
Proceedings of the ASME 2020 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2020
August 16-19, 2020, St. Louis, MO, USA

IDETC2020-22600

KINEMATIC ANALYSIS OF A 5-DOF POSITIONER FOR PRECISION ADDITIVE
MANUFACTURING

Mohammad Hossein Saadatzi∗, Dan O. Popa

Next Generation Systems Research Group

Dept. of Electrical and Computer Eng.

University of Louisville

Louisville, Kentucky 40208

Email: [mh.saadatzi,dan.popa]@louisville.edu

ABSTRACT

Additive manufacturing, as a viable industrial-production

technology, requires multi-DOF positioning with high precision

and repeatability for either the printer head, or the part being

printed. In this paper we present a novel methodology to analyze

the error propagation informing the design of a high-precision

robotic 5-DOF positioner for applications in additive manufac-

turing. We designed our positioner through serial attachment of

linear and rotational stages by comparing the precision of three

different kinematic arrangements of stages. Within order to min-

imize positioning errors in Cartesian space, the kinematic sensi-

tivity of the mechanisms end-effector relative to the maximum ex-

pected error of each joint was computed, and the kinematic con-

figuration with smallest 6D positioning error at the end-effector

was selected. The methodology employed in this paper for the

error propagation analysis of serial kinematic chains has a great

level of generality and can facilitate the design and optimization

of a wide-class of multi-DOF positioners.

NOMENCLATURE

l1 The distance from the top of the table to the center of the tilt

stage. l1 is 45cm here.

l2 The distance from the center of the tilt stage to the center of

the end-effector (on its top). l2 is 6cm here.

dX , dx, dy, dz Variables of the linear stages.

∗Address all correspondence to this author.

θt , θz Variables of the rotational stages.

σr, σp Maximum end-effector rotation, and point-

displacement.

P, R Linear (prismatic) and Rotational (revolute) stages.

qi, x j Joint space and Cartesian space variables.

Jv, Jω Translational and rotational partitions of the Jacobian.

INTRODUCTION

Additive manufacturing for generation of 3D parts often re-

quires positioners for either the printer head, or for the platform

on which the part is built. Typical 3-DOF positioners used by

industrial 3D printers offer precisions above 10 microns, includ-

ing Hyrel3D R© (with precision of at least 10 microns along each

axis), and MakerGear R© platforms (with minimum precision of

20 microns). There have also been some development of high

precision positioners for microrobotic and microassembly appli-

cations [1–3]. However, they are typically not designed in the

same kinematic configuration as used in typical 3D printers.

This paper is devoted to the kinematic design of a novel 5-

axis micro-positioner to be used in conjunction with a high pre-

cision Aerosol Jetting printer [4]. The positioner is part of the

Nexus system, a novel multi-robot and multi-process instrument

being designed and built in support of the US scientific com-

munity. The positioner with maximum height of 50cm is sup-

posed to carry a payload of 2kg. The Nexus has microassembly,
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FIGURE 1: CAD MODEL AND COORDINATE FRAMES FOR THE PROPOSED POSITIONER (ṔPṔPRtRz ARRANGEMENT).

3D printing, and other advanced packaging capabilities for inte-

grated microsystems such as microrobots and wearable sensors

and actuators realized on flexible substrate. In its final config-

uration, this system will include two robots and three precision

positioners, and additive process including deposition of multi-

material features of 20 micron wide.

In general, the design of precision kinematic chains is based

on the analysis of error propagation through the chain, which

can be described using D-H parameters [5], product of exponen-

tials [6], and interval analysis [7]. which are computationally in-

tensive, and need additional mathematical formulation and pro-

gramming. In this paper, we used kinematic sensitivity indices

to study the error propagation [8, 9], which have a straightfor-

ward calculation approach, and also, provide intuitive physical

meaning, as the calculation approach does not have summation

of inconsistent units of translation and rotational DOFs.

The performance indices of robotic mechanisms have re-

ceived much attention from the robotics research community [8],

due to the need to provide comparisons between different robot

architectures. The common indices are manipulability and dex-

terity of the mechanisms which entail some drawbacks regard-

ing the summation of inconsistent units of rotational and trans-

lational degrees of freedom [8, 10–13]. In [8, 9], two distinct

metrics are proposed: one for rotations of the mechanisms and

one for their point-displacements. They are referred to as the

kinematic sensitivity indices [8, 9].

In this paper, to study the error propagation of the positioner,

a simple computational methodology is proposed which uses Ja-

cobian of the mechanism, and is based on the kinematic sensitiv-

ity indices [8,9]. Refinements have been made to the the compu-

tation methodology of these indices, and to the best of authors’

knowledge, these indices have not been used before for study

and design of precision positioners. The methodology facilitates

quick modeling and analysis of different positioners. The ana-

lytical and computational nature of the methodology makes the

method suitable to be used with optimization algorithms for op-

timal design of precision robots.

METHODS

To design our positioner, we checked the possibility of as-

sembling individual stages, and using serial robotic arms or par-

allel mechanisms. The available serial robotic arms with pay-

load requirements of our application are bulky, and they have a

poor performance in terms of repeatability. The parallel mech-

anisms are well-known for having lower repeatability and high

payloads [15]. However, the workspace of these mechanisms is

typically limited, and larger mechanisms should be used for a

given workspace. As a direct consequence, proper mechanisms

are bulky and significantly more expensive.

Hence, assembling of individual precision stages was one

of the few viable solutions for our application. In selection of

the stages for the positioner, there were multiple conditions that

needed to be met while maintaining a reasonable price range for
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FIGURE 2: COORDINATE FRAME ASSIGNMENT TO THE THREE DIFFERENT ARRANGEMENTS BASED ON DENAVIT-

HARTENBERG CONVENTION [14].

the stages, including weight of the stages, maximum load of the

stages, and height of each stage.

A versatile 6-DOF mechanism can be used for complete

control of positioning and orientation of the workpiece. How-

ever, considering the required motion patterns in our application,

we decided to eliminate one of the rotational degrees of freedom

by removing one of goniometric stages. Hence, the developed

mechanism had 5-DOF, for x-y-z linear motions, a continuous

(360 deg) rotation along z axis (normal to ground), and a gonio-

metric (tilt) stage (Fig. 1).

The positioner was required to move between multiple sta-

TABLE 1: SPECIFICATIONS OF THE STAGES. THE RE-

PEATABILTY VALUES ARE BIDIRECTIONAL (±) AND

PRESENTED IN MICROMETER (µm) AND MILLIDEGREE

(mdeg) FOR LINEAR AND ROTATIONAL STAGES, RE-

SPECTIVELY.

Stage long x y x z θt θz

Repeatability 3 0.15 0.15 0.1 6.5 2

Travel (mm, deg) 2300 300 100 30 ±30 ±180

Height (mm) 95 40 40 130 57.5 30

Payload (kg) 45 15 15 4 10 2

Weight (kg) 50 8.9 6.5 3 0.8 0.7

tions, and so, the positioner needed to have a large workspace in

one direction (it is named x direction here, Fig. 1). However, long

linear stages with low repeatability are usually expensive. Hence,

we decided to use two linear stages to meet our workspace and

repeatability requirements, one with large stroke for coarse mo-

tion of the positioner, and another one for fine adjustment of the

positioner along x direction.

For our application the maximum load of 2kg needed to be

carried by the positioner. Also, the weight of upper stages needed

to be carried by the lower stages. Furthermore, metal adapters

(buckets) were used to connect the stages together (to reduce

the mechanism’s error due to compression/extension and bend-

ing forces/torques), and weight of these adapters needed to be

carried by the stages.

Additionally, height of the positioner could not exceed

50cm, as the positioner is needed to move between different sta-

tions. After reviewing the weight, height, and cost limitations,

we decided to utilize the stages with specifications presented

in Tab. 1. The stages were selected from catalogs of available

stages from various manufacturers, including Newport Corpora-

tion, Intelligent Actuator Inc., and Physik Instrumente L.P. (CAD

models of the selected stages were used to prepare the assembly

model shown in Fig. 1).

For the required motion pattern, we had the following order

of stages1 (Fig. 2):

1The letters P and R represent linear and rotational degrees of freedom (taken

from prismatic and revolute joint types). The ´ is used to show the stages with

parallel axis of motion. The subtitles t and z represent the rotational and tilt

degrees of freedom.
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TABLE 2: D-H PARAMETERS FOR THE ṔPṔPRtRz, ṔPṔPRzRt AND ṔPṔRzPRt CONFIGURATIONS. MAJORITY OF THE PA-

RAMETERS ARE IDENTICAL. THE NONIDENTICAL PARAMETERS ARE SEPARATED USING | SYMBOL.

Link ai αi di θi

1 0 π
2

dX π

2 0 3π
2

dy 0

3 0 π
2

dx
π
2

4 0 π −(l1 +dz) | −(l1 +dz) |0
π
2
| π

2
| (π

2
+θz)

5 0 3π
2
| π

2
| π

2
0 | 0 |(l1+dz) −θt | 0 | 0

6 0 | −l2 | −l2 0 | 0 | π
2

l2 | 0 | 0 −θz |
π
2
+θt |

π
2
+θt

ṔPṔPRtRz: a decoupled order of linear and rotational stages

were assembled together with the linear stages close to the

mechanism base, and continuous rotational stage at top.

ṔPṔPRzRt : the same decoupled order of linear and rota-

tional stages with an inverse order of goniometer and ro-

tational stages.

ṔPṔRzPRt : a coupled order of linear and rotational stages,

with the z linear stage between the two rotational stages.

Selection of each stage order would result in a different re-

peatability for the final positioner. In rest of the paper, we present

details of error propagation analysis for the ṔPṔPRtRz structure,

and the results for the two other configurations will be summa-

rized in a table. It is noteworthy that the order of linear stages

did not change the positioner’s repeatability, as they generate de-

coupled motion in x, y and z directions.

Mechanism Kinematics and Jacobian

This section is devoted to the kinematic and Jacobian anal-

ysis of the positioner. The analysis is required for computation

of error propagation along the mechanism’s kinematic chain. Er-

ror of the positioner’s end-effector is a compound error result-

ing from the translational and rotational errors of its individ-

ual stages. In order to extract the forward kinematic and Ja-

cobian equations of the mechanism using D-H convention [14],

proper coordinate frames were assigned to each positioner’s joint

(stage), and D-H parameters were obtained (Fig. 1). Table 2 tab-

ulates the parameters.

To obtain forward kinematics, transformation matrices of

different joints were obtained. Then transformation matrices

were multiplied together. Eventually, the position (d) and ori-

entation (6R0) of the end-effector were obtained from the final

transformation matrix as follows:

d =





dz + l1 + l2 cos(θt)
dy

dX +dx − l2 sin(θt)





, (1)

0R6 =





−cos(θz)sin(θt) sin(θz)sin(θt) −cos(θt)
sin(θz) cos(θz) 0

cos(θz)cos(θt) −sin(θz)cos(θt) −sin(θt)





. (2)

Clearly, the position of the end-effector is a function of vari-

ables of all the stages (dX , dy, dx, dz, θt , and θz), and hence, the

translational error of the end-effector is expected to be a function

of all the variables. However, the orientation of the end-effector

(Eqn. (2)) is only a function of θt and θz, and consequently, the

orientation error of the positioner is a pure function of its two

rotational stages.

The vector d and the matrix 6R0 are in x0y0z0 coordinates.

To have them in xbybzb, pre-multiply them with the following

rotation matrix:

bR0 =





0 0 1

0 −1 0

1 0 0





. (3)

Jacobian shows the relationship between infinite small mo-

tion in joint space and workspace. Using conventional D-H

methodology, the positioner’s Jacobian was obtained as follows:
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FIGURE 3: PROPAGATION OF MECHANISM REPEATABILITY FROM JOINT SPACE TO CARTESIAN SPACE. qi (i=1,...,n) AND

x j (j=1,...,m) ARE JOINT SPACE AND CARTESIAN SPACE VARIABLES (n=6, m=5).

J =

[

Jv

Jω

]

=

















0 0 0 1 −l2 sin(θt) 0

0 1 0 0 0 0

1 0 1 0 −l2 cos(θt) 0

0 0 0 0 0 cos(θt)
0 0 0 0 −1 0

0 0 0 0 0 −sin(θt)

















. (4)

Note that the Jacobian matrix J has two partitions (Jω and

Jv) corresponding to the angular and linear velocities of the end-

effector. Jω and Jv are used to obtain the maximum orientation

and maximum translation errors of the end-effector, respectively.

Error Propagation Formulation

To formulate the positioner’s error propagation, kinematic

sensitivity indices were utilized in this paper. Kinematic sen-

sitivity of mechanisms was introduced in [8] as performance

indices for comparison and optimization of mechanical struc-

tures. These kinematic sensitivity indices provide tight upper

bounds to the magnitudes of the end-effector rotations and point-

displacements, respectively, under a unit-magnitude array of

actuated-joint displacements. Maximum end-effector rotations

(σr), and point-displacement (σp) can be defined as:

σr = max
||ρ||

∞
≤1

||φ ||2, (5)

σp = max
||ρ||

∞
≤1

||p||2, (6)

where φ is the array of small rotations of the end-effector about

the Cartesian axes, p represents a small displacement of the op-

eration point, and ρ is the array of small actuator displacements

which can be considered as the errors of the actuators. These two

indices are referred to as the maximum orientation and point-

displacement sensitivities, respectively [8].

In this paper, with some modifications, we used the same

kinematic sensitivity indices for computation of error propaga-

tion. Specifically, kinematic sensitivity indices are error amplifi-

cation factors of mechanisms. However, in this paper, we com-

pute error of the mechanism (positioner) due to the repeatabil-

ity of stages. To clarify, the stages we have used to build our

positioner have different expected maximum error (repeatabil-

ity). Hence, instead of finding the kinematic sensitivity due to

the unit-magnitude array of joint motion, we calculate the max-

imum error (repeatability) of the end-effector as a result of the

repeatability of stages [9].

Jacobian shows the relation between infinite small motion

in joint space and workspace. The bounded error in joint space

can be represented by a hypercube2 (Fig. 3). The hypercube is

mapped to a polyhedron in Cartesian space3. The polyhedron

in Cartesian space is convex, and so, the maximum error corre-

sponds with Euclidean norm of one of the vertices of the poly-

hedron. The vertices of the polyhedron in joint space is obtained

through multiplication of the mechanism’s Jacobian to the ver-

tices of the hypercube in joint space. To find the maximum ro-

tational and translational error (σr and σp, respectively), the Eu-

clidean norm (||.||2) of the polyhedron’s vertices should be cal-

culated and compared with each other [9].

Differential kinematics of the mechanism is written as be-

2The hyper cube in this paper is in a 6D space (n=6) as the positioner is built

by six stages.
3The polyhedron is in a 5D space (m=5) as the positioner has 5 degrees of

freedom.
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low:

ẋ =

















ẋ

ẏ

ż

φ̇x

φ̇y

φ̇z

















= Jq̇ =

[

Jv

Jω

]

q. (7)

In order to find the linear and angular velocities of the end-

effector separately, the differential kinematics of the mechanism

can be re-written as following:





ẋ

ẏ

ż



= Jvq̇,





φ̇x

φ̇y

φ̇z



= Jω q̇. (8)

Using Eqn. 8, we can find the vertices of the polyhedron

mapped from the vertices of the hypercube in joint space. Re-

peatability of stages in joint space constitutes the vertices of hy-

percube (plus and minus values of repeatability values are ver-

tices in different quadrants). The maximum end-effector rotation

and point-displacement can be obtained using the equations be-

low:

σr = max
i=1,...,n

√

φ 2
x +φ 2

y +φ 2
z ,

σp = max
i=1,...,n

√

x2
i + y2

i + z2
i , (9)

where n is the number of vertices.

Sensitivity of mechanisms varies at different points of the

workspace, and so, the kinematic sensitivity indices are local per-

formance measures. To clarify, these indices are obtained using

the mechanism’s Jacobian, and Jacobian matrrix varies at differ-

ent points in workspace. Hence, to find the maximum possible

error of the mechanism, the mechanism’s workspace should be

searched to find the maximum σr and σp values. Previously, in-

terval analysis [16] and Monte Carlo simulation [17] methods

have been used for this purpose. However, due to the simple

structure of the positioner, we utilize the ‘fsolve’ function of

MATLAB R© to search the workspace and to find the maximum

values of σp and σr.

RESULTS

Specifications of the stages used in this project are tabulated

in Tab. 1. Vertices of the repeatability hypercube in joint space

are obtained considering positive or negative (±) repeatability

values:

V = 10−6 × [±3,±0.15,±0.15,±0.1,±113,±35]T . (10)

Equations (8) and (9) are used to calculate repeatability of

the end-effector in different scenarios. Several sets of Cartesian

space errors are introduced in this section.

The coarse or fine linear x–stages can be used to implement

the motion patterns, and as they have different repeatability, they

will result in different workspace errors. The error for implemen-

tation of motion patterns with coarse long linear stage is

σr = 6.8 mdeg, σp = 9.78 µm. (11)

The error for implementing the motion patterns with fine linear

stage is

σr = 6.8 mdeg, σp = 6.96 µm. (12)

In addition to the cases of using the entire positioner, three

additional scenarios were considered here.

(1) Implementing a motion solely using the linear stages (as-

suming that we can perfectly determine the initial orientation of

the rotational stages):

with coarse long linear stage along x:

σr = 0 mdeg, σp = 3.01 µm, (13)

and with fine linear stage along x:

σr = 0 mdeg, σp = 0.23 µm. (14)

(2) Implementing a motion solely using the rotational stages

(assuming that we can perfectly determine the initial location of

the linear stages):

σr = 6.8 mdeg, σp = 6.78 µm. (15)

(3) Implementing a motion solely using the goniometric

(tilt) stage:

σr = 6.5 mdeg, σp = 6.78 µm. (16)

Table 3 summarizes the maximum rotational and transla-

tional for the three different arrangement of the stages.
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TABLE 3: ERROR RELATED TO DIFFERENT ARRANGEMENTS OF STAGES. TRANSLATIONAL ERROR AND ROTATIONAL

ERROR ARE PRESENTED IN MICRON (µm) AND MILLIDEGREE (mdeg), RESPECTIVELY.

Stages ṔPṔPRtRz ṔPṔPRzRt ṔPṔRzPRt

All
long x σr = 6.8 σp = 9.78 σr = 6.8 σp = 10.04 σr = 6.8 σp = 9.78

fine x σr = 6.8 σp = 6.96 σr = 6.8 σp = 7.29 σr = 6.8 σp = 7.29

Translational
long x σr = 0 σp = 3.01 σr = 0 σp = 3.01 σr = 0 σp = 3.01

fine x σr = 0 σp = 0.23 σr = 0 σp = 0.23 σr = 0 σp = 0.23

Rotational σr = 6.8 σp = 6.78 σr = 6.8 σp = 6.78 σr = 6.8 σp = 6.78

DISCUSSION

The values computed in previous section are the maximum

expected errors of the mechanism in its entire workspace (worst

case scenario). Table 3 summarizes the results for the three ar-

rangements. During the implementation of motion patterns using

all the stages, the ṔPṔPRtRz arrangement has better repeatability

performance than the ṔPṔPRzRt and ṔPṔRzPRt structures. How-

ever, when using only the linear stages or the rotational stages,

errors of the mechanisms are identical.

As expected, using the fine linear stage results in a smaller

translational error for implementation of motion patterns. How-

ever, using the coarse or fine linear stages does not change the

maximum rotational error of the mechanism (σr).

The scenarios of using only rotational stages or translational

stages for implementation of motion patterns, suggest that us-

ing fewer number of stages results in smaller error for the end-

effector. As an intuitive result, if we intend to track a straight

line, and the line is not (purely) along x or y directions (for ex-

ample, line y=x, for which we need to use both x and y stages to

implement the motion), then it is better to use the rotational stage

(with rotation along z) to orient the workpiece in the proper di-

rection and implement the motion with just one of the stages.

In this paper, we only considered the repeatability error of

stages, and we assumed that the stages were connected with-

out misalignment. This is a limitation of our work and in future

work, we are going to include more sources of error in our cal-

culations [18], [19]. It will result in a better estimation of the

end-effector repeatability (error).

CONCLUSION

Error propagation analysis can be used as tool for estimat-

ing the performance of robotic mechanisms (in terms of end-

effector’s repeatability) before prototyping them. Hence, addi-

tive manufacturing can benefit hugely from this analysis, as the

technology is highly dependent on the repeatability of their me-

chanical positioning and manipulation systems. In this paper, we

presented a novel methodology for the study of error propaga-

tion in serial robotic chains. The methodology is based on kine-

matic sensitivity analysis of them mechanism using its Jacobian

matrix. We applied the methodology to the analysis and design

of a precision robotic 5-DOF positioner that we developed for

application in precision robotics. The positioner was prepared

through serial attachment of linear and rotational stages. Three

different arrangements of stages were studied, and it was shown

that different orders of stages results in different translation and

orientation repeatability for the positioner. Our analyses and re-

sults support the use of our methodology as a tool for the the

design and optimization of multi-DOF positioners.

In the future, we are going to include more sources of er-

ror (like misalignment of the stages) in our analyses for better

estimation of the mechanism’s precision. We are also planning

to build the positioner for 3D printing in our Nexus system. We

will use displacement sensors for experimental evaluation of the

positioner and our computations.
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