermates to queen versus
nonbreeding treatments (26 of 30 experimental animals were in sets of littermate sisters;
Supplementary file 1). Six nonexperimental animals (one queen and five nonbreeders) were also
included in the sample, resulting in a total sample size of 13 breeders and 23 nonbreeders
(Supplementary file 1).

Females assigned to the queen treatment were each transferred to a new tunnel system contain-
ing only an unrelated adult male, simulating the natural process of dispersal and new colony forma-
tion in the wild (Jarvis and Bennett, 1993). This pairing procedure, which defines the queen
treatment, typically leads to immediate sexual activity and rapid activation of the reproductive axis,
including initiation of ovulation and the potential for conception (Bennett et al., 1996;
Snyman et al., 2006). Queens gave birth to a mean of 6.92 + 5.57 s.d. live offspring during the 12—
22-month follow-up period, produced in a mean of 2.85 + 1.75 s.d. litters (range: 0-6;
Supplementary file 1). As expected, helpers and solitaires produced no offspring, and did not differ
from each other in body mass or vertebral length after the 12-22-month follow-up period (unpaired
t-tests, all p>0.05; Figure 1—figure supplement 2). Because helpers and solitaires were morpholog-
ically indistinguishable, and also exhibited no differences in gene expression in our subsequent
genomic assays (Supplementary file 2), we grouped them together into a single ‘nonbreeder’ treat-
ment for the remainder of our analyses.

Compared to nonbreeders, queens showed rapid growth in the LV in the first 12 months post-
pairing (Figure 1D, E), especially in the vertebrae toward the caudal end of the vertebral column
(LV5 and LVé). Based on longitudinal measurements, most of this differential growth was concen-
trated soon after the breeding status transition. Specifically, we observed a significant interaction
between breeding status (queen versus nonbreeder) and post-pairing time point in the first four
months of the experiment (Figure 1D; B = 0.0794, p=3.13x10"%; n = 49 x-rays from 28 animals), but
not for measurements taken in later time point intervals (4 versus 8 months; 8 versus 12 months, 12
versus 16 months, 16 versus 22 months; all p>0.05). Moreover, in the first four months, only queens
that had already experienced pregnancy showed accelerated vertebral lengthening relative to non-
breeders (unpaired t-test; LV5 of pregnant queens versus nonbreeders: t = —5.735, df = 16.871,
p=2.50><‘|075; LV5 of queens not yet pregnant versus nonbreeders: t = —0.789, df = 13.007,
p=0.444; n = 14 nonbreeders, five pregnant queens, and two queens not yet pregnant).

As a result of accelerated vertebral growth in queens post-transition, size differences persisted
throughout the study. After 12 months, the absolute length of LV5 in queens was, on average, 4.8%
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Figure 1. Transition to queen status leads to lumbar vertebral (LV) lengthening. (a) A breeding ‘queen’ (top) and nonbreeding female (bottom)
Damaraland mole-rat, shown at the same scale. Animals are dye marked to allow for individual identification. Photo credit James Bird. (b) An x-ray of a
female breeder, with lines depicting the x-ray measurements taken (LV1-LV7, right femur, right tibia, and zygomatic arch). Three developing offspring
are visible within the abdomen (highlighted by increased brightness and contrast), and span the length of the LV. (c) Experimental design: nonbreeding
adult female ( %) littermates were randomly assigned to transition to queen status (purple §) by being paired with an unrelated male ( &), or to remain
in a nonbreeding treatment (cyan). Duration of treatment ranged from 12 to 22 months. (d) Queens (purple dots) show more rapid growth in LV5 in the
first four months of the experiment, relative to nonbreeders (cyan diamonds; treatment by time point interaction: B = 0.078, n = 49, p=3.47x107°). Dots
show means + standard errors (bars). (e) At the start of the experiment (0 months, left panel), the LV of breeders do not differ from those of
nonbreeders (unpaired t-tests, all p>0.05). However, at 12 months (right panel), queens have longer LV relative to nonbreeders (unpaired t-tests, *
indicates p<0.05). Dots show means + standard errors (bars). Lengths of LV above the plots are scaled to indicate the mean lengths of queens (top) and
nonbreeders (bottom) at each time point; vertebrae highlighted in purple are significantly longer in queens relative to nonbreeders. (f) Litter size is
positively correlated with maternal body length in the Damaraland mole-rat colony (B = 0.353, n = 328 litters, p=1.35x1075).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mass, age, and lumbar vertebra (LV) 5 length of queen, helper, and solitaire female mole-rats at the start of the experiment.

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 2. Mass and lumbar vertebra (LV) 5 length of helper and solitaire female mole-rats after 12-22 months of experimental treatment of
social status.
Figure supplement 3. Body length is positively correlated with the lengths of lumbar vertebrae (LV) 1-7.

longer than nonbreeders (Figure 1E; LV5: unpaired t-test, t = 2.509, df = 21.095, p=0.020), and the
absolute length of the LV column in queens relative to nonbreeders was 3.5% longer, although the
latter difference was not significant (unpaired t-test, t = 1.945, df = 22.49, p=0.064). Differences
between queens and nonbreeders were even more apparent if LV measures were scaled by zygo-
matic arch (head) width, as in previous studies (O’Riain et al., 2000; Thorley et al., 2018; Dengler-
Crish and Catania, 2009) (LV5: 9.3% longer, unpaired t-test, t = 4.12, df = 15.135, p=8.87x10"% LV
column length: 7.9% longer, unpaired t-test, t = 4.34, df = 15.37, p=5.58x10"%). Thus, transitions to
queen status induce reproductive investment, which in turn leads to organism-wide allometric
changes that generate an elongated phenotype.

The elongated phenotype appears to subsequently facilitate future fecundity. Queens with longer
bodies (which correlates with longer LV, Pearson’s r = 0.856, p=5.99x10~>’; Figure 1—figure sup-
plement 3) had more pups per litter (Figure 1F; p = 0.353, p=1.35x1073, n = 328 litters from all
breeding groups maintained in the same breeding facility; Supplementary file 3). Controlling for lit-
ter size, longer queens also had larger pups: for every additional centimeter of maternal body
length, pup body mass increased by 2.9% (B = 0.29, p=0.032, n = 971 pups). Thus, the elongated
queen phenotype is a strong candidate for adaptive plasticity that supports increased fertility in
queen mole-rats.

Breeding status induces gene regulatory changes in the queen mole-rat
skeleton
To identify the gene regulatory changes associated with skeletal plasticity, we cultured cells enriched
for bone marrow-derived mesenchymal stromal cells (bMSCs) isolated from the LV (pooled LV1-LV5)
of queens and nonbreeders (n = 5 queens, 11 nonbreeders). bMSC cultures include multipotent skel-
etal stem cells, the precursor of the osteoblast and chondrocyte lineages responsible for bone
growth. In parallel, we cultured cells enriched for bMSCs from the pooled long bones (humerus,
ulna, radius, left femur, and left tibia) of the same animals, which do not show increased elongation
in queens (femur at 12 months: unpaired t-test, t = —0.202, df = 19.326, p=0.842; tibia at 12 months:
unpaired t-test, t = —0.860, df = 16.759, p=0.402). To evaluate the potential role of sex steroid hor-
mone signaling on bone growth, we treated cells from each bone sample for 24 hr with either 10 nM
estradiol or vehicle control, resulting in 47 total samples. We then performed RNA-Seq on each sam-
ple to screen for genes that were systematically differentially expressed in the bone cells of queens
versus nonbreeders.

Of 10,817 detectably expressed genes, 171 genes showed a significant effect of breeding status
at a false discovery rate (FDR) threshold of 10% in the long bones (329 at an FDR of 20%;
Supplementary file 4). Surprisingly, no genes showed a significant effect of breeding status in the
LV at either FDR threshold. However, effect sizes were highly correlated between bone types overall
(R? = 0.75, p=4.60x10">%), with more pronounced effects of breeding status in the long bone sam-
ples than in the LV (paired t-test on breeding status effects in long bone versus vertebrae: t = 3.97,
df = 317.67, p=8.73x107>). Importantly, breeding status-related differences were not readily attrib-
utable to differences in bone cell composition. Based on both canonical markers of bMSC lineage
cells and deconvolution of the RNA-Seq data using data from 27 mesenchymal or hematopoietic
lineage mouse cell types, the majority cell type in both queen and nonbreeder samples was most
similar to cells from the bMSC lineage (Dominici et al., 2006; Hume et al., 2010; Newman et al.,
2015; Figure 2—figure supplements 1 and 2). Additionally, the top three principal components
summarizing estimated cell-type proportions did not differ between queens and nonbreeders (all
FDR > 10%, Supplementary file 5), and we identified no cases in which the effects of breeding sta-
tus on gene expression were significantly mediated by the first principal component of cell composi-
tion (p>0.05 for all 171 queen-associated genes at 10% FDR; Supplementary file 6).
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The majority of breeding status-associated genes were upregulated in queens (151 of 171 genes,
88%). In support of their role in skeletal plasticity, upregulated genes were enriched for bone remod-
eling (log[OR]=4.07, p=5.07><10’6), a process that involves the balanced cycle between bone for-
mation by osteoblasts and bone resorption by osteoclasts (Redlich and Smolen, 2012; Figure 2).
Surprisingly, however, enriched pathways were specifically related to bone resorption, not formation
(Supplementary file 7), including ‘positive regulation of bone resorption’ (Figure 2A, C; log[OR]
=6.51, p=1.55><10_6) and ‘superoxide anion generation,” which is involved in osteoclast activity and
degradation of bone matrix (Figure 2A, C; log,OR]=5.29, p=’l.4><10’5) (Darden et al., 1996;
Datta et al., 1996, Key et al., 1990; Key et al., 1994). Differentially expressed genes were also
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Figure 2. Queen status drives increased regulatory activity of bone resorption pathways. (a) Gene Ontology (GO) terms enriched in queen upregulated
genes, relative to the background set of all genes tested. Bars represent 95% confidence intervals. Processes highlighted in purple are also depicted in
(c). Highest-level (most general) terms are shown; for full GO enrichment results, see Supplementary file 7. (b) Accessible transcription factor binding
site motifs enriched near queen upregulated genes, relative to all genes tested. Bars represent 95% confidence intervals. Transcription factors
highlighted in purple are also depicted in (c). (c) Schematic of the balance between bone formation and bone resorption, showing key regulators and
markers for mesenchymal stem cell differentiation into osteoblasts and hematopoietic stem cell differentiation into osteoclasts (Redlich and Smolen,
2012; Segeletz and Hoflack, 2016). Note that not all genes or proteins in gray were tested for differential expression (e.g., because they were not
annotated in the Damaraland mole-rat genome or were too lowly expressed in our sample); see Supplementary file 4 for full set of tested genes.
Queen upregulated genes or corresponding proteins (false discovery rate [FDR] < 10%) are highlighted as purple ovals, and transcription factors with
binding motifs enriched near queen upregulated genes are highlighted as purple hexagons. Inset for osteoclasts shows the NADPH oxidase system,
which generates superoxide radicals (O3) necessary for bone resorption and is highly enriched for queen upregulated genes (purple ovals).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mole-rat RNA-Seq samples cluster closest with purified mouse osteoblasts, based on canonical bone marrow-derived
mesenchymal stromal cell (bMSC) markers.

Figure supplement 2. Estimated cell proportions for the 47 mole-rat RNA-Seq samples.

Figure supplement 3. Footprint profiles of transcription factors androgen receptor (AR), estrogen receptor 1 (ESR1), and estrogen receptor 2 (ESR2).
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enriched for immune-related processes (e.g., ‘cytokine secretion,’ ‘chemotaxis,’ ‘leukocyte activation
involved in immune response’; Supplementary file 7). These observations suggest that transitions to
queen status also involve changes in immunoregulatory signaling (osteoclast cells are derived from
monocytes).

Omni-ATAC-seq profiling of open chromatin regions further supports a central role for bone
resorption and osteoclast activity in the queen skeleton (n = 8; Supplementary file 8). Specifically,
transcription factor binding motifs (TFBMs) located in accessible chromatin near queen upregulated
genes were enriched for PU.1 and MITF, two transcription factors that are essential for osteoclast
differentiation (Segeletz and Hoflack, 2016; Figure 2B, C; PU.1 log,JOR]=1.041, p=2.84><'|0’4;
MITF log,JOR]=0.707, p=7.36x10">; see Supplementary file 8 for a complete list of enriched
TFBMs). MITF was also among the 151 genes that were differentially expressed between queens
and nonbreeders and upregulated in both queen long bones and LV. Surprisingly, given the role of
sex steroid hormones in bone growth and elevated estradiol levels in queen versus helper Damara-
land mole-rats (Bennett, 1994), we observed no significant effects of estradiol treatment on gene
expression in either bone type (all FDR > 10%). Queen upregulated genes were also not in closer
proximity to androgen response elements (AREs) or estrogen response elements (EREs) than
expected by chance (ARE log[OR]=0.207, p=0.627; ERE log,|OR]=0.196, p=0.652). Consistent with
this observation, transcription factor footprinting analysis showed no evidence of queen-associated
differences in transcription factor activity of the androgen receptor (AR), estrogen receptor 1 (ESR1),
or estrogen receptor 2 (ESR2), in either the long bones or LV (all paired t-tests: p>0.05; Figure 2—
figure supplement 3). Thus, our data point to the involvement of non-sex steroid-mediated signal-
ing pathways in remodeling queen mole-rat bones, at least after 1 year post-transition.

Extensive skeletal remodeling in queen mole-rats

The gene expression data suggest that queen status-driven changes to the skeleton extend beyond
the LV to the long bones. Further, they suggest that bone resorption—an important counterpoint to
bone formation that is required for normal skeletal maintenance—also distinguishes breeding and
nonbreeding females. To investigate this possibility, we performed high-resolution micro-computed
tomography (UCT) scanning to generate 3D reconstructions of LV6, LV7, right femur, and right tibia
of queens and female nonbreeders (n = 140 bones from 36 animals; Figure 3A, Figure 3—figure
supplement 1). This approach substantially increases the level of resolution for investigating breed-
ing status-linked differences in skeletal morphology, as previous studies relied on x-ray data alone
(O’Riain et al., 2000; Thorley et al., 2018).

We first asked whether breeding status could be predicted from morphological differences in the
3D reconstructions. We found that it could for the LV, but not for the femur: by applying the smooth
Euler characteristic transform (Crawford et al., 2016), we were able to predict queen versus non-
breeder status in LV6 (77.8% accuracy, p=0.01, n = 36), but not the femur (52.8% accuracy, p=0.53,
n = 36). Including only highly fecund queens (>6 total offspring) improved predictive accuracy in the
femur (70% accuracy, p=0.12, n = 30). Although these predictions did not reach statistical signifi-
cance, they raised the possibility that morphological changes in femurs become enhanced with
increasing reproductive effort.

We next tested whether the transition to queen status affects the ability to continue bone length-
ening. Lengthening requires the presence of a growth plate, a region of cartilage in the bone where
longitudinal growth occurs through proliferation of cartilage cells (chondrocytes) (Figure 3A, B, Fig-
ure 3—figure supplement 7). Closure of the growth plate, which indicates that bone lengthening
potential has terminated, typically occurs in mammals after reaching sexual maturation, when energy
begins to be invested in reproduction instead of growth (Kilborn et al., 2002). To test whether the
transition to queen status alters bone lengthening potential, we performed Safranin O staining on
sections of the right tibia and LV7 to visualize growth plates (Figure 3B). In the proximal tibia but
not LV7, queens were less likely to have open growth plates (Figure 3C, Figure 3—figure supple-
ment 1, and Supplementary file 9; tibia: two-sided binomial test, p=0.019; LV7: two-sided binomial
test, p=0.422). The increased probability of growth plate closure in the tibia of queens is linked to
the number of offspring a female has produced: females with more offspring showed a higher
expanse of closure across the growth plate (B = 0.050, p=4.51x1073, n = 12, controlling for age).
This pattern may be due in part to reduced chondrocyte proliferation, as females that produced
more offspring had fewer chondrocyte columns in the remaining growth plate (Figure 3D;
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Figure 3. Queen status leads to reduced growth potential in the tibia and reduced cortical area at the femoral midshaft. (a) Micro-computed
tomography (LCT) scans of Damaraland mole-rat tibias. Boxes indicate the location of the proximal growth plate, which varies between unfused (left) to
fully fused (right). (b) Example Safranin O-stained histological sections of the proximal tibia, in which the growth plate is unfused (top), partially fused
(middle), or fully fused (bottom). Values indicate percent growth plate fusion across the width of the bone. The cartilaginous growth plate is stained
deep pink, and calcified bone is stained green. (c) Queens, and specifically queens that gave birth to more offspring, show increased growth plate
fusion (B = 0.050, p=4.51x1073, n = 12, controlling for age) and (d) decreased number of chondrocyte columns within the remaining growth plate

(B = —0.132, p=0.020, n = 12, controlling for age). Each box represents the interquartile range, with the median value depicted as a horizontal bar.
Whiskers extend to the most extreme values within 1.5x of the interquartile range. In (c) and (d), dots represent individual animals, and shading
indicates each animal’s total offspring number. Ages of queens and nonbreeders do not significantly differ (unpaired t-test, t = 0.489, n = 12, p=0.644).
(e-g) Femoral cross-sections with area highlighted in gray show the measures represented in the corresponding plots below. Each line represents an
age-matched, nonbreeder and queen littermate pair. (e) Queens have less cortical bone (relative to the total area of the femoral midshaft cross-section)
compared to their paired nonbreeding littermates (paired t-test, t = —4.07, df = 8, p=3.60><10*3). (f) Queens also have enlarged marrow cavities (paired
t-test, t = 5.36, df = 8, p=6.82><10_4) but (g) show no difference in overall periosteal area (paired t-test, t = 1.54, df = 8, p=0.162).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Growth potential in lumbar vertebra (LV) 7.
Figure supplement 2. Queens do not exhibit reduced cortical area at the midsection of lumbar vertebra (LV) 6.
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B =—-0.132, p=0.020, n = 12, controlling for age). Thus, offspring production in queens is associated
with loss of the ability to lengthen the long bones, but not the LV, consistent with the importance of
abdominal lengthening for supporting larger litters.

A major demand on reproductively active female mammals is a high requirement for calcium, par-
ticularly during lactation when mothers support rapid offspring bone growth. Maternal skeletons are
remodeled to meet this demand, although in most mammals, these changes are not permanent
(reviewed in Kovacs, 2016). Because of the particularly intense reproductive investment made by
cooperatively breeding mole-rat queens, we therefore also evaluated the effect of queen status on
trabecular and cortical bone volumes, which are thought to be important in satisfying short-term and
long-term calcium demands, respectively. We found no effect of queen status on the amount of tra-
becular bone in the femur, tibia, LV6, or LV7 (all p>0.05 for bone volume/total volume). However,
we found that cortical bone was significantly reduced at the femoral midshaft, but not in the LV, in
queens compared to their nonbreeding sisters (Figure 3E, Figure 3—figure supplement 2; femur:
paired t-test of cortical area (CA)/total area, t = —4.067, df = 8, p=3.60><10_3; LVé6: paired t-test of
CA/total area, t = —0.741, df = 6, p=0.487). Relative to nonbreeders, the femoral midshafts of
queens showed significantly lower apparent density (paired t-test, t = —3.734, df = 8, p=5.75><10_3),
but no difference in material density (paired t-test, t = —0.074, df = 8, p=0.943). Thus, reduced bone
mass in queens is due to reduced bone volume, and not to reduced mass per unit volume (e.g., due
to increased porosity).

The reduction of apparent density in queens could be due to slowed bone growth, which typically
occurs on the outer, periosteal bone surface, or to increased bone resorption, which typically affects
the inner endosteal surface and increases the marrow cavity. Our analysis indicates that cortical
bone loss in queens is due to the latter explanation: queens had a larger marrow cavity (paired
t-test, t = 5.355, df = 8, p=6.82><1074; Figure 3F) but showed no difference in periosteal area com-
pared to their nonbreeding sisters (paired t-test, t = 1.539, df = 8, p=0.162; Figure 3G).

Because changes in cortical bone are thought to reflect accumulated demands over long time
frames, we hypothesized that cortical thinning in queens is a consequence of repeated cycles of
pregnancy and lactation over time, which can occur simultaneously in Damaraland mole-rat queens.
In support of this idea, we found that, within queens, the relative amount of cortical bone is not pre-
dicted by the number of pups in a queen’s recent litter (pups born within the past 30 days;
B = —0.024, n = 13, p=0.287), but instead by the total number of pups she produced in her lifetime.
Specifically, queens who had more live births had reduced cortical bone thickness along the entire
shaft of the femur (Figure 4 and Supplementary file 10; across decile sections of the femur: all
p<0.05, controlling for mother’s litter as a random effect). Thus, cortical thinning does not com-
mence with the transition to queen status per se (i.e., it is not a correlate of achieving breeder sta-
tus), but instead appears to be a consequence of repeated investment in pregnancy and lactation.
Notably, thinning is particularly marked in queens who had at least six offspring, which usually occurs
by 14 months after a breeding status transition (i.e., by the third litter; Supplementary file 10).
Given that wild Damaraland mole-rat queens can maintain their status for many vyears
(Schmidt et al., 2013), our results suggest that long-lived queens may experience substantial mor-
phological change (although the long lives of wild Damaraland mole-rat queens [Schmidt et al.,
2013] suggest these changes must be manageable to some degree, or potentially even
recoverable).

Skeletal remodeling predicts increased risk of femur breakage in
queens

In humans, accelerated bone resorption is a central cause of osteoporosis-related bone fragility
(Szulc et al., 2006). We therefore hypothesized that cortical thinning in queen mole-rat femurs
would be linked to decreased bone strength. To test this hypothesis, we calculated three key indica-
tors of femoral structural integrity: cortical area (CA), the minimum second moment of inertia (Imin, @
correlate of minimum resistance to bending), and polar second moment of area (J, a correlate of tor-
sional rigidity). In nonbreeders, the three measures are positively correlated with body mass (CA:
RZ = 0.409, n = 21, p=1.08x1073; |t R? = 0.412, n = 21, p=1.03x1073; J: R? = 0.422, n = 21,
p=8.62x10"%). However, in queens, |, and J are not significantly predicted by body mass (Imin:
R2 = 0.088, n = 13, p=0.17; J: R? = 0.239, n = 13, p=0.0514), but are instead a function of number
of offspring produced (I in: R? = 0.283, p=0.0354; J: R? = 0.271, n = 13, p=0.0393). Queen CA is
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Figure 4. Offspring production in queens leads to cortical thinning across the femoral shaft. (a) Queens (top row) relative to their same-aged female
nonbreeding littermates (bottom row) present thinner cortical bone across the femur, particularly in females that have many offspring (top right).
Number of offspring is indicated above each femur, and vertical arrows indicate littermate pairs. (b) Within each decile section across the femoral shaft,
number of offspring is negatively correlated with average cortical thickness (linear mixed model with littermate pair as random effect). Full results are
presented in Supplementary file 10. Asterisk indicates p<0.05.
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predicted by both offspring number and body mass, but offspring number explains almost twice the
variance (offspring number R? = 0.634, p=6.83x10%; body mass R? = 0.385, p=0.014).

To evaluate the effects of reproductive activity on the risk of bone failure, we drew on data on
the relationship between CA and bone mechanical failure in a large data set of mouse femurs
(Jepsen et al., 2003). In this data set, CA is the best predictor of maximum load (the maximum force
a bone can withstand prior to failure), and, crucially, the CA-max load relationship is highly linear
(Figure 5—figure supplement 1, R? = 0.877, p=6.64x10"%®). Scaling the mole-rat CA data to
mouse suggests that transitions to queen significantly increase the risk of bone failure (Figure 5; haz-
ard ratio [95% confidence interval]=2.68 (1.18, 6.08), n = 34, p=0.018). Similar to growth potential
and cortical thinning, this effect is driven by highly fertile queens, such that those who had at least
six offspring showed the highest predicted risk of bone failure (Figure 5; queens with >6 offspring
relative to nonbreeders: HR = 3.74 (1.42, 9.82), n = 28, p=0.007). The risk of bone failure is thus pre-
dicted to increase by 21% for each additional pup (HR = 1.21 (1.10, 1.33), n = 34, p='|.22><10’4).

Discussion

Our results demonstrate that transitions to breeding status in Damaraland mole-rat queens lead to a
cascade of skeletal changes linked to shifts in gene regulation. The vertebral lengthening observed
in Damaraland mole-rat queens is concordant with previous reports of vertebral lengthening in both
Damaraland mole-rats (Thorley et al., 2018) and naked mole-rats (O’Riain et al., 2000). Like naked
mole-rats, our analyses show that most growth is concentrated soon after the breeding status transi-
tion, especially in connection with the first post-transition pregnancies (Dengler-Crish and Catania,
2009; Henry et al., 2007). However, our findings also suggest subtle differences: for instance, while
the growth phenotype in naked mole-rats occurs at the cranial end of the LV (Henry et al., 2007), it
is concentrated at the caudal end of the vertebral column in Damaraland mole-rats. Given that Dam-
araland mole-rats and naked mole-rats independently evolved a similar, highly cooperative social
structure (Jarvis and Bennett, 1993, Faulkes and Bennett, 2016), this difference suggests potential
convergent evolution of the vertebral lengthening phenotype in queens, presumably in response to
the selection pressure for increased fertility.

— Queens = 6 offspring — Queens = Nonbreeders

1.001

0.751

0.50 1

Survival probability

0.251

0.00 1

0.5 1
Relative force

Figure 5. Effect of reproductive status on the probability of bone failure. Survival curves for femurs from nonbreeders versus queens (Wald test, p=0.02,
n = 34) and versus queens with >6 offspring (Wald test, p=0.006, n = 28), based on predictions from the midshaft cortical area and data from
Jepsen et al., 2003. Vertical dashed lines indicate group medians, with the median failure time for nonbreeders fixed at a value of 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Relationship between max load and cortical area in mouse femurs.
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In addition to previously described vertebral growth, we found that queen Damaraland mole-rats
lose bone lengthening potential in the long bones and develop thinner femurs that are predicted to
be more prone to mechanical failure. Moreover, gene expression levels in queens reflect a signature
of bone resorption, rather than bone growth, at the time of sampling, which occurred 1-2 years
post-transition. The molecular signature of bone resorption temporally aligns with changes in mor-
phology, in which accelerated vertebral growth primarily occurs during a female’s first pregnancy,
whereas cortical thinning in the long bones is a function of repeated cycles of offspring production.
Thus, queens quickly progress from traits typically associated with pre-reproductive and pubertal
growth in mammals (e.g., body elongation), to traits typically linked to aging (e.g., marrow cavity
expansion and cortical thinning).

The complex pattern of bone growth and bone resorption in queens likely involves multiple regu-
latory mechanisms. Because estrogen is known to impact bone growth and maintenance (Cut-
ler, 1997, Khalid and Krum, 2016), and estrogen levels are higher in mole-rat queens relative to
nonbreeding females (Bennett, 1994), we hypothesized that queens and nonbreeders would differ
in their response to estradiol in bone marrow-derived cells. Surprisingly, we observed no gene
expression response to estradiol treatment. By itself, this result could be a function of the specific
concentration or duration of estradiol treatment we applied. However, we also observed no enrich-
ment for estrogen receptor binding motifs near queen upregulated genes, and no evidence that
estrogen or androgen receptor binding sites are differentially bound in cells from queens versus non-
breeders. Thus, our results suggest a role for other, as-yet unknown signaling pathways in the
queen-specific signature of long bone cortical resorption (although it does not exclude the possibil-
ity that estrogen signaling influences other phenotypes, such as bone elongation, growth plate clo-
sure, or collagen organization, which require further study; Juul, 2001; Cake et al., 2005;
Ham et al., 2002).

Bone loss in Damaraland mole-rat queens may be an extreme of the typical mammalian pattern
of bone remodeling, in which bone mineral density decreases during pregnancy and lactation, but
recovers once offspring are weaned (Kovacs, 2016). Thinning in mole-rats may be sustained, how-
ever, because queens can begin gestating soon after lactating for the previous litter, leaving little to
no time for recovery. One possible reason that this fast rate of breeding is achievable is that queens
in colonies with more helpers work less and rest more (Houslay et al., 2020), consistent with studies
in other cooperative species that show that helpers alleviate breeding-associated efforts
(Bales et al., 2000; Clutton-Brock and Manser, 2016; Crick, 1992; Paquet et al., 2013; Rus-
sell, 2003; Scantlebury et al., 2002). Paradoxically, helpers might not only help offset costs of, but
also contribute to, decreased bone mass in queens, given that large numbers of helpers are them-
selves produced via high queen fecundity, and reduced physical activity can also lead to decreases
in bone mass (Morseth et al., 2011).

The extent to which helpers reduce the costs of breeding to queens may also differ between spe-
cies depending on the relative numbers of helpers to breeders. For example, in eusocial insects,
large colonies and the high ratio of helpers to queens reduce the costs of reproduction to queens to
very low levels (Wilson, 1971; Keller and Genoud, 1997). Similarly, in naked mole-rats (where colo-
nies can include hundreds of animals compared to dozens in Damaraland mole-rat colonies; Jar-
vis, 1981, Jarvis and Bennett, 1993; Jarvis et al., 1994), a small sample of queens (n = 6) suggests
increased rather than decreased femoral cortical thickness relative to age-matched nonbreeders
(Pinto et al., 2010). Testing how the costs and benefits of reproduction are resolved across different
levels of cooperativity, including the molecular mechanisms that mediate these differences, is an
important next step towards understanding the evolution of cooperative breeding in mammals.

Finally, despite frequent analogies between Damaraland mole-rats and eusocial insects
(Jarvis and Bennett, 1993; Jarvis et al., 1994, Burda et al., 2000), our results suggest some key
points of differences. Specifically, while abdominal lengthening allows queen mole-rats to increase
fecundity per reproductive effort, loss of cortical bone in the femur is unlikely to directly benefit
either fertility or survival. Instead, it reflects the cumulative burden of continuous cycles of pregnancy
and lactation (Kovacs, 2016). Thus, unlike eusocial insect queens (Rodrigues and Flatt, 2016;
Rueppell et al., 2016), Damaraland mole-rat queens incur morphological costs to concentrated
reproduction in addition to morphological changes that facilitate increased fitness. How these costs
translate into fertility or survival outcomes in natural populations remains a fascinating, unanswered
question.
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Additional information

Peptide, Recombinant human Biocom Africa Biotech Cat # 571504
recombinant fibroblast (http://www.biocombiotech.com)
protein growth factor-

basic
Chemical Y-27632 Cayman Chemical Cat # 10005583
compound, Rock Inhibitor
drug
Software, R Project R Project for RRID:SCR_001905
algorithm for Statistical Statistical Computing

Computing
Software, cutadapt cutadapt RRID:SCR_011841
algorithm
Software, HTSeq HTSeq RRID:SCR_005514
algorithm
Software, STAR STAR RRID:SCR_004463
algorithm
Software, LIMMA LIMMA RRID:SCR_010943
algorithm
Software, DESeq DESeq RRID:SCR_000154
algorithm
Software, G:Profiler G:Profiler RRID:SCR_006809
algorithm
Software, GATK GATK RRID:SCR_001876
algorithm
Software, VCFtools VCFtools RRID:SCR_001235
algorithm
Software, BEAGLE BEAGLE RRID:SCR_001789
algorithm
Software, CIBERSORT CIBERSORT RRID:SCR_016955
algorithm
Software, Trim Galore Trim Galore RRID:SCR_011847
algorithm
Software, BWA BWA RRID:SCR_010910
algorithm
Software, MACS MACS RRID:SCR_013291
algorithm
Software, HOMER HOMER RRID:SCR_010881
algorithm
Software, MATLAB MATLAB RRID:SCR_001622
algorithm
Software, ImageJ ImageJ RRID:SCR_003070
algorithm
Software, Avizo 3D Software Avizo 3D Software RRID:SCR_014431
algorithm
Other MEM-alpha Sigma-Aldrich Cat # M4526
Other Hyclone Research Grade  Separations SV30160.03IR

Fetal Bovine
Serum (FBS),
South American
(Colombia)
origin,
IRRADIATED

(South Africa;

http://separations.co.za)
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Study system and experimental design

Damaraland mole-rats (F. damarensis) were maintained in a captive colony at the Kuruman River
Reserve in the Northern Cape Province of South Africa, within the species’ natural range. With the
exception of the predictive Euler characteristic transform analysis (which included two nonbreeding
females born in the wild and subsequently maintained in captivity), only animals born in captivity,
with known birthdates, ages, and litter composition, were used in this study. Animals were main-
tained in artificial tunnel systems built from PVC pipes with compartments for a nest-box and waste-
box and transparent windows to allow behavioral observation (Zé6ttl et al., 2016). Animals were fed
ad libitum with sweet potatoes and cucumbers.

Adult females (>1 year) from 16 natal colonies were randomly assigned to be either nonbreeders
or queens, such that females assigned to queen status had age-matched littermates, where possible,
who were assigned to the nonbreeding condition. To distinguish the effects of queen status from
release from reproductive suppression, nonbreeders were either maintained in their natal colony as
helpers or maintained alone, which models the social condition experienced by dispersing females.
Females assigned to the breeder condition were transferred to a new tunnel system with an unre-
lated male from a separate social group. Nine new breeding females, six helpers, and eight solitaire
females (age-matched littermates where possible; Supplementary file 1) were set up in December
2015-July 2016 (Thorley et al., 2018). With one exception (animal G10F026), animals maintained
their breeding status for 14-22 months before sample collection. One queen and five helpers that
were siblings, but not age-matched littermates, of experimental animals were also included in sam-
ple collection. To increase the final sample size, an additional four breeding colonies, matched
against four age-matched littermate helpers, were formed in October 2017 and followed for 11-12
months (Supplementary file 1). One queen died before sample collection, and one nonexperimental
helper was euthanized during the course of the study and included in sample collection. The final
sample size included 13 queens, 15 helpers, and 8 solitaire females.

X-ray data

For a subset of study subjects, full body X-rays were taken using the Gierth TR 90/20 battery-oper-
ated generator unit with portable Leonardo DR Mini plate (OR Technology, Rostock, Germany) every
2 months during the first 12 months of the experiment and at the time of sacrifice. From these
X-rays, an experimenter blind to animal breeding status measured the length of each LV (from verte-
bra 1 to 7), the right femur, the right tibia, body length, and the width of the zygomatic arch using
ImageJ (Schneider et al., 2012). The caudal-most LV was labeled as LV7. We tested for an effect of
breeding status on LV5 using a linear mixed model in which post-pairing time point, breeding status,
and the interaction of time point by breeding status were modeled as fixed effects and animal ID as
a random effect.

Effects of queen body length on fertility

To test the effect of maternal body length on litter size and pup size, we used body length measure-
ments obtained during routine colony monitoring of all queens maintained in the captive colony (i.
e., not restricted to experimental animals). Following Thorley et al., 2018, we used body length
measurements obtained nearest to, and no more than 90 days from, the date of parturition. The
resulting data set included 328 litters (971 pups) from 76 mothers, which represents a 76% increase
over an earlier analysis of this relationship in Thorley et al., 2018. We fit two linear mixed effects
models. In the first model, we modeled litter size as a function of maternal body length, controlling
for whether the litter was the female’s first litter, and included maternal ID as a random effect. In the
second model, we modeled pup mass as a function of maternal body length, controlling for litter
size and whether the litter was the female's first litter as fixed effects, and maternal ID and litter ID
as random effects.

Sample collection and cell culture from LV and long bones

Animals were deeply anesthetized with isoflurane and sacrificed with decapitation following USGS
National Wildlife Health Center guidelines and under approval from the Animal Ethics Committee of
the University of Pretoria. Immediately upon sacrifice, the LV and long bones were dissected, and
attached muscle tissue was removed with forceps. LV6 and 7 and the right femur and tibia were
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collected into 50% ethanol for 24 hr, then transferred to 70% ethanol and stored at 4° C for uCT
scans and histochemistry.

To isolate bone cells for culture, LV1-5 were incubated in 2% Collagenase P (Roche, Switzerland)
for 30 min at 30" C. Each bone was then cut in half and transferred to a 1.5 ml microcentrifuge tube
containing a G-Tube microcentrifuge tube (VWR, Radnor, PA, USA) that had been punctured at the
bottom with a 15 gauge needle. Tubes were spun at 3000 RCF for 5 s, allowing the marrow to col-
lect into the 1.5 ml microcentrifuge tube. Cell pellets were resuspended in red blood cell lysis buffer,
pooled, and incubated for 3 min at room temperature. 10 ml bMSC medium (MEM-alpha [Sigma-
Aldrich, St. Louis, MO, USA] + 15% fetal bovine serum [Hyclone, Logan, UT, USA] + 1% penicillin/
streptomycin + 2 ng/ml recombinant human fibroblast growth factor-basic [Biocam, Centurion, Gau-
teng, South Africa] + 10 nM ROCK inhibitor Y-27632 [RI; Cayman Chemical, Ann Arbor, MI, USA])
was added to stop lysis, and the tubes were spun for 5 min at 300 RCF. The cell pellet was resus-
pended in 1 ml bMSC medium and strained through a 70 um cell strainer. Cells were plated at 1.6 x
10° cells per cm?. The long bones (excluding right femur and tibia) were processed to enrich for
bMSCs following the same procedure, but without incubation in Collagenase P. Cells were cultured
at 37°C and 5% CO,. 24 hr post plating, plates were carefully washed three times with 1x PBS and
supplied with fresh medium to remove nonadherent cells. Once bMSC clusters were visible (2-9
days post plating), plates were fed bMSC medium without Rl or fed bMSC medium without Rl +10
nM estradiol (E2). 24 hr later, cells were collected into buffer RLT and stored at —80°C. Samples
were shipped on dry ice to Duke University for RNA extraction using the Qiagen RNeasy Micro Kit.
RNA-Seq libraries were generated using the NEBNext Single Cell/Low Input RNA Library Prep Kit
for lllumina.

Gene expression analysis

RNA-Seq libraries were sequenced on an lllumina HiSeq 4000 (100 basepair single-end reads) to a
mean coverage of 16.1 £ 3.9 s.d. million reads. Reads were trimmed with cutadapt version 2.3 (Mar-
tin, 2011) (RRID:SCR_011841; parameters: -q 20 -e 0.2 —~times 5 -—overlap 2 -a AGATCGGAA-
GAGC -a 'T" -minimum-length=20). Trimmed reads were then mapped to the Damaraland mole-
rat v1.0 genome (Fang et al., 2014) (DMR_v1.0) using two pass mapping with STAR (RRID:SCR_
004463) (Dobin et al., 2013). Only uniquely mapped reads were retained. HTseq (RRID:SCR_
005514) (Anders et al., 2015) was used to quantify read counts mapping to genes (using the
v1.0.92 gtf file from Ensembl; we extended the genomic coordinates of the SERPINET gene by 2000
basepairs in both directions due to very high expression directly adjacent to the annotated coordi-
nates). We transformed read counts to transcripts per million (TPM) (Wagner et al., 2012) and
retained only genes with TPM >2 in at least 25% of samples. We performed voom normalization
(RRID:SCR_010943) (Law et al., 2014) on the raw counts using normalization factors produced by
the trimmed mean of M-values (TMM) method (Robinson and Oshlack, 2010) in DESeq (RRID:SCR_
000154) (Anders and Huber, 2010). We used the limma (Smyth, 2005) function ImFit to regress out
the proportion of uniquely mapped reads in genes (which controls for efficiency of mRNA selection
during RNA-Seq library preparation) and animal natal colony (which controls for littermate sets and
date of sacrifice) to obtain normalized, batch-corrected gene expression values for downstream anal-
ysis. We used the mixed effects model approach in emmrem| (Akdemir and Okeke, 2015) to esti-
mate, for each gene, the effect of breeding status on gene expression within LV and within long
bones using the following model:

V1= /L+d,Bl +biﬁ2 +q,~B3 *I(b:0)+%ﬂ4 *I(b: 1)+Siﬁ5 *I(b20)+5ﬁ6 *I(b: 1)+ZM+E,'7
u ~ MVN 0,02K

€ ~ MVN 0,07

where y is the vector of gene expression levels for n = 47 samples (indexed by i); W is the intercept;
d is the number of days in culture and B its effect size; b is bone type (i.e., long bones or LV) and 3,
its effect size; and g is a 0/1 variable representing breeder status and B3 and B, its effect size in long
bones and LV, respectively. | is an indicator variable for bone type (0 = long bone; 1 = LV). sis a 0/1
variable representing whether the cells were cultured with estradiol and 85 and B¢ are its effect sizes
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in long bones and LV, respectively. Z is an incidence matrix that maps samples to animal ID to take
into account repeated sampling from the same individual, and u is a random effect term that con-
trols for relatedness. Kis an m by m matrix of pairwise relatedness estimates (derived from the geno-
type data, described below) between all m animals. ¢ is the residual error, o2 is the genetic variance
component, and o2 is the environmental variance component. We also ran an identical model but
with an additional fixed effect of solitaire status in long bones and in LV, to test for a difference in
gene expression between helpers and solitaires. To control for multiple testing, we calculated the
FDR following Storey and Tibshirani, 2003 using an empirical null distribution derived from 100 per-
mutations of each variable of interest.

We used g:profiler (RRID:SCR_006809) (Raudvere et al., 2019) to perform Gene Ontology
enrichment analysis of the genes upregulated with queen status in LV and long bones (151 of 171
genes significantly associated with queen status at a 10% FDR). All genes in the original analysis set
were used as the background gene set. We set both the minimum size of the functional category
and the minimum size of the query/term intersection to 3. Finally, we retained categories that
passed a Bonferroni-corrected p-value of 0.05.

Genotyping to estimate relatedness

To control for relatedness when modeling the gene expression data, we performed single-nucleo-
tide polymorphism (SNP) genotyping of the RNA-Seq data using the Genome Analysis Toolkit
(McKenna et al., 2010) (GATK; RRID:SCR_001876). We used the SplitNCigarReads function on the
trimmed, uniquely mapped reads and performed GATK indel realignment. Base recalibration was
performed by using all SNPs with GQ >4 in an initial UnifiedGenotyper run on the full data set as a
reference. Genotypes were called on the recalibrated bam files using HaplotypeCaller. Variants were
filtered with the following GATK VariantFiltration parameters: QUAL < 100.0, QD < 2.0, MQ < 35,
FS > 30, HaplotypeScore > 13, MQRankSum < —12.5, ReadPosRankSum < —8. Variants were further
filtered with vcftools (RRID:SCR_001235) (Danecek et al., 2011) to only retain biallelic SNPs in
Hardy-Weinberg equilibrium (p>0.05) with minor allele frequency > 0.1, minimum mean depth of 5,
max missing count of 2, and minimum GQ of 99. Finally, SNPs were thinned to a distance of 10 kb
basepairs, resulting in a final data set of 1965 stringently filtered biallelic SNPs. Missing values were
imputed using beagle (RRID:SCR_001789) (Browning and Browning, 2007), and the resulting vcf
file was used to create a kinship matrix using vcftools (Danecek et al., 2011). Values of the kinship
matrix were confirmed to be higher in known siblings compared to non-siblings (unpaired t-test,
t = 27.939, p=2.23x10""?, means = 0.513 and —0.097). Two pairs of siblings were found to have dif-
ferent fathers (G1F022 and G1F025; G4F020 and G4F019).

Cell-type heterogeneity

Although selection for adherent cells from bone marrow enriches for bMSCs, other cell types are
also present (Phinney et al., 1999). To assess whether cell-type heterogeneity accounts for queen-
associated differential expression, we used CIBERSORT (RRID:SCR_016955) to deconvolve the pro-
portion of component cell types from the RNA-Seq data (Newman et al., 2015). We trained CIBER-
SORT on a data set of quantile normalized gene expression values from mouse purified primary cell
populations (Hume et al., 2010). Specifically, we subset the training data to 27 purified cell popula-
tions of mesenchymal or hematopoietic origin (Figure 2—figure supplement 2) and to genes that
were included in our mole-rat gene expression data set. We then predicted the composition of the
cells that contributed to the mole-rat quantile normalized gene expression data set, for each
sample.

To test whether cell-type heterogeneity was significantly explained by queen status, we also mod-
eled cell-type proportion (as summarized by the first principal component of CIBERSORT-estimated
proportions for all 27 potential cell types; PC1 explains 50.9% of the overall variation) following the
same method used for gene-by-gene expression analysis but with PC1 included as an explanatory
variable. We then performed mediation analysis on each of the 171 genes that showed a significant
effect of breeding status at FDR < 10%. To do so, we first estimated the indirect effect of breeding
status on gene expression through the mediating variable (CIBERSORT PC1). The indirect effect of
breeding status through CIBERSORT PC1 was estimated by calculating the difference in the effect of
breeding status between two models: one model that did not include the mediator (i.e., B3 and B4

Johnston et al. eLife 2021;10:€65760. DOI: https://doi.org/10.7554/eLife.65760 16 of 25


https://scicrunch.org/resolver/SCR_006809
https://scicrunch.org/resolver/SCR_001876
https://scicrunch.org/resolver/SCR_001235
https://scicrunch.org/resolver/SCR_001789
https://scicrunch.org/resolver/SCR_016955
https://doi.org/10.7554/eLife.65760

eLife

Chromosomes and Gene Expression | Evolutionary Biology

from Equation 1) and the same model with the addition of the mediating variable. We performed
1000 iterations of bootstrap resampling to obtain the 95% confidence interval for the indirect effect
and considered an indirect effect for a gene significant if the 95% interval did not overlap 0.

ATAC-seq data and transcription factor binding site analysis

To investigate whether differentially expressed genes were associated with accessible binding motifs
for specific transcription factors, we generated Omni-ATAC-seq data to profile regions of open chro-
matin (Buenrostro et al., 2013; Corces et al., 2017). We performed Omni-ATAC-seq on both LV
bMSCs and long bone bMSCs from two female nonbreeding and two queen mole-rats (n = 8 librar-
ies total), following the published protocol (Corces et al., 2017) with the following modifications:
5000 cells were centrifuged at 500 RCF for 5 min at 4°C. The pellet was resuspended in 50 ul trans-
position mix (25 ul 2x TD buffer, 16.5 pl PBS, 6.75 ul water, 1 ul 10% NP40, 1 ul 10% Tween-20, 1 ul
1% digitonin, and 0.25 pul Tn5 transposase). The reaction was incubated at 37°C for 30 min without
mixing, followed by a 1.5x Ampure bead cleanup. Omni-ATAC libraries were sequenced on a Nova-
Seq 6000 as 100 basepair paired-end reads to a mean coverage (+ SD) of 26.9 (+ 4.4) million reads
(range: 16.8-38.3). Reads were trimmed with Trim Galore! (RRID:SCR_011847) (Krueger, 2015) to
remove adapter sequence and low-quality basepairs (Phred score <20; reads >25 bp). Read pairs
were mapped to the DMR_v1.0 genome using bwa-mem (RRID:SCR_010910) (Li and Durbin, 2010)
with default settings. Only uniquely mapped reads were retained. The alignment bam files for each
treatment (breeding or nonbreeding) were merged, and open chromatin regions were identified
using MACS2 v2.1.2 (RRID:SCR_013291) (Zhang et al., 2008) with the following parameters: '-nomo-
del -keep-dup all -q 0.05. We combined open chromatin peaks with regions in the DMRv1.0
genome that match sequences of vertebrate transcription factor binding site motifs, using motifs
defined in the HOMER database (RRID:SCR_010881) (Heinz et al., 2010). We used Fisher's exact
tests (using a p-value threshold of 0.01) to test if TFBMs belonging to the same transcription factor
were enriched in open chromatin regions within 2000 bp of the 5 most transcription start site of
queen upregulated genes.

To compare genome-wide signatures of DNA-transcription factor binding for AR, ESR1, and
ESR2, we characterized transcription factor footprints in queens and nonbreeders, in both the LV
and long bones, using HINT-ATAC from the Regulatory Genomics Toolbox (RGT) with default
parameters (Li et al., 2019). We focused on the subset of peak regions called using MACS2
(Zhang et al., 2008). We identified TF footprints by merging reads within each bone type-breeding
status combination and calling footprints on the combined data. For each bone type, we then cre-
ated a meta-footprint set by merging the respective footprint calls across queens and nonbreeders
using the bedtools function merge (Quinlan and Hall, 2010). We identified transcription factor
motifs in the DMR_v1.0 genome that fell within meta-footprints, based on the JASPAR CORE Verte-
brates set of curated position frequency matrices (Sandelin et al., 2004). Finally, we tested for dif-
ferential footprints of AR, ESR1, and ESR2 binding using the RGT differential function, using the
activity score metric described in Li et al., 2019 and default parameters.

Micro-CT scans and analysis

We performed pCT scans of LVé6, LV7, right femur, and right tibia using a VivaCT 80 scanner (Scanco
Medical AG, Bruttisellen, Switzerland) set at 55 kVp and 145 A, with voxel size 10.4 um. Trabecular
bone was quantified using direct values (i.e., ‘'No model’) from the 100 uCT slices below the proximal
tibia growth plate, the 100 uCT slices above the distal femur growth plate, and the 100 uCT slices
medial to the caudal growth plate of LV6. To obtain midshaft cross-sections of the femur, tibia, and
LV6, we first reduced each bone mesh to 100,000 faces using Avizo Lite version 9.7.0. Mesh files
from the same bone type were auto-aligned using Auto3dgm (Boyer et al., 2015) in MATLAB
(RRID:SCR_001622). Aligned mesh files were then back scaled to their original sizes in MATLAB, and
the midshaft cross-section was generated using Rhinoceros version 6. LV6 cross-sections required
manual segmentation, which was performed in Adobe Illustrator CC version 23.0.2. The MomentMa-
cro plugin in ImageJ (RRID:SCR_003070) was used to calculate bone area, minimum second moment
of inertia, and polar second moment of area.
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Classification of breeding status from bone shape

To predict breeding status from bone shape, we reduced each bone mesh to 100,000 faces using
Avizo Lite version 9.7.0 (RRID:SCR_014431). Mesh files from the same bone type were auto-aligned
using Auto3dgm (Boyer et al., 2015) in MATLAB. The resulting aligned and scaled mesh files were
used as input to perform the unsmooth Euler characteristic transform (ECT) for LV6 and to perform
the smooth Euler characteristic transform (SECT) for femurs (Crawford et al., 2016) (as performance
was optimized for femurs by including smoothing).

The ECT represents each shape as a two-parameter function of direction and height. We evaluate
these functions at a discrete lattice of points, so that each point is represented as a vector. For each
bone type, we calculated the Euler characteristic curve in 162 directions distributed approximately
uniformly across the shape. For each of the 162 Euler characteristic curves, we ran 100 height param-
eter evaluations for LV6 and an average of 71 height parameter evaluations for the femur, so that
each LVé6 (femur) was represented with a vector of length 16,200 (11,423). Using the ECT data, we
performed leave-one-out predictions, running each bone type separately, using the linear kernel and
c-classification with the support vector machine (SVM) implemented by the R package e1071
(Dimitriadou et al., 2008). The SVM classifier was equipped with 1:100,000 weighting to balance for
the different number of breeders and nonbreeders in the sample. The empirical p-values were esti-
mated for each bone type by running 100 permutations of the queen/nonbreeder labels
(Golland et al., 2005).

We note that the ECT does not provide information about specific regions of a shape, but rather
is a topological summary statistic that captures the geometric complexity of a shape by quantifying
the shape’s number of connected components, voids, and closed loops. This approach avoids the
need for landmarks, which may be missing or vulnerable to observer error in some data sets
(Crawford et al., 2016). The ECT is amenable to regression models and is therefore useful for test-
ing whether shape significantly predicts the value of an outcome variable (here, breeding status).
However, because it does not identify the regions of the shape that contribute most to predictive
power, the regions of the LV and femur that most strongly differentiate queens from nonbreeders
remain open to further study.

Histochemistry

For a subset of individuals (Supplementary file 9), the tibia and LV7 were plasticized, sectioned, and
stained with Safranin O by the Washington University Musculoskeletal Research Center. The propor-
tion of the tibia proximal growth plate that was fused, and the mean proportion of the LV7 cranial
and caudal growth plates that were fused, were measured in ImageJ from Safranin O-stained sec-
tions. To quantify growth plate activity, we calculated the number of chondrocyte columns (defined
as linear stacks of at least three chondrocytes) controlling for length of open growth plate. For each
bone type (tibia and LV7), we ran two models: proportion of growth plate fusion or chondrocyte col-
umns per mm growth plate as the dependent variable, and number of offspring born and age as the
independent variables.

Cortical thickness across the femur

We used Stradview (Treece, 2019; Treece et al., 2010) on dicom images from the UCT scans to
measure and visualize, in an automated manner, cortical thickness across the surface of the femur.
Bone surface was defined in Stradview by thresholding pixel intensity and contouring the bone at
every 14 sections, with the following parameters: resolution = medium, smoothing = standard,
strength = very low, contour accuracy = 6. To measure cortical thickness, we used the auto threshold
method in Stradview, with line width set to 5, smooth set to 1, and line length set to 3 mm. The
smoothed thickness values of each femur were then registered (i.e., mapped) to a single ‘canonical’
femur surface (mole-rat GRF002) using wxRegSurf v18 (http://mi.eng.cam.ac.uk/~ahg/wxRegSurf/).
We sectioned the cortical thickness values into deciles according to location along the length of the
femur. The top and bottom deciles were removed because cortical and trabecular bone towards the
ends of the femur could not be easily differentiated by the automated method. Deciles were then
recreated for the remaining length of the bone (i.e., the central 80%). From each bone decile, we
estimated cortical thickness as the mean of all cortical thickness measures within that interval. For
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each decile across animals, we used a linear mixed model to model cortical thickness as a function of
breeding status and number of offspring, with litter pair as a random effect.

Modeling the probability of bone failure

Previous research on mechanical properties of rodent femurs found that, among several morphologi-
cal and compositional traits measured in eight morphologically varying mouse strains, CA at the mid-
shaft was the best predictor of maximum load (defined as the greatest force attained prior to bone
failure, measured via four-point bending; published Pearson’s r = 0.95) (Jepsen et al., 2003). We
therefore used CA at the femoral midshaft to predict max load of Damaraland mole-rat femurs. To
do so, we first fit a linear model of max load as a function of CA (unadjusted for body weight) using
published mouse data (R? = 0.877, n = 81, p=6.64><10738) (Jepsen et al., 2003). We extrapolated
from this linear fit to predict max load from CA at the midshaft of Damaraland mole-rat femurs. Pre-
dicted max loads were then used as input for Cox proportional hazards models, comparing either all
queens to nonbreeders or queens with >6 offspring to nonbreeders. Models were fit using the R
function coxph and were confirmed to meet the proportional hazards assumption using the cox.zph
function in the R package survival (Therneau, 2020). Because max load was not directly measured in
the Damaraland mole-rats, we used the Cox proportional hazards models to specifically evaluate the
relative hazard of bone failure depending on queen status/number of offspring. We therefore report
the results in Figure 5 based on relative force (with the median predicted failure value for non-
breeders set to 1) instead of absolute force in Newtons. We note that the analysis makes an impor-
tant assumption that the linear relationship between CA and maximum load observed in mice is
shared with Damaraland mole-rats. Future mechanical loading tests of mole-rat bones, which were
not possible in this study, will therefore be important for validating and refining the present model-
ing results.
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