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ABSTRACT

Topological physics is emerging as an active area of research, addressing fundamental questions on how geometry, symmetry, and topology
affect physical properties, paving the way toward novel technological applications. Originally investigated in quantum systems, these con-
cepts have been thereafter translated across diverse domains including, electromagnetic, plasmonic, elastic, and acoustic waves. Specifically,
in elasticity, due to the strong tendency to hybridize of wave modes with different polarization, topological protection is viewed as a revolu-
tionizing approach to design waveguides supporting unique features such as (i) being immune to defects and (ii) suppressing backscattering
during the wave propagation phenomenon. These novel features arise as a consequence of their dispersion surface topology. This Tutorial
aims to introduce the theoretical, numerical, and experimental frameworks to investigate topological elastic waveguides, discussing the key
ideas, first, in the context of discrete systems, and then, in continuous elastic solids. After a comprehensive description of the currently used
state of the art scientific techniques, various classes of topological wave phenomena leading to localized waves in elastic architected plates
and beams are presented. Implications of the presence of both longitudinal and shear waves in elastic solids are discussed, and the associated
challenges, opportunities, and strategies to exploit their interplay highlighted. The symmetry conditions required to induce them are dis-
cussed using a number of representative examples. Finally, future research directions of this fledgling field are outlined.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057288

I. INTRODUCTION

A waveguide is a structure that guides waves with minimal
loss of energy by restricting the transmission of energy to one
direction. Waveguides in diverse areas of physics exist depending
on the kinds of energy they transport, e.g., elastic, acoustic, electro-
magnetic, plasmonic, and electronic. The governing equations asso-
ciated with the type of wave propagation vary accordingly. For
example, wave propagation in elastic media is governed by the
Cauchy equations of elastodynamics, in fluids by the Helmholtz
equation, while Maxwell and Schrödinger equations govern electro-
magnetic waves and electron transport, respectively. Note that these
equations are distinct in nature, with the Cauchy, Helmholtz, and
Maxwell equations being systems of hyperbolic partial differential
equations, while the Schrödinger equation is dispersive.1 The
common link between them that is relevant to the present topic is
the existence of wave-like solutions in periodic domains that obey
the Bloch theorem.2–4

There are key differences between wave types supported in
various physical media. Elastic solids support both longitudinal
(pressure) and transverse (shear) waves. In contrast, fluids support

only longitudinal waves,5 while electromagnetic media only support
transverse waves.4 Elastic waveguides have been extensively investi-
gated both to understand the fundamental properties of materials
and for technological applications including sensing, actuation,
signal processing, and energy conversion or harvesting, to name a
few.6,7 For instance, sensing applications may include pressure,
temperature, and strain measurement. Such waveguides generally
comprised of a straight channel, embedded with piezoelectric trans-
ducers. If the length of the channel and thus the spacing between
the embedded transducers changes, then the frequency of the tra-
versing wave also changes. This shift in frequency is correlated with
the quantity to be measured. Wave steering for actuation, energy
harvesting, vibration control, and structural health monitoring are
other widespread applications of elastic waveguides.7,8

In this context, over the last two decades, architected materials
or metamaterials9 have lead to a new class of waveguides, exhibiting
unique wave control opportunities. For instance, Fig. 1 presents an
example of an elastic metamaterial-based waveguide showing
energy redirection features. The system consists of a plate with
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periodic circular inclusions arranged in a square lattice. Due to the
periodicity, the waveguide does not allow propagation of waves in
certain band of frequencies, often referred to as frequency bandg-
aps.9 In this band, the wave is confined to the strip (straight or
L-shaped as illustrated). This example illustrates how designing the
geometry of the structure can lead to waveguiding along specific
paths.

Although the metamaterial paradigm represented an excellent
candidate to boost waveguide applications, in fact, they have not
found widespread technological diffusion. The primary reason is
that their unique behavior is sensitive to the presence of defects
and imperfections. In particular, significant losses arise due to scat-
tering and localization at defect locations or at corners, as illus-
trated in Fig. 1(b). To overcome these problems, recently, a new
class of architected structures called topological waveguides have
been introduced, rapidly evolving as a leading field of research.
Such structures exploit the symmetry and topology of their disper-
sion surfaces to support modes that are immune to defects, to
imperfections, and that do not suffer from scattering losses. This
immunity arises as a consequence of topological properties, and
hence, these waves are called topologically protected. Originally dis-
covered in 2D electron gases in the context of the quantum Hall
effect,10 they have been extended to other classical areas of physics
in the past decade. Examples include electromagnetic,11 plas-
monic,12 acoustic,13 electromechanical,14 and elastic15–18 media.
Even though these diverse media have very distinct governing equa-
tions, the concept of topological modes translates across disciplines
because the protection arises from specific symmetry properties of
the eigenvalue problem,19 or more specifically, a family of eigen-
value problems as a parameter is varied (see Secs. IV and V, for the
details).

Topological modes in elastic media can be broadly classified
into two categories. The first one involves active components, like
rotating gyroscopes,22,23 and it has been primarily demonstrated for
discrete elastic media. The second category solely uses passive com-
ponents and has been demonstrated in a wide variety of discrete
systems such as combination of pendulums and levers,24 rotating

disks,25 mass-spring networks,26–28 as well as for continuous elastic
media like architected plates.16,29–31

This Tutorial aims to introduce the fundamental concepts and
working principles of such topological waveguides in elastic media,
as well as practical steps to design them. It is organized as follows.
First, an overview of various waves supported by homogeneous and
architected elastic media is presented. This is followed by the
description of the most commonly used theoretical, numerical, and
experimental tools to investigate periodic elastic structures. In Sec.
IV, illustrative examples of topological modes are provided using
discrete mass-spring chains and beams. The key ideas leading to
the different types of modes and their combination are described in
detail. Section V presents the realization of various topological
modes in continuous elastic media and discusses the key steps and
strategies for their design. Finally, promising future directions are
outlined in Sec. VI.

II. WAVES IN ELASTIC MEDIA

Elastic waves can be defined as disturbances propagating in an
elastic solid due to a local deviation from static mechanical equilib-
rium conditions.32 Such disturbances manifest as time varying dis-
placement and stress fields in the solid. If the deformations are
small enough (i.e., small displacement assumption holds), the
medium can be assumed to be linear elastic and the wave character-
istics do not depend on the disturbance amplitude. Depending on
the domain geometry and boundary conditions (finite or infinite
media, presence of free surfaces) of the elastic medium, various
types of elastic waves can be identified.

A. Bulk, surface, and guided waves in homogeneous
media

Waves propagating indefinitely in an infinite homogeneous
body without being interrupted by boundaries or interfaces are
called bulk waves. The general elastodynamic wave equation

FIG. 1. (a) Example of waveguides allowing energy to propagate toward (left panel) a straight or (right panel) a L-shaped path.20 Comparison of the wave field reconstruc-
tion for (b) a trivial and (c) a topological photonic waveguide. Wave reflects back at corners in the trivial case, while no energy is reflected in the topological one.21

Reproduced with permission from Wright and Matsuda, Philos. Trans. R. Soc., A 373, 20140364 (2015). Copyright 2015 Royal Society and Ma et al., Phys. Rev. Lett. 114,
127401 (2015). Copyright 2015 American Physical Society.
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governing the evolution of the displacement field u(x, t) has the
form

ρ
@2u
@t2

¼ @

@x
C
@u
@x

� �
, (1)

where C is the fourth-order elasticity tensor and ρ is the
density.33,34 In a linear, isotropic, and elastic medium, this govern-
ing equation reduces to the form

ρ€u ¼ (λþ μ)∇(∇ � u)þ μ∇2u, (2)

where λ, μ are the material properties called Lamé constants.
Solutions to Eq. (2) support one longitudinal wave and two shear
waves with specific wave velocities that are functions of the materi-
al’s properties and independent of the frequency or the direction of
propagation. These waves have distinct types of motion.
Longitudinal waves (also called P-waves) are characterized by
particle motion alternating compression and stretching of the
medium [see left panel of Fig. 2(a)]. Shear waves are characterized
by transverse particle movements in the alternating direction [see
central and right panels of Fig. 2(a)]. In P-waves, energy propagates
parallel to the displacement direction of a point, while in the

FIG. 2. (a) Bulk waves propagating in an infinite media and characterized by (left panel) particle motion alternating compression and stretching of the medium, and
(center, right panels) transverse particle motion in orthogonal planes. (b) A 3D medium with a free surface allows for the propagation of waves localized at the free half-
space. Left panel: Rayleigh waves and right panel: Love waves. (c) Lamb waves in a plate. (d) First two Lamb modes, top: symmetric and bottom: anti-symmetric about
the plate center-plane.
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second one, energy propagates perpendicular to a point’s displace-
ment direction. In shear waves, displacement occurs in the plane
normal to the propagation direction and the wave can be decom-
posed into horizontal shear wave (SH) and vertical shear wave
(SV), as shown in the central and right panels of Fig. 2(a).

Wave propagation in anisotropic media is governed by the
general elastodynamics Eq. (1) and their analysis is considerably more
complicated. Examples of anisotropic elastic media include piezoelec-
tric media, natural materials like wood, and engineered materials like
composites. They can be classified as triclinic, monoclinic, ortho-
tropic, cubic, and transversely isotropic depending on how isotropy
broken along various symmetry axes. Similar to isotropic media,
anisotropic media also support three types of waves in an infinite
solid. However, there is no clear distinction like longitudinal and
shear waves since the particle motion can be at an arbitrary angle to
the wave front propagation direction. In addition, this angle and the
wave velocity are also direction dependent. The wave front shape is
represented by slowness diagrams or surfaces, and they illustrate the
variation in wave speed with the direction. Anisotropic media with
boundaries can also support Rayleigh and guided waves and their
analysis often requires numerical procedures. The interested reader is
directed to references discussing elastic waves in anisotropic media.35

In this Tutorial, we will restrict the attention to solids that are isotro-
pic in the bulk at the length scales considered, i.e., macroscopic.

A three-dimensional (3D) medium bounded at a surface sup-
ports the propagation of waves localized at the free half-space,
namely, Rayleigh (R) waves and Love (L) waves [refer to Fig. 2(b)].
Rayleigh waves [left panel of Fig. 2(b)] are characterized by a coun-
terclockwise elliptical motion of the medium particles polarized in
the xz plane, if the energy flows along the x direction. The ampli-
tude of these wave decreases exponentially as e�bz with distance z
from the free surface. The exponent b is inversely proportional to
the wavelength of the wave.33 Love waves are horizontally polarized
surface waves [see right panel of Fig. 2(b)]. They exist only when
the top layer has a lower shear wave velocity than the semi-infinite
media below it. These waves derive from the interference of many
shear waves guided by the top elastic layer, i.e., the one with lower
velocity characteristics and with the top boundary free. Particle
oscillations in Love waves involve alternating transverse move-
ments. The direction of medium particle oscillations is horizontal
(for instance, in the xz plane) and perpendicular to the direction of
propagation (x). As in the case of Rayleigh waves, their wave ampli-
tude decreases with depth.

Finally, in some materials, the relation expressed by Eq. (1)
does not fully describe their response when subjected to an elastic
strain. Indeed, certain materials become electrically polarized when
they are strained. This effect, called the direct piezoelectric effect,
manifests experimentally by the appearance of bound electrical
charges at the surfaces of a strained medium. It is a linear phenom-
enon, and the polarization changes sign when the sign of the strain
is reversed. Though piezoelectricity is a complex phenomena inti-
mately related to the microscopic structure of the solid, the macro-
scopic behavior can be quantitatively captured in terms of a rather
simple constitutive model. We direct the reader interested in wave
propagation in piezoelectric media to Refs. 36, 37, and 38.

Let us now discuss wave propagation in structures where one
dimension is much smaller than the other two. Examples include

plates and shells, where the thickness is smaller compared to the
in-plane dimensions. When a point in a plate [Fig. 2(b), for
example] is transversely excited, waves propagating from this point
encounter the upper and lower free surfaces of the structure,
leading to reflection and mode conversion (longitudinal waves to
shear waves and vice versa). The wave field is a superposition of
multiple reflections and the resulting generated waves. This wave
field can essentially be approximated as propagating in the in-plane
directions with a specific displacement field in the direction of the
smaller dimension [examples in Fig. 2(b)]. Such waves are called
Lamb waves or guided waves.

An elastic plate supports an infinite number of guided modes,
each with a different displacement field. Among them, the symmet-
rical and anti-symmetric zero-order modes [shown in Fig. 2(b)
having symmetric and anti-symmetric transverse displacement field
about the plate center-plane] deserve special attention because (i)
they are the only modes that exist over the entire frequency spec-
trum from zero to indefinitely high frequencies and (ii) in most
practical situations, they carry more energy than the higher-order
modes. Also, in the low frequency range (i.e., when the wavelength
is greater than the plate thickness), these modes are called the
“extensional mode” and the “flexural mode,” respectively, terms
that describe the nature of the particle motion.

Lamb waves are dispersive, i.e., their wave velocities depends
on the frequency in addition to the material and geometric proper-
ties of the plate. These wave velocities require numerical procedures
and cannot be determined in the analytical closed form.33,34

Guided waves travel long distances with little attenuation, making
them well suited for non-destructive evaluation and structural
health monitoring applications. The word waveguide arises from
structures hosting these types of waves. The interested reader is
directed to references that discuss approaches to extract Lamb wave
solutions in isotropic, anisotropic, as well as piezoelectric
waveguides.8,33,36

B. Waves in architected structures

In Sec. II A, we have seen that the properties of bulk, surface,
and guided waves are determined by the relationship between the
particle motion, wave propagation direction, and the constitutive
properties of the medium. In homogeneous, isotropic (infinite)
media, the energy flow coincides with the wave front of the wave.

However, in many practical cases, the assumptions of isotropy
and infinite extent are not always satisfied, and often waves propa-
gate in media with geometrical or mechanical discontinuities.
When the elastic waves propagate in structures with complex
geometries, multiple reflections take place due to impedance mis-
match at the interfaces and free surfaces, strongly complicating the
energy flow/redistribution. The most general case is when waves
propagate in structures with no spatial inversion symmetry and
broken time-reversal symmetry, i.e., where the material parameters
and geometrical design of the system randomly vary both in space
and time. A mechanical system has broken time-reversal symmetry
if its governing equations change under the transformation
t ! �t. Examples include structures with attached spinning gyro-
scopes22,23 and systems with damping. Similarly, spatial inversion
symmetry means the structure is invariant under the
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transformation x ! �x. If a certain regularity is assumed for the
spatiotemporal modulation (for instance, introducing periodicity),
the use of the space–time Floquet theory39–42 can be envisaged. So
far, non-reciprocity through space-time modulation has been inves-
tigated in optical and electromagnetic systems, in the case of
mechanical waves, as well as in airborne acoustics.43–45 Breaking
time-reversal symmetry requires active components that introduce/
remove energy into/from the structure.

Another emerging area of research concerns the propagation of
elastic waves in solely passive media characterized by a high degree of
complexity in their geometrical design. Often periodic, i.e., character-
ized by a unit cell periodically repeated in space, these media are
usually referred to as architected metamaterials. The periodic architec-
ture of these structures can be limited to one, two, or three dimen-
sions and be at the same scale (ordinary architected structures)9 or at
multiple scale levels (hierarchical architected structures).46,47 Their
static and dynamic properties derive from a tailored geometry and
material distribution (creating specific impedance jumps/variations),
in addition to their material constituents. Compared to waves in con-
ventional materials described in Sec. II A, architected materials have
opened novel ways of manipulating and controlling the propagation
of elastic waves. Examples include omnidirectional stop bands or full
bandgaps (BGs), negative refraction, wave focusing, and perfect trans-
mission of waves at sharp angles.48–52

Figure 3 reports an example of an architected elastic wave-
guide, i.e., namely, a plate with circular holes in a hexagonal lattice
arrangement. The smallest repetitive block, if one exists, is called
unit cell, and in the considered case is highlighted in light green in
Fig. 3(a), and reported in its in-plane and trigonometric views in
Figs. 3(b) and 3(c), respectively. The interplay of periodicity, geom-
etry, and material composition within each unit cell can result in
effective mechanical properties very distinct from those of its con-
stituent materials. The unconventional dynamic properties may
derive from (i) Bragg scattering, i.e., a destructive interference
arising from an impedance mismatch proportionally periodic in
space to na=2, with n [ N and a the lattice parameter3 or (ii) local
resonances.53

The information about the wave propagation within these
structures is often derived through the examination of the so-called
dispersion diagram or dispersion surfaces. In what follows, the
principal approaches to extract these information are presented.

III. METHODS FOR DISPERSION ANALYSIS OF
PERIODIC ELASTIC STRUCTURES

Dispersion analysis gives the frequency-wave vector ω(κ) rela-
tion, i.e., the relation between spatial and temporal periodicity of a
traveling wave. An arbitrary wave of sufficient regularity can be
expressed as a superposition of harmonic waves of distinct frequen-
cies. Dispersion relation specifies how each individual frequency
component propagates in a solid. In particular, it provides informa-
tion of the wave vector as a function of the frequency and its gradi-
ent gives the group velocity of the wave. Dispersion relations
completely characterize the dynamic behavior of a linear elastic
solid because in conjunction with the superposition principle, they
can be used to predict the propagation of any arbitrary wave. In
this section, we discuss various methods to determine dispersion
relations for an architected linear elastic solid.

A. Analytical techniques

The plane-wave expansion (PWE) method gives a good
approximation to the mode shape and natural frequency of an
architected elastic media that is periodic. Let us consider a plane
wave traveling through a periodic elastic structure with frequency ω
and wave vector κ. The wave vector may be viewed as the spatial
analog of frequency. Just as frequency measures how rapidly a
point in the medium is varying with time, wave vector measures
how rapidly the displacement field is varying in space. Hence, it is
a vector having each component κp inversely proportional to the
corresponding wavelength along the direction with unit vector ep.

The displacement field due to this traveling wave is expressed
as

u(x, t) ¼ U(x)e�iωt : (3)

FIG. 3. (a) In-plane view of an architected waveguide consisting of a plate with circular and triangular holes in a periodic arrangement. The unit cell, i.e., the smallest
repetitive building block, is highlighted in light green. (b) In-plane and (c) isometric view of the unit cell. a1 and a2 are the lattice vectors. Dispersion analysis of this periodic
structure is conducted by the imposing periodic boundary conditions (PBCs) at the domain edges (see Sec. III B for further details).
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In a periodic domain with lattice vectors ap, U(x) satisfies the
Bloch periodicity condition U(x þ ap) ¼ eiκ�apU(x) for each peri-
odic direction p and U(x) is called a Bloch mode. Let us derive an
expression for U(x) that will help us to determine the dispersion
surfaces. We start by considering the function g(x) ¼ U(x)e�iκ�x .
The Bloch periodicity condition then implies that g(x) is periodic
in the unit cell, i.e., g(x þ ap) ¼ g(x). Indeed,

g(x þ ap) ¼ U(x þ ap)e
�iκ�(xþap) ¼ eiκ�apU(x)e�iκ�ap e�iκ�x

¼ U(x)e�iκ�x ¼ g(x):

Since g(x) is a periodic function with periodicity of the unit cell, it
can be expressed as a Fourier series in the form

g(x) ¼
X1

m,n,r¼�1
am,n,re

iGm,n,r �x , Gm,n,r ¼ ma1 þ na2 þ ra3: (4)

Here, m, n, and r take integer values and am,n,r is a vector with
complex coefficients for each basis function with index (m, n, r).
For periodic beams, we only have a1 while for periodic plates, we
only have a1 and a2. Using this equation, the displacement field
can be written as

u(x, t) ¼
X
m,n,r

am,n,re
iGm,n,r eiκ�xe�iωt : (5)

The real part of the right-hand side in the above equation gives the
displacement field.

Equation (5) is the starting point of the plane wave expansion
method. The displacement field can be expressed as a superposition
of periodic waves with periodicity of the unit cell, along with a
factor eiκ�x that takes into account the wavelength of the wave. The
functions eiGm,n,r constitute an orthonormal basis over a unit cell
and determine the part of the Bloch mode that fluctuates within
the unit cell. To determine the dispersion relation ω(κ), we choose
a finite set of basis function by allowing m, n, r to take integer
values from �N to N in Eq. (5). The coefficients am,n,r are deter-
mined by substituting the expression for u(x, t) into the governing

equations, taking the scalar product with each basis function
epeiGm,n,r and integrating over a unit cell. Recall that ep is the unit
vector along direction with index p. This procedure leads to a
system of linear homogeneous equations defining an eigenvalue
problem and its solution gives the dispersion surfaces. In particular,
we impose each value of the wave vector and determine the corre-
sponding natural frequencies.

Let us now illustrate the PWE method with an example.
Figure 4(a) displays a metamaterial bar with two alternating materi-
als whose Young’s modulus E are different. The darker material
has E four times higher than the lighter material. The PWE
method can be used to calculate the dispersion surfaces of this
structure. Figure 4(b) displays the real part of two basis functions
ei(Gþκ)x for the PWE method with κ ¼ 2π=3L and G ¼ 0, 2π=L.
Applying this method yields the frequencies and corresponding
mode shapes of the propagating waves. The red curve in Fig. 4(a)
shows the displacement field of the first mode shape at a wavenum-
ber κ ¼ 2π=3 over six unit cells. For this wavenumber κ, the Bloch
periodicity condition implies that the displacement field is periodic
over three unit cells, which is consistent with the curves in Fig. 4(a).
The reader may refer to additional detailed illustrations on the PWE
method for analysis of propagating54–61 and evanescent62,63 waves in
architected elastic structures.

The analytical plane wave expansion method works well for
simple geometries where the mode shape can be represented with a
few basis functions N in Eq. (5). As the unit cells become more
complex, incorporating complicated shaped holes or inclusions, the
error in the mode shape represented with a small N is high, while
increasing N leads to ill conditioning of the resulting matrices. To
overcome these issues, numerical methods based on finite element
analysis are used to efficiently determine the dispersion surfaces for
complex geometries. We discuss this method in Subsection III B.

B. Numerical techniques

The governing equation (2) for a 3D linear elastic solid is con-
sidered over a single unit cell with appropriate boundary conditions
to determine the dispersion surfaces. To illustrate these conditions,
let us consider the unit cell in Fig. 3(c). The displacement fields at
the right and top boundary are expressed in terms of the

FIG. 4. (a) Mode shape (red curve) of a metamaterial bar (schematic behind the curve) with two materials of different Young’s modulus at a wavenumber κ ¼ 2π=3L.
Displacement field is shown over six unit cells. (b) Real part of typical basis functions ei(κþG)x in the PWE method with G ¼ 0 and G ¼ 2π=L. Basis functions are shown
over three unit cells for clarity.
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corresponding fields at the left and bottom boundaries using Bloch
periodicity as

u(xR, t) ¼ eiκ�a1u(xL, t), u(xT , t) ¼ eiκ�a2u(xB, t): (6)

Similarly, by force equilibrium at each point on the boundary, the
traction t on the various surfaces are related as

t(xR, t) ¼ �eiκ�a1 t(xL, t), t(xT , t) ¼ �eiκ�a2 t(xB, t): (7)

The two equations, (6) and (7), constitute independent boundary
conditions on each boundary. Substituting u(x, t) ¼ eiωtU(x) into
the governing equations and using these two conditions leads to a
well-posed eigenvalue problem. Its solution provides the mode
shapes U(x) and natural frequencies ω for each wave vector κ. The
eigenvalue problem is in the form of a partial differential equation
and can be solved using numerical techniques.

The finite element method (FEM) is the most widely used
numerical method for dispersion analysis of unit cells with
complex geometries. This method involves two key steps to convert
the governing partial differential equation to a system of algebraic
equations.64 The first step is to consider a weak form of the govern-
ing equations that results in a variational problem over a function
space. The second step is to reduce this variational problem to a
system of algebraic equations by discretization, i.e., choosing a
finite dimensional subspace that approximates the infinite dimen-
sional function space. Discretization involves two components: (a)
meshing, i.e., dividing the domain into smaller sub-domains called
elements and (b) element type, i.e., choosing a set of basis func-
tions up to a specified order for an element. The solution fields in
each element lie in the vector space spanned by these basis func-
tions. The mesh should be sufficiently fine with well shaped ele-
ments so that the solution can be represented with good resolution
using the chosen element type. FEM formulation for dispersion
analysis has been done in recent years for beams, plates, and
solids.65–67 Today, several commercial software packages are avail-
able to conduct dispersion analysis using FEM.

C. Experimental techniques

From the experimental point of view, and focusing our atten-
tion on the ultrasonic frequency range, many methods to excite
(indicated by “E” for the sake of brevity in this section) and
measure (“M”) elastic waves are widely used. A non-exhaustive list
includes (i) conventional and piezoceramic ultrasonic transducers
(E/M); (ii) comb-type ultrasonic transducers (E/M); (iii) electro-
magnetic acoustic transducer (EMAT), for non-contact acoustic
wave generation and reception in conducting materials; (iv) magne-
tostrictive transducers (E/M), exploiting the property of magnetic
materials that causes them to change their shape or dimensions
during the process of magnetization; (v) impact-controlled
approaches (E), such as instrumented impact hammers; (vi) elec-
trodynamic shakers (E); (vii) optical fiber sensors (M); (viii) photo-
elasticity (M), describing changes in the optical properties of a
material under mechanical deformation; (iix) photothermal (M);
(ix) scanning laser Doppler vibrometer—SLDV (M), which deter-
mines the out-of-plane or normal velocity at each point on the

surface of an elastic structure through the Doppler effect. These
techniques, which can be selectively chosen according to the spe-
cific type of wave to excite/detect (Rayleigh, Lamb, Shear
Horizontal, etc.) and the experimental conditions of measurement,
can be separated in two categories, those requiring a contact with
the sample and those that are contactless.

Among the above listed techniques for wave detection, the
SLDV is being used increasingly often in recent years for several
reasons, especially in the case of architected materials. First of all,
SLDV, being a contactless measurement technique, eliminates the
detrimental effect of adding additional masses in the measurement
locations, which can result in a local change of the structure
rigidity. Another advantage of SLDV is its ability to perform mea-
surements automatically in a large number of precisely defined
points, almost regardless of the complexity of the geometrical
pattern to scan. Also, SLDV allows for 3D measurements, allowing
object vibration components to be recorded both in the plane per-
pendicular to the investigated surface and in the one parallel to it.
Finally, SLDV allows automatic measurements on a very dense
mesh of measurement points, enabling thus the measurement of a
propagating elastic wave with precision, not only in time but also
in space. The measurement frequency range is another positive
point of this technique, since it allows for measurements from close
to 0 Hz to several MHz, as well as a wide range of vibration velocity
amplitudes.7 All these advantages make SLDV one of the most
effective measurement techniques for dynamic characterization of
architected materials and elastic waveguides. In contrast, it is more
difficult to single out a best suited excitation technique and its
choice is often a result of several considerations including, (i) fre-
quency range and (ii) type of waves to excite, (iii) geometric and
(iv) elastic properties of the specimen to investigate. We direct the
reader to Refs. 7 and 8 on these aspects.

IV. OVERVIEW OF TOPOLOGICAL MODES

There are several classes or types of topological modes
depending on the type of symmetry that is broken in a lattice.19,68

As discussed in the Introduction, they can broadly be classified
into two categories, those that break time-reversal symmetry and
those that preserve it. This classification is based on the simple
observation that an elastic media is symmetric or not under the
transformation t ! �t. The physical meaning is that breaking
time-reversal symmetry requires active or dissipative components.
A more fundamental classification of symmetries involves using
time-reversal, chiral, and particle–hole symmetry operators is used
in quantum mechanics, where each of these has a physical
meaning. In an elastic media, applying the corresponding mathe-
matical operators leads to constraint equations that may not be
related to fundamental principles like balance and conservation
laws.

We introduce the key concepts underlying topological modes
through a number of examples of varying complexity. They are all
based on discrete lattices or elastic beams with the goal of elucidat-
ing the main ideas behind topological protection in a simplified
setting.69,70 The first example concerns discrete mass-spring chains
followed by its extension to continuous elastic media: architected
beams. Afterward, an example presenting lattices with a varying
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parameter is considered (Sec. IV C), showing energy transport from
one corner to another. Section IV D presents an example of how
topological modes can be induced in 2D discrete lattices, and their
relation to the concepts in 1D lattices are elucidated in Sec. IV A.
We will focus on two distinct classes of modes, namely, helical and
valley modes in 2D lattices.

A. Illustrative example: Topological modes due to
spectral flow

Let us illustrate the key idea behind topological modes with a
simple discrete mass-spring chain example. It is inspired by the
Su-Schrieffer-Heeger (SSH) model, the first model that was demon-
strated to support localized electronic modes due to topological
properties.10,71 The corresponding ideas are valid and can be
extended to continuous elastic media. Consider the infinite mass-
spring chain shown in Fig. 5(a), having identical masses m and two
springs of different stiffness k1 and k2. Note that this chain is a
periodic structure. The unit cell of a periodic structure is the small-
est unit that generates the lattice by repetitive translation.
Identifying a unit cell requires careful consideration to satisfy this
lattice generation requirement. The unit cell of this chain has two
springs (k1, k2) and two identical masses, labeled a and b.

Let us investigate the dynamic response of the infinite chain.
The governing equations for a unit cell indexed n are

m€un,a þ k1(un,a � un,b)þ k2(un,a � un�1,b) ¼ 0,

m€un,b þ k1(un,b � un,a)þ k2(un,b � unþ1,b) ¼ 0:

We solve this system of equations in the Fourier domain by impos-
ing a solution of the form un,α ¼ eiμn�iωtUα with α ¼ {a, b}. Here,
μ and ω are the wavenumber and frequency, respectively, and Uα

are the displacement of the two masses in the Fourier domain. The

above system of equations then becomes

k1 þ k2 �k1 � k2e�iμ

�k1 � k2eiμ k1 þ k2

� �
Ua

Ub

� �

¼ ω2 m 0
0 m

� �
Ua

Ub:

� �
(8)

Equation (8) defines an eigenvalue problem and its solution gives
the dispersion surfaces of the structure, illustrated in Fig. 5(c). For
each wavenumber μ, there are two natural frequencies ω that are
solutions of Eq. (8). These surfaces characterize traveling wave solu-
tions in the infinite lattice. Note that there are no real valued wave-
numbers μ when Ω is in the range (1,

ffiffiffi
2

p
) and when Ω .

ffiffiffi
2

p
,

which indicates an absence of traveling waves at these frequencies.
Next, let us consider the dynamic behavior of a finite chain.

In general, its natural frequencies depends on the chain’s boundary
conditions. To exemplify the ideas, let us consider a chain in the
form of a ring [Fig. 5(b)] with M unit cells. Each mode shape can
be identified with a corresponding traveling wave in the infinite
lattice, which satisfies the condition

un,α ¼ unþM,α: (9)

This condition arises in the finite lattice due to the topology of the
ring. Let us determine the wavenumber of the corresponding wave
in the infinite lattice. Combining this condition [Eq. (9)] with the
Bloch periodicity condition leads to the following set of wavenum-
bers for a ring with M unit cells

unþM,α ¼ eiμMun,α ¼ un,αe
iμM ¼ 1: (10)

Note that the solution to eiμN ¼ 1 is μ ¼ 2πs=N for any integer s.
Due to the discrete nature of the lattice, wavenumbers modulo 2π
essentially represent the same wave. For example, the displacement
field corresponding to waves with wavenumbers μ and μþ 2π are
identical. A unique set of waves can be identified with

FIG. 5. (a) An infinite lattice with two distinct and alternating spring stiffness values. Dashed rectangle is a unit cell. (b) Hypothetical finite lattice in the form of a ring. (c)
Dispersion curves of the lattice along with finite ring frequencies superimposed as red circles.
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wavenumbers lying in the first Brillouin zone. They are

μ ¼ 2πs
N

, s ¼ 0, + 1, + 2, . . . ,+ bN=2c: (11)

Here, bN=2c is the integer part of N=2. Hence, each mode on the
ring can be identified with a wavenumber from the set in Eq. (11).

The red circles in Fig. 5(c) display these wavenumber values
for a ring with N ¼ 5 unit cells. This ring has 2N ¼ 10 masses and
thus ten natural frequencies. These natural frequencies all lie on the
dispersion curves and their corresponding wavenumbers take
values in the set derived in Eq. (10). This set ensures that there are
N ¼ 5 modes of the ring lattice in each dispersion branch. To sum-
marize, the key observation is that the topology of the ring lattice
ensures that equal number of its modes lie on each dispersion
branch.

Let us now consider a ring of N ¼ 40 masses with two kinds
of unit cells, shown in Figs. 6(a) and 6(b). We set the rth spring
stiffness in the ring to

kr ¼ 1þ α cos
2πr
p

� �
, r [ {1, 2, . . . , N}: (12)

Here, α , 1 and p is equal to the number of masses (or springs) in
each unit cell. r is the spring index and it runs from 1 to N as there

are N springs in the ring. Setting p ¼ 4 and 5 gives the rings whose
unit cell schematics are shown in Figs. 6(a) and 6(b). Their corre-
sponding dispersion curves, along with the natural frequencies of
the corresponding ring of N masses is also shown below [Figs. 6(c)
and 6(d)]. Let us make a couple of observations that are analogous
to the chain with two distinct springs (k1 and k2) discussed above.
The lattice with p ¼ 4 has four dispersion curves or branches and
N natural frequencies are distributed equally in each dispersion
branch, with the wavenumbers given by Eq. (10). Similarly, the
lattice with p ¼ 5 has five masses per unit cell, 5 dispersion curves
and N=5 natural frequencies in each branch.

Now, let us examine what happens as we transition from the
p ¼ 4 to the p ¼ 5 lattice. We do this by setting p ¼ 4þ β in the
denominator in Eq. (12), with β taking values in the set [0, 1]. The
natural frequencies are given by solving the eigenvalue problem
arising from the governing equations for the masses in the ring.
Figure 7 displays the natural frequencies of the ring with N masses
as a function of β. As β is varied continuously in the set [0, 1], N
natural frequencies also vary continuously. At β ¼ 0, the p ¼ 4
lattice has four dispersion bands separated by bandgaps and there
are N=4 ¼ 10 frequencies in each band. On the other hand, at
β ¼ 1, the p ¼ 5 lattice has five dispersion bands with N=5 ¼ 8 fre-
quencies in each band.

Let us analyze how the natural frequencies of the ring vary
with β. Let us consider the top dispersion band of p ¼ 4 and p ¼ 5

FIG. 6. Unit cells of lattices with (a) four and (b) five distinct spring stiffness values. Dashed rectangle shows unit cell. (c) and (d) Their dispersion curves having four and
five branches. Red circles show the frequencies of a finite ring lattice of 40 masses are distributed equally among the dispersion curves: ten and eigth in each branch,
respectively, for the two lattices.
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lattices. These two lattices correspond to β ¼ 0 and 1, respectively.
At these two β values, all modes lie on the dispersion bands and
the bands are separated by bandgaps for both the lattices. The
number of frequencies changes from ten to eight as 10� 8 ¼ 2
modes go to the second band (from the top) in the p ¼ 5 lattice.
There are eight modes in the second band for p ¼ 5 lattice, six
modes go from the second band along with two modes from the
top band at β ¼ 0. Using similar counting arguments, we can
determine how the ten modes in each of the four branches of the
p ¼ 4 lattice get distributed into the five branches of the p ¼ 5
lattice.

The key observation is that a number of modes flow across the
bands as β varies from 0 to 1 to satisfy the requirement of N=5 ¼ 8
and N=4 ¼ 10 modes in each dispersion branch in the p ¼ 5 and
p ¼ 4 lattices, respectively. This flow of natural frequencies, or
spectral flow, arises solely to satisfy the topological constraint of
the number of modes in each dispersion branch. For β ¼ 0, there
are ten modes in each of the four bulk bands and for β ¼ 1, there
are eight modes in each of the five bulk bands. The key topological
argument is the following: as we vary β smoothly in [0, 1], the only
way to have a change in the number of modes in the top bulk band
change from ten to eight is if 10� 8 ¼ 2 modes migrate down to
another bulk band. Thus, two modes traverse the bandgap as β is
varied in [0, 1], and these modes are labeled as topologically pro-
tected modes. This migration of modes is independent of the func-
tional form of p(β) in [4, 5], with the only requirement being
continuity. It is also independent of the specific functional form of
km in Eq. (12). Indeed, any functional form of km that gives distinct
values 4 (or 5) distinct values of spring stiffness and leads to four
(or five) distinct dispersion bands should also exhibit such a spec-
tral flow.

In summary, we saw how modifying the parameter β
smoothly from 0 to 1 leads to a spectral flow between the bandgaps.

This hypothetical example of a lattice embedded on a ring shows
the simplest realization of modes arising to satisfy the topological
constraint of N=p modes in each dispersion branch. The ring
shaped lattice in this hypothetical example can be extended to real
structures where there is an interface or boundary between distinct
lattice types. The mode shapes corresponding to the modes travers-
ing the bandgap will be localized at such interfaces and boundaries.
Indeed, such modes cannot be bulk modes since their natural fre-
quency is in the bandgap. Since they have a topological origin, such
modes cannot be removed in the presence of a wide class of defects
or imperfections.

In the subsequent examples in this section, we will see how a
similar spectral flow between bulk bands arises at a boundary of a
lattice or at an interface between two lattices. The bulk dispersion
surfaces of these lattices are characterized by topological invariants
and such interface/boundary modes arise when they have different/
non-zero topological invariants.

B. Localized modes in beams

Our next example shows how a spectral flow similar to that
discussed in Sec. VI A arises in an elastic beam with ground
springs. Figure 8 displays the schematic of the considered system,
where the ground springs are located at a distance specified by a
parameter θ. There are circles of radius r with centers located dis-
tance a apart, with r , a. The nth ground spring location is
obtained by projecting a point at an angle nθ from the circle to the
beam. Specifically, this location is xn ¼ naþ rsin(2πnθ) and the
periodicity of the resulting lattice pattern thus depends on θ. If θ is
a rational number, for example, p=q, where p and q are co-prime
integers, then a unit cell has q springs. On the other hand, if θ is
an irrational number, then there is no repetitive unit cell and the
resulting structure is quasiperiodic.

The plane wave expansion method discussed in Sec. III A may
be used to determine the natural frequencies of the beam structures
considered here. The basis functions in Eq. (4) running over a
single index m are a valid choice, as they are periodic over a unit
cell.69 Figure 9(a) displays the natural frequencies of a finite beam
(red curves) overlaid on the corresponding frequencies for an infi-
nite beam. It shows how the frequencies change with the parameter
θ. Note that each vertical slice (constant θ line) is a different lattice.
A homogeneous beam (without ground springs) has an infinite
number of natural frequencies without an upper bound and its dis-
persion relation is

ω ¼
ffiffiffiffiffiffi
EI
ρA

s
κ2:

Here, κ is the wavenumber and E, I, ρ, and A denote Young’s
modulus, area moment of inertia, density, and cross-section area of
the beam. Let us first consider the θ ¼ 0 beam structure. Having a
periodic arrangement of ground springs introduces a length scale,
the distance a between adjacent ground springs. This length scale
of the resulting unit cell introduces Bragg scattering bandgaps in
the dispersion surface. For a finite beam with N ground springs
and simply supported boundary conditions, there are N modes in

FIG. 7. Change in natural frequency of each mode with parameter β showing a
spectral flow across the bandgaps. A number of modes traverse the gap to
satisfy the requirement of equal number of modes in each dispersion branch at
β ¼ 0 and 1.
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this first band, i.e., below the first bandgap. This observation
follows from similar arguments as the discrete lattice embedded on
a ring that was considered in Sec. IV A.

Let us restrict attention to this first dispersion band at θ ¼ 0.
As the parameter θ is varied in the set [0, 1], this band splits into a
number of smaller bands with bandgaps between them. The red
curves corresponding to the finite beam fall within the bulk bands
as θ takes values in the set {p=N : p ¼ 1, 2, N}. For these values of
θ, one can double the length L of the beam and set u(Lþ x) ¼
�u(L� x) and check by direct substitution that this displacement
field will be an eigenmode of the doubled beam. This transforma-
tion now allows us to identify the mode shapes with that of a corre-
sponding beam shaped in the form of a ring, i.e., without a
boundary. Using similar arguments for the beam as in Sec. IV A,
we arrive at this set {p=N : p ¼ 1, 2, N} of θ values. In addition, we
observe spectral flow between the bulk bands as θ changes between
these discrete values.

We thus see features similar to that observed in the hypotheti-
cal ring lattice in Sec. IV A in the elastic beam. Furthermore, the
number of modes that traverse from one band to the other can also
be determined using similar counting arguments. For example, let
us consider two beam lattices, one with θ ¼ 1=5 and the other with
θ ¼ 1=4. The first band at θ ¼ 0 splits into five and four dispersion
bands, respectively. The first N ¼ 20 natural frequencies of the
finite lattice are distributed equally in these dispersion bands. As θ
varies between these two values, we observe a spectral flow between
the various bands similar to the discrete lattice case. In particular,
one mode flows from the bottom band of the θ ¼ 1=5 beam lattice
to the second band of the θ ¼ 1=4 lattice to satisfy the constraint
of specific number of modes in each band.

Having demonstrated how a similar spectral flow arises in an
architected beam, let us examine the mode shape of this mode.
Figure 9(b) displays two representative mode shapes, for modes in
the bandgap marked as (a) and (b) in Fig. 9(a). The modes are

FIG. 8. Schematic of procedure to determine the location of each ground spring by projecting from a circle. Varying the parameter θ gives a family of periodic (quasiperi-
odic) structures for rational (irrational) θ.69

FIG. 9. (a) Frequencies of a finite beam with 20 ground springs (red curves) superimposed on infinite beam frequencies (black curves) for a family of lattices. Each θ is a
distinct structure. Spectral flow between bulk bands (contiguous black curves) arises. (b) Mode shapes of two localized modes at points a and b in (a).69
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localized at the right boundary of the beam and their displacement
amplitude decreases rapidly with distance from this end. Note that
there are N ¼ 20 such modes spanning this large bandgap—having
modes marked (a) and (b)—as θ varies from 0 to 1. This number
N is equal to the number of ground springs in the finite beam.69

For practical applications, it is more desirable to have a system or
structure where the number of localized modes in a bandgap is
independent of the system size. The next example achieves this and
its topological modes are independent of the number of unit cells
in the lattice structure.

C. Topological elastic pumping of localized modes

In Sec. IV B, we saw how to achieve localized modes at the
boundary of an elastic beam. Let us now study an example of a
structure that can support transport of elastic energy by exploiting
such topological modes. This example is inspired by the Thouless
charge pump in quantum mechanics.72,73 We start by considering a
mass-spring chain whose stiffness kn of the nth spring is

kn ¼ 1þ α cos
2πn
3

þ f

� �
: (13)

Here, α , 1 and f takes values in the set [0, 2π]. There are three
masses in each unit cell and hence the lattice has three dispersion
surfaces.

Figure 10(a) displays the dispersion surfaces for a family of lat-
tices as f varies from 0 to 2π and α ¼ 0:6. The bandgaps do not
close for small α. Now, let us consider a finite chain of 61 masses.
This chain has N ¼ 20 unit cells and an extra mass is added so
that we get a commensurate lattice, one whose modes can be identi-
fied with modes in the corresponding infinite chain for f ¼ 0.
Figure 10(b) displays how the natural frequencies change with f
for this finite chain. Note that there is a mode that spans each
bandgap as it flows from one bulk band to another and then back
again. The solid and dashed lines in this bandgap indicate a mode

localized at the left and right boundary, respectively. Figure 10(c)
displays the mode shape of the mode spanning the first bandgap,
showing how it transitions from one edge to another in the finite
chain.

The origin of this spectral flow is also topological as the
number of modes ni in each bulk band changes as f changes by π.
For this considered lattice, all the modes lie on dispersion surfaces
at f ¼ 0 and f ¼ π. The total number of modes is 3N þ 1, and
they are distributed differently in each of the bulk bands for the
two lattices f ¼ 0 and f ¼ π. The number of modes ni can be
determined directly by explicit calculations. The lattices at f ¼ 0
and f ¼ π are illustrated in Fig. 11(a). Note that the unit cells of
these two lattices are translated copies of each other but the key
point is that the location of the lowest spring stiffness is different.
This difference leads to differences at the two ends of a finite chain
and their resulting natural frequencies. A direct calculation yields
n1 ¼ N þ 1, n2 ¼ n3 ¼ N for the f ¼ 0 lattice and n1 ¼ n2 ¼ N ,
n3 ¼ N þ 1. The only way to have this change in the discrete
number of modes between the two lattices is to have a spectral flow
of a mode from the first band to the second and another mode
from the second to the third band as f varies from 0 to π.

The lattice above shows a specific example where varying a
single parameter results in a spectral flow of a localized mode
across the bandgap. It leads to the natural question: What class of
lattices exhibit such spectral flow of a localized mode across a
bandgap? The answer to this question is related to the Chern
number, a topological invariant of a vector field over a manifold.75

In particular, the eigenvectors that are mode shapes in each band
constitute a vector field. If there are n degrees of freedom in a unit
cell, then each eigenvector has n components. These n components
are complex numbers, with the additional property that if u is an
eigenvector, then βu is also an eigenvector for any nonzero
complex number β. Let us consider a family of lattices whose prop-
erties vary smoothly with a parameter f such that the dynamic
matrix is a periodic function of f, i.e., D(f) ¼ D(fþ 2π). Let us
also define Ω ¼ [0, 2π]� [0, 2π] as the domain in the wavenumber

FIG. 10. (a) Dispersion surfaces of a family of lattices as a function of f showing two bandgaps between the bulk bands, along with the Chern number. (b) Natural fre-
quencies of a finite chain of N ¼ 61 masses showing a spectral flow across the bandgap as f varies. Dashed (solid) curves indicate the mode is localized on the left/
right boundary. (c) Displacement magnitude of the localized mode in the second (higher) bandgap showing the transition from right to left boundary.74 Reproduced with per-
mission from Rosa et al., Phys. Rev. Lett. 123, 034301 (2019). Copyright 2019 American Physical Society.
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μ and parameter f plane. Dispersion analysis of each lattice in this
family gives n eigenvectors for each f and wavenumber μ. There
are n dispersion surfaces and hence n vector fields of the corre-
sponding eigenvectors in Ω. The Chern number of a band mea-
sures a topological property of the vector field comprised of its
eigenvectors. It is given by

C ¼ 1
2πi

ð
Ω
[∇� (u* � ∇u)]3 dΩ:

Note that the eigenvectors u of a dispersion band is periodic in this
plane with period 2π along each axes. u is periodic in μ due to the
periodicity of the Brillouin zone.

The reader may refer to several excellent sources for a detailed
derivation and mathematical properties of the Chern number.75–77

Here, we give an intuitive introduction to the physical meaning of
this quantity that is relevant to the present topic. The Chern
number is equal to the number of singularities in the phase of the
vector field in Ω. To see how such a singularity arises and its

relation to localized modes at a boundary, let us consider a disper-
sion surface of a lattice with n degrees of freedom per unit cell. The
eigenvector at each (μ, f) can be expressed as a unit vector in Cn,
i.e., an n-component vector over the complex number field.

Let us determine how u and its derivatives change as we move
along a path in Ω. Recalling that βu is also an eigenvector for any
complex number β, we can still write down a phase independently
for each eigenvector, i.e., each member in the set {eiθu} with kuk ¼ 1
is also an eigenvector. To meaningfully compare u at two distinct
points in the (μ, f) plane, we need to fix a gauge—a generalized
coordinate system specifying θ. Otherwise, the phase θ at any two
distinct points can make the individual components arbitrary. In par-
ticular, we need to make a choice for the phase θ(μ, f) as a function
of μ and f. By Stokes theorem, the Chern number for the vector
field u(μ, f) in the domain Ω becomes

C ¼
ð
@Ω

[n� (u* � ∇u)]3 d@Ω: (14)

Here, n is the unit outward normal from Ω at a point on the boun-
dary @Ω. If there is a smooth choice possible, then the Chern
number becomes zero due to periodicity of u(μ, f) in Ω. If no such
smooth choice of a phase field is possible, then this results in a dis-
continuity in θ(μ, f). In particular, it can be shown that74

u(f ¼ 2π, μ) ¼ eisμu(f ¼ 0, μ):

Here, s is an integer. Substituting the above relation into Eq. (14)
gives C ¼ s. The key message is that C is non-zero only when there
is a discontinuity in the phase field θ.

Now, let us consider a family of finite lattices generated by
varying f from 0 to 2π. If the Chern number of a band is
C ¼ s = 0, then there are s modes traversing the bandgap above it
as f changes in [0, 2π]. A simple way to understand this spectral
flow is to note that a zero Chern number implies that the modes in
the finite lattice can be smoothly deformed as f varies in [0, 2π].
Similarly, a nonzero Chern number implies that all modes cannot
be smoothly deformed or mapped as we vary f. Hence, the only
possibility is that some modes lie in multiple bands when f ¼ 0
and π. As f varies in [0, 2π], these modes traverse the bandgap
and this traversal is the observed spectral flow between bulk bands.

FIG. 11. The finite lattice at (a) f ¼ 0 and (b)f ¼ π has distinct stiffness distribution. The number of frequencies lying on the first and third dispersion branches are dif-
ferent for f ¼ 0 and π. This difference implies a spectral flow in the bandgap as f varies in [0, π].

FIG. 12. Schematic of an array of beams coupled with distributed springs
whose stiffness is given by Eq. (13). Along the beam, f varies from π=3 to
2π=3 so that the localized mode in this chain of distributed springs traverses
from left to right boundary.
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The net number of such modes equals the number of singularities
in the phase field, i.e., the absolute value of the Chern number. The
sign of the Chern number indicates whether the modes traverse
from or to the band as f varies in [0, π]. Hence, any lattice whose
dispersion band has a non-zero Chern number s in (μ, f) supports
a net number jsj of modes traversing the bandgap to the bulk band
above it.

Let us see how this family of localized modes can be used to
achieve transport of elastic waves. Figure 12 displays an array of
beams coupled with continuous distributed springs along their
length. The key idea is to have a family of lattices with varying f so
that the localized mode moves from one boundary to another. The
springs have stiffness analogous to Eq. (12) with f varying along
the length of the chain. Hence, each segment of the distributed
spring at a distance z along the length is equivalent to a discrete
elastic chain at a value f(z). If f is varied from π=3 to 2π=3, we
note that the localized mode shifts from the right to the left

boundary, as illustrated by the distinct time snapshots of the dis-
placement field in Fig. 13. This transport happens when the struc-
ture is subjected to a dynamic excitation with frequency in the first
bandgap. An experimental demonstration of this wave propagation
was achieved78 in a plate whose bending stiffness is modulated by
varying its thickness. This example shows how to achieve energy
transport from one corner to another in an elastic structure. The
next example illustrates wave transport between any two points on
the boundary of a 2D mechanical lattice.

D. Mechanical spin Hall effect

The mechanical analog of the quantum Hall effect allows for
one-way transport along the boundaries of a structure. It is inspired
by works in quantum mechanics starting with the Haldane
model,79 where electrons move in one direction along the edges of
a 2D electron gas. In recent years, several works have achieved
mechanical analogs of this effect in both periodic and random

FIG. 13. Snapshots of beam displacements (arbitrary units) at three distinct time instants showing how the wave transitions from a left localized to a bulk wave to finally a
right localized wave.74 Reproduced with permission from Rosa et al., Phys. Rev. Lett. 123, 034301 (2019). Copyright 2019 American Physical Society.

FIG. 14. Elastic lattice supporting chiral edge modes. (a) Hexagonal lattice with rotating gyroscopes at each node. (b) Dispersion curves for a strip as a unit cell showing
on way modes in the bandgap. The red (blue) modes are localized at the top (bottom) surface and traverse counterclockwise around the boundary.23 Reproduced with per-
mission from Wang et al., Phys. Rev. Lett. 115, 104302 (2015). Copyright 2015 American Physical Society.
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media. The basic idea is the same as was discussed for localized
modes in the family of lattices in Sec. IV C. Instead of a 1D family
of lattices, we have a 2D lattice with the wave vector along the
direction tangential to the boundary playing the role of f. Such
modes are achieved in lattices whose dispersion bands have a
nonzero Chern number. It requires using springs with imaginary
stiffness that break time-reversal symmetry and is realized using
active mechanical components like rotating gyroscopes.22,23

To illustrate this concept, let us study the hexagonal lattice in
Fig. 14(a). It consists of rotating gyroscopes attached to the masses
at each lattice site. There are two dispersion bands for this lattice
with Chern numbers +1 and �1 for the lower and upper bands,
respectively. These numbers are evaluated by considering the
vector field of mode shapes for each band in the two-dimensional
wave-vector domain κ ¼ (κx , κy).

To demonstrate the existence of edge modes in such lattices, a
common technique is to consider the dispersion of a single strip of
finite width shown in Fig. 14(b). Periodic boundary conditions are
imposed on the long inclined boundaries and the lattice is thus one
dimensional with wavenumber equal to the wave-vector component
κx . Figure 14(b) displays the dispersion curves for such a finite
strip. Most of the modes of the strip lie in the frequency range of
the bulk dispersion surfaces obtained with a single unit cell. In
addition, two modes traverse the bandgap as κx varies from 0 to

2π. Their corresponding mode shapes are localized on each
boundary.

The reason for this spectral flow is the same as the concept
discussed in Sec. IV C. A non-zero Chern number implies the exis-
tence of a spectral flow across a bandgap to satisfy the condition
that a singularity exists in the phase field. This lattice thus supports
edge modes localized at the boundary for all frequencies in the
bandgap. In addition, they have a positive (negative) group velocity
on the top (bottom) surface. Indeed, recall that the group velocity
is the gradient of the frequency with respect to the wave vector.80

Hence, these modes propagate only one way along each boundary
and in effect, traverse clockwise around a finite lattice.

Note that there are no continuous analogs of this effect in
conventional elastic media. This hexagonal lattice of Haldane was
extended to derive another class of topological edge modes called
helical modes and the associated phenomena is called the quantum
spin Hall effect. It essentially consists of two copies of the Haldane
model lattice and the total system preserves time-reversal symme-
try. The quantum Hamiltonian H, which is the analog of the
dynamic stiffness matrix M�1K of a mechanical system, has the
form

H(κ) ¼ h(κ) 0
0 �h*(κ)

� �
: (15)

FIG. 15. Examples of discrete mechanical lattices that support helical edge modes. (a) Pendulums with springs,24 (b) rotating disks,25 and (c) spring mass lattice.82

Reproduced with permission from Süsstrunk and Huber, Science 349, 47–50 (2015). Copyright 2015 American Association for the Advancement of Science; Pal et al.,
J. Appl. Phys. 119, 084305 (2016). Copyright 2016 AIP Publishing LLC; and Chen et al., Phys. Rev. B 98, 094302 (2018). Copyright 2018 American Physical Society.
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Figure 15 displays examples of discrete mechanical lattices that
support such helical edge modes. The advantage of this class of
modes is that they do not require active components and can be
realized in conventional linear elastic media. The key idea is that
two copies of any lattice whose dispersion bands have non-zero
Chern number can be used to construct a lattice that supports
helical edge modes. The Chern number of each band in the com-
bined assembly is zero. Susstrunk and Huber used this concept on
a square Hofstadter lattice with 6 degrees of freedom per unit cell
to achieve a mechanical analog of this quantum spin Hall effect.
They obtained the first experimental observation of helical modes
in a mechanical system that has 2 copies of a square lattice with 6
degrees of freedom per unit cell [Fig. 15(a)]. The experimental
setup consists of an array of interconnected pendulums and levers
to mimic springs with positive and negative stiffness. Their key
idea to handle the imaginary terms in h(κ) was to use the unitary
transformation

U ¼ IN � 1ffiffiffi
2

p 1 i
1 �i

� �
(16)

to convert the Hamiltonian to a matrix with only real terms. Here,
N is the number of unit cells of a finite lattice. The dynamic stiff-
ness matrix D ¼ U yHU has the same eigenvalue spectrum as H.
In addition, if a wavefunction u is localized in the quantum case,
its corresponding mechanical mode shape Uu will also remain
localized in the mechanical lattice. This preservation of localization
is due to the block diagonal form of U . This form ensures that the
mode shape (eigenvector of D) components in each unit cell can

be expressed as a linear function of the corresponding eigenvector
components of H in the same unit cell.

Let us discuss in detail the design constructed by one of the
authors of this Tutorial in Ref. 25. Figure 15(b) displays a unit cell
consisting of rotating disks connected by bars. Each disk has 1
degree of freedom and can rotate in its plane. Our starting point is
the Hamiltonian used by Kane and Mele,81 which supports helical
edge modes at the boundary of a hexagonal lattice. Their model
has two copies of hexagonal lattice and each unit cell thus has 4
degrees of freedom. These degrees of freedom are coupled through
real and imaginary interaction terms and these couplings are analo-
gous to springs connecting masses in a mechanical system.
However, in a discrete mechanical system, it is desirable that all
spring stiffness values are real. To achieve this condition of real
coupling terms, we apply the transformation U in Eq. (16) to get a
stiffness matrix with all real terms. In particular, after applying
Bloch periodicity condition, the stiffness matrix for the hexagonal
lattice unit cell takes the form

K ¼ K1 K2

K *
2 K1

� �
,

with

K1 ¼ (3kþ 6λ)I2 � k(1þ eiκ�a1 þþeiκ�a2 )σx ,

K2 ¼ λ eiκ�a1 � eiκ�a1 þ e�iκ�a2 � eiκ�a2 þ e�iκ�(a1�a2) � eiκ�(a1�a2)
� �

σz:

Here, σx and σz are Pauli matrices and k, +λ are the stiffness
values of the intra- and inter-layer coupling springs, respectively.

FIG. 16. Dispersion of a unit cell (a) without and (b) with interlayer coupling, showing how Dirac points break to generate a bandgap. (c) Dispersion of a finite strip
showing modes spanning the bandgap.25 Reproduced with permission from Pal et al., J. Appl. Phys. 119, 084305 (2016). Copyright 2016 AIP Publishing LLC.
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Figure 15(b) (top) displays a schematic of a hexagon of the result-
ing lattice along with the connectivity between the disks.

Figure 16(a) displays the dispersion diagram for the lattice
with λ ¼ 0, i.e., no interlayer coupling springs. The dispersion
diagram is projected onto the κy ¼ 0 plane. There is no bandgap
and the two dispersion surfaces touch. Figure 16(b) displays the
corresponding dispersion diagram of a unit cell with interlayer cou-
pling λ ¼ 0:2 showing a bandgap now opens up. To see the pres-
ence of topological modes at a boundary, we again examine the
dispersion curves of a lattice that is finite in one direction and infi-
nite in another, similar to the lattice in Fig. 14(b). They are illus-
trated in Fig. 16(c) and have two modes spanning the bandgap in
addition to the bulk bands seen in Fig. 16(b). The difference
between these two dispersion curves [Figs. 16(b) and 16(c)] is the
effect of a finite boundary. Indeed, the mode shapes corresponding
to the modes in the bandgap are localized at a boundary. Note how
they span the entire bandgap. In contrast to the chiral edge modes
in Fig. 14(b), there are two modes with opposite group velocities
traversing the bandgap.

Let us now see the transient behavior of a finite lattice com-
prised of these unit cells subjected to narrow band excitation (like a
tone burst) in the bandgap frequency. Figure 17 displays the snap-
shots of displacement field at various time instants for each of
these waves. They are localized at the boundary and their magni-
tude decays rapidly away from it. These discrete models serve to
illustrate the key concept behind such waves in mechanical lattices,
but they may not extend straightforwardly to continuous elastic

media. In Sec. V B, we will show an example of helical waves in
architected plates whose design is guided by symmetry consider-
ations. Before that, let us turn attention to studying another class of
topological modes: valley modes, which are supported at the inter-
face between two hexagonal lattice.

E. Mechanical valley Hall effect

Valley modes are a class of topological modes that arise due to
symmetry properties of Dirac cones in hexagonal lattices.57,83–86 2D
periodic lattices with specific symmetry properties exhibit singular
features called Dirac cones in their dispersion surfaces. To see an
example of how they arise, let us consider the hexagonal discrete
mass-spring lattice shown in Fig. 18(a). Each mass has 1 degree of
freedom and can move out of plane. Each unit cell has two sub-
lattice sites, indexed by a, b, and thus 2 degrees of freedom . The
governing equations for a unit cell indexed p, q are given by

ma€up,q,a þ k(up,q,a � up,q,b)þ k(up,q,a � up�1,q,b)

þ k(up,q,a � up,q�1,b) ¼ 0,

mb€up,q,b þ k(up,q,b � up,q,a)þ k(up,q,b � upþ1,q,a)

þ k(up,q,b � up,qþ1,a) ¼ 0:

Figure 18(b) displays the two dispersion surfaces over the first
Brillouin zone. They touch at the six high-symmetry K points. In
the vicinity of these points, the dispersion surface resembles a two
cones whose apex touch and these points are called Dirac points.

FIG. 17. Snapshots of displacement field at various time
instants. Wave propagates clockwise (a)–(d) or counter-
clockwise (e)–(h) depending on which mode is excited.25

Reproduced with permission from Pal et al., J. Appl.
Phys. 119, 084305 (2016). Copyright 2016 AIP Publishing
LLC.
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Figure 18(c) displays the dispersion surfaces along the path
sketched at the base in Fig. 18(b). Such Dirac cones are at the heart
of unique physical properties of graphene.87 The unique property
of Dirac cones is that the mode density at that frequency is very
low but the group velocity is finite, equal to the gradient of disper-
sion surface near the cone tip.

Let us see what happens if we break inversion symmetry by
making the masses at the two sub-lattice sites different. The broken
inversion symmetry is about the unit cell center, i.e., the structure
is different under the transformation x ! �x. The degeneracy of
the two modes at the K points break and a bandgap opens up.
Again, similar to the case of Secs. IV A and IV D, the vector field
associated with the bands have topological properties that lead to
the existence of localized modes spanning the bandgap frequencies.
In contrast to the earlier cases, where such modes are localized at
the domain boundary, these modes are localized at the interface
between two lattices that are inverted copies of each other.

Let us start by considering the lattice shown in Fig. 19. The
strip is infinite along the x-direction but finite along the
y-direction. The boundary masses at both ends are fixed. The
masses at the two sub-lattice sites (red and white circles) are differ-
ent. There is an interface at the center of the strip and the unit cells
on both sides are inverted copies of each other. This lattice is peri-
odic along the x-direction and the dashed parallelogram shows a
unit cell of this lattice.

Let us analyze the dispersion behavior of this finite strip
lattice. Let the light and heavy mass values be m1 ¼ 1 and m2 ¼ 2,
respectively. There are two types of lattices depending on whether
there are adjacent light or heavy masses at the interfaces. Figure 20
displays the dispersion curves for both cases. The dashed lines indi-
cate modes localized at the interface while the solid blue lines are
modes localized at the boundary. The remaining two contiguous
sets of curves correspond to modes spanning the entire unit cell,
i.e., bulk modes. The key observation is that the mode shape and
frequency-wavenumber relation of the localized mode can change
depending on the interface type, but there is a mode in the
bandgap for both cases.

There are two different approaches to understand the existence
of these localized modes at such interfaces, similar to the two dis-
tinct approaches presented in Sec. IV C. The first approach ana-
lyzes the behavior at distinct high-symmetry points to infer the
existence of a spectral flow in the bandgap, while the second
approach uses topological invariants to infer localized modes in the
bandgap.

In the first approach, let us consider the dynamic behavior of
the lattice at wavenumbers κx ¼ 0 and κx ¼ π=a. Here, a is the
unit cell length. Using Bloch periodicity conditions, we see that all
unit cells have identical displacement fields at κx ¼ 0, while adja-
cent unit cells have displacement field of opposite sign at
κx ¼ π=a. These relations lead to the unit cell transforming into
the lattices shown in Figs. 21(a) and 21(b) for κx ¼ 0 and π=a,
respectively. Thick lines indicate that the stiffness value is k ¼ 2.

FIG. 18. (a) Hexagonal lattice schematic with unit cell. (b) Dispersion surfaces when ma ¼ mb showing Dirac cones at the K points. (c) Dispersion curves over a path
through the high-symmetry points for the case ma = mb (solid curves) and ma ¼ mb (dashed curves). The valley Chern numbers Cv for each band at the K points are
indicated.88 Reproduced with permission from Vila et al., Phys. Rev. B 96, 134307 (2017). Copyright 2017 American Physical Society.

FIG. 19. Schematic of a lattice periodic along horizontal edges and finite along
tilted edges. Red and white circles have distinct masses. The interface sepa-
rates two parts that are inverted copies of each other.57
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These transformed lattices are obtained by using the above dis-
placement field relations at these wavenumbers and the connectiv-
ity of the hexagonal lattice. Similar to the case of topological
pumping in Sec. IV C, direct calculations show that the frequency
distribution in each of the bulk bands is different at these two
wavenumbers. The difference in frequency arises for both kinds of
interfaces: adjacent light masses and adjacent heavy masses, and it
manifests as a spectral flow between the bulk bands. Again, there is
a topological invariant that captures this difference in mode distri-
bution and predicts the existence of localized modes. This invariant
is the valley Chern number, and it is equal to the integral of the
Berry curvature in the vicinity of the K-point. Detailed derivations
of this invariant are presented in Ref. 57. It should be noted that
having distinct masses that break inversion symmetry is one possi-
ble way to achieve topological bandgaps. Recent works89 have dem-
onstrated band inversion in spring mass models that preserve
inversion symmetry.

V. EDGE MODES IN ELASTIC PLATES

Having discussed various kinds of topological modes localized
at interfaces and boundaries in architected beams and discrete 2D
mechanical lattices, let us now see examples of how these concepts
can be extended to architected plates. We will consider three exam-
ples in increasing order of structural complexity. The first one sup-
ports valley Hall modes in thin plates using zero-order bending or

A0 Lamb waves. The second example achieves helical edge waves
using the hybridization of multiple higher-order Lamb wave modes
in a plate with complex-shaped blind and through holes. The final
example extends this plate design to support both helical and valley
modes, along with splitting or redirection of a wave at a junction
depending on its polarization.

A. Elastic valley Hall modes

In Sec. IV E, we discussed the discrete mechanical analog of
the quantum valley Hall effect in lattices that have C3 rotational
symmetry but broken inversion symmetry. The key idea is that
localized modes arise at the interface of two such lattices that are
inverted copies of each other. Let us see how to extend this discrete
concept to continuous elastic media.

Architected thin plates supporting Lamb waves provide a way
to realize a wide class of waves that are continuous analogs of 2D
discrete mechanical lattices. Examples include hexagonal and
Kagome lattices in Refs. 88, 90, and 91. The common aspect in
these designs is that they all satisfy the aforementioned symmetry
conditions for the discrete case. Let us discuss in detail the design
in Fig. 22(a). It consists of a thin plate with hexagon shaped holes
drilled into it in a periodic arrangement. Masses are attached at
nodal locations in a corresponding discrete hexagonal lattice. The
masses attached at the two sub-lattice sites in the unit cell are dif-
ferent and this difference breaks inversion symmetry of the lattice.

FIG. 20. Dispersion diagrams of a finite strip with an interface having adjacent (a) light and (b) heavy masses. Mode shapes of the dashed red and solid blue curves are
localized at the interface and boundary, respectively.57

FIG. 21. Schematic of finite strip lattice with interface at the high-symmetry points (a) κx ¼ 0 and (b) κx ¼ π=a after applying Bloch periodicity. The two configurations
have distinct number of frequencies lying in each bulk band, implying a mode traverses the bandgap as κx varies in [0, π=a].
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Figure 22(b) displays the corresponding dispersion bands for a
single unit cell. It is computed using finite element analysis and it
shows a bandgap opening up due to the breaking of inversion sym-
metry at the K-point. Note that the bending modes that form a
Dirac cone breaks to form a bandgap, but it is not a complete iso-
lated bandgap as there are axial and in plane-shear modes that trav-
erse this frequency range. However, due to their distinct mode
shapes, when the bending mode is excited, a negligible fraction of
energy is converted to these modes.

Figure 23 displays the dispersion diagram for a finite strip,
calculated using the plane wave expansion method. The frequency
is expressed in non-dimensional form by normalizing it as
Ω ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ρA

p
and the wave vector is normalized by the unit cell

length a. The modes are bounded by two curves Ω ¼ μ2 and
Ω ¼ π2 � μ2. This is because the group velocity at each frequency
ω is bounded by the corresponding value for a homogeneous plate.
Similar to the discrete case, there are two kinds of interface,
depending on whether there are adjacent heavy or light masses at
the junction. Figures 23(c) and 23(d) display the mode shapes at
each kind of interface. These modes are called elastic valley modes
and they span the bandgap frequencies for sufficiently small values
of the mass difference. Note how they are localized at the interface
and their amplitude decays rapidly away from it.

Let us now see an experimental demonstration of how such
waves are able to navigate sharp bends without scattering losses.
The structure is made of acrylic and magnetic cylinders are
attached on both sides that attract each other. The unit cell size is
18:4 mm. The magnetic force between cylinders on adjacent lattice
sites is assumed to be negligible. Figure 24(a) displays the experi-
mental setup of an N-shaped topological waveguide realized by cre-
ating an interface. The red and cyan circles indicate locations with
low and high masses, respectively. There are two adjacent light
masses and the unit cells on each side are inverted copies of each
other. The bottom end of the waveguide is excited with a windowed
tone burst excitation and the velocity field is measured throughout

the lattice with sufficient spacing between adjacent points using an
SLDV. Figure 24(b) displays the amplitude of the out-of-plane
velocity component after the waves have passed through. The wave
decays in amplitude as the plate is made of acrylic, but an examina-
tion of the reconstructed temporal evolution of the dynamics
shows the absence of backscattering as the wave navigates corners.

As discussed earlier, topologically protected modes exist at the
interface between lattices with distinct topological invariants. In
this case, the relevant invariant is the valley Chern number. In con-
trast, if the lattices on both sides of an interface have identical
invariants, then no modes are guaranteed to exist. Localized defect
modes can exist, but they typically do not span the bandgap and
these modes are sensitive to the geometry of the interface. Such
interfaces are topologically trivial and are termed trivial wave-
guides. The following example illustrates their dynamic behavior.
The lattices on either side of the interface are identical in the struc-
ture of Fig. 24(c). Hence, the topological invariants of the two lat-
tices are identical and this interface is a trivial waveguide. The
corresponding transient response shows that no wave navigates the
corners. Thus, comparing its response with that of the topological
case shows the efficacy and superiority of the topological
waveguide.

This example shows how valley modes can be induced in con-
tinuous elastic media using architected thin plates. Such valley
modes have also been demonstrated in several other systems,
including in small scale structures,92,93 reconfigurable waveguides
with shunted piezoelectric patches;91 in acoustic lattices with sound
waves;94–96 and in plates with bolts or stubs.58,97

B. Elastic spin Hall modes

In Sec. IV D, the key ideas behind the mechanical analog of
the quantum spin Hall effect were discussed in the case of discrete
lattice-like structures. Recall that this effect leads to topological
helical modes at boundaries. In this section, a general procedure or

FIG. 22. (a) Designed structure is a thin plate with hexagonal holes. Different masses are attached to the sub-lattice sites to break inversion symmetry. (b) Dispersion
curves over the boundary of the IBZ for the unit cell. Blue curves are out-of-plane bending modes, while red curves are in-plane longitudinal and shear modes.88

Reproduced with permission from Vila et al., Phys. Rev. B 96, 134307 (2017). Copyright 2017 American Physical Society.
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recipe to obtain helical topologically protected edge modes in con-
tinuous passive elastic waveguides is thoroughly detailed.

In principle, in the case of a system made of solely passive
components, time-reversal symmetry is preserved, and a phononic
analog of chiral edge states is precluded. However, as proposed in
the pioneering work of Mousavi et al.,98 helical edge modes can be
achieved in passive elastic waveguides as well by exploiting the fact
that various Lamb modes are characterized by different polariza-
tion. Specifically, they showed that guided symmetric (S0) and anti-
symmetric (A0) modes in plates are excellent candidates to achieve
an elastic version of the quantum spin Hall effect (i.e., designing a
system supporting two effective spins for Lamb waves over a suffi-
ciently broad bandwidth).

Geometry and material modifications, in general, affect the
dispersion behavior and the associated band structure of plates. For
example, breaking translation symmetry by introducing periodic
holes or inclusions may open bandgaps, which, however, may not
be complete and may, therefore, affect only some of the modes.
The opening of bandgaps supporting topological modes also
requires the structure to maintain a specific symmetry. The general
procedure to obtain topologically protected helical edge modes in
continuous elastic plates can be decomposed into the following
steps:

• Step 1—design a unit cell whose dispersion surfaces have an iso-
lated double Dirac cone (Fig. 25);

• Step 2—open a bandgap by breaking midplane symmetry of the
unit cell (Fig. 26); and

• Step 3—create an interface using the unit cells of step 2. The unit
cells on either side are mirror images of each other about the
plate midplane. [Fig. 27(a)].

We will show below how applying the above steps to a pat-
terned continuous elastic plate leads to helical topological protected
edge modes. As mentioned, the first step is to create an isolated
Dirac-like dispersion curves for the two polarized Lamb modes in
the absence of σh symmetry (or reflection symmetry about the
midplane of the plate) breaking. Let us consider an architected unit
cell as the one showed in Fig. 25(a). The specific patterning creates
a graphene-like band structure for elastic waves. Specifically, the
in-plane hexagonal symmetry provides Dirac dispersion for waves
with an accidental degeneracy at K and K0 points (Dirac points).
While the plate geometrically resembles the twisted Kagome lattice
described in,99 it is a continuous medium with no lumped elements
such as point masses and springs can be identified. The associated
dispersion surfaces have a double Dirac cone of modes with differ-
ent polarization (in-plane and out-of-plane, represented, respec-
tively, by the colors blue and gray/yellow in the right panel).
Matching the frequency and the slope (group velocity) of Dirac
cones associated with a symmetric mode and an anti-symmetric
mode in a frequency range with no other modes is analogous to
emulating the two spin states in graphene. Kane and Mele81

FIG. 23. Dispersion diagram for a finite strip having an interface with adjacent (a) light and (b) heavy masses. In both cases, a mode is localized at the interface with fre-
quency in the bandgap. (c) and (d) Typical mode shapes of this mode and schematic of the finite strip.57
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showed that quantum spin Hall effect and helical edge modes arise
when strong spin orbital coupling is introduced.

Once isolated double Dirac cones are achieved, a bandgap can
be opened by replacing the through-the-thickness holes by blind
holes, i.e., holes not spanning the whole thickness of the plate, as
illustrated in the perspective and cross-sectional view of Fig. 26(a).
Blind holes (BH) through part of the plate thickness break the σh

symmetry while preserving the original C3v symmetry. This modifi-
cation induces a coupling between the modes spanning the Dirac
points: the in-plane polarized and out-of-plane polarized modes.
This coupling is analogous to the spin orbital interaction in the
quantum spin Hall effect. In contrast to valley modes where the
two sets of modes are associated with two distinct valleys (K , K 0),
the spin Hall effect results from the hybridization of two distinct
sets of modes spanning each of the high-symmetry K points.

This type of macroscopic geometrical modification produces a
unit cell with broken σh symmetry, leading to mode hybridization
at the high-symmetry point K . Applying a σh-transformation to
such a unit cell then gives the geometries for domain 1 and
domain 2 (blind holes are inverted with respect to the midplane of
the unit cell). The interface between them, as shown in the sche-
matic in Fig. 27(a) is an elastic waveguide supporting localized
helical edge modes in the bandgap frequencies. Figure 27(b) dis-
plays the numerical (white lines) and experimental measurements
(energy spots) of the two distinct helical modes propagating in the
waveguide. Experimental reconstruction of the helical edge modes
characterized by a clockwise and counterclockwise variation of
phase of the displacement field as the waves propagate from left to
right. Figure 27(c) illustrates a snapshot of the displacement field.
Refer to Ref. 16 for more details on the geometrical parameters of

FIG. 24. N-shaped (a) topological and (c) trivial waveguide. Red and cyan circles have different mass amounts. (b) and (d) Their corresponding dynamic response at dis-
tinct time instants showing the wave navigates sharp bends in the topological waveguide.88 Reproduced with permission from Vila et al., Phys. Rev. B 96, 134307 (2017).
Copyright 2017 American Physical Society.
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the unit cell and movie files of the experimental full field recon-
struction. Hence, there are two helical modes with opposite polari-
zation. They have opposite group velocities for each wavenumber κ
of waves propagating along the interface.

C. Combined valley and spin Hall modes

In this section we show how to design an elastic waveguide
supporting multiple classes of edge modes (helical and valley).
Specifically, we will show a recipe to construct a continuous elastic
waveguide capable of splitting equal-frequency helical edge waves

differing on the basis of their polarization when they impinge on
distinct interfaces at a common junction. The starting point is the
same as for helical modes: a unit cell showing a double Dirac cone
degeneracy, as the one examined in the previous section, and illus-
trated again in Fig. 28(a) for clarity. From this unit cell, specific
geometric modifications are introduced so as σv and σh symme-
tries, i.e., inversion and reflection symmetries, are selectively
broken in specific portions of an elastic waveguide, as shown in
Fig. 29(a). The introduced geometric perturbations produce topo-
logical bandgaps that, respectively, support helical and valley

FIG. 25. Step 1: (a) perspective and cross-sectional view of an architected unit cell with through the thickness holes, TH. (b) Its dispersion curves have a double Dirac
cone and the corresponding modes have different polarization p (in-plane and out-of-plane, represented, respectively, by the colors blue and gray/yellow in the right panel).

FIG. 26. Step 2: (a) perspective and cross-sectional view of a unit cell with blind holes BH. Unit cells for domain 1 and domain 2 differ by a σh transformation, with blind
holes being on the top vs bottom surface. (b) Modes are hybridized at the high-symmetry point K, breaking σh symmetry. Color bar indicates mode polarization p.
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modes in a common frequency range. Specifically, replacing the
through holes of Fig. 28(a) with blind holes of 0:9 times the height
of the plate, as shown in Fig. 28(b), breaks the σh symmetry. We
denote the configuration with the blind holes on the top (bottom)
surface as Hþ (H�). The interface between Hþ and H� supports
two helical edge modes spanning the gap with positive (Φþ) and
negative (Φ�) group velocity, respectively [Fig. 29(b)].

Next, we break the σv symmetry or reflection symmetry about
a vertical plane-parallel to a lattice vector direction. This id done by
making the holes in each unit cell of different radii, namely, r and

R [see Fig. 28(c)]. Inverting the position of the larger and smaller
radii allows us to identify two distinct unit cells, denoted as Vr and
VR [Fig. 28(c)]. Contrary to the previous case, an interface that
separates two σv-transformed copies of the structure supports a
single valley mode, with positive or negative group velocity,
depending on the type of interface, i.e., with two adjacent holes of
diameter r or R, respectively. Besides, the interfaces between struc-
tures supporting helical and valley modes will still support a single
hybrid edge mode with either positive (Ψþ) or negative (Ψ�)
group velocity, as shown in Figs. 29(c) and 29(d). The edge modes

FIG. 27. Step 3: (a) schematic of a continuous elastic waveguide supporting helical modes at the interface between two unit cells related by a σh transformation. (b)
Numerical (white lines) and experimental measurements (energy spots) of the two distinct helical modes. (c) Experimental reconstruction of the helical edge modes charac-
terized by a clockwise and counterclockwise displacement phase field variation with respect to the direction of wave propagation (left to right).16 Color bar indicates mea-
sured voltage.

FIG. 28. (a) Top view of the designed unit cell with through-the-thickness holes whose dispersion has a double Dirac cone [see Fig. 25(b)]. (b) Perspective view of two
unit cells with broken σh symmetry. H+ has blind holes on the top surface, and H� has blind holes at the bottom. They both break Dirac cones and open a bandgap [see
Fig. 26(b)]. (c) The perspective view of the unit cells with broken σv symmetry. V+ and V� had different size through holes. Both unit cells also open a bandgap in the
same frequency range. Reproduced with permission from Miniaci et al., Phys. Rev. B 100, 024304 (2019). Copyright 2019 American Physical Society.
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are denoted by the index þ (�) according to their positive (nega-
tive) group velocity when the wavenumber κ is in [0, π=a]. Note
that this wavenumber is for waves propagating along an interface
between two kinds of unit cells. In Figs. 29(b)–29(d), bulk modes
are shaded in gray, while the edge states are denoted by the black,
blue, and red circles, depending on the types of interface: Hþ=H�),
Hþ=VR), and H�, Vr), respectively.

Finally, Figs. 30(a) and 30(b) show the numerical distribution
of the von Mises stress field resulting from harmonic excitation at
98 kHz, i.e., within the bulk gap. The excitation is applied at the
location shown by the white dot as an out-of-plane displacement
distribution and the calculations clearly illustrate the possibility to
preferentially excite one of the two modes and to remotely select
the interface along which the wave will propagate once impinging
the Y-shaped junction. Colors indicate the von Mises stress,

ranging from zero (blue) to maximum (red). Refer to Ref. 90 for
the geometrical details of the unit cells and further details. Such
wave splitting shows the potential for novel elastic wave manipula-
tion capabilities.

VI. OUTLOOK AND FUTURE DIRECTIONS

The past decade has seen an explosive growth in this research
field, motivated by both an exploration of fundamental wave phe-
nomena in elastic media and aimed at specific technological appli-
cations. The key realization in our opinion is that interfaces and
defect modes can be designed in a systematic way by incorporating
features derived from topological considerations. The examples dis-
cussed above showed how one can achieve robust and backscatter-
ing free waveguides that have sharp bends and corners. Different
dimensions exhibit distinct topological phenomena: for instance,

FIG. 29. (a) Digital model to assist the drilling machine for the manufacturing of the waveguide. Holes in red (green) define the Hþ (H�) unit cell where blind holes are
drilled. The hole depth is 0:9 times the height of the plate. Holes in blue (violet) define the VR (Vr ) unit cells where holes are drilled through the whole thickness of the
plate but that have different radii. (b)–(d) Dispersion diagrams for non-trivial stripes with the following types of interfaces: Hþ=H�), Hþ=VR), and H�, Vr ), respectively.
The band structures are computed considering the strips periodic in the horizontal direction and made of 10 unit cells on each side of the domain wall. The bulk modes
are reported as gray dots while the interface modes in black, blue, and red dotted lines, respectively. The edge modes are denoted by the index þ (�) according to their
positive (negative) group velocity with respect to the propagation direction.90 Reproduced with permission from Miniaci et al., Phys. Rev. B 100, 024304 (2019). Copyright
2019 American Physical Society.
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the existence of a non-zero Zak phase in 1D systems and Weyl
points in 3D systems. In this article, we have primarily focused on
topological phenomena in elastic beams and plates that can be
characterized by a Chern number. Now, let us we outline some
promising future research directions.

Reconfigurable waveguides83,100 are just beginning to be
explored and remain to be realized in a variety of elastic wave-
guides. Similarly, multiphysics interactions, including between
elastic and electromagnetic domains, for example, in piezoelectric
media,101,102 or between fluids and structures,103 may open avenues
for controlling waves in one media with another. Extending unit
cell designs to three-dimensional periodic structures will signifi-
cantly expand the design space as well as allow for 3D manipula-
tion and control of elastic waves. They may allow for exploiting
Weyl points104 or can realize constructions like fragile topology105

that exhibit spectral flow at interfaces. Similarly, quasiperiodic106,107

and non-periodic108 metastructures offer rich opportunities for
achieving unique static and dynamic behaviors. Such concepts have
recently started to be investigated in static media and in 1D beam
systems. Extending unit cell concepts to non-periodic, complex
geometries,109 higher dimensions and higher-order topological
modes110 will open avenues for unique wave manipulation proper-
ties. In particular, quasi- and non-periodic structures exhibit for
bulk isotropic behavior as opposed to anisotropic behavior that is
associated with periodic media, for example, C3, C4 media in 2D
structures.

On the theoretical side, several questions similarly remain
unanswered, having to do with the role of nonlinearities. Notably,
nonlinear111–113 and non-Hermitian114–116 elastic structures have
exciting potential for realizing novel wave phenomena. The topo-
logical properties of such systems remain to be investigated and
they may allow for solitons, frequency conversion, localized skin
modes, unidirectional reflection in elastic structures like beams,
plates, and shells.117,118 In this regard, the advent of 3D119 and 4D
printing120,121 has opened novel avenues for fabricating complex-
shaped structures that were beyond the reach of conventional

manufacturing methods. Synthetic high dimensional spaces have
been created in other physical domains by modulating geometric
parameters in time122 or by accessing additional degrees of
freedom.123 Such techniques can lead to the realization of topologi-
cal wave phenomena associated with the corresponding higher
dimensions in elastic media too. We anticipate that these directions
will thus lead to fruitful fundamental and applied research in the
coming years and will lead to the discovery of novel and exciting
effects in the domain of topological elastic waves.

ACKNOWLEDGMENTS

M.M. is funded by the European Union’s Horizon 2020 FET
Open (Boheme) under Grant Agreement No. 863179. R.K.P. is sup-
ported by startup funds from Kansas State University and by U.S.
National Science Foundation Award No. 2027455.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial
Differential Equations (John Wiley & Sons, 2008).
2C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics (Wiley,
New York, 1996), Vol. 8.
3L. Brillouin,Wave Propagation and Group Velocity (Academic Press, 2013), Vol. 8.
4J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
5X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen, “Topological
sound,” Commun. Phys. 1, 1–13 (2018).
6V. Giurgiutiu, Structural Health Monitoring: With Piezoelectric Wafer Active
Sensors (Elsevier, 2007).
7W. Ostachowicz, P. Kudela, M. Krawczuk, and A. Zak, Guided Waves in Structures
for SHM: The Time-Domain Spectral Element Method (John Wiley & Sons, 2011).
8J. L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University
Press, 2014).

FIG. 30. (a) and (b) Numerical distribution of the von Mises stress field resulting from harmonic excitation at 98 kHz, i.e., within the bulk gap. The excitation is applied at
the location shown by the white dot as an out-of-plane displacement. The calculations illustrate the possibility of preferentially exciting one of the two modes and of thus
remotely selecting the interface along which the wave will propagate after it impinges on the Y -shaped junction. Reproduced with permission from Miniaci et al., Phys. Rev.
B 100, 024304 (2019). Copyright 2019 American Physical Society.

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 130, 141101 (2021); doi: 10.1063/5.0057288 130, 141101-26

Published under an exclusive license by AIP Publishing

https://doi.org/10.1038/s42005-017-0001-4
https://aip.scitation.org/journal/jap


9P. A. Deymier, Acoustic Metamaterials and Phononic Crystals (Springer Science
& Business Media, 2013), Vol. 173.
10M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod.
Phys. 82, 3045 (2010).
11L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat.
Photonics 8, 821–829 (2014).
12P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni,
M. Brahlek, N. Bansal, N. Koirala, S. Oh et al., “Observation of dirac plasmons
in a topological insulator,” Nat. Nanotechnol. 8, 556–560 (2013).
13C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P. Liu, and
Y.-F. Chen, “Acoustic topological insulator and robust one-way sound transport,”
Nat. Phys. 12, 1124–1129 (2016).
14J. Cha, K. W. Kim, and C. Daraio, “Experimental realization of on-chip
topological nanoelectromechanical metamaterials,” Nature 564, 229–233 (2018).
15E. Prodan and C. Prodan, “Topological phonon modes and their role in
dynamic instability of microtubules,” Phys. Rev. Lett. 103, 248101 (2009).
16M. Miniaci, R. Pal, B. Morvan, and M. Ruzzene, “Experimental observation of
topologically protected helical edge modes in patterned elastic plates,” Phys. Rev.
X 8, 031074 (2018).
17B.-Z. Xia, T.-T. Liu, G.-L. Huang, H.-Q. Dai, J.-R. Jiao, X.-G. Zang, D.-J. Yu,
S.-J. Zheng, and J. Liu, “Topological phononic insulator with robust pseudospin-
dependent transport,” Phys. Rev. B 96, 094106 (2017).
18J. Ma, D. Zhou, K. Sun, X. Mao, and S. Gonella, “Edge modes and asymmetric
wave transport in topological lattices: Experimental characterization at finite frequen-
cies,” Phys. Rev. Lett. 121, 094301 (2018).
19Y. Barlas and E. Prodan, “Topological classification table implemented with
classical passive metamaterials,” Phys. Rev. B 98, 094310 (2018).
20O. B. Wright and O. Matsuda, “Watching surface waves in phononic crystals,”
Philos. Trans. R. Soc., A 373, 20140364 (2015).
21T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets, “Guiding electromag-
netic waves around sharp corners: Topologically protected photonic transport in
metawaveguides,” Phys. Rev. Lett. 114, 127401 (2015).
22L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and W. T. Irvine,
“Topological mechanics of gyroscopic metamaterials,” Proc. Natl. Acad. Sci. U.S.A.
112, 14495–14500 (2015).
23P. Wang, L. Lu, and K. Bertoldi, “Topological phononic crystals with one-way
elastic edge waves,” Phys. Rev. Lett. 115, 104302 (2015).
24R. Süsstrunk and S. D. Huber, “Observation of phononic helical edge states in
a mechanical topological insulator,” Science 349, 47–50 (2015).
25R. K. Pal, M. Schaeffer, and M. Ruzzene, “Helical edge states and topological
phase transitions in phononic systems using bi-layered lattices,” J. Appl. Phys.
119, 084305 (2016).
26C. Kane and T. Lubensky, “Topological boundary modes in isostatic lattices,”
Nat. Phys. 10, 39–45 (2014).
27D. Z. Rocklin, B. G.-G. Chen, M. Falk, V. Vitelli, and T. Lubensky, “Mechanical
Weyl modes in topological maxwell lattices,” Phys. Rev. Lett. 116, 135503 (2016).
28D. Z. Rocklin, S. Zhou, K. Sun, and X. Mao, “Transformable topological
mechanical metamaterials,” Nat. Commun. 8, 1–9 (2017).
29Y. Jin, D. Torrent, and B. Djafari-Rouhani, “Robustness of conventional and
topologically protected edge states in phononic crystal plates,” Phys. Rev. B 98,
054307 (2018).
30L. He, Z. Wen, Y. Jin, D. Torrent, X. Zhuang, and T. Rabczuk, “Inverse design
of topological metaplates for flexural waves with machine learning,” Mater. Des.
199, 109390 (2021).
31K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber, and C. Daraio,
“Designing perturbative metamaterials from discrete models,” Nat. Mater. 17,
323–328 (2018).
32D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided
Propagation (Springer Science & Business Media, 1999).
33J. Achenbach, Wave Propagation in Elastic Solids (Elsevier, 2012).
34K. F. Graff,Wave Motion in Elastic Solids (Courier Corporation, 2012).
35A. H. Nayfeh, Wave Propagation in Layered Anisotropic Media: With
Application to Composites (Elsevier, 1995).

36B. A. Auld, Acoustic Fields and Waves in Solids, Volumes 1 and 2 (John Wiley,
New York and London, 1973).
37D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation,
Acousto-Optic Interaction, Applications (Springer Science & Business Media,
1999).
38A. Preumont, Vibration Control of Active Structures: An Introduction
(Springer, 2018), Vol. 246.
39G. Trainiti and M. Ruzzene, “Non-reciprocal elastic wave propagation in spa-
tiotemporal periodic structures,” New J. Phys. 18, 083047 (2016).
40C. Croënne, J. Vasseur, O. Bou Matar, M.-F. Ponge, P. A. Deymier,
A.-C. Hladky-Hennion, and B. Dubus, “Brillouin scattering-like effect and non-
reciprocal propagation of elastic waves due to spatio-temporal modulation of elec-
trical boundary conditions in piezoelectric media,” Appl. Phys. Lett. 110, 061901
(2017).
41A. Merkel, M. Willatzen, and J. Christensen, “Dynamic nonreciprocity in loss-
compensated piezophononic media,” Phys. Rev. Appl. 9, 034033 (2018).
42C. Croënne, J. Vasseur, O. Bou Matar, A.-C. Hladky-Hennion, and B. Dubus,
“Non-reciprocal behavior of one-dimensional piezoelectric structures with space-
time modulated electrical boundary conditions,” J. Appl. Phys. 126, 145108
(2019).
43F. Ruesink, M.-A. Miri, A. Alu, and E. Verhagen, “Nonreciprocity and
magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7,
1–8 (2016).
44Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission
and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113, 3471–3475 (2016).
45H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris,
G. Huang, and M. R. Haberman, “Nonreciprocity in acoustic and elastic materials,”
Nat. Rev. Mater. 5, 667–685 (2020).
46L. R. Meza, A. J. Zelhofer, N. Clarke, A. J. Mateos, D. M. Kochmann, and
J. R. Greer, “Resilient 3D hierarchical architected metamaterials,” Proc. Natl.
Acad. Sci. U.S.A. 112, 11502–11507 (2015).
47M. Miniaci, A. Krushynska, A. S. Gliozzi, N. Kherraz, F. Bosia, and
N. M. Pugno, “Design and fabrication of bioinspired hierarchical dissipative elastic
metamaterials,” Phys. Rev. Appl. 10, 024012 (2018).
48D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun, “Elastic metamaterials
with inertial locally resonant structures: Application to lensing and localization,”
Phys. Rev. B 87, 174303 (2013).
49R. V. Craster and S. Guenneau, Acoustic Metamaterials: Negative Refraction,
Imaging, Lensing and Cloaking (Springer Science & Business Media, 2012),
Vol. 166.
50D. Tallarico, G. Hannema, M. Miniaci, A. Bergamini, A. Zemp, and B. Van
Damme, “Superelement modelling of elastic metamaterials: Complex dispersive
properties of three-dimensional structured beams and plates,” J. Sound Vib. 484,
115499 (2020).
51M. Mazzotti, M. Miniaci, and I. Bartoli, “Band structure analysis of leaky
Bloch waves in 2d phononic crystal plates,” Ultrasonics 74, 140–143 (2017).
52M. Miniaci, A. S. Gliozzi, B. Morvan, A. Krushynska, F. Bosia, M. Scalerandi,
and N. M. Pugno, “Proof of concept for an ultrasensitive technique to detect and
localize sources of elastic nonlinearity using phononic crystals,” Phys. Rev. Lett.
118, 214301 (2017).
53Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally
resonant sonic materials,” Science 289, 1734–1736 (2000).
54M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic
band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 2022 (1993).
55Y. Tanaka and S.-I. Tamura, “Acoustic stop bands of surface and bulk modes
in two-dimensional phononic lattices consisting of aluminum and a polymer,”
Phys. Rev. B 60, 13294 (1999).
56D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene:
Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87,
115143 (2013).
57R. K. Pal and M. Ruzzene, “Edge waves in plates with resonators: An
elastic analogue of the quantum valley Hall effect,” New J. Phys. 19, 025001
(2017).

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 130, 141101 (2021); doi: 10.1063/5.0057288 130, 141101-27

Published under an exclusive license by AIP Publishing

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nnano.2013.134
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/s41586-018-0764-0
https://doi.org/10.1103/PhysRevLett.103.248101
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevB.96.094106
https://doi.org/10.1103/PhysRevLett.121.094301
https://doi.org/10.1103/PhysRevB.98.094310
https://doi.org/10.1098/rsta.2014.0364
https://doi.org/10.1103/PhysRevLett.114.127401
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1063/1.4942357
https://doi.org/10.1038/nphys2835
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1038/ncomms14201
https://doi.org/10.1103/PhysRevB.98.054307
https://doi.org/10.1016/j.matdes.2020.109390
https://doi.org/10.1038/s41563-017-0003-3
https://doi.org/10.1088/1367-2630/18/8/083047
https://doi.org/10.1063/1.4975680
https://doi.org/10.1103/PhysRevApplied.9.034033
https://doi.org/10.1063/1.5110869
https://doi.org/10.1038/ncomms13662
https://doi.org/10.1073/pnas.1517363113
https://doi.org/10.1038/s41578-020-0206-0
https://doi.org/10.1073/pnas.1509120112
https://doi.org/10.1073/pnas.1509120112
https://doi.org/10.1103/PhysRevApplied.10.024012
https://doi.org/10.1103/PhysRevB.87.174303
https://doi.org/10.1016/j.jsv.2020.115499
https://doi.org/10.1016/j.ultras.2016.10.006
https://doi.org/10.1103/PhysRevLett.118.214301
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1103/PhysRevLett.71.2022
https://doi.org/10.1103/PhysRevB.60.13294
https://doi.org/10.1103/PhysRevB.87.115143
https://doi.org/10.1088/1367-2630/aa56a2
https://aip.scitation.org/journal/jap


58R. Chaunsali, C.-W. Chen, and J. Yang, “Subwavelength and directional
control of flexural waves in zone-folding induced topological plates,” Phys. Rev. B
97, 054307 (2018).
59V. Dal Poggetto and A. L. Serpa, “Elastic wave band gaps in a three-
dimensional periodic metamaterial using the plane wave expansion method,”
Int. J. Mech. Sci. 184, 105841 (2020).
60S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude, “Evidence for
complete surface wave band gap in a piezoelectric phononic crystal,” Phys. Rev. E
73, 065601 (2006).
61Z. Hou and B. M. Assouar, “Modeling of Lamb wave propagation in plate with
two-dimensional phononic crystal layer coated on uniform substrate using
plane-wave-expansion method,” Phys. Lett. A 372, 2091–2097 (2008).
62V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves
and the complex band structure of phononic crystals,” Phys. Rev. B 80, 092301
(2009).
63M. Oudich and M. Badreddine Assouar, “Complex band structures and eva-
nescent Bloch waves in two-dimensional finite phononic plate,” J. Appl. Phys.
112, 104509 (2012).
64T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis (Courier Corporation, 2012).
65M. Åberg and P. Gudmundson, “The usage of standard finite element codes
for computation of dispersion relations in materials with periodic microstruc-
ture,” J. Acoust. Soc. Am. 102, 2007–2013 (1997).
66O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its
Basis and Fundamentals (Elsevier, 2005).
67A. Spadoni, M. Ruzzene, S. Gonella, and F. Scarpa, “Phononic properties of
hexagonal chiral lattices,” Wave Motion 46, 435–450 (2009).
68S. D. Huber, “Topological mechanics,” Nat. Phys. 12, 621–623 (2016).
69R. K. Pal, M. I. Rosa, and M. Ruzzene, “Topological bands and localized vibra-
tion modes in quasiperiodic beams,” New J. Phys. 21, 093017 (2019).
70H. Chen, H. Nassar, and G. Huang, “A study of topological effects in 1D and
2D mechanical lattices,” J. Mech. Phys. Solids 117, 22–36 (2018).
71W. Su, J. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev.
Lett. 42, 1698 (1979).
72D. Thouless, “Quantization of particle transport,” Phys. Rev. B 27, 6083
(1983).
73D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized
Hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49,
405 (1982).
74M. I. Rosa, R. K. Pal, J. R. Arruda, and M. Ruzzene, “Edge states and topologi-
cal pumping in spatially modulated elastic lattices,” Phys. Rev. Lett. 123, 034301
(2019).
75M. Nakahara, Geometry, Topology and Physics (CRC Press, 2003).
76C. Nash and S. Sen, Topology and Geometry for Physicists (Elsevier, 1988).
77E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants for Complex
Topological Insulators: From K-Theory to Physics (Springer, 2016).
78E. Riva, M. I. Rosa, and M. Ruzzene, “Edge states and topological pumping in
stiffness-modulated elastic plates,” Phys. Rev. B 101, 094307 (2020).
79F. D. M. Haldane, “Model for a quantum Hall effect without landau levels:
Condensed-matter realization of the ‘parity anomaly,’” Phys. Rev. Lett. 61, 2015
(1988).
80M. I. Hussein, M. J. Leamy, and M. Ruzzene, “Dynamics of phononic materi-
als and structures: Historical origins, recent progress, and future outlook,” Appl.
Mech. Rev. 66(4), 040802 (2014).
81C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev.
Lett. 95, 226801 (2005).
82H. Chen, H. Nassar, A. N. Norris, G. Hu, and G. Huang, “Elastic quantum
spin Hall effect in kagome lattices,” Phys. Rev. B 98, 094302 (2018).
83T.-W. Liu and F. Semperlotti, “Tunable acoustic valley–Hall edge states in
reconfigurable phononic elastic waveguides,” Phys. Rev. Appl. 9, 014001 (2018).
84M. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, and Z. Liu, “On-chip valley
topological materials for elastic wave manipulation,” Nat. Mater. 17, 993–998
(2018).

85K. Qian, D. J. Apigo, C. Prodan, Y. Barlas, and E. Prodan, “Topology of the
valley-Chern effect,” Phys. Rev. B 98, 155138 (2018).
86J. Ma, K. Sun, and S. Gonella, “Valley Hall in-plane edge states as building
blocks for elastodynamic logic circuits,” Phys. Rev. Appl. 12, 044015 (2019).
87A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The
electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
88J. Vila, R. K. Pal, and M. Ruzzene, “Observation of topological valley modes in
an elastic hexagonal lattice,” Phys. Rev. B 96, 134307 (2017).
89M. A. Hasan, L. Calderin, P. Lucas, K. Runge, and P. A. Deymier, “Spectral
analysis of amplitudes and phases of elastic waves: Application to topological
elasticity,” J. Acoust. Soc. Am. 146, 748–766 (2019).
90M. Miniaci, R. K. Pal, R. Manna, and M. Ruzzene, “Valley-based splitting of
topologically protected helical waves in elastic plates,” Phys. Rev. B 100, 024304
(2019).
91A. Darabi, M. Collet, and M. J. Leamy, “Experimental realization of a reconfig-
urable electroacoustic topological insulator,” Proc. Natl. Acad. Sci. U.S.A. 117,
16138–16142 (2020).
92X.-T. He, E.-T. Liang, J.-J. Yuan, H.-Y. Qiu, X.-D. Chen, F.-L. Zhao, and
J.-W. Dong, “A silicon-on-insulator slab for topological valley transport,” Nat.
Commun. 10, 1–9 (2019).
93C. Brendel, V. Peano, O. Painter, and F. Marquardt, “Snowflake phononic
topological insulator at the nanoscale,” Phys. Rev. B 97, 020102 (2018).
94J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, “Observation of topo-
logical valley transport of sound in sonic crystals,” Nat. Phys. 13, 369–374 (2017).
95J. Lu, C. Qiu, M. Ke, and Z. Liu, “Valley vortex states in sonic crystals,” Phys.
Rev. Lett. 116, 093901 (2016).
96J. Lu, C. Qiu, W. Deng, X. Huang, F. Li, F. Zhang, S. Chen, and Z. Liu, “Valley
topological phases in bilayer sonic crystals,” Phys. Rev. Lett. 120, 116802 (2018).
97R. Chaunsali, C.-W. Chen, and J. Yang, “Experimental demonstration of topo-
logical waveguiding in elastic plates with local resonators,” New J. Phys. 20,
113036 (2018).
98S. H. Mousavi, A. B. Khanikaev, and Z. Wang, “Topologically protected elastic
waves in phononic metamaterials,” Nat. Commun. 6, 1–7 (2015).
99T. Lubensky, C. Kane, X. Mao, A. Souslov, and K. Sun, “Phonons and elasticity
in critically coordinated lattices,” Rep. Prog. Phys. 78, 073901 (2015).
100D. Zhou, J. Ma, K. Sun, S. Gonella, and X. Mao, “Switchable phonon diodes
using nonlinear topological maxwell lattices,” Phys. Rev. B 101, 104106 (2020).
101C. Sugino, S. Leadenham, M. Ruzzene, and A. Erturk, “An investigation of
electroelastic bandgap formation in locally resonant piezoelectric metastruc-
tures,” Smart Mater. Struct. 26, 055029 (2017).
102C. Sugino, M. Ruzzene, and A. Erturk, “Nonreciprocal piezoelectric metama-
terial framework and circuit strategies,” Phys. Rev. B 102, 014304 (2020).
103M. I. Hussein, S. Biringen, O. R. Bilal, and A. Kucala, “Flow stabilization by
subsurface phonons,” Proc. R. Soc., A 471, 20140928 (2015).
104V. Peri, M. Serra-Garcia, R. Ilan, and S. D. Huber, “Axial-field-induced chiral
channels in an acoustic Weyl system,” Nat. Phys. 15, 357–361 (2019).
105V. Peri, Z.-D. Song, M. Serra-Garcia, P. Engeler, R. Queiroz, X. Huang,
W. Deng, Z. Liu, B. A. Bernevig, and S. D. Huber, “Experimental characterization
of fragile topology in an acoustic metamaterial,” Science 367, 797–800 (2020).
106D. J. Apigo, W. Cheng, K. F. Dobiszewski, E. Prodan, and C. Prodan,
“Observation of topological edge modes in a quasiperiodic acoustic waveguide,”
Phys. Rev. Lett. 122, 095501 (2019).
107Y. Xia, A. Erturk, and M. Ruzzene, “Topological edge states in quasiperiodic
locally resonant metastructures,” Phys. Rev. Appl. 13, 014023 (2020).
108N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. Irvine,
“Amorphous topological insulators constructed from random point sets,” Nat.
Phys. 14, 380–385 (2018).
109A. Foehr, O. R. Bilal, S. D. Huber, and C. Daraio, “Spiral-based phononic
plates: From wave beaming to topological insulators,” Phys. Rev. Lett. 120,
205501 (2018).
110H. Fan, B. Xia, L. Tong, S. Zheng, and D. Yu, “Elastic higher-order topologi-
cal insulator with topologically protected corner states,” Phys. Rev. Lett. 122,
204301 (2019).

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 130, 141101 (2021); doi: 10.1063/5.0057288 130, 141101-28

Published under an exclusive license by AIP Publishing

https://doi.org/10.1103/PhysRevB.97.054307
https://doi.org/10.1016/j.ijmecsci.2020.105841
https://doi.org/10.1103/PhysRevE.73.065601
https://doi.org/10.1016/j.physleta.2007.10.080
https://doi.org/10.1103/PhysRevB.80.092301
https://doi.org/10.1063/1.4766896
https://doi.org/10.1121/1.419652
https://doi.org/10.1016/j.wavemoti.2009.04.002
https://doi.org/10.1038/nphys3801
https://doi.org/10.1088/1367-2630/ab3cd7
https://doi.org/10.1016/j.jmps.2018.04.013
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.123.034301
https://doi.org/10.1103/PhysRevB.101.094307
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1115/1.4026911
https://doi.org/10.1115/1.4026911
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevB.98.094302
https://doi.org/10.1103/PhysRevApplied.9.014001
https://doi.org/10.1038/s41563-018-0191-5
https://doi.org/10.1103/PhysRevB.98.155138
https://doi.org/10.1103/PhysRevApplied.12.044015
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevB.96.134307
https://doi.org/10.1121/1.5114911
https://doi.org/10.1103/PhysRevB.100.024304
https://doi.org/10.1073/pnas.1920549117
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevB.97.020102
https://doi.org/10.1038/nphys3999
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1103/PhysRevLett.120.116802
https://doi.org/10.1088/1367-2630/aaeb61
https://doi.org/10.1038/ncomms9682
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1103/PhysRevB.101.104106
https://doi.org/10.1088/1361-665X/aa6671
https://doi.org/10.1103/PhysRevB.102.014304
https://doi.org/10.1098/rspa.2014.0928
https://doi.org/10.1038/s41567-019-0415-x
https://doi.org/10.1126/science.aaz7654
https://doi.org/10.1103/PhysRevLett.122.095501
https://doi.org/10.1103/PhysRevApplied.13.014023
https://doi.org/10.1038/s41567-017-0024-5
https://doi.org/10.1038/s41567-017-0024-5
https://doi.org/10.1103/PhysRevLett.120.205501
https://doi.org/10.1103/PhysRevLett.122.204301
https://aip.scitation.org/journal/jap


111R. Chaunsali and G. Theocharis, “Self-induced topological transition in
phononic crystals by nonlinearity management,” Phys. Rev. B 100, 014302
(2019).
112B. Deng, J. Raney, V. Tournat, and K. Bertoldi, “Elastic vector solitons in soft
architected materials,” Phys. Rev. Lett. 118, 204102 (2017).
113L. Jin, R. Khajehtourian, J. Mueller, A. Rafsanjani, V. Tournat, K. Bertoldi,
and D. M. Kochmann, “Guided transition waves in multistable mechanical meta-
materials,” Proc. Natl. Acad. Sci. U.S.A. 117, 2319–2325 (2020).
114C. Scheibner, W. T. Irvine, and V. Vitelli, “Non-Hermitian band topology
and skin modes in active elastic media,” Phys. Rev. Lett. 125, 118001 (2020).
115A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais, “Observation
of non-Hermitian topology and its bulk–edge correspondence in an active
mechanical metamaterial,” Proc. Natl. Acad. Sci. U.S.A. 117, 29561–29568
(2020).
116M. I. Rosa and M. Ruzzene, “Dynamics and topology of non-Hermitian
elastic lattices with non-local feedback control interactions,” New J. Phys. 22,
053004 (2020).

117S. Yao and Z. Wang, “Edge states and topological invariants of non-Hermitian
systems,” Phys. Rev. Lett. 121, 086803 (2018).
118Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda,
“Topological phases of non-Hermitian systems,” Phys. Rev. X 8, 031079 (2018).
119K. H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, and C. Daraio,
“Composite 3D-printed metastructures for low-frequency and broadband vibra-
tion absorption,” Proc. Natl. Acad. Sci. U.S.A. 113, 8386–8390 (2016).
120Q. Ge, C. K. Dunn, H. J. Qi, and M. L. Dunn, “Active origami by 4D print-
ing,” Smart Mater. Struct. 23, 094007 (2014).
121A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and
J. A. Lewis, “Biomimetic 4D printing,” Nat. Mater. 15, 413–418 (2016).
122X. Xu, Q. Wu, H. Chen, H. Nassar, Y. Chen, A. Norris, M. R. Haberman,
and G. Huang, “Physical observation of a robust acoustic pumping in waveguides
with dynamic boundary,” Phys. Rev. Lett. 125, 253901 (2020).
123E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and
M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567,
356–360 (2019).

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 130, 141101 (2021); doi: 10.1063/5.0057288 130, 141101-29

Published under an exclusive license by AIP Publishing

https://doi.org/10.1103/PhysRevB.100.014302
https://doi.org/10.1103/PhysRevLett.118.204102
https://doi.org/10.1073/pnas.1913228117
https://doi.org/10.1103/PhysRevLett.125.118001
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1088/1367-2630/ab81b6
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1073/pnas.1600171113
https://doi.org/10.1088/0964-1726/23/9/094007
https://doi.org/10.1038/nmat4544
https://doi.org/10.1103/PhysRevLett.125.253901
https://doi.org/10.1038/s41586-019-0943-7
https://aip.scitation.org/journal/jap

	Design of topological elastic waveguides
	I. INTRODUCTION
	II. WAVES IN ELASTIC MEDIA
	A. Bulk, surface, and guided waves in homogeneous media
	B. Waves in architected structures

	III. METHODS FOR DISPERSION ANALYSIS OF PERIODIC ELASTIC STRUCTURES
	A. Analytical techniques
	B. Numerical techniques
	C. Experimental techniques

	IV. OVERVIEW OF TOPOLOGICAL MODES
	A. Illustrative example: Topological modes due to spectral flow
	B. Localized modes in beams
	C. Topological elastic pumping of localized modes
	D. Mechanical spin Hall effect
	E. Mechanical valley Hall effect

	V. EDGE MODES IN ELASTIC PLATES
	A. Elastic valley Hall modes
	B. Elastic spin Hall modes
	C. Combined valley and spin Hall modes

	VI. OUTLOOK AND FUTURE DIRECTIONS
	DATA AVAILABILITY
	References


