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Abstract—Modeling the moving behaviors and predicting the
future paths of pedestrians, especially for those in complex scenes,
remain a challenging problem in machine learning. We recognize
that human motion trajectories, governed by social norms and
constrained by physical structures of the surrounding environ-
ment, are both forward predictable and backward predictable.
Motivated by this observation, we develop a new approach,
called reciprocal twin networks, for human trajectory learning
and prediction. We design two networks, a forward prediction
network to predict future trajectory from past observations and
a backward prediction that performs the trajectory prediction
backward in time. The backward prediction network serves as
the inverse operation of the forward prediction network, forming
a reciprocal constraint. During the training stage, this reciprocal
constraint allows them to be jointly learned for accurate and
robust human trajectory prediction. During the inference stage,
we borrow the concept of adversarial attack of deep neural
networks, which iteratively modifies the input of the network
to match the given or forced network output, and develop a
new method, called reciprocal attack for matched prediction, to
achieve accurate human trajectory prediction. Our experimental
results on benchmark datasets demonstrate that our new method
outperforms the state-of-the-art methods for human trajectory
prediction.

Index Terms—Human Trajectory Prediction, Deep Learning,
Reciprocal Learning, Reciprocal Attack, Generative Adversarial
Networks.

I. INTRODUCTION

LEARNING and predicting human motion trajectories
in complex environments plays an important role in

autonomous driving systems [1]–[3], social robots [4], [5],
human-machine interactions [6], [7], and smart environments
[8], [9]. Human beings have the intelligence to understand
the moving patterns and intentions of surrounding persons
in the environment and act appropriately to avoid collision
and follow social norms. Can a machine or robot do this?
The problem of human trajectory prediction is different from
person tracking [4]. It needs to learn the human decision and
behaviors in complex environments to predict future motion
trajectory during the next period of time (e.g., 5 seconds),
instead of the next time instance. Researches recognize that
human motion trajectories and motion patterns are governed
by human perception, behavioral reasoning, common sense
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rules, social conventions, and interactions with others and the
surrounding environment [1], [8].

Predicting human motion and modeling their common sense
behaviors are a very challenging task [10]. An efficient al-
gorithm for human trajectory prediction needs to accomplish
the following tasks: (1) Obeying physical constraints of the
environment. To walk on a feasible terrain and avoid obstacles
or other physical constraints, we need to analyze the local
and global spatial information surrounding the person and
pay attention to important elements in the environment. (2)
Anticipating movements of other persons or vehicles and their
social behaviors. Some trajectories are physically possible but
socially unacceptable. Human motions are governed by social
norms, such as yielding right-of-way or respecting personal
space. To capture and model them is a non-trivial task. (3)
Finding multiple feasible paths. There are often a number
of choices of moving trajectories for us to reach to the
destination. This uncertainty poses significant challenges for
accurate human trajectory prediction.

Recently, a number of methods based on deep neural
networks have been developed for human trajectory prediction
[10], [11]. Earlier methods have been focused on learning
dynamic patterns of moving agents (human and vehicles) [10]
and modeling the semantics of the navigation environment
[12]. More recent approaches incorporate interactions between
all agents in the scene into the analysis in order to predict the
future trajectory for each agent. Methods have been developed
to model human-human interactions [13], understand social
acceptability using data-driven techniques based on Recurrent
Neural Networks (RNNs) [11], [14], [15], and model the joint
influence of all agents in the scene [16]. Methods have also
been developed to predict multiple feasible paths of human
[11], [15], [17].

In this work, we propose to explore the unique charac-
teristics of human trajectories and develop a new approach,
called reciprocal learning for human trajectory prediction. As
illustrated in Fig. 1, we observe that the human trajectory is
not only forward predictable, but also backward predictable.
Imagine that the time is reversed and person is traveling
backwards. As discussed in the above, the forward moving
trajectories follow the social norm and obey the environmental
constraints. So do the backward moving trajectories since the
only difference between them is that their directions of time.
From the training data, we can train two different prediction
networks, the forward prediction network Fθ which predicts
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Fig. 1. The human trajectory is not only forward predictable, but also
backward predictable. This leads to our new approach of reciprocal coupling
and learning between the forward and backward prediction networks for
accurate human trajectory prediction.

the future motion trajectories from past observations and the
backward prediction network Gφ which performs the predic-
tion backwards. These two networks are inverse operations to
each other. In other words, they satisfy a reciprocal constraint.
Specifically, using the forward prediction network, we can
predict the future trajectory Y = Fθ(X) from the observed
or known trajectory X. If the prediction Y is accurate, then
Gφ(Y) must be equal to X.

Based on this observation and the unique reciprocal con-
straint, we develop a new approach called reciprocal net-
work learning for accurate and robust prediction of human
trajectories. We introduce the reciprocal prediction loss and
establish an iterative procedure for training these two tightly
coupled networks. We borrow the concept of the adversarial
attacks of deep neural networks which iteratively modifies
the input of the network to match a given target or forced
network output. We integrate the reciprocal constraint with the
adversarial attack method to develop a new matched prediction
method for human trajectory prediction. Our experimental re-
sults on benchmark datasets demonstrate that our new method
outperforms the state-of-the-art methods for human trajectory
prediction.

The rest of the paper is organized as follows. Section II
reviews related work on human trajectory prediction. The
proposed reciprocal network learning and matched prediction
are presented in Section III. Section V presents the experi-
mental results, performance comparisons, and ablation studies.
Section VI summarizes our major contributions and concludes
the paper.

II. RELATED WORK AND MAJOR CONTRIBUTIONS

Existing methods for human trajectory prediction mainly
focus on modeling human-human interactions and human-
scene interactions. Human-human models focus on learning
human movements and how human interacts with others [15],
[16]. Human-scene models also try to learn the dynamic
contents of the background scenes to extract some visual
features to help better understand human motions [10], [12],
[18]–[23]. In this section, we review existing work, including
human-human models and human-scene models for human
trajectory prediction. We also discuss related work in sequence
prediction using Recurrent Neural Networks (RNNs) [24]. Our
work is inspired by generative models [25], [26] and the
idea of cycle consistence [27]–[30] in visual tracking, relevant
papers in these two areas are also reviewed in this section.

A. Human-Human Models for Trajectory Prediction

A number of methods have been developed in the literature
to model human social interactions and behaviors in crowded
scenes, such as people attempting to avoid walking into each
other. Helbing and Molnar [13] introduced the Social Force
Model to characterize social interactions among people in
crowded scenes using coupled Langevin equations. In recent
methods based on LSTM (Long Short Term Memory) [15],
social pooling was introduced to share features and hidden
representations between different agents. The key idea is
to merge hidden states of nearby pedestrians to make each
trajectory aware of its neighbourhood. [31] found out that
groups of people moving coherently in one direction should
be excluded from the above pooling mechanism. [16] used
a Generative Adversarial Network (GAN) to discriminate
between multiple feasible paths. Their pooling mechanism
relies on relative positions between all pedestrians with the
target pedestrian. This model is able to capture different move-
ment styles but does not differentiate between structured and
unstructured environments. [32] predicted human trajectories
using a spatio-temporal graph to model both position evolution
and interactions between pedestrians.

B. Human-Scene Models for Trajectory Prediction

Another set of methods for human trajectory prediction have
focused on learning the effects of physical environments. For
example, human tend to walk along the sidewalk, around a tree
or other physical obstacles. Sadeghian et al. [33] considered
both traveled areas and semantic context to predict social
and context-aware positions using a GAN (Generative Adver-
sarial Network). Liang et al. [34] proposed to use abstract
scene semantic segmentation features and multi-scale location
encoding for better predicting multiple plausible trajectories.
[35] designed a probabilistic model and introduced a dynamic
attention-based state encoder to encode agent interactions.
[36] extracted multiple visual features, including each person’s
body keypoints and the scene semantic map to predict human
behavior and model interaction with the surrounding environ-
ment. [14] has studied attractions towards static objects, such
as artworks, which deflect straight paths in several scenarios
such as museums. [10] proposed a Bayesian framework to pre-
dict unobserved paths from previously observed motions and
to transfer learned motion patterns to new scenes. In [37], the
dynamics and semantics for long-term trajectory predictions
have been studied. Scene-LSTM [38] divided the static scene
into grids and predicted pedestrian’s location using LSTM.
The CAR-Net method [39] integrated past observations with
bird’s eye view images and analyzed them using a two-levels
attention mechanism.

Another area of research is the prediction of human mo-
tion trajectory from a moving vehicle perspective, which
has important applications in autonomous driving and robot
navigation [40], [41]. [40] designed an RNN encoder-decoder
architecture to encode observed human locations and the ego-
vehicle’s odometry data. [41] considered the human visual
features to further improve the performance. In this work,
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we focus on predicting the future human trajectory from a
stationary surveillance camera.

C. Recurrent Neural Networks for Sequence Prediction

This work is related to recurrent neural networks (RNNs)
[24]. RNNs are widely used for sequence data analysis,
e.g., speech recognition [42]–[45], image captioning [46]–
[51], machine translation [43] and video generation [52].
[53] recognized that the drawback of RNNs model is the
lack of high-level and spatio-temporal structure. [15], [54],
[55] have been proposed to learn complex interactions using
multiple networks. [11] designed an RNN-based encoder-
decoder framework and uses variational autoencoder (VAE) to
predict the sequence. Alahi et al. proposed a so-called social
pooling layer to capture the interactions of human within a
certain range. [56] proposed a Hierarchical Concurrent Long
Short-Term Concurrent Memory (H-LSTCM) to recognize
and predict human interactions by utilizing a hierarchical
LSTM to learn dynamic inter-related representations among
all persons in a scene and designing a concurrent LSTM to
aggregate these inter-related representations. [57] developed a
recurrent architecture to predict the future sequences by jointly
decomposing the memory states of an input sequence into a
set of frequency components and then choosing a suitable set
of state-frequency components.

D. Generative Networks and Cycle Consistency Learning

Generative Adversarial Networks (GANs) have been widely
used and achieved impressive results in representation learning
[58]–[60], image translation [61], [62] and image synthesis
[63]–[66]. In this work, we adopt a GAN framework to
force the generated future and past trajectories to be in-
distinguishable from the ground truth. Using transitivity as
a way to regularize structured data has been explored. For
example, in visual tracking, [28], [67] developed a forward-
backward consistency constrain. In language processing, [68]–
[70] studied human and machine translators to verify and im-
prove translations based on back translation and reconciliation
mechanisms. Cycle consistency has also been used for motion
analysis [71], action prediction [72], 3D shape matching [73],
dense semantic alignment [74], [75], depth estimation [76]–
[78], and image-to-image translation [79], [80]. CycleGAN
[80] introduces a cycle consistence constraint for learning
a mapping to translate an image from the source domain
into the target domain. Pang et al. [72] propose to use a
bi-directional LSTM model for early actions prediction. It
employs consistency learning by synthesizing future action and
reconstructing observed action.

This work is related to reciprocal learning, which was
recently developed for human re-identification [81], [82] and
zero-shot image retrieval [83]. In this work, we introduce
the reciprocal loss and design two tightly coupled prediction
networks, the forward and backward prediction networks,
which are jointly learned based on the reciprocal constraint.
To the best of our knowledge, our work is the first to employ
cycle-consistency in human trajectory prediction domain.

E. Major Contributions

The major contributions of this work can be summarized
as follows. (1) We have established a forward and backward
prediction network structure for human trajectory prediction,
which satisfies the reciprocal prediction constraints. (2) Based
on this constraint, we have developed a reciprocal learning
approach to jointly train these two prediction networks in
an collaborative and iterative manner. (3) Once the network
is successfully trained, we have developed a new approach
for network inference or testing by integrating the concept
of adversarial attacks with the reciprocal constraint. It is able
to iteratively refine the predicted trajectory by the forward
network such that the reciprocal constraint is satisfied. (4) Our
ablation studies have shown that the proposed new approach
is very effective with significant contributions to the overall
performance of our method, which outperforms other state-of-
the-art methods in the literature.

III. RECIPROCAL NETWORKS FOR HUMAN TRAJECTORY
PREDICTION

In this section, we present our reciprocal network learning
method for human trajectory prediction.

A. Problem Formulation

We follow the standard formulation of trajectory forecasting
problem in the literature [32], [36]. With observed trajectories
of all moving agents in the scene, including persons and
vehicles, the task is to predict the moving trajectories of all
agents for the next period of time, say 10 seconds, in the
near future. Specifically, let X = X1, X2, · · · , XN be the
trajectories of all human in the scene. Our task is to predict
the future trajectories of all human Ŷ = Ŷ1, Ŷ2, · · · , ŶN
simultaneously. The input trajectory of human n is given by
Xn = (xtn, y

t
n) for time steps t = 1, 2, · · · , To. The ground

truth of future trajectory is given by Yn = (xtn, y
t
n) for time

step t = To + 1, · · · , Tp.

B. Method Overview

As illustrated in Fig. 1, in reciprocal learning, we are learn-
ing two coupling networks, the forward prediction network
Fθ which predicts the future trajectories Y = Fθ(X) from
the past data X, and the backward prediction network Gφ

which predicts the past trajectories X = Gφ(Y) from the
future data Y. It should be noted that, during training, both
the past and future data are available. If both networks are
well trained, then we should have following two reciprocal
consistency constraints:

X ≈ Gφ(Fθ(X)), (1)
Y ≈ Fθ(Gφ(Y)). (2)

These two networks are able to help each other to improve
the learning and prediction performance. Specifically, if the
backward prediction network Gφ is trained, we can use the
reciprocal constraint (1) to double check the accuracy of the
forward prediction network Fθ and improve its performance
during training. Likewise, if the forward prediction network
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Fig. 2. Illustration of the proposed reciprocal learning approach.

Fθ is trained, we can use (2) to improve the training perfor-
mance of the backward prediction network Gφ. This results
in a tightly coupled iterative learning and performance im-
provement process between these two prediction networks, as
illustrated in Fig. 2. Once the forward and backward networks
are successfully trained using the reciprocal learning approach,
we develop a new network inference method called reciprocal
attack for matched prediction. It borrows the concept of
adversarial attacks of deep neural networks where the input
is iteratively modified such that the network output matches a
given target [84].

Our proposed idea is related to CycleGAN [80] which
presents an approach for learning a mapping to translate an
image from a source domain to a target domain. They also
learn an inverse mapping and introduce the cycle consis-
tence constraint. However, our approach is different from the
CycleGAN method. We actually design two tightly coupled
prediction networks, the forward and backward prediction
networks, which are jointly learned based on the reciprocal
constraint. During network inference, our approach introduces
a new reciprocal attack method for matched prediction of
human trajectory. The backward prediction network serves as
a constraint to verify the prediction results generated by the
forward prediction network so that it can iteratively optimize
its prediction.

Fig. 3. Illustration of the training process of reciprocal learning.

C. Reciprocal Network Training

To successfully train the forward and backward prediction
networks, we define two loss functions, J− and J+, to measure

the prediction accuracy of the past and future trajectories.
One reasonable choice will be the L2 between the original
trajectory and its prediction. These two loss functions will
be updated alternatively and combined to guide the training
of each of these two networks, as illustrated in Fig. 3. For
example, when training the forward prediction network Fθ,
the loss function used in existing literature is the prediction
error of the future trajectory L+. In reciprocal training, we
first pre-train the backward prediction network Gφ using the
training data with all trajectories reversed in time. We then use
this network to map the prediction result of Fθ, Ŷ = Fθ(X),
back to the past trajectory, which is given by

X̂ = Gφ(Ŷ) = Gφ(Fθ(X)). (3)

The past trajectory loss is then given by L− = ||X − X̂||2.
We refer to this loss as reciprocal loss. It will be combined
with L+ to form the loss function for the forward prediction
network Fθ:

J+[θ] = λ · L+ + (1− λ) · L−
= λ · ||Y − Fθ(X)||2 (4)
+ (1− λ) · ||X−Gφ(Fθ(X))||2.

Similarly, we can derive the loss function for the backward
prediction network Gφ:

J−[φ] = λ · L− + (1− λ) · L+

= λ · ||X−Gφ(Y)||2 (5)
+ (1− λ) · ||Y − Fθ(Gφ(Y))||2.

In reciprocal training, we first pre-train the forward and
backward prediction networks independently. Then, these two
networks are jointly trained in an iterative manner based on
the reciprocal constraint.

D. Constructing the Forward and Backward Prediction Net-
works

Both the forward and backward networks share the same
network structure. In the following, we use the forward predic-
tion network Fθ as an example to explain our network design.
As illustrated in Fig. 4, we adopt the existing Social-GAN in
[16] as our baseline prediction network. Our model consists of
two key components: (1) a feature extraction module and (2)
an LSTM (Long Short Term Memory)-based GAN (generative
adversarial network) module.

1) Feature Extraction: In real world scenarios, human’s
selection of future path is affected by the surrounding envi-
ronment, including other persons in the neighborhood and the
physical scene. Our feature extraction module has three major
components to extract human-specific, scene context and depth
structure features.

(a) Human-specific features. The human scale feature cap-
tures the temporal pattern and dependency of each human tra-
jectory. Given the observed trajectories X = X1, X2, · · · , XN

of all human in the scene, the input trajectory of each human n
is defined as Xn = (xtn, y

t
n) from time steps t = 1, 2, · · · , To.
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Fig. 4. Overview of our prediction model. Our model consists of two key components: (1) a feature extraction module, (2) an LSTM-based GAN module.

We first embed the coordinates of each human n into a fixed
size vector etn using a single layer MLP [85]:

etn = ψ(xtn, y
t
n;Wem), (6)

where ψ(·) is an embedding function with ReLU non-linearity
[86] and Wem is the embedding weight. Then, we use an
LSTM module to encode them into a high-dimensional feature
F th,n.

F th,n = LSTMen(F t−1
h,n , e

t
n;Wen1), (7)

where Wen1 denotes the encoding weight which can be
optimized during training process. Notice that Wen1 is shared
between all human in the scene. In order to capture the
joint influence of all surrounding human’s movements on the
prediction of the target human n, we borrow the idea from
[16] to build a social pooling module (SP) which encodes the
human-human interactions. The relative distances between the
target person and others are calculated. These distance vectors
are concatenated with the hidden state in the LSTM network
for each person and then embedded by an MLP and followed
by a Max-Pooling function [87] to form the joint feature F ts,n.

F ts,n = SP (F th,1, F
t
h,2, · · · , F th,N ). (8)

A maximum number of moving human in the scene is set and
a default value of 0 is used if the corresponding agent does
not exist in the current frame.

(b) Scene context features. As recognized in [17], [33], the
environmental context affects the decision of the human in
planning its next step of movement. Features of the current
scene can be incorporated into the reasoning process. Similar
to prior work [33], we use the VGGNet-19 network [88] pre-
trained on the ImageNet [88] to extract the visual feature f t of
background scene It, which is then fed into an LSTM encoder
to compute the hidden state tensor F tv .

f t = V GG(It), (9)

F tv = LSTMen(F t−1
v , f t;Wen2), (10)

where Wen2 is the corresponding encoding weights.

(c) Depth structure features. As a unique feature of our
proposed method, we propose to also incorporate the 3D
scene depth structure into the reasoning process, which also
improves the prediction accuracy of human trajectories. This
is because the human motion occurs in the original 3D envi-
ronment. Therefore, its natural behavior and motion patterns
are better represented in the 3D instead of 2D coordinate
system. For example, the trajectory of a person walking near
the camera is much different from that of a person walking far
away from the camera due to the camera perspective transform.
To address this issue, we propose to estimate a depth map from
a single image using existing depth estimation method [89].
We use the pre-trained model Monodepth2, denoted by D to
perform monocular depth estimation and obtain the depth map
Dt = D(It) of scene It, then use an LSTM to encode it into
a depth feature F td .

F td = LSTMen(F t−1
d , Dt;Wen3), (11)

where Wen3 is the associated encoding weights. Fig. 5 presents
qualitative depth estimation examples from Town Centre
dataset [90] by Monodepth2.

Fig. 5. Examples of the input (left column) and the output (right column) of
the monocular depth estimation [89]. The input image is from Town Centre
dataset [90].

2) LSTM-based GAN for Trajectory Prediction: Inspired by
previous work [16], [33], in this paper we use an LSTM based
Generative Adversarial Network (GAN) module to generate
human’s future path as illustrated in Fig. 4. The generator is
constructed by a decoder LSTM. Similar to the conditional
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GAN [9], a white noise vector Z is sampled from a mul-
tivariate normal distribution. Then, a merge layer is used in
our proposed network which concatenates all encoded features
mentioned above with the noise vector Z.

F tn = concat(F ts , F
t
v , F

t
d, Z), (12)

We take F tn as the input to the LSTM decoder to generate the
candidate future paths Ŷ tn for each human.

Ŷ tn = LSTMde(Ŷ
t−1
n , F tn;Wde), (13)

where Wde is the decoding weights of LSTM.
The discriminator is built with an LSTM encoder which

takes the input Y ′tn as randomly chosen trajectory from either
ground truth Y tn or predicted trajectories Ŷ tn and classifies
them as “real” or “fake”. Generally speaking, the discriminator
classifies the trajectories which are not accurate as “fake” and
forces the generator to generator more realistic and feasible
trajectories.

Ltn = LSTMen(Y ′
t
n, h

t
en;Wen4), (14)

where Ltn is the predicted label from the discriminator for the
chosen input trajectory to be “real”(Ltn = 1) or “fake”(Ltn =
0). hten denotes the hidden state of the encoding LSTM and
Wen4 is the corresponding weights.

Within the framework of our reciprocal learning for human
trajectory prediction, let Gθ : X → Y and Gφ : Y → X
be the generators of the forward prediction network Fθ and
the backward prediction network Gφ, respectively. Dθ is the
discriminator for Fθ. Its input Y ′ is randomly selected from
either ground truth Y or the predicted future trajectory Ŷ .
Similarly, Dφ is discriminator for Gφ. To train Fθ and Gφ,
we combine the adversarial loss with the forward prediction
loss J+[θ] and the backward prediction loss J−[φ] in Eqs. (4)
and (5) together to construct the overall loss function for Fθ
and Gφ, respectively:

Lθ = LθGAN + J+[θ], Lφ = LφGAN + J−[φ], (15)

where adversarial losses LθGAN and LφGAN are defined as:

LθGAN = min
Gθ

max
Dθ

EY ′∼p(Y,Ŷ )[logDθ(Y ′)] (16)

+ EX∼p(X),Z∼p(Z)[log(1−Dθ(Gθ(X,Z)))],

LφGAN = min
Gφ

max
Dφ

EX′∼p(X,X̂)[logDφ(X ′)] (17)

+ EY∼p(Y ),Z∼p(Z)[log(1−Dφ(Gφ(Y,Z)))].

IV. RECIPROCAL ATTACK FOR MATCHED PREDICTION OF
HUMAN TRAJECTORIES

Once the forward and backward networks are successfully
trained with the above loss functions based on the reciprocal
learning approach, we are ready to perform prediction of
the human trajectories. By taking advantage of the reciprocal
property of the forward and backward networks, we develop
a new network inference method called reciprocal attack
for matched prediction to achieve improved performance in
human trajectory prediction.

Fig. 6. Illustration of the proposed reciprocal attack method.

As illustrated in Fig. 6, Fθ is our trained network for human
trajectory prediction. With the past trajectories X as input, it
predicts the future trajectories Ŷ = Fθ(X). During network
testing or actual prediction, we do not know the ground truth
of the future trajectory. How do we know if this prediction Ŷ
is accurate or not? How can we further improve its accuracy?
Fortunately, in our reciprocal learning framework, we have
another network, the backward prediction network Gφ, which
can be used to map the estimated Ŷ back to the known
input X. Our idea is that, if Ŷ is accurate, then its backward
prediction X̂ = Gφ(Ŷ) = Gφ(Fθ(X)) should match the
original input X. When the prediction Ŷ is not accurate, we
can modify the prediction such that the above matching error is
minimized. This leads to the following optimization problem:

Ŷ∗ = arg min
Ỹ=Ŷ+∆(t)

||X−Gφ(Ỹ)||2. (18)

Here, ∆(t) is the small perturbation or modification added
to the existing prediction result Ŷ. The above optimization
procedure aims to find the best modification Ŷ∗ = Ŷ + ∆(t)
to minimize the matching error.

This optimization problem can be solved by adversarial
attack methods recently studied in the literature of deep neural
network attack and defense. In this work, we propose to
borrow the idea from the famous Fast Gradient Sign method
(FGSM) developed by Goodfellow et al. [84] to perform
adversarial attacks. Essentially, it is the same error back prop-
agation procedure as network training. The only difference
is that network training modifies the network weights based
on error gradients. However, the adversarial attack does not
modify the network weights, it propagates the error all the
way to the input layer to modify the original input image to
minimize the loss.

This approach uses the sign of the gradient at each pixel to
determine the direction of changing pixel value. In our case,
we remove the sign function and directly use the gradient to
update the input trajectory. With the matching error of human
trajectories E = ||X − Gφ(Ỹ)||2, we can perform multiple
iterations of the modified FGSM attack on the prediction Ŷ
such that the matching error is minimized. At iteration m, the
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attacked trajectory (input) is given by

Ŷm = Ŷm−1 − ε · ∇ŶE(X, Ŷm−1), (19)

with Ŷ0 = Ŷ. ε is the magnitude of attacks [84].
∇ŶE(X, Ŷm−1) indicates the gradient of error function E

with respect to the input Ŷ. Intuitively, the updated trajectory
Ŷm will minimize E. We then perform an exponential average
of {Ŷm} to obtain the improved prediction

Ŷ∗ =

[
M∑
m=1

eα·m · Ŷm

]
/

M∑
m=1

eα·m, (20)

where M is the total iterations and α is a constant to
control the relative weights between these different iterations
of attacks.

Fig. 7. Example of our proposed reciprocal attack performed on HO-
TEL dataset. X-coordinates in both figures indicate the iteration, while Y-
coordinates indicate error metrics, ADE and FDE (see detailed explanation in
Section V-C).

Fig. 7 shows an example of the trajectory prediction re-
sults using reciprocal attack in each iteration performed on
the HOTEL dataset. Note that, the reciprocal attack is only
performed during the testing phase. Once the forward and
backward networks are well trained based on the reciprocal
learning approach, we are ready to perform prediction of the
human trajectories. We can see that, using reciprocal attack

in an iterative manner, the error metrics, ADE and FDE (see
definition in Section V-C) of trajectory prediction will decrease
in a certain iteration, then they might increase after a few
iterations. Since we do not know the ground truth, we choose
to perform reciprocal attack for 20 iterations based on heuristic
studies. Then an exponential average is performed on the result
trajectories in each iteration to obtain the refined future trajec-
tories prediction. The ablation studies in the following section
will provide more results to demonstrate the effectiveness of
this attacked-based matched prediction scheme.

V. EXPERIMENTAL RESULTS

We provide extensive performance comparisons on bench-
mark datasets (ETH [91] and UCY [92]) between our work
and state-of-the-art methods. We also conduct ablation to
demonstrate the effectiveness of each algorithm component. To
further evaluate the generalization capability of our method on
predicting human future trajectories, we conduct experiments
on two new datasets: Town Centre [90] and Grand Central
Station [93].

A. Datasets

Performance comparisons and ablation studies are per-
formed on the ETH [91] and UCY [92] datasets, which contain
real world human trajectories and various natural human-
human interaction scenarios. In total, 5 sub-datasets, ETH,
HOTEL, UNIV, ZARA1 and ZARA2, are included in these
two datasets. Each set contains bird’s-eye view images and 2D
locations of each human. In total there are 1536 humans in
these 5 datasets. They contain challenging situations, including
human collision avoidance, human crossing each other, and dy-
namic group behaviors. Each scene occurs in a unconstrained
outdoor environment [33].

Generalization studies are performed on the Town Centre
[90] and Grand Central Station [93] datasets. The Town Center
dataset contains short videos with frequent human-human and
human-scene interactions. It is originally used for human
tracking tasks with bounding boxes for the head and body
for each human. In the experiment, we use the center of
the human body bounding box as the location, as in existing
methods [17], [94]. The Grand Center Station dataset contains
a long-duration video (more than 32 minutes) and consists of
about 12,600 pedestrians with frequent human interactions. It
is originally used for human behavior analysis.

B. Implementation Details

Our GAN model is constructed using the LSTM for the
encoder and decoder. The generator and discriminator are
trained iteratively with the Adam optimizer. We choose the
batch size of 64 and the initial learning rate of 0.001. The
whole model is trained for 200 epochs. The trajectories are
embedded using a single layer MLP with dimension of 16.
The encoder and decoder for the generator use an LSTM with
the hidden state’s dimension of 32. In the LSTM encoder for
the discriminator, the hidden state’s dimension is 48. In the
pooling module, we follow the procedure and setting in [16].

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on December 15,2021 at 22:51:05 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3076078, IEEE
Transactions on Circuits and Systems for Video Technology

8

TABLE I
COMPARISONS OF DIFFERENT METHODS ON ETH (COLUMN 3 AND 4) AND UCY (COLUMN 5-7) DATASETS.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE

Linear [16] 1.33 0.39 0.82 0.62 0.77 0.79
LSTM [15] 1.09 0.86 0.61 0.41 0.52 0.70
S-LSTM [15] 1.09 0.79 0.67 0.47 0.56 0.72
S-GAN [16] 0.81 0.72 0.60 0.34 0.42 0.58
S-GAN-P [16] 0.87 0.67 0.76 0.35 0.42 0.61
SoPhie [33] 0.70 0.76 0.54 0.30 0.38 0.54
Scene-LSTM [94] 0.36 0.95 0.63 0.45 0.40 0.56
Next [36] 0.73 0.30 0.60 0.38 0.31 0.46
Ours 0.69 0.43 0.53 0.28 0.28 0.44

FDE

Linear [16] 2.94 0.72 1.59 1.21 1.48 1.59
LSTM [15] 2.14 1.91 1.31 0.88 1.11 1.52
S-LSTM [15] 2.35 1.76 1.40 1.00 1.17 1.54
S-GAN [16] 1.52 1.61 1.26 0.69 0.84 1.18
S-GAN-P [16] 1.62 1.37 1.52 0.68 0.84 1.21
SoPhie [33] 1.43 1.67 1.24 0.63 0.78 1.15
Scene-LSTM [94] 0.67 1.77 1.41 1.00 0.90 1.15
Next [36] 1.65 0.59 1.27 0.81 0.68 1.00
Ours 1.24 0.87 1.17 0.61 0.59 0.90

TABLE II
ABLATION EXPERIMENTS OF OUR FULL ALGORITHM WITHOUT DIFFERENT COMPONENTS. ERROR METRICS REPORTED ARE ADE AND FDE IN METER

SCALE.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE

Our Method (Full Algorithm) 0.69 0.43 0.53 0.28 0.28 0.44
- Without Reciprocal Learning 0.73 0.49 0.60 0.38 0.36 0.51
- Without Depth Features 0.71 0.43 0.56 0.31 0.31 0.46
- Without Reciprocal Attacks 0.70 0.45 0.55 0.32 0.30 0.46

FDE

Our Method (Full Algorithm) 1.24 0.87 1.17 0.61 0.59 0.90
- Without Reciprocal Learning 1.31 0.97 1.22 0.73 0.70 0.99
- Without Depth Features 1.30 0.88 1.19 0.63 0.62 0.92
- Without Reciprocal Attacks 1.26 0.90 1.18 0.65 0.61 0.92

The maximum number of human surrounding the target human
is set to 32. This value is chosen since in all datasets, none of
them has more than 32 human in any frame. For the feature
extraction part, following the prior work [33], we use the VGG
feature with a size of 512 for the background scene, which is
then embedded using a single MLP to a dimension of 16.
For the depth map estimation, we use the pre-trained model
Monodepth2 from [89] and the depth feature is also embedded
using a single layer MLP with a dimension of 16. The weight
for our loss function is λ = 0.5. We perform the reciprocal
attack for 20 iterations, the perturbation ε is set as 0.05.

C. Evaluation Metrics and Methods

Following the standard evaluation procedure [15], [95], we
use the following two error metrics for performance evalua-
tions. (1) Average Displacement Error (ADE) is the average L2

distance between the ground truth trajectory and our prediction
over all predicted time steps from To + 1 to Tp. (2) Final
Displacement Error (FDE) is the Euclidean distance between
the predicted final destination and the true final destination at
end of the prediction period Tp. They are defined as:

ADE =

∑
n∈Ψ

Tp∑
t=To+1

√
(x̂tn − xtn)2 + (ŷtn − ytn)2

|Ψ| · Tp
, (21)

FDE =

∑
n∈Ψ

√
(x̂
Tp
n − xTpn )2 + (ŷ

Tp
n − yTpn )2

|Ψ|
, (22)

where (x̂tn, ŷ
t
n) and (xtn, y

t
n) are the predicted and ground truth

coordinates for human n at time t, Ψ is the set of human and
|Ψ| is the total number of human in the test set.

Following existing methods [15], [16], [33], we use the
leave-one-out evaluation protocol on the ETH and UCY
datasets. Specifically, four datasets are used for training and
the remaining one is used for testing. Given the human
trajectory for the past 8 time steps (3.2 seconds), our model
predicts the future trajectory for next 12 time steps (4.8
seconds). In our generalization studies, following the previous
work [94], we split the data of Town Centre and Grand Central
Station into one half for training and the other half for testing.
All location coordinates are normalized to [0, 1] for training
and testing.

D. Comparison with Existing Methods

We compare our method against the following state-of-the-
art methods: (1) Linear [16]: This method applies a linear
regression to estimate linear parameters by minimizing the
least square error [16]. (2) LSTM [15]: This is the baseline
model for the LSTM-based method, which does not consider
human-human interactions or background scene information.
(3) S-LSTM [15]: This method models each human by an
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TABLE III
AVERAGE PERCENTAGE OF COLLIDING HUMAN FOR EACH SCENE IN ETH

AND UCY DATASETS. THE FIRST COLUMN REPRESENTS THE GROUND
TRUTH.

GT Linear [16] S-GAN [16] SoPhie [33] Ours
ETH 0.000 3.137 2.509 1.757 1.512
HOTEL 0.092 1.568 1.752 1.936 1.547
UNIV 0.124 1.242 0.559 0.621 0.563
ZARA1 0.000 3.776 1.749 1.027 1.094
ZARA2 0.732 3.631 2.020 1.464 1.252
Avg 0.189 2.670 1.717 1.361 1.194

LSTM and proposes a social pooling mechanism. Both S-
LSTM and LSTM generate one trajectory for each observa-
tion. (4) S-GAN [16]: This is one of the first GAN-based
methods. During the pooling stage, all human in the scene
are considered. S-GAN and S-GAN-P are different only in
whether the pooling mechanism is applied or not. The method
chooses the best trajectory from 20 network predictions as
the final test result. (5) SoPhie [33]: This work implements
a so-called physical constrain described by background scene
features. Also the attention mechanism is used in this GAN-
based method. (6) Scene-LSTM [94]: This method imposes
a two-level grid structure on the scene to incorporate the
scene information with human movements. (7) Next [36]:
This method introduces a LSTM-based predictor with pooling
of multiple features. In the test part, besides using a single
model, it follows [16] to train 20 different models with random
initialization. In our comparison, we follow [36] to report the
minimum ADE and FDE over 20 outputs.

E. Quantitative Results

Table I shows the comparison results of our method against
existing methods on the above two performance metrics ADE
and FDE. As illustrated in Table I, our method outperforms
all other methods except on the ETH dataset against Scene-
LSTM and on the Hotel dataset against Next. We can see
that the Linear method has the lowest accuracy, it can only
predict the straight trajectory and have very poor perfor-
mance in videos with complicated human-human and human-
environment interactions. LSTM performs better than Linear
since it can handle more complicated trajectories. S-LSTM also
outperforms the Linear model since it uses the social pooling
mechanism, but it performs worse than LSTM. According to
[16], the S-LSTM is trained on a synthetic dataset and fine-
tuned on the real dataset to improve the accuracy. Scene-LSTM
achieves better results than S-LSTM since it incorporates the
scene information as well as human movements. Both SoPhie
and Next outperform the S-GAN due to the use of background
visual features and the attention module. Overall, our method
achieves the best average error metrics in both ADE and FDE
among all comparison methods.

To evaluate the performance of our method in predicting
feasible paths in crowded scenes, we follow the procedure
in previous papers [33] to report a new evaluation metric
which is the percentage of near-collisions among humans.
A collision is defined when the Euclidean distance between

Fig. 8. Illustration of ADE and FDE changes with respect to different λ
values on ZARA1 and UNIV dataset

two human is smaller than 0.1m. We compute the average
percentage of human near-collision in each frame of ETH and
UCY datasets. The comparison results against the Linear, S-
GAN and SoPhie are shown in Table III. We can see that our
method outperforms these three methods on the ETH, HOTEL,
and ZARA2 datasets, producing less human collision in the
future time. On the other two datasets, UNIV and ZARA1, S-
GAN and SoPhie perform slightly better than ours. However,
they suffer from significant performance degradation on other
datasets.

F. Ablation Studies

To systematically evaluate our method and study the contri-
bution of each algorithm component, we perform a number of
ablation experiments in Table II. Our algorithm has three major
new components, the reciprocal learning, the incorporation of
3D depth map features, and the reciprocal attacks for matched
prediction. In the first row of Table II, we list the ADE and
FDE results for our method (full algorithm). The second row
shows the results for our method without reciprocal training.
The third row shows results without depth map features.
The last row shows results without reciprocal attacks for
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TABLE IV
THE QUANTITATIVE RESULTS (ADE AND FDE) ON TOWN CENTRE AND GRAND CENTRAL STATION DATASETS WITH DIFFERENT PREDICTION LENGTHS

OF FUTURE TRAJECTORIES.

Metrics Datasets Prediction Length S-GAN [16] S-GAN-P [16] Scene-LSTM [94] Ours

ADE
Town Center 12 0.22 0.21 0.09 0.07

16 0.37 0.38 0.14 0.09

Grand Central Station 12 0.21 0.40 0.11 0.06
16 0.32 0.79 0.14 0.07

FDE
Town Center 12 0.46 0.42 0.18 0.13

16 0.80 0.81 0.27 0.18

Grand Central Station 12 0.45 0.74 0.17 0.11
16 0.62 1.50 0.25 0.15

Fig. 9. Illustration of ADE and FDE changes with respect to different ε values
on the ZARA1 dataset

prediction. We can clearly see that each algorithm component
is contributing to the overall performance.

With the reciprocal consistence constraints, during training,
our model forces the backward predicted trajectory to be
consistent with the observed past trajectory, thus the predicted
future trajectory which is the input of the backward network
will be forced to be closer to the ground truth. As shown in
the 2nd and 6th rows of Table II, the ADE increases to 0.51
from 0.44 and FDE increases to 0.99 from 0.90 on average
when reciprocal consistence is excluded. By adding the depth
features and reciprocal attacks, the prediction can be slightly

refined to further improve the performance. Results in the
3rd and 7th rows shown in Table II shows the benefit of
introducing the depth features since it can help the model
to better understand human behavior and the background
scene context. The reciprocal attack mechanism modifies the
predicted trajectory in an iterative manner to match the original
trajectory with the backward prediction network. The minor
improvement of this proposed mechanism is clearly shown
in the 4th and 8th rows of Table II. With all these ablation
experimental results, we can conclude that all three algorithm
components are critical in our proposed method.

To evaluate the influence of the parameter λ in Eqn. 4 and
5, we perform ablation experiments on ZARA1 and UNIV
datasets with λ value from 0.1 to 0.9. Fig. 8 presents how
ADE and FDE changes with respect to different λ values. As
we can see in Fig. 8, both the forward trajectory loss and the
past trajectory loss have contributions to overall performance.
However, the forward trajectory loss plays a relatively more
important role than the backward trajectory loss does. For
example, when λ = 0.1, it indicates the weight for the forward
trajectory loss is 0.1, while the weight for the backward
trajectory loss is 0.9, the ADE for UNIV dataset with λ = 0.1
is greater than it with λ = 0.9.

We also perform ablation experiments to evaluate the influ-
ence of the parameter ε in Eqn. 19 which is the magnitude
of reciprocal attack. As we discussed above, reciprocal attack
minor refines the predicted forward trajectory to match the
ground truth better. As we can see in Fig. 9, ε within a certain
range has slight influence on the overall performance.

G. Qualitative Results

Fig. 10 shows successful and failure examples of our
predicted trajectories. Following prior work S-GAN [16], we
show the best predicted trajectory among 20 model outputs in
the figure. We can see that our proposed method is able to
correctly predict the future path. According to the background
scene, we can see that our method can ensure that each human
path follows the physical constrains of the scene, such as
walking around obstacles, e.g. trees, and staying on sidewalks.
Our method also shows the decent prediction results with
human-human interactions. When persons walk in a crowded
road, they can avoid each other when they merge from various
directions and then walk towards a common direction.

The last row in Fig. 10 shows some failure cases which
have relatively large error rates. For example, the person in
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Fig. 10. Illustration of our method predicting future 12 time steps trajectories, given previous 8 time steps. The results are drawn under HOTEL, ETH, UNIV
and ZARA1 and ZARA2 datasets from 1st column to 5th column, respectively.

TABLE V
THE QUANTITATIVE RESULTS ON ETH (COLUMN 3 AND 4) AND UCY (COLUMN 5-7) DATASETS ON THE TASK OF BACKWARD PREDICTION (PREDICTING

THE TRAJECTORIES OF PREVIOUS 8 TIME STEPS, GIVEN THE TRAJECTORIES OF 12 FUTURE TIME STEPS).

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE
S-GAN [16] 0.57 0.27 0.39 0.22 0.24 0.34
S-GAN-P [16] 0.56 0.31 0.37 0.24 0.27 0.35
Ours 0.50 0.22 0.31 0.20 0.18 0.28

FDE
S-GAN [16] 1.05 0.68 0.74 0.42 0.43 0.67
S-GAN-P [16] 1.07 0.72 0.71 0.43 0.49 0.68
Ours 0.95 0.44 0.65 0.40 0.37 0.56

Fig. 11. Illustration of backward prediction (predicting previous 8 time steps trajectories, given future 12 time steps ones). The results are drawn under
HOTEL, ETH, UNIV and ZARA1 and ZARA2 datasets from 1st column to 5th column respectively. Note that, we crop and resize the original image for
better visualization.

the scene slows down or even stops for a while, or walks
directly over the obstacles instead of walking around them.
In most cases, our method still can predict the plausible path,
even though the predicted path is not exactly the same as the
ground truth. For example, for the first, third, and fifth cases in
the last row, in our prediction, the person walks around another
person or the tree in the road, which is quite reasonable in
practice.

We do notice that our method could not beat all other
state-of-the-art methods on the ETH and HOTEL datasets. We
visualize more cases on these two datasets that our predicted
future trajectories are not close enough to the ground truth

in Fig. 12. In the first row, our method may recognize the
snow and the small square around the tress as obstacles.
Hence, in the predicted path, it looks like that the person
walks around these obstacles, while the pedestrians actually
walk over these areas. In the second row, we show some
cases that the observed pedestrians take a straight path to the
destination, while our predicted paths make a few direction
changes due to the enforcement of human-human and human-
scene constraints. But in these two cases, our method obtains
a better prediction of the final destination. In the third row, we
show some strange cases where the pedestrians walk directly to
the nearby pedestrians and then take a sharp detour or stopping
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Fig. 12. Qualitative examples of some failure cases on the ETH and HOTEL
datasets which have relatively large error rates. Note that, we crop and resize
the original image for better visualization.

for a while. Our method could not work well in these cases and
made some inaccurate but reasonable predictions. To address
this issue, in our future work, we can develop a multi-level
context-driven interaction model which considers both global
scene and local context around the pedestrian.

H. Generalization: Evaluations on Town Centre and Grand
Central Station Datasets

To further evaluate the generalizability of our method, we
perform experiments on new datasets: Town Centre [90] and
Grand Central Station [93]. Following the previous work [94],
for each of these two datasets, we combine the training
data from ETH and UCY datasets and 50% data from this
dataset for training, the remaining data is used for testing. The
objective is to predict trajectories in the next 12 and 16 time
steps based on the trajectories of 8 previous time steps. The
comparison results of our method with S-GAN [16] and Scene-
LSTM [94] are shown in Table IV. We can clearly see that
our method outperforms the existing methods in both datasets.
Some qualitative examples on Town Centre and Grand Central
Station datasets are presented in Fig. 13.

I. Backward Prediction Evaluation

We also conduct experiments of backward trajectory predic-
tion (predict past trajectories by giving future trajectories) on
the ETH and UCY datasets. We compare the ADE and FDE
results with the S-GAN and S-GAN-P methods. The objective
is to predict trajectories of the previous 8 time steps based
on the trajectories of 12 future time steps. The prediction
error results are shown in Table V. We can see that, our
reciprocal learning method outperforms S-GAN and S-GAN-P
on both ETH and UCY datasets. The results show that our

Fig. 13. Qualitative examples of our method predicting future 12 time steps
trajectories, given previous 8 time steps ones on Town Centre (1st column)
and Grand Central Station (2nd column) dataset. Note that, we crop and resize
the original image for better visualization.

reciprocal learning is able to accurately perform both forward
and backward prediction of human trajectories. Several visual
examples of our backward prediction on the ETH and UCY
datasets are shown in Fig. 11.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explored the unique characteristics
of human trajectories and developed a new approach, recip-
rocal network learning, for human trajectory prediction. Two
networks, the forward and backward prediction networks, are
tightly coupled together, satisfying the reciprocal constraint,
which allows them to be jointly learned for accurate and
robust human trajectory prediction. Based on this constraint,
we borrowed the concept of adversarial attacks of deep neural
networks, which iteratively modifies the input of the network
to match the given or forced network output, and developed
a new method for network testing, called reciprocal attack
for matched prediction. It has further improved the prediction
accuracy slightly. Extensive experimental results have demon-
strated our approach achieves the state-of-art performance on
public benchmark datasets. In our future work, we plan to
explore multi-level context-driven interaction model which
considers both global scene and local context around the
pedestrian. We will also extend the proposed approach to a
closely related research problem: predicting the human future
trajectory from an egocentric view of a moving vehicle with
the on-board camera.
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