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a b s t r a c t

Millions of people engage in spoken interactions with voice activated artificially intelligent (voice-AI) systems in

their everyday lives. This study explores whether speakers have a voice-AI-specific register, relative to their

speech toward an adult human. Furthermore, this study tests if speakers have targeted error correction strategies

for voice-AI and human interlocutors. In a pseudo-interactive task with pre-recorded Siri and human voices, par-

ticipants produced target words in sentences. In each turn, following an initial production and feedback from the

interlocutor, participants repeated the sentence in one of three response types: after correct word identification,

a coda error, or a vowel error made by the interlocutor. Across two studies, the rate of comprehension errors made

by both interlocutors was varied (lower vs. higher error rate). Register differences are found: participants speak

louder, with a lower mean f0, and with a smaller f0 range in Siri-DS. Many differences in Siri-DS emerged as

dynamic adjustments over the course of the interaction. Additionally, error rate shapes how register differences

are realized. One targeted error correction was observed: speakers produce more vowel hyperarticulation in coda

repairs in Siri-DS. Taken together, these findings contribute to our understanding of speech register and the

dynamic nature of talker-interlocutor interactions.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the rise of smartphones and smart speakers, millions
of people now talk to a new type of interlocutor:
voice-activated artificially intelligent (voice-AI) assistants
(e.g., Apple’s Siri, Amazon’s Alexa, Google Assistant). Speech
interaction with voice-AI has become a daily behavior for many
people (Arnold et al., 2019). People of all ages use voice-AI for
a variety of purposes, including to complete tasks (e.g., to play
music, set timers, and other “internet of things” commands),
request and search for information (e.g., “What’s the
weather?”, “How many teaspoons are in a liter?”) (Ammari
et al., 2019; Bentley et al., 2018), as well as for playing games
(e.g., “Tell me a joke”) and engaging in conversational interac-
tion (e.g., Amazon Alexa Prize chatbots in Ram et al., 2018).
Unlike computers in the past, voice-AI is one of the only
non-living entities that humans interact with using speech.
Additionally, these systems are distinct in their cues of
apparent humanity. For example, Apple’s Siri has a name,
apparent gender, a persona, a human-like voice, and improved
speech recognition abilities compared to prior technology. Yet,
whether humans have a systematically distinct way of talking
to voice-AI assistants is an underexplored question.

Prior work has shown that speakers make systematic
phonetic adjustments, known as register adaptations, when
talking to different types of interlocutors. Speech directed
toward typical adult interlocutors, adult-“directed speech”
(DS)1, has been shown to vary from speech directed toward
other types of interlocutors, such as infant-DS (Fernald &
Simon, 1984; Graf Estes & Hurley, 2013; Kuhl et al., 1997),
non-native speaker-DS (Hwang et al., 2015; Lee & Baese-
Berk, 2020; Uther et al., 2007), hearing-impaired individual-
DS (Uchanski et al., 1996), pet-DS (Burnham et al., 1998;
Burnham et al., 2002), and even computer-DS (Burnham
et al., 2010; Oviatt et al., 1998; Stent et al., 2008). These pat-
terns parallel some adjustments found in speech produced in
noisy environments, which is louder and slower compared to
speech produced in quiet conditions (e.g., “Lombard” speech
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2 The authors do not specify if this condition is read speech or speech directed toward
an adult human interlocutor.
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in Brumm and Zollinger (2011)). At the same time, registers
appear to vary depending on speakers’ motives to improve
intelligibility and/or convey emotional affect (Gergely et al.,
2017; Hazan et al., 2015; Kitamura & Burnham, 2003;
Trainor et al., 2000; Uther et al., 2007). For example, speech
directed towards infants is slower, contains more vowel hyper-
articulation than adult-DS, and has features associated with
positive affect, including higher fundamental frequency (f0)
and more f0 variation (Fernald, 2000; Kuhl et al., 1997).
Speech directed toward hearing-impaired listeners is slower
and contains less segmental reduction than conversational
speech directed toward non-hearing impaired individuals
(Picheny et al., 1986; Scarborough & Zellou, 2013). Still, the
extent to which register adjustments improve communication
varies. While some interlocutor-based adjustments are benefi-
cial to the listener (Bradlow et al., 2003; Bradlow & Bent,
2002; Hargus Ferguson, 2004; Picheny et al., 1986), others
are less advantageous (e.g., non-native speaker-DS is per-
ceived negatively; for a review see Rothermich et al., 2019),
suggesting that certain aspects of register adaptation can be
attributed to speakers’ assumptions about communicative bar-
riers for certain types of interlocutors. Indeed, speech toward
real versus imagined interlocutors contains different features
(Scarborough et al., 2007; Scarborough & Zellou, 2013), sup-
porting the notion that both presumed and authentic commu-
nicative difficulty leads to different types of speech
adjustments.

Similarly, there is some evidence that speakers anticipate
communicative difficulties when talking to various types of
computer systems. There is a body of work characterizing
the acoustic–phonetic patterns in computer-DS (Bell et al.,
2003; Bell & Gustafson, 1999; Burnham et al., 2010;
Lunsford et al., 2006; Mayo et al., 2012; Oviatt, Levow,
et al., 1998; Oviatt, MacEachern, et al., 1998; Siegert
et al., 2019; Stent et al., 2008). However, few studies make
a direct comparison between adult human-DS (henceforth
“human-DS” in this paper) and speech towards computers/
voice-AI; those that do vary in the acoustic features they
measure and in their methodologies, as summarized in
Table 1. For instance, Lunsford et al. (2006) observed that
speech directed toward a computer system was perceived
to be louder than that directed toward a real human inter-
locutor in a multi-party dialog, consisting of two humans
and one computer. Other studies have found durational
and hyperarticulation differences across computer- and
human-DS. For instance, Burnham and colleagues (2010)
recorded participants interacting with a human interlocutor
(the experimenter through a computer screen) and a com-
puter avatar in a scripted Wizard-of-Oz paradigm in which
the interlocutors asked the participant questions about a nar-
rative. They found that speech directed toward the computer
avatar contained longer vowel durations and greater vowel
space expansion than human-DS, yet they found no differ-
ence across the registers for f0. However, others have
observed differences for f0. Mayo et al. (2012), for example,
recorded a single talker reading sentences in five speech
styles, plain, shouted, infant-, computer- and non-native
speaker-DS, which were elicited through instructions (e.g.,
“Speak as though you were talking to a computer.”). In
computer-DS, they also found longer segment durations,
but lower f0 range, relative to “plain” speech2. Still, not all
studies find a general slowing of speech in computer-DS.
Similar to the Burnham et al. (2010) study, Siegert et al.
(2019) used a Wizard of Oz paradigm in a restaurant booking
task, comparing spoken interactions with an apparent com-
puter to that toward a human. They found that speakers pro-
duced shorter vowel durations in computer-DS, relative to
human-DS.

While vowel hyperarticulation (or vowel space expansion) is
well-studied in regards to infant-, non-native speaker-, and
computer-DS registers (Burnham et al., 2002; Burnham
et al., 2010; Uther et al., 2007), fewer studies have examined
nasal coarticulation, or the degree of articulatory overlap
between a nasal segment and a vowel (Chen, 1997). Indeed,
none of the studies in Table 1 looked at coarticulatory patterns
across computer- and human-DS. In prior work in human–hu-
man interaction, patterns of nasal coarticulation have been
shown to vary across real and imagined listener conditions
(Scarborough & Zellou, 2013), as well as in infant- and adult-
DS (Zellou & Scarborough, 2015). Furthermore, many theoret-
ical frameworks consider enhanced anticipatory coarticulation
to be perceptually beneficial under certain circumstances
(e.g., Beddor, 2009). Therefore, speakers might use coarticula-
tion differently in computer- and human-DS to improve intelligi-
bility. Taken together, these results highlight the necessity of
examining multiple acoustic–phonetic features — at both the
segmental and sentence-level — in classifying register
adaptations.
1.1. Is there a voice-AI register?

The summary provided in Table 1 suggests that people vary
in the way they speak to various computer systems or avatars.
However, as mentioned above, voice-AI is a new type of sys-
tem that is specifically designed to function via speech commu-
nication and the modern devices produce relatively naturalistic
speech and language. There is some initial evidence of a dis-
tinctive voice-AI speech register. For example, speech directed
toward humans versus voice-AI can be accurately classified
via machine learning methods (e.g., Amazon’s Alexa in
Huang et al., 2019; Mallidi et al., 2018). Several studies have
used the German Voice Assistant Conversation Corpus
(VACC) (Siegert et al., 2018) to test differences in speech
toward humans versus voice-AI (Raveh, Steiner, et al., 2019;
Siegert & Krüger, 2021). In the corpus, German-speaking par-
ticipants engage in unscripted conversations with an Alexa and
a real human confederate to complete two tasks, setting an
appointment on a calendar and completing a quiz. Both a
physical Amazon Alexa Echo dot and human confederate
were in the room. Both studies found that participants’ speech
was louder (i.e., had a higher intensity) in Alexa-DS, relative to
human-DS (Raveh, Steiner, et al., 2019; Siegert & Krüger,
2021). Raveh et al. (2019) additionally reported differences in
mean f0: participants showed higher pitch in speech
addressed to Alexa. Here, they note that the gender of the
human/Alexa voices may have contributed to the f0 differ-
ences, reflecting vocal alignment (in the VACC, the human



Table 1
Summary of technology-DS and human-DS studies. Note that “—” indicates that the feature was not measured. Differences are presented for speakers’ productions after a misrecognition
by their interlocutor.

Interlocutor Study Intensity/
Amplitude

Duration/rate Segmental
hyperarticulation

F0 Coarticulation

Computer vs. human Lunsford et al. (2006) Louder
(perceived)

— — — —

Burnham et al. (2010) — Longer vowels More vowel hyperartic. No difference —
Mayo et al. (2012)
(imagined)

— Longer
segments

— Smaller f0 range (no difference in
median f0)

—

Siegert et al. (2019) — Shorter vowels — — —

Voice-AI vs. human Raveh et al. (2019)
(VACC corpus)

Louder No difference — Higher mean f0 —

Siegert and Krüger, (2021)
(VACC corpus)

Louder No difference Differs
(No directionality reported)

Differs
(No directionality reported)

—

Cohn et al. (2021) — Slower rate — — —
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confederate is male, while the Alexa voice is female). Siegert &
Krüger (2021), also using VACC, found differences in f0 and
formant characteristics for Alexa- and human-DS, though no
directionality was reported. Other work has examined more
social interactions with voice-AI assistants. For example, in a
user interaction study with an Amazon Alexa socialbot (where
users can chitchat with Alexa about movies, food, animals,
news, etc.), American English speakers produced significantly
slower speech when talking to the system, relative to their
baseline rate (assessed prior to the interaction) (Cohn et al.,
2021).

While many prior studies use naturalistic interactions and
similar tasks in human/voice-AI comparisons, it is possible that
automatic speech recognition (ASR) errors could also con-
tribute to participants’ representations of the voice-AI commu-
nicative barriers. Since the conversations were spontaneous,
the rate and type of errors made by the Alexa and human inter-
locutors could have varied. In the current study, we make a
direct comparison between a set of target words in human-
and voice-AI-DS (i.e., a female human vs. a female Apple Siri
device interlocutor) elicited under identical conditions, and with
the same rate and type of recognition “errors”. A direct, con-
trolled comparison is critical as the differences observed in
other works may be task-related, or due to differences in lin-
guistic or situational context, and not interlocutor-based per
se. For example, Cohn and Zellou (2021) used a controlled
experiment, where participants read target sentences from a
screen and heard feedback from pre-recorded voices: an
Alexa text-to-speech (TTS) voice and a recorded human voice.
In 50% of trials, each interlocutor “heard” incorrectly, producing
a vowel error (e.g., “bought” misheard as “bet”). Furthermore,
in 50% of trials, the interlocutor used an emotionally expres-
sive interjection congruent with the staged error (e.g., “Darn!
I misunderstood. . .”). Overall, they found that speakers pro-
duced systematic differences in Alexa- and human-DS. Rela-
tive to their baseline productions (elicited prior to the
interactions), speakers produced a slower speech rate, higher
mean f0, and greater f0 variation in Alexa-DS. Meanwhile, no
differences were observed in error repairs for the two interlocu-
tors. Taken together, these differences suggest that speakers
might have a voice-AI register, which may be due to different
expectations for how likely voice-AI and humans are to
understand them. Indeed, Siegert and Krüger (2018) found
that participants rated their interactions with a human confed-
erate to be “intuitive” and that they could “[speak] like [they]
always do”, while interactions with Alexa were reported as
“more difficult” and “different to interacting with someone in
the real world” (p. 6). The current study extends the controlled
approach described in Cohn & Zellou (2021), varying the inter-
action by error rate for non-emotional interactions with voice-AI
and human interlocutors.

1.2. Theoretical relevance for human/voice-AI comparison

Examining speech toward voice-AI and human interlocutors
can serve as a lens into mechanisms of speech adaptation. On
the one hand, if global speech patterns are distinct for the two
interlocutors, this would support listener-intelligibility accounts
(Branigan et al., 2011; Clark & Murphy, 1982; Oviatt,
MacEachern, et al., 1998). For example, Audience Design the-
ory proposes that speakers make linguistic adjustments based
on the (presumed) communicative needs of their interlocutor
(Clark & Murphy, 1982). There is work which suggests that
people presume that computer systems will exhibit greater
intelligibility barriers, and less overall communicative compe-
tence, relative to humans (Cowan et al., 2015; Oviatt,
MacEachern, et al., 1998). For example, in typed interactions,
participants display greater syntactic and lexical alignment
toward (apparent) computer interlocutors, relative to (apparent)
humans, in situations where alignment will lead to greater com-
municative success in the interaction (Branigan et al., 2011,
2003). Support for this account comes from speech production
as well: as summarized previously, computer-DS is often lou-
der (Lunsford et al., 2006), slower (Burnham et al., 2010;
Mayo et al., 2012), and more hyperarticulated (Burnham
et al., 2010) than human-DS, which suggest that the user
assumes the computer has greater perceptual difficulties.

On the other hand, if speakers do not have a different register
for voice-AI and human interlocutors, this would support tech-
nology equivalence accounts (Nass et al., 1997, 1994;
Reeves & Nass, 1996). For example, the Media Equation The-
ory (Chiasson & Gutwin, 2005; Hoffmann et al., 2009; Reeves
& Nass, 1996) proposes that people engage with media (e.g.,
technology) the same way they do with people. This argument
is based on the observation that people engaging with
technology have a sense of physical or social presence and,
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consequently, respond with the same behaviors as they do for
humans (for review, see Lee, 2008). Another technology
equivalence account, the Computers are Social Actors (CASA)
theory (Nass et al., 1997, 1994), proposes that people subcon-
sciously — and categorically — apply social behaviors from
human-human interaction to those with a computer, given cues
of “humanity” in that computer. In voice-AI, there are ample cues
of humanity, including a relatively naturalistic voice, advanced
speech recognition, and the device talker having a name (e.g.,
“Alexa”, “Siri”). Indeed, there is some support for technology
equivalence accounts for linguistic behavior toward voice-AI.
For instance, several recent studies have shown that people
vocally align toward both voice-AI and human interlocutors
(Cohn et al., 2019; Raveh, Steiner, et al., 2019; Snyder et al.,
2019; Zellou, Cohn, & Ferenc Segedin, 2021; Zellou, Cohn, &
Kline, 2021), and even display similar gender-based speech
asymmetries (such as aligning more to male, than female,
TTS and human voices in Cohn et al., 2019). Hence, an
alternative prediction in the current study, based on technology
equivalence accounts, is that speech patterns to voice-AI and
human interlocutors will not differ.
1.3. Different error correction strategies for interlocutors?

Given that one of our competing predictions is that global
features of human- and voice-AI-DS might overlap, we also
examine interlocutor-driven differences in response to local
communicative pressure: when the interlocutor mishears them.
While under-explored, differences in error correction strategies
might be a key component of an interlocutor-based register,
which can inform theoretical accounts of speech adaptation.
Targeted adaptation accounts (Buz et al., 2016; Lindblom,
1990) propose that speakers dynamically adjust their output
in order to address local communicative demands. For exam-
ple, the Hyper- and Hypo-articulation (H&H) model proposes
that speakers adjust their pronunciation to produce clear
speech (“hyperspeech”) when they see that the interaction is
more demanding for the listener; otherwise, speakers con-
serve articulatory effort and produce more casual speech (“hy-
pospeech”) (Lindblom, 1990). Repeated, second mention, and
more predictable words are produced with greater reduction
(hypospeech) (Fowler & Housum, 1987; Lieberman, 1963).
Meanwhile, explicit misunderstanding has been shown to trig-
ger hyperspeech. For example, speech produced to improve
intelligibility, has been shown to have higher intensity, longer
segment durations, slower speech rate, and larger f0 range
than casual or conversational speech (Bradlow et al., 2003;
Picheny et al., 1986). Clear speech has also been shown to
contain more vowel hyperarticulation and less segmental coar-
ticulation than in connected, casual speech (Moon & Lindblom,
1994). The Adaptive Speaker Framework (Buz et al., 2016),
another targeted adaptation account, similarly proposes a
trade-off based on real-time difficulties, but it proposes that
adjustments are segmentally targeted to the phonological
source of confusion. Indeed, targeted hyperarticulation in
response to specific phonological confusions has been found
in other studies (Baese-Berk & Goldrick, 2009; Oviatt,
MacEachern, et al., 1998; Schertz, 2013), suggesting that
speakers have representations for how to adapt their speech
in real-time in order to be best understood.
There is some evidence that speakers target different
acoustic–phonetic adjustments for different interlocutors, lend-
ing support for a hybrid account of listener-intelligibility and tar-
geted adaptation accounts. In human–human interaction,
speakers show targeted adjustments on words for adults and
infants based on specific lexical properties. For example, in
adult-DS, degree of hyperarticulation and nasal coarticulation
appear to be driven by how many lexical competitors the word
has, and hence a high potential for confusability based on an
adult lexicon measure (phonological neighborhood density)
(Scarborough, 2013). For infant-DS, these same phonetic
adjustments were made for words with a later age-of-
acquisition (AoA) (Zellou & Scarborough, 2015). Assuming
that AoA is a better metric of lexical difficulty for infants and
likewise neighborhood density for adults, these findings sug-
gest more generally that speakers respond to the presumed
needs of their interlocutor by making precise, acoustic–pho-
netic enhancements for specific phonological confusions by
that listener. Will speakers differ in how they correct phonolog-
ical errors made by a voice-AI versus a human interlocutor?

Table 2 summarizes studies with evidence of targeted error
corrections in spoken interaction with computer systems.
Together, they show some similarities to strategies used in
human–human interaction (Bell & Gustafson, 1999; Maniwa
et al., 2009; Ohala, 1994; Oviatt, Levow, et al., 1998; Oviatt,
MacEachern, et al., 1998; Schertz, 2013; Stent et al., 2008;
Swerts et al., 2000; Vertanen, 2006). For instance, Bell &
Gustafson (1999) analyzed a corpus of people’s spontaneous
interactions with a spoken dialog system, selecting utterances
that were lexically identical in the first production and a subse-
quent repetition in response to an ASR error. In response to an
ASR error, speakers produced louder, slower, and more hyper-
articulated speech. Similarly, Schertz (2013) found that speak-
ers repair errors made by an apparent speech recognition
system (e.g., “pit” misheard as “bit”) by increasing the duration
of voice onset time (VOT) on the voiceless stop, enhancing a
property that differentiates /p/ and /b/ in English. In a study
where participants spoke to a dialog system, Stent et al.
(2008) found that speakers displayed hyperarticulation by
slowing their speech rate and producing more canonical seg-
mental forms of /t/ and /d/ in target words, in responses pro-
duced after the computer recognition errors. Consistent with
targeted adaptation accounts, hyperarticulation lingered after
the error correction, but speakers eventually reverted to their
original speaking style. Yet, not all adjustments in human–com-
puter interactions are consistent with work in human–human
interaction. For example, Maniwa et al. (2009) found that
speakers responded to a computer error to their VCV syllables
by using some of the same clear speech adaptations observed
in human-DS (e.g., increasing duration), but with a surprising
difference: error repair trials were produced with less intensity.

Fewer prior studies have directly compared error correction
to human and to computer interlocutors. Burnham et al. (2010)
found no differences in error correction between human- and
computer avatar-DS, with staged errors occurring in 33% of tri-
als for both interlocutors. Similarly, Cohn and Zellou (2021)
found differences in prosodic characteristics of Alexa- and
human-DS, but no targeted differences to staged misrecogni-
tions (occurring in 50% of trials). In both human- and Alexa-
DS, they observed greater vowel backing in response to a



Table 2
Summary of error correction in computer-DS. Note that “—” indicates that the feature was not measured. Differences are for error correction relative to non-correction productions.

Interlocutor Study Intensity/
Amplitude

Duration Segment
hyperarticulation

F0 Coarticulation

Computer
only

Stent et al. (2008) — Slower rate Consonant hyperartic. &
front vowels (more
fronted)

— —

Oviatt, MacEachern, &
Levow (1998)

No
difference

Longer overall; longer segments,
longer pauses; slower rate

Consonant hyperartic. Lower f0 (in lower error rate) —

Oviatt, Levow, Moreton,
MacEachern (1998)

Louder Longer overall;
longer segments,
more pauses; longer pauses;

Consonant hyperartic. F0 max. and f0 range (N.S.) —

Ohala (1994) — Longer Increased consonant
hyperartic. (VOT)

— —

Bell & Gustafson (1999) Louder Slower rate More vowel hyperartic. —
Maniwa et al. (2009) Quieter Longer Higher frequency

spectral peaks
Higher f0 —

Vertanen (2006) Quieter Slower rate, more pauses Increased formant
frequencies

Greater f0 range —

Swerts et al. (2000) Louder Longer, longer pauses, less internal
silence

— Larger f0 variation —

Schertz (2013) — Longer vowels (for phonemic
contrasts e.g., /ɪ/-/i/)

Vowels N.S.
Increased consonant
hyperartic. (VOT)

— —

Computer
vs. human

Burnham et al. (2010) — Longer segments
(computer-/human-DS N.S.)

Vowel space expansion
(computer-/human-DS
N.S.)

Larger F0 range
(computer-/human-DS N.S.)

—

Voice-AI
vs. human

Cohn & Zellou (2021) Louder
(Alexa-/
human-DS
N.S.)

Slower rate
(Alexa-/human-DS N.S.)

F2 hyperartic.
(Alexa-/human-DS N.S.)

Higher f0, larger f0 range
(Alexa-/human-DS N.S.)

—
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vowel error, as well as louder, slower rate, higher mean f0, and
greater f0 variation. Still, both studies had relatively high error
rates (33% and 50%), which might have led to more similar
error adaptation strategies for the interlocutors.

1.4. Current study

The current study tests whether there is an overall voice-AI-
DS register, compared to human-DS, and whether there are
differences in targeted error-repair strategies across interlocu-
tors. The production study consists of a pseudo-interactive
task with two types of interlocutors in a laboratory setting: a
voice-AI system (here, Apple’s Siri3) and a native English
speaking adult. The task was carefully controlled, holding the
nature of the interaction, as well as rate and type of errors, con-
stant across the two interlocutor types. Building off of related
work examining productions toward an apparent speech recog-
nition system (e.g., Schertz, 2013), participants produced target
words and received visual feedback as to what the interlocutor
“heard”. Additionally, participants heard audio recordings of the
interlocutor during each trial to create a four-turn interaction
(see General Procedure in Section 2.2. and a trial schematic
in Fig. 2). Participants produced the target words in an initial pro-
duction (Original productions) and then responded to the inter-
locutor across three feedback conditions: repeat after the
interlocutor indicated the correct target word (Correct Repeat),
repeat following a coda consonant error (Coda Error: e.g.,

“Ben” misheard as “bed”), and repeat following a vowel error
3 The current study examines speech toward Siri and generalizes this to “voice-AI”
directed speech, however, we acknowledge that voice-AI register patterns could vary
across systems. This is a question for future work.
(Vowel Error, e.g., “bet” misheard as “boat”). We measured fea-
tures commonly investigated in computer-DS registers, including
sentence intensity, mean f0, f0 range, as well as acoustic–pho-
netic properties of the target word vowels, including vowel dura-
tion, coarticulatory nasalization, and hyperarticulation.

Additionally, the current study tests whether differences for
the Siri and human interlocutors (if present) change over the
course of the interaction. Speakers’ a priori expectations for
how well a voice-AI (here, Siri) versus a human can under-
stand them (i.e., “presumed competence”) could be a factor
in their speech behavior, and might also change as the
speaker accumulates experience with that interlocutor.
Cowan et al. (2015) showed that listeners have different pre-
sumptions of communicative competence for naturally-
produced versus synthesized voices. In particular, people
believe that a computer interlocutor is a less competent con-
versational partner than a human interlocutor, based on hear-
ing their voice alone. Thus, speakers’ beliefs about the
communicative competence of Siri versus a human interlocu-
tor might explain differences in their global register and tar-
geted error correction patterns, especially at the beginning of
the interaction. However, as the interaction unfolds, partici-
pants accumulate real-time evidence about the interlocutor’s
actual competence based on how well the interlocutor is “un-
derstanding” target words and the types and rates of errors
they make. By varying the overall rate of errors occurring
across trials (lower vs. higher), the effect of the computer inter-
locutor’s “actual competence”might lead to differences in clear
speech adjustments. For example, there are different effects
for “real” versus “imagined” interlocutors observed in prior work
(Scarborough et al., 2007; Scarborough & Zellou, 2013). In a



Table 3
Acoustic properties of the Human and Siri interlocutor productions used in this study.

Human Siri Pairwise comparison

Speech rate 2.71 syll/sec (0.22) 2.39 syll/sec (0.26) t(21.44) = �0.91, p = 0.37
F0 mean 17.78 ST (0.35) 13.63 ST (0.23) t(22.59) = �7.56, p < 0.001
F0 range 2.77 ST (0.42) 3.13 ST (0.30) t(23.09) = 0.70, p = 0.49
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lower error rate condition, participants may be more reliant on
a priori beliefs about the interlocutors’ competence, which
might lead to more distinct patterns across Siri- and human-
DS. On the other hand, in a higher error rate condition, it is
possible that speakers might show more similar adjustments
in response to feedback from the two types of interlocutors
as seen in some recent work (e.g., 50% error rate in Cohn &
Zellou, 2021). Thus, in the current study, participants com-
pleted one of the two error rate conditions of the paradigm: a
lower error rate (Experiment 1, Section 3) or a higher error rate
(Experiment 2, Section 4).

1.4.1. Predictions

We can set up several predicted outcomes for the present
study, based on the different theoretical accounts of speech
adaptation. In terms of speech register, observing differences
across Siri- and human-DS is consistent with listener-
intelligibility accounts. Conversely, if speech patterns are the
same, this supports technology equivalence accounts. For error
correction responses, the extent towhichweseedifferent strate-
gies to repair the vowel and coda errors can speak to targeted
adaptation accounts. Here, we examine nasal coarticulation
as a way speakers could enhance cues to the final nasal coda
on the vowel when interlocutors mistake the final consonant

(e.g., “bed” vs. “Ben”). Meanwhile, if interlocutors make vowel-
phoneme errors, we predict this would be more likely to trigger
vowel lengthening and vowel hyperarticulation (e.g., Bell &
Gustafson, 1999). Furthermore, if targeted adjustments differ
for the Siri and human interlocutors, this would support a hybrid
listener-intelligibility and targeted adaptation account.
2. General methods

2.1. Stimuli. Interlocutor recordings

To create a pseudo-interactive task, pre-recorded produc-
tions by the human and Siri interlocutors were played during
the experiment. At the start of each interlocutor block, the
respective interlocutor introduced themself (see Appendix A),
and provided voice-over instructions for the task. During the
experimental trials, interlocutors provided responses to the ini-
tial production by the participant (“Did you say this word?” “Is
this correct”? “Is this right?” “Is this the word?”), as well as a
final response to the participants’ second production (“Good”,
“Got it”, “Great”, “I think I get it now”, “Okay, got it.”). The
TTS output for the Siri voice was generated using the com-
mand line on an Apple computer (OSX 10.13.6) with the
“Samantha” voice (American female)4. For the human interlocu-
tor, a female native California English speaker produced the
recordings in a sound attenuated booth wearing a head-
4 Since the time of this study, the Siri female voice has been updated by Apple. Both the
“original” and “updated” voices are still available on Mac OS 11.0.1, both listed as “Siri
Female”.
mounted microphone (Shure WH20 XLR). Recordings from Siri
and the human female were amplitude normalized (60 dB). A
summary of the acoustic properties of the interlocutors’ produc-
tions is provided in Table 3, as well as the results of a t-test run
comparing each feature across the Siri and human speakers. As
seen, the human and Siri talkers did not vary in terms of overall
speech rate or f0 range (shown in semitones, ST, relative to
75 Hz). However, overall, the human voice had a higher average
f0 than the Siri voice.

2.1.1. Perceived human-likeness and communicative competence
ratings

To assess differences in perceived human-likeness and
communicative competence of the human and Siri voices,
we conducted a perceptual ratings study of the interlocutors’
voices.

2.1.1.1. Stimuli, participants, & procedure. Stimuli consisted of
recordings produced by the Siri and human interlocutors (see
Appendix A for full list), which were used in both Experiments
1 & 2 as the voice-over overview (n = 4 utterances), immediate
follow-up responses (n = 4 utterances), and closing produc-
tions (n = 5 utterances) (the procedure for the speech produc-
tion experiments is described in Section 2.2.2.). We did not
present listeners with the initial introduction by the interlocutors
as they differed for the two talkers (“Hi! [I'm Siri. I’m a digital
assistant on Apple products.] | [I'm Melissa. I work here in
the Phonetics Lab.]”). In total, there were 26 utterances evalu-
ated (13 utterances * 2 interlocutors). Stimuli were amplitude
normalized to 65 dB. This was louder than the in-lab experi-
ments (Experiments 1 & 2) as the audio were presented online
and participants would complete the experiment from home.

Twenty-three UC Davis undergraduates (mean age = 19.6
years; 19 female, 4 male), none of whom participated in the
production studies, completed the rating study and received
course credit for their participation. Participants completed
the study online, using the Qualtrics experiment platform. Par-
ticipants first completed an audio calibration check, where they
could play a sentence (up to five times) and were asked to
identify which target word they heard from three phonologically

related options (“Bill heard we asked about the coast”, “Bill

heard we asked about the host”, “Bill heard we asked about

the toast”). Then, participants completed the human-likeness
and communicative competence ratings blocks. The order of
blocks was randomly selected for each participant. In the
human-likeness block, participants heard each audio recording
by the two interlocutors (randomly presented, one at a time)
and were asked to rate “How human-like does the voice
sound” on a sliding scale (0 = not human-like, 100 = extremely
human-like). In the competence block, participants heard each
item (randomly presented, one at a time) and rated “How well
do you think this speaker would understand you?” on a sliding
scale (0 = not well, 100 = extremely well).



Fig. 1. Mean ratings of human-likeness and communicative competence for the Siri and
Human voices used in the production study. Error bars show the standard error of the
mean.
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2.1.1.2. Analysis & results. A mixed-effects linear regression
model was fit separately for each of the two ratings,
human-likeness and communicative competence. Both
models contained a fixed effect for Interlocutor (Human vs.
Siri), as well as by-Listener random intercepts and by-
Listener random slopes for Interlocutor. Estimates for F-
statistics, and p-values were computed using Satterthwaite
approximation in the lmerTest package (Kuznetsova et al.,
2017). Contrasts were treatment coded.

Fig. 1 provides the mean human-like and competence rat-
ings for the Siri and Human voices. In the human-like ratings
model, Interlocutor was a significant predictor, with the Siri pro-
ductions rated as significantly less human-like than the Human
productions [Coef = �86.04, t = �30.00, p < 0.001]. The com-
municative competence ratings model also revealed a differ-
ence by Interlocutor: participants rated that the Siri talker
would be much less likely to understand them, compared to
the Human voice [Coef = �39.67, t = �6.68, p < 0.001].

The results of the ratings task demonstrate that the Siri and
Human voices are distinct in their perceived human-likeness
as well as their perceived communicative competence. This
manipulation check confirms that from the voice properties
alone, the Human and Siri interlocutors have distinct apparent
humanness and perceived communicative capabilities. In the
experiments that follow, we test whether participants speaking
to these two voices produce different register adaptations
(voice-AI- vs. human-DS) and error correction strategies.
2.2. General methods. Production studies

2.2.1. Stimuli. Target words

Target words (n = 55) consisted of monosyllabic English
words. To assess participants’ vowel space, 12 CVC words
consisting of corner vowels /i/ and /a/ (see Appendix B) (e.g.,
“BEAD”) were selected. We additionally selected 44 words:
22 contained a nasal coda (CVN) and 22 contained an oral
coda (CVC)5, all of which have both a different-vowel minimal
pair, contrasting in vowel backness with the target word, and a
different-coda minimal pair, contrasting in coda nasality (target
words provided in Appendix B). These minimal pairs were used
for the two misrecognition conditions, in order to compare partic-
ipant productions following incorrect vowel and incorrect coda
errors made by the interlocutors. Target words were chosen to
have a non-high vowel, since the acoustic nasality measure-
ments made for this study are more accurate when F1 does
not overlap with the first or second harmonic (acoustic measure-
ments described in Section 2.3.1.).
2.2.2. General procedure

Participants in the production studies (Experiments 1 & 2)
completed the experiment in a sound attenuated booth, seated
in front of a Dell computer monitor and E-Prime button box
(SRBOX) while wearing headphones (Sennheiser Pro) and a
head-mounted microphone (Shure WH20 XLR) positioned to
the right of their mouth. Recording levels were set with a pro-
tocol that was identical for all participants, with a +20 dB gain
(ART Tube MP Preamplifier) and no additional gain when
passed through the Focusrite Scarlett Mixer6. Once set up, par-
5 One word, “Dodd” was used in both the vowel space and CVC error word lists.
ticipants were given some background information about the
study. Participants were told they would be talking to a real
human, “Melissa”, and a digital device, Apple’s Siri. Interactions
with a given interlocutor were presented in a single block and
order of interlocutor block (Human first or Siri first) was counter-
balanced across participants. In both blocks, participants heard
an introduction from the interlocutor along with an image, either
an iPhone showing the “How can I help you?” screen (Siri block)
or a stock image of a human female (Human block). Next, they
were presented with an example trial with a voiceover (either Siri
or Human voice) (all pre-scripted dialogue is provided in Appen-
dix A).

Each experimental trial consisted of four parts, schema-
tized in Fig. 2: (1) Participants read the sentence they
saw on the screen (e.g., “The word is Todd”), their “original”
production. The slide was shown for 4000 ms with an output
sound function that automatically generated the 4000 ms
audio recording. (2) Participants saw a screen with a word
written in red as they heard the interlocutor's voice asking
for feedback (e.g., “Is this correct?” “Is this right?” etc.). If
the word was correct (e.g., TODD), participants pressed
“YES” on a labeled E-Prime button box. If the word was
incorrect (e.g., TAD), participants responded “NO”. The next
screen would advance when participants made a button
press. (3) Participants then repeated the sentence again
(e.g., “The word is Todd”) as their second production (cor-
rect repeat or error correction), with the slide shown for
4000 ms. (4) Finally, the interlocutor (Siri or female Human)
gave positive feedback (e.g., “Great”, “I think I get it now”,
“Got it”, etc.). Interlocutor verbal responses were pre-
recorded. Feedback and final responses were randomly
selected from a set of options throughout the experiment
(see Appendix A). These responses were designed to make
the trials seem more interactive. There was an intertrial
interval of 1000 ms.

In each interlocutor block, participants began with 12 vowel
space trials consisting of CVC words with the corner vowels /i/
and /a/ (order randomized). Following the 12 initial trials, partic-
6 Once the gain was set in the pre-experimental set-up, it was not changed again during
an entire participant recording session.



Fig. 2. Schematic of an experimental trial. The first slide showed the target for the original production. The second slide either showed the correct response (e.g., BONE) or the word
with an incorrect coda (e.g., BODE) or vowel (e.g., BANE). The third slide showed the target for the second production in the trial (either repeat correct, or error correction).
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ipants continued seamlessly to the experimental trials, consist-
ing of 22 CVC and 22 CVN trials (alternating between CVC and
CVN on each trial; target words randomly selected from each
word type). The target word lists and corresponding errors
are provided in Appendix B.

Staged recognition errors were matched, both in type of
error and rate of error for the human and Siri interlocutors.
For the vowel space trials, errors consisted of incorrect coda
voicing (e.g., “BOD” for “bot”). For experimental trials, there
were two types of errors: incorrect vowels and incorrect codas.
Incorrect vowel errors consisted of the opposite vowel back-
ness (e.g., “TAD” for “Todd”). Incorrect coda errors consisted
of oral consonant codas in place of the nasal consonant codas
at the same place of articulation (e.g., “BODE” for “bone”). In
“correct” trials, the interlocutor (Siri/human) correctly heard
the intended target word. Correspondence of interlocutor
response (correct, vowel error, coda error) to target words
were randomized in each interlocutor block. In total, partici-
pants completed 56 trials for each interlocutor, for a total of
112 trials (56 trials * 2 Interlocutors). The experiment lasted
approximately 35 minutes in total. After the study, participants
completed a background questionnaire about their demo-
graphics, language background, and their voice-AI usage.

Rate of errors was varied across experiments: at a lower
error rate (Experiment 1) and a higher error rate (Experiment
2). More details on the specific procedure for each experiment
are provided in Sections 3.1.3. and 4.1.3.
7 In the lower error rate study (Experiment 1), this resulted in removing 1 production
above the plausible maxima and 56 below the plausible minima for speaker genders. In the
higher error rate study (Experiment 2), this resulted in removing 20 productions above the
plausible maxima and 49 below the plausible minima for speaker genders.
2.3. Analyses

2.3.1. Acoustic measurements

The second author listened to each of the recordings,
ensuring that (1) the speaker indeed responded, and (2) they
were not doing anything particularly marked or out of the ordi-
nary. We excluded trials where there was any artifact (e.g.,
coughing, yawning). There was only one speaker who did
not say the target sentences for Siri in the vowel space trials.
Consequently, we excluded all of their data from analysis.

Four prosodic measurements were made at the sentence
level. Mean intensity over the sentence was measured in deci-
bels (dB) with a Praat script (using the “Get Intensity (dB)”
function). Mean f0 measurements were calculated at 15
equidistant intervals over the sentence with a script that uses
Praat’s default autocorrelation method (that we adapted from
DiCanio, 2007). We filtered f0 values for plausible maxima
and minima by speaker gender (males: 78–150 Hz, females:
150–350 Hz) to remove spurious values and those resulting
from vocal creak7. The mean of these values (converted to
semitones, ST) served as the overall “mean f0” of the sentence.
Based on the f0 measurements taken over 15 intervals, we cal-
culated the utterance maximum and minimum f0 (in ST). Their
difference (maximum –minimum) was the f0 range. We addition-
ally measured speech rate (syllables per second) for each sen-
tence with a Praat script (De Jong et al., 2017) to use as a
predictor in vowel duration models.

Participants’ utterances were force-aligned using FAVE
(Rosenfelder et al., 2014). Segmentations for target word vow-
els were manually hand-corrected by trained phoneticians.
Hand-correction focused on vowel-consonant boundaries in
the target words. The boundary between the vowel and the
adjacent consonants was determined to be where there was
an abrupt change in amplitude in the waveform and an abrupt
change in amplitude of the higher formant frequencies in the
spectrogram. Note that speakers produced the sentence-final
target words with creaky voice in some cases; following
Pycha and Dahan (2016), we confirmed all still had visible glot-
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tal pulses8. Following hand-correction, vowel duration and for-
mant frequency values (F1 and F2) were measured with FAVE
extract (Rosenfelder et al., 2014).

For CVN targets, coarticulatory nasalization was measured
acoustically within-speaker as A1–P0, a spectral measure of
relative degree of vowel nasalization using a Praat script
(Styler, 2017, 2018). A1–P0 is quantified as the difference in
amplitudes between the F1 peak and a low frequency nasal
peak (P0) in the spectrum (Chen, 1997). As nasalization is
introduced, the relative amplitude (in dB) of the nasal formant
peaks increases while the relative amplitudes of oral formant
peaks (e.g., F1) decreases. The difference in amplitude
between the nasal formants and the oral formants is a mea-
sure of relative nasalization; A1–P0 decreases as nasality
increases. A1–P0 measurements for all CVN words were
made automatically via script in Praat, taken at vowel midpoint
following Scarborough & Zellou (2013).

To assess the degree of vowel hyperarticulation, we calcu-
lated degree of F1/F2 Euclidean distance from each speaker’s
vowel space center. First, we log transformed (log-base 10) the
first and second formant frequencies (F1 and F2) to scale from
Hertz (Hz). Next, we calculated each subject’s average
(logged) F1 values and (logged) F2 values from the corner
vowels /i/ and /a/ taken from the first 12 trials of each block (fol-
lowing Bradlow et al., 1996). We used these subject-means for
F1 and F2 to center the observations for each speaker, result-
ing in “log mean normalized” F1 and F2 values (Nearey, 1978).
The mid central vowel, /ʌ/, was excluded from the vowel hyper-
articulation analyses (as was done in Wedel, Nelson, & Sharp,
2018). Euclidean distance from each speakers’ vowel-space
center was calculated from each participants’ F1 and F2 at
35% of the total vowel duration (Bradlow et al., 1996;
Smiljanić & Bradlow, 2005). Examining vowel features at
roughly ⅓ of the vowel portion is a common approach taken
in sociophonetics (e.g., Fridland et al., 2014), which addition-
ally addresses dynamic formant movement observed for both
monophthongs and diphthongs in American English (Fox &
Jacewicz, 2009; Nearey, 2013). In monophthongs, the initial
half of the vowel is characterized as the most stable (Fox &
Jacewicz, 2009; Hagiwara, 2005). The initial, onglide portion
of diphthongs is also observed to be the most critical and
stable portion (Gottfried & Triesch, 1993; Nearey &
Assmann, 1986). Therefore, we assess differences at 35% of
vowel duration in order to have the most stable and consistent
formant measure across monophthongs and diphthongs.
2.3.2. Statistical analyses

Each of the acoustic properties of interest (intensity, f0
mean & range, vowel duration, vowel hyperarticulation, acous-
tic vowel nasality) were analyzed using separate linear mixed
effects models with the lme4 R package (Bates et al., 2015).

Fixed effects included Interlocutor (2 levels: Human, Siri),
which was sum coded such that differences reflect changes
in Siri- and human-DS from the grand mean. We also included

the fixed effect of Production Type (4 levels): (1) original: their
first production of the sentence (prior to direct feedback from

the interlocutor), (2) correct repeat: their repetition of the sen-

tence following correct feedback, (3) incorrect coda: their rep-

etition following an incorrect coda, and (4) incorrect vowel: their
repetition following an incorrect vowel. As the number of obser-
vations for the Production Type levels varied (with more obser-
vations for “original” than the others), we used weighted effect
coding for the Production Type factor using the wec R package
(Nieuwenhuis, te Grotenhuis, Pelzer, et al., 2017). Similar to
sum coding, weighted effect coding is used to determine if fac-
tor levels differ from the grand mean; but it additionally weighs
estimated means (both grand mean and factor mean) based
on the number of observations of each level of a factor
(Nieuwenhuis, 2016; Nieuwenhuis, te Grotenhuis, & Pelzer,
2017). We also included the fixed effect of Trial Number (stan-
dardized), and two-way interactions between Interlocutor and
Production Type, and Interlocutor and Trial Number. Models
included a maximal random effects structure, with by-Word
and by-Participant random intercepts, and by-Participant ran-
dom slopes for Interlocutor and Production Type (lmer syntax
provided in Eq. (1)).

ðfeature � Interlocutor � ðProductionTypeþ TrialNumberÞ
þ Interlocutor � ProductionTypejParticipantð Þ
þ 1jWordð Þ ð1Þ

In order to account for the effect of temporal factors on seg-
mental phonetic effects, we included the fixed effect of Vowel
Duration (centered) in the acoustic nasality and vowel hyperar-
ticulation models to account for duration-based effects (e.g.,
Zellou & Scarborough, 2019). In the vowel duration model,
we additionally included a fixed effect of Speech Rate (cen-
tered). The acoustic nasality models were only run on target
CVN words (n = 22 in each block).

For all acoustic feature models, we first attempted to fit a
complex random effects structure (with by-Participant random
slopes for Interlocutor, Production Type, and their interaction)
to account for inter-subject variability (Barr et al., 2013). We
defined a systematic approach (adapted from Barr et al.,
2013) for simplifying random effects structure in response to
a singularity or convergence error, which can indicate that
the model has been “overfit”.

1) Examine random effect variance. If a single predictor results in a
value close to “0”, try removing it. If it does not improve fit, keep
it in.

2) Remove by-Participant random slopes for interaction
(Interlocutor * ProductionType|Participant) ? (Interlocutor + Pro
ductionType|Participant).

3) Compare results when selectively removing each random slope
in two models, retaining random slopes for Interlocutor in one
and random slopes Production Type in another.

4) If removing neither of the random slopes improves conver-
gence, remove both — leaving only by-Participant and by-
Word random intercepts.

We fit each model first with the same Production Type factor
leveling (omitted level = “Correct Repeat”), such that the model
output would show effects for “original”, “incorrect coda”, and
“incorrect vowel” productions. In order to uncover the effect
of “correct repeat” productions, we re-ran each model, holding
the structure constant, with the releveled factor for Production
Type (omitted level = “Original”) (contrasts are provided in Sup-
plementary Data 1 for Experiment 1 and Supplementary Data
2 for Experiment 2) (Schad et al., 2020). For each acoustic fea-
ture, we provide both versions of the model outputs in the
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Experiment 1 and Experiment 2 Supplementary Data 1 and 2
(Tables 10–21).

3. Experiment 1. Lower error rate

3.1. Methods

3.1.1. Participants

Participants (n = 30) consisted of native English speaking
adults recruited from the UC Davis Psychology Pool (mean
age = 19.7 ± 1.6 years, age range = 18–24 years, 25 females,
5 males). All reported having had experience with voice-AI sys-
tems and having had no hearing impairments. All participants
gave informed consent to participate, in pursuance with the
UC Davis Institutional Review Board.

3.1.2. Stimuli

Described in Section 2.2.1.

3.1.3. Procedure (lower error rate study)

The general procedure is described in Section 2.2.2. The
overall error rate for Experiment 1 was 14.3% (errors on 8/56
trials; 48 correct trials). In the 12 vowel space trials, Siri/Human
always showed the correct word. In the experimental trials (22
CVC and 22 CVN target words), the interlocutors made eight
staged recognition errors: four coda errors and four vowel
errors (order and correspondence to word were randomized).
In the remaining trials, the interlocutor heard “correctly”, show-
ing the correct target word to the participant.

3.1.4. Analysis

See general methods for acoustic and statistical analysis in
Section 2.3.

3.2. Results

Model outputs are provided in the Supplementary Data 1
(Tables 10–21); sentence-level results are shown in Fig. 3,
while vowel-level results are displayed in Fig. 4.

3.2.1. Sentence-level results

Mean intensity is plotted in Fig. 3A. The models including
by-Participant random slopes for Production Type resulted in
singularity (Interlocutor * ProductionType|Participant) or con-
vergence errors (Interlocutor + ProductionType|Participant).
The retained model (Interlocutor * ProductionType + Interlocu
tor * Trial + (1 + Interlocutor|Participant) + (1|Word)) showed
an effect of Interlocutor, demonstrating that speakers talk lou-
der to Siri than to the human interlocutor [Coef = 1.63,
t = 2.24, p < 0.05]. There was also an effect of Production
Type: participants produce louder original productions
[Coef = 0.74, t = 7.34, p < 0.001], but quieter coda repair pro-
ductions [Coef = �2.51, t = �3.29, p < 0.01] and vowel repair
[Coef = �2.40, t = �3.15, p < 0.01], relative to the weighted
grand mean. The model with Production Type releveled (omit-
ted level = “Original”) also showed lower intensity in correct
repeat productions [Coef = �0.61, t = �5.60, p < 0.001]. Inter-
locutor also interacted with Production Type: in Siri-DS, partic-
ipants produce even louder original productions [Coef = 0.51,
t = 5.08, p < 0.001] yet less of an increase for coda repair
[Coef = �1.73, t = �2.30, p < 0.05], vowel repair
[Coef = �1.81, t = �2.41, p < 0.01], and correct repeat
[Coef = �0.42, t = �3.84, p < 0.01] productions. We also
observed changes by Trial Number, wherein participants’ pro-
ductions become louder over time within each block
[Coef = 0.36, t = 2.56, p < 0.05]. The way intensity changes
over time is also shaped by Interlocutor. The interaction
between Interlocutor and Trial Number, depicted in Fig. 3A,
demonstrates that participants become louder in Siri-DS over
time [Coef = 0.64, t = 6.31, p < 0.001]. Note that throughout
the paper, to better visualize the over-time effects, the plots
present the data across the “First” and “Second” portions of
each block.

Mean f0 is plotted in Fig. 3B. The mean f0 models including
by-Participant random intercepts for Production Type resulted
in singularity errors, while by-Word random intercepts resulted
in non-convergence. The retained model (Interlocutor *
ProductionType + Interlocutor * Trial + (1 + Interlocutor|Partici
pant)) showed no differences by Interlocutor. There was an
effect of Production Type, with higher mean f0 in original pro-
ductions [Coef = 0.16, t = 15.36, p < 0.001], and lower mean
f0 in vowel repair productions [Coef = �0.17, t = �2.23,
p < 0.05]. There was no difference in mean f0 for coda repairs,
relative to the weighted grand mean. When Production Type
was releveled (omitted level = “Original”), correct repeat pro-
ductions had lower mean f0 overall [Coef = �0.17,
t = �14.82, p < 0.001]. No other predictors or interactions were
significant in the f0 model. As there were no effects of Trial
Number, the plot is not faceted by “first” and “second” half.

Fig. 3C. summarizes the values for f0 range. The models
including by-Participant random slopes for Production Type
resulted in singularity (Interlocutor * ProductionType|Partici
pant) or convergence errors (Interlocutor + ProductionType|P
articipant). The retained model (Interlocutor * ProductionType +
Interlocutor * Trial + (1 + Interlocutor|Participant) + (1|Word))
showed an effect of Interlocutor, indicating that speakers pro-
duce a smaller f0 range when talking to Siri than to the human
interlocutor [Coef = �0.12, t = �2.27, p < 0.05]. There were
also effects of Production Type wherein participants produce
a smaller f0 range in original productions [Coef = �0.06,
t = �2.57, p < 0.05], relative to the weighted grand mean. No
difference was observed for coda or vowel repairs. When Pro-
duction Type was releveled (omitted level = “Original”), the
model showed that correct repeat productions had larger f0
range [Coef = 0.05, t = 2.23, p < 0.05]. Trial Number also pre-
dicted f0 range: over the course of each block, participants’ f0
range increased [Coef = 0.15, t = 5.58, p < 0.001]. No other
predictors or interactions were significant in the f0 model. Note
that while in Fig. 3C. there is a numerical difference for Siri-
and human-DS for coda repairs (in the first half of the experi-
ment), no differences for vowel or coda repairs were seen
overall — or by Interlocutor — when taking into account the
random effects structure (recall also that there were only four
coda repair trials for each interlocutor).
3.2.2. Vowel-level results

Mean vowel duration in target words is plotted in Fig. 4A.
The models including by-Participant random slopes for Pro-
duction Type resulted in singularity
(Interlocutor * ProductionType|Participant) or convergence
errors (Interlocutor + ProductionType|Participant). The retained



Fig. 3. Experiment 1. Mean sentence-level acoustic values by Portion of the Block (First Half, Second Half), Production Type (Original, Repeat Correct, Incorrect Coda, and Incorrect
Vowel), and Interlocutor (Siri = dark blue, Human = light yellow) for (A) intensity, (B) mean f0, and (C) f0 range. Error bars show standard error of the mean. (Note that if no differences by
Trial Number were observed, the plot was not faceted by Portion of the Block).
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vowel duration model (Interlocutor * ProductionType + Interlo
cutor * Trial + SpeechRate + (1 + Interlocutor|Participant) +
(1|Word)) showed no effect of Interlocutor. However, we did
see effects of Production Type, above and beyond any varia-
tion explained by speech rate, which was not a significant pre-
dictor of target word vowel duration in the model. Specifically,
vowel duration was longer in original productions [Coef = 0.004,
t = 11.75, p < 0.001] and even longer in vowel repair produc-
tions [Coef = 0.01, t = 2.43, p < 0.05], relative to the weighted
grand mean. There was no difference in vowel duration in coda
repairs. When the Production Type factor was releveled (omit-
ting level = “Original”), the model revealed that vowel duration
was shorter in correct repeat productions [Coef =
�0.01 t = �12.55, p < 0.001]. Trial Number also predicted
vowel duration in target words, such that participants produced
slightly longer vowels over the course of each block
[Coef = 0.001, t = 2.38, p < 0.05]. No other predictors or inter-
actions were significant in the vowel duration model.

Acoustic nasality is plotted in Fig. 4B. (only CVN target
words). The acoustic nasality models including by-Participant
random slopes for Production Type resulted in singularity
(Interlocutor * ProductionType|Participant) or convergence
errors (Interlocutor + ProductionType|Participant). The retained
model (Interlocutor * ProductionType + Interlocutor * Trial + V
owel Duration + (1 + Interlocutor|Participant) + (1|Word))
revealed that vowel nasality did not differ by Interlocutor.
However, it did vary by Production Type. Releveling the Pro-
duction Type factor (omitted level = “Original”) showed that in
correct repeat productions, speakers produced greater coartic-
ulatory nasalization in vowels in CVN words (lower A1–P0 val-
ues) [Coef = �0.24, t = �2.10, p < 0.05]. No other effects or
interactions were observed. While it may appear in Fig. 4B.
that there is a numerical difference in vowel nasality in correct
repeat productions in Siri-DS, this is not significant in the
model. Here, it is important to note that the hierarchical random
effects structure is not taken into account in the figures —
rather, figures show the mean and standard error.

Vowel space expansion (hyperarticulation) values are plot-
ted in Fig. 4C. The vowel space expansion models including
by-Participant random slopes for Production Type resulted in
singularity (Interlocutor * ProductionType|Participant) or con-
vergence errors (Interlocutor + ProductionType|Participant).
The retained model (Interlocutor * ProductionType + Interlocu
tor * Trial + VowelDuration + (1 + Interlocutor|Participant) +
(1|Word)) showed no overall effect of Interlocutor. Yet, there
was an effect of Production Type. Speakers produced greater
vowel space expansion in original productions [Coef = 0.01,
t = 4.07, p < 0.001]. Additionally, an interaction between Inter-
locutor and Production Type indicated that speakers produce
even greater vowel hyperarticulation in incorrect coda repairs



Fig. 4. Experiment 1. Mean acoustic values for (A) target vowel duration, (B) vowel nasality, and (C) vowel space expansion (hyperarticulation) by Portion of the Block (First Half,
Second Half), by Production Type (Original, Repeat Correct, Incorrect Coda, and Incorrect Vowel), and Interlocutor (Siri = dark blue, Human = light yellow). Error bars show standard
error of the mean. Only CVN tokens are plotted for acoustic vowel nasality. (Note that if no differences by Trial Number were observed, the plot was not faceted by Portion of the Block).
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in Siri-DS [Coef = 0.02, t = 2.10, p < 0.05], seen in Fig. 4C.
Note that no difference was observed in Siri-DS or overall in
vowel repairs. Vowel Duration was also an effect: with greater
expansion for longer vowels [Coef = 0.09, t = 2.35, p < 0.05].
No other effects or interactions were significant in the model.
3.3. Interim discussion

Experiment 1 compared Siri- and human-DS in
pseudo-interactive dialogs. Table 4 provides a descriptive
summary of the findings for all the acoustic features by Inter-
Table 4
Summary of acoustic variation patterns observed in Experiment 1 (low error rate).

Interlocutor

Intensity � Increased in Siri-DS
� Louder in original productions for Siri-DS
� Quieter in correct repeats, coda repairs, and vowel
� Increases over time in Siri-DS

Mean f0 � No difference

F0 range � Decreases in Siri-DS

Vowel duration � No difference

Acoustic nasality (only CVNs) � No difference

Vowel hyperarticulation � Increased expansion in coda repairs in Siri-DS
locutor and Production Type, as well as any interactions with
Trial. Comparison of Siri- and human-DS revealed both proso-
dic and segmental differences in the lower error rate
experiment.

First, consistent with work showing increased amplitude in
computer- and Alexa-DS (Lunsford et al., 2006; Raveh,
Steiner, et al., 2019), speakers produce louder utterances in
Siri-DS. This increased loudness in Siri-DS suggests that
speakers expect Siri tomisunderstand them, evenas theexplicit
communicative barriers were identical in rate and nature for the
human and Siri interlocutors. Further, speakers increase their
Production Type

repairs in Siri-DS

� Louder in original productions
� Quieter in correct repeats, coda repairs, and vowel repairs

� Increases in original productions
� Decreases in correct repeats and vowel repairs

� Decreases in originals
� Increases in correct repeats

� Longer in original productions and vowel repairs
� Shorter in correct repeats

� Increased nasalization in correct repeats

� Increased expansion in original productions
� Contracted in correct repeats
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intensity in Siri-DS over time. These findings support listener-
intelligibility accounts (Branigan et al., 2011; Clark & Murphy,
1982; Oviatt, MacEachern, et al., 1998) in that, for Siri, partici-
pants produce louder speech, consistent with greater articula-
tory effort. These findings counter technology equivalence
accounts (Nass et al., 1997, 1994; Reeves &Nass, 1996) which
argue that people interact similarity with computer and human
interlocutors. Indeed, Siri was rated both as sounding less
“human-like” and less “communicatively competent” in our inde-
pendent rating study (described in Section 2.1.1.), consistent
with relatedwork showing that people rate TTS voices as having
less communicative competence (Cowan et al., 2015).

Second, we observe an overall smaller f0 range in Siri-DS.
One possible explanation for this pattern is that f0 range
reflects differences in conveying emotional affect. Speech
directed toward computers, in particular, has been hypothe-
sized to contain less emotional affect, relative to speech
towards other types of interlocutors (Burnham et al., 2010),
similar to findings of less emotional affect in non-native
speaker-DS relative to native speaker-DS (Uther et al.,
2007). While flattening f0 has been shown to reduce intelligibil-
ity for human listeners (Laures & Weismer, 1999), another pos-
sibility is that speakers adapt their speech to “sound” more like
Siri’s (i.e., more robotic). Indeed, Mayo et al. (2012) found a
reduced f0 range in “imagined” computer-DS and there is a
body of work suggesting that speakers align their speech to
improve intelligibility (for a discussion, see Pickering &
Garrod, 2006). While there was no difference in f0 range
between the human and Siri voices used in the studies, it is
possible that participants perceived the voice as sounding
more “monotone” (i.e., having smaller f0 variation), consistent
with what is reported in related work (Siegert & Krüger,
2021). At the same time, another possibility is that participants
were increasing their f0 range more in human-DS. This would
be consistent with increased vocal effort towards humans in
response to greater apparent communicative barriers. Yet,
the effect of increasing f0 variation on enhancing intelligibility
has produced equivocal results in other work. For example,
Miller and colleagues (2010) found that exaggerating f0 varia-
tion actually leads to reduced intelligibility in speech-in-noise.

Furthermore, we saw other differences in Siri-DS that were
mediated by local intelligibility strategies, lending support for a
hybrid targeted adaptation and listener-intelligibility account.
For example, speakers produce greater vowel space expan-
sion when repairing coda errors in Siri-DS. This increased
vowel hyperarticulation aligns with related work showing vowel
space expansion and targeted segmental hyperarticulation
(e.g., in consonants) in computer-DS (Burnham et al., 2010;
Stent et al., 2008). Furthermore, speakers are louder in their
original productions in Siri-DS, consistent with first-mention
hyperarticulation (Fowler & Housum, 1987). At the same time,
speakers are quieter in Siri-DS in correct repeat and error
repairs. Together, the targeted “original” adjustments appear
to be a strategy to improve intelligibility in first mention for an
interlocutor the speaker presumes might misunderstand them.

At the same time, we still see similar adjustments in Siri-
and human-DS in some communicative contexts. For exam-
ple, in response to vowel errors, speakers systematically pro-
duce longer vowels. Additionally, during the original sentence
(i.e., “first mention”), speakers produce “clear” speech adjust-
ments for both interlocutors: increased intensity, a higher mean
f0, longer vowel duration, and more vowel space expansion.
Yet, when communication goes smoothly (correct repeat pro-
ductions) speakers produce more hypospeech: decreased
intensity, lower mean f0, shorter vowel duration, less vowel
space expansion, and greater coarticulatory nasalization.
These patterns of coarticulatory nasalization align with prior
work, where speakers increase nasal coarticulation in casual
speech but decrease coarticulation in speech addressed to
(imagined) hard-of-hearing addressees (Scarborough &
Zellou, 2013), suggesting that coarticulatory vowel nasalization
is part of targeted intelligibility adjustments.

While we find that speakers adjust vowel properties (dura-
tion, coarticulatory nasalization) across original and correct
repeat productions, we critically observe only one difference
in segmental features in Siri- and human-DS. This raises a
question: why do Siri- and human-DS vary primarily in terms
of prosodic features in this study? For instance, prior work
has found evidence for segmental lengthening in computer-
DS (Burnham et al., 2010) and targeted nasalization in words
adults or infants might misunderstand (Scarborough & Zellou,
2013; Zellou & Scarborough, 2015). One potential explanation
for the observed overlap in duration and coarticulation in Siri-
and human-DS is that it occurred due to the rate of interlocutor
errors. In Experiment 1, comprehension mistakes occurred in
just eight out of 56 trials for both the human and Siri interlocu-
tors. It is possible that there were too few error repair trials to
detect other differences in targeted acoustic–phonetic adjust-
ments across the response types (weighted sum coding takes
into account the number of observations in each category).
Another possibility is that there were too few errors to elicit
additional interlocutor-specific adjustments by the participants.
Prior work examining computer-DS, without a human compar-
ison, has observed increased segmental hyperarticulation
when the rate of errors is increased (Oviatt, MacEachern,
et al., 1998; Stent et al., 2008). Therefore, in Experiment 2,
an independent set of speakers participated in a study with
the same design as that in Experiment 1, but with a higher rate
of vowel and coda errors.
4. Experiment 2. Higher error rate

Experiment 2 tests whether a higher error rate influences
speech adjustment patterns in Siri- and Human-DS. We use
the same design as in Experiment 1, but with errors occurring
in 60.7% of trials (compared to 14.3% errors in Experiment 1).
4.1. Methods

4.1.1. Participants

Participants consisted of 31 adults (mean age 20.5 ± 2.3 y
ears, age range 18–30 years; 23 females, 8 males). They were
recruited from the UC Davis Psychology Pool and received
course credit for participation. All participants were either
monolingual English speakers or bilingual (e.g., Spanish-
English), with English as their dominant language. All 31 par-
ticipants reported experience using voice-AI systems. None
of the participants reported hearing impairment. All participants
gave informed consent to participate, in pursuance with the UC
Davis Institutional Review Board.
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4.1.2. Stimuli

Described in Section 2.2.1.
4.1.3. Procedure (higher error rate study)

The general procedure is described in Section 2.2.2. The
overall error rate for Experiment 2 was 60.7% (recognition
errors in 34/56 trials; 22 correct). In the 12 vowel space trials,
Siri/human produced staged misrecognition errors on 6 trials
(randomly selected). In the experimental trials for each inter-
locutor block (22 CVN, 22 CVC), Siri/human produced a coda
error in 14 trials and a vowel error in 14 trials. In the remaining
trials, the interlocutor heard “correctly”, showing the correct tar-
get word to the participant.
4.1.4. Analysis

General methods for acoustic and statistical analysis are
described in Section 2.3.
4.2. Results

Model outputs are provided in the Supplementary Data 2
(Tables 10–21) (with the retained model structure indicated
for each). Mean values for Interlocutor and Production Type
at the sentence-level are plotted in Fig. 5 and vowel-level mea-
surements are displayed in Fig. 6.
Fig. 5. Experiment 2. Mean sentence-level acoustic values by Portion of the Block (First Half
Vowel), and Interlocutor (Siri = dark blue, Human = light yellow) for (A) intensity, (B) mean f0, an
Trial Number were observed, the plot was not faceted by Portion of the Block).
4.2.1. Sentence-level results

Mean utterance intensity is plotted in Fig. 5A. The intensity
models including by-Participant random slopes for Production
Type resulted in singularity (Interlocutor * ProductionType|Parti
cipant) or convergence errors (Interlocutor + ProductionType|
Participant). The retained model (Interlocutor *
ProductionType + Interlocutor * Trial + (1 + Interlocutor|Partici
pant) + (1|Word)) showed effects of Production Type, as well
as differences in Siri-DS that emerged over time. First, as seen
in Fig. 5A, participants spoke louder in their original produc-
tions [Coef = 0.33, t = 13.29, p < 0.001] and quieter in coda
repair [Coef = �0.23, t = �4.20, p < 0.001] and vowel repair
productions [Coef = �0.16, t = �2.38, p < 0.05]. The releveled
model (omitted level = “Original”) revealed that speakers are
also quieter in correct repeat productions [Coef = �0.54,
t = �10.60, p < 0.001]. There was also an interaction between
Interlocutor and Trial Number. As seen in Fig. 5A, participants
are louder in Siri-DS later in the block [Coef = 0.15, t = 5.80,
p < 0.001]. No other effects or interactions were observed.

Mean f0 is plotted in Fig. 5B. The mean f0 models
including by-Participant random slopes for Production Type
resulted in singularity errors. The retained model (Interlocutor *
ProductionType + Interlocutor * Trial + (1 + Interlocutor|Partici
pant) + (1|Word)) showed effects of Production Type, and dif-
ferences in Siri-DS that emerged over time. First, as seen in
, Second Half), Production Type (Original, Repeat Correct, Incorrect Coda, and Incorrect
d (C) f0 range. Error bars show standard error of the mean. (Note that if no differences by



Fig. 6. Experiment 2. Mean acoustic values for (A) target vowel duration, (B) vowel nasality, and (C) vowel space expansion (hyperarticulation) by Portion of the Block (First Half,
Second Half), by Production Type (Original, Repeat Correct, Incorrect Coda, and Incorrect Vowel), and Interlocutor (Siri = dark blue, Human = light yellow). Error bars show standard
error of the mean. Only CVN tokens are plotted for acoustic vowel nasality. (Note that if no differences by Trial Number were observed, the plot was not faceted by Portion of the Block).
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Fig. 5B, original productions have a higher mean f0
[Coef = 0.20, t = 17.46, p < 0.001], while both coda repairs
[Coef = �0.15, t = �6.10, p < 0.001] and vowel repairs
[Coef = �0.13, t = �4.31, p < 0.001] have a lower mean f0,
compared to the weighted grand mean. The releveled model
(omitted level = “Original”) showed that speakers also produce
a lower mean f0 in correct repeat productions as well
[Coef = �0.29, t = �12.42, p < 0.001]. Mean f0 also varied
by Trial Number wherein participants’ mean f0 decreased over
time [Coef = �0.04, t = �3.08, p < 0.001]. Additionally, there
was a significant interaction between Interlocutor and Trial
Number. Participants’ mean f0 decreased in Siri-DS over the
course of the block [Coef = �0.05, t = �4.29, p < 0.001]. No
other effects or interactions were observed.

Values for f0 range are plotted in Fig. 5C. The f0 range mod-
els including by-Participant random slopes for Production Type
resulted in singularity errors. The retained model
(Interlocutor * ProductionType + Interlocutor * Trial + (1 + Inter
locutor|Participant) + (1|Word)) showed no difference by Pro-
duction Type, but an interaction between Interlocutor and Trial
Number: f0 range increases in Siri-DS over the course of the
block [Coef = 0.05, t = 2.06, p < 0.05], as seen in Fig. 5C.
No other effects or interactions were observed.
4.2.2. Vowel-level results

The vowel duration results are plotted in Fig. 6A. The mod-
els including by-Participant random slopes for Production Type
resulted in singularity (Interlocutor * ProductionType|Partici
pant) or convergence errors (Interlocutor + ProductionType|P
articipant). The retained model (Interlocutor * ProductionType
+ Interlocutor * Trial + SpeechRate + (1 + Interlocutor|Partici
pant) + (1|Word)) showed no effects of Interlocutor, but differ-
ences based on Production Type. Participants produce longer
vowel duration in original [Coef = 0.0008, t = 2.0, p < 0.05] and
incorrect vowel [Coef = 0.005, t = 4.05, p < 0.001] productions.
The releveled model (omitted level = “Original”) showed that
speakers also produce shorter vowels in correct repeat trials
[Coef = �0.01, t = �7.24, p < 0.001], relative to the weighted
grand mean. There was an effect of Trial Number indicating
that over the course of the block, speakers produce longer
vowel duration [Coef = 0.004, t = 6.49, p < 0.001], as seen in
Fig. 6A. There was no difference based on Speech Rate, indi-
cating that these vowel duration adjustments are local adapta-
tions, not a result of changing utterance speed. No other
effects or interactions were significant in the model.

Acoustic vowel nasality for CVN tokens is plotted in Fig. 6B.
The nasality models including by-Participant random slopes for
Production Type resulted in singularity errors. In the retained
model (Interlocutor * ProductionType + Interlocutor * Trial + V
owel Duration + (1 + Interlocutor|Participant) + (1|Word)), we
find no effects or interactions involving Interlocutor. The rele-
veled model (omitted level = “Original”) showed that correct
repetitions contained vowels with lower A1–P0 (indicating
greater coarticulatory vowel nasality) [Coef = �0.58,
t = �2.24, p < 0.05], compared to the weighted grand mean.
There was also a significant effect of Vowel Duration on acous-



16 M. Cohn et al. / Journal of Phonetics 90 (2022) 101123
tic nasality wherein increasing vowel duration was associated
with increased coarticulatory vowel nasalization (lower A1–
P0 values) [Coef = �19.86, t = �5.59, p < 0.001]. No other
effects or interactions were significant in the model.

Vowel spaceexpansion is plotted in Fig. 6C. The vowel space
expansion models including by-Participant random slopes
for Production Type resulted in singularity
(Interlocutor * ProductionType|Participant) or convergence
(Interlocutor + ProductionType|Participant) errors. The retained
model (Interlocutor * ProductionType + Interlocutor * Trial + Vo
welDuration + (1 + Interlocutor|Participant) + (1|Word)) showed
no effects or interactions involving Interlocutor. There were
effects of Production Type on vowel space expansion, where
speakers produce greater vowel hyperarticulation in original
productions [Coef = 0.004, t = 3.88, p < 0.001], but less hyperar-
ticulation in correct repeat productions [Coef =�0.01, t =�4.11,
p < 0.001]. There was an effect of Vowel Duration: as duration
increased, vowel hyperarticulation increased [Coef = 0.17,
t=6.00,p<0.001]. Additionally, therewasaneffect of Trial Num-
ber. As seen in Fig. 6C, vowel space expansion decreased over
time [Coef = �0.003, t = �2.12, p < 0.05]. No other effects or
interactions were observed. While there is a numerical differ-
ence in expansion in Siri-DS for coda repairs in the “first half”
in Fig. 6C, this was not significant when accounting for both par-
ticipant and word variability in the mixed effects models.
4.3. Interim discussion

Experiment 2 compared Siri- and human-DS in a design
that employed a higher error rate than Experiment 1, with
staged misrecognitions in 60.7% of trials for both interlocutors.
Table 5 provides a descriptive summary of the findings for all
the acoustic features by Interlocutor and Production Type.

In the higher error rate, we observed prosodic differences
across Siri- and human-DS, but that only emerged over time.
Over the course of the block, Siri-DS increases in intensity
and f0 range, but decreases in mean f0. These adjustments
align with prior studies on the acoustic features in speech
directed toward modern voice-AI technology. For example,
Alexa-DS is louder in the VACC corpus, relative to human-
DS (Raveh, Steiner, et al., 2019; Siegert & Krüger, 2021).
While Mayo et al. (2012) found reduced f0 range in
computer-DS, Cohn & Zellou (2021) recently found greater f0
variation in Alexa-DS, as well as greater f0 variation in
response to errors when they occurred in 50% of trials. This
Table 5
Summary of acoustic features observed in Experiment 2 (higher error rate).

Interlocutor

Intensity � Increases over time in Siri-DS

Mean f0 � Decreases over time in Siri-DS

F0 range � Increases over time in Siri-DS

Vowel duration � No difference

Acoustic nasality (only CVNs) � No difference

Vowel hyperarticulation � No difference
suggests that increasing f0 range might be part of a dynamic
intelligibility strategy here where the error rate was 60.7%.
Together, the prosodic differences in Siri- and human-DS sup-
port listener intelligibility accounts (Branigan et al., 2011; Clark
& Murphy, 1982; Oviatt, MacEachern, et al., 1998), in that
speakers adapt their speech in distinct ways for Siri and
human interlocutors, even when the communicative scenario
—and rate and type of errors — is controlled across registers.

We additionally observed differences in mean f0 over time:
speakers produce lowermean f0 in Siri-DS over time. This con-
trasts with work showing increasing mean f0 in more effortful
speech (e.g., Lombard speech) and in Alexa-DS (Cohn &
Zellou, 2021). One possibility is that the lower f0 in Siri-DS is a
vocal alignment effect, where participants’ productions became
more similar to the interlocutors’. This parallels Raveh et al.’s
(2019) interpretation of a difference in mean f0 for Alexa-DS,
where they found higher mean f0 in Alexa-DS, as the Alexa
had a female voice while the human was male. Indeed, recent
work has examined and found that vocal alignment differs
toward voice-AI and human interlocutors (Cohn et al., 2019;
Zellou, Cohn, & Ferenc Segedin, 2021). Here, acoustic analysis
of the interlocutors confirmed that the human speaker had a
higher mean f0 than the Siri voice, lending support for this inter-
pretation. Since the current study was not designed to examine
phonetic alignment, this is a direction for future work.

While we raised the possibility that the error rate was too low
inExperiment 1 to detect targeted adjustments inSiri-DS, wedid
not observe different error adaptations in Siri-DS at the higher
error rate. For example, in response to a vowel error, speakers
produced systematically longer target vowels in both Siri- and
human-DS. The lack of vowel lengthening following coda
repairs suggests that vowel duration was part of a targeted intel-
ligibility strategy specifically for these types of errors, aligning
with targeted adaptation accounts (e.g., Buz et al., 2016).

Additionally, we observe similar speech-adjustment tenden-
cies across original and correct repeat productions in Siri- and
human-DS. In first-mentions, speakers’ productions are louder,
have a higher mean f0, longer vowel duration, less coarticula-
tory nasalization, and greater vowel space expansion. These
adjustments are consistent with clear speech adjustments
(Lee & Baese-Berk, 2020; Smiljanić & Bradlow, 2005). Here,
speakers appear to produce more effortful and intelligible
speech in first mentions of words, aligning with prior work
(Fowler & Housum, 1987). When the interlocutor (Siri or
human) heard “correctly”, speakers’ productions are quieter,
Production Type

� Increases in original productions
� Decreases in correct repeats, coda repairs, and vowel repairs

� Increases in original productions
� Decreases in correct repeats, coda repairs, and vowel repairs

� No difference

� Longer in original productions and vowel repairs
� Shorter in correct repeats

� Less nasalization in original productions
� More nasalization in correct repeats

� More expansion in originals
� Contraction in correct repeats
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have lower mean f0, shorter target vowel duration, and greater
coarticulatory nasalization, and less vowel space expansion.
These adjustments are consistent with the properties of less
effortful speech (hypospeech, Lindblom, 1990).
5. General discussion

The current study compares participants’ speech style regis-
ters for a human and voice-AI interlocutor (here, Siri). We con-
ducted two experiments, systematically varying the rate of
errors made by the interlocutors: a relatively lower error rate
(14.3% error rate: Experiment 1) and a higher error rate
(60.7% error rate: Experiment 2). Manipulating the rate of errors
in computer-directed speech studies is one way to understand
how people dynamically adjust to real-time evidence about the
communicative competence of the system (Oviatt,
MacEachern, et al., 1998; Stent et al., 2008). Here, we investi-
gate how a priori expectations of a TTS voice interact with
real-time evidence of the interlocutor’s understanding to influ-
ence speakers’ patterns of prosodic and segmental variation.
5.1. Evidence for a Siri-DS register

Across both studies, we observed global differences across
Siri- and human-DS. Siri-DS tends to be louder, have a lower
mean f0, and a smaller f0 range (but one that increases over
time).

First, we find across both studies that productions are louder
in Siri-DS. Increased intensity reflectsmore effortful speech. For
instance, it is a commonly observed feature in speech produced
in adverse listening situations (e.g., in background noise;
Brumm & Zollinger, 2011), as well as in clear speech
(Ferguson et al., 2010). That people speak more loudly toward
Siri is consistent with observations of louder speech (in general)
in computer-DS (Lunsford et al., 2006) and in recent findings for
speech directed to voice-AI, versus a human confederate
(Raveh, Steiner, et al., 2019; Siegert & Krüger, 2021). In the cur-
rent study, we used a head-mountedmicrophone and amplitude
normalized recordings of the human and Siri productions, mini-
mizing differences across interlocutors. This suggests that the
intensity differences indeed reflect interlocutor-specific adapta-
tions, rather than artifacts of spatial separation from a micro-
phone and/or interlocutor (Pelegrín-García et al., 2011).

Second,we observe differences in f0 range. In the lower error
rate study, f0 rangewas smaller in Siri-DS overall. Asmentioned
in the InterimDiscussion (Section 3.3), a possible explanation is
that this reflects less affective-emotional responses in Siri-DS.
Happy speech, for example, contains wider f0 variation
(Abadjieva et al., 1993) and relatedwork has shown that positive
affect is perceived in infant- and pet-DS, but not in non-native
speaker-DS (Burnham et al., 2002; Uther et al., 2007), suggest-
ing less affectmight be present in computer- and voice-AI-DS. In
line with an emotional-affect interpretation, “imagined”
computer-DS contains a smaller f0 range (Mayo et al., 2012).
In contrast, a recent study observed greater f0 variation in
Alexa-DS (Cohn & Zellou, 2021) — yet, in that study, the Alexa
TTS produced both emotionally expressive and neutral speech,
which might be a factor in adaptation. Future work investigating
external listeners’ affecting ratings of speech directed toward
voice-AI/human interlocutors, as well as overall intelligibility of
that speech, can teaseapart this possible emotional contribution
in the f0 range findings. Another interpretation we raised for this
f0 range pattern is that participantsmight be aligning to the smal-
ler f0 variation of a more monotone-sounding speaker. But criti-
cally, if the reduced f0 range indeed reflects alignment, it is
based on the listeners’ expectation of a more monotonous
voice-AI talker, rather than true acoustic realization. Our analy-
sis of the interlocutors’ speech confirmed no significant differ-
ence in f0 range across the Siri and human talkers. The
possibility that speakers are “converging-to-expectation” draws
support from recent work showing convergence in dialectal fea-
tures assumed to be heard, but that were never present in the
stimuli (e.g., Southern American English inWade, 2020). These
possibilities open many new avenues of study. For instance,
future work systematically varying f0 variation in the stimuli —
for both TTS and naturally recorded human voices— can tease
apart the possible contribution of “converging-to-expectation” in
adaptation strategies.

The difference in f0 range for Siri-DS was also dynamic,
increasing over time to approach the levels in human-DS. In
the higher error rate study, the increasing f0 range over time
in the Siri-DS block suggests that these changes might reflect
adaptation strategies to improve intelligibility in response to the
accumulation of many interlocutor errors (here, 60.7% error
rate), as well as for an addressee they assume to be less com-
municatively competent. But, as previously mentioned, intro-
ducing greater f0 variation can result in lower intelligibility for
human listeners (Miller et al., 2010), suggesting that these
adjustments are based on assumptions rather than
experience-based adaptation strategies. The extent to which
increasing f0 range in Siri-DS might shape ASR accuracy
remains another open avenue for future work.

Third, speakers decrease their mean f0 over time in Siri-DS.
Critically, this was only observed in the higher error rate study.
As mentioned earlier, one possibility is that the lower f0 in Siri-
DS is a vocal alignment effect, where participants’ productions
become more similar to the interlocutors’ (e.g., Raveh et al.,
2019). Yet, we do not observe the same effect in the lower
error rate. While the increased error rate increased commu-
nicative barriers, and might have possibly driven increased
alignment as proposed by functional accounts of vocal align-
ment (e.g., Pickering & Garrod, 2006), an f0 alignment account
of the present findings remains speculative. Future studies
which 1) control f0 parameters for human/TTS voices, and 2)
parametrically manipulate them can reveal how alignment
and adaptation strategies might interact for f0 properties in
human- and voice-AI-DS.

Together, the global prosodic differences in Siri- and
human-DS counter predictions made by technology equiva-
lence accounts (Nass et al., 1997, 1994; Reeves & Nass,
1996). Despite Siri having “human-like” qualities (e.g., name,
gender, persona), people talk to voice-AI and humans in dis-
tinct ways. These findings provide support for listener-
intelligibility accounts (Branigan et al., 2011; Clark & Murphy,
1982; Oviatt, MacEachern, et al., 1998) which argue that
speakers produce different speech adaptations for different
interlocutors based on (apparent) communicative barriers. As
mentioned, in the independent ratings experiment of the voices
used in the present study, listeners perceived the Siri interlocu-
tor both as less “human-like”, as well as less likely to under-
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stand their speech, compared to the human interlocutor —
even without any interaction. Thus, the difference in the human
versus Siri interlocutors’ presumed communicative compe-
tence could explain the speech adjustments made in Siri-DS.
5.2. Different error correction in Siri-DS

While our first research question asks whether there is a
distinct voice-AI register, our second question asks whether
there are different error correction strategies in Siri- and
human-DS. Here, we observed one targeted difference in the
lower error rate study: speakers show greater vowel hyperar-
ticulation in Siri-DS following a coda misrecognition. While
vowel hyperarticulation is a commonly observed — and stable
— feature of some registers (e.g., infant-DS in Kuhl et al.,
1997; computer-DS in Burnham et al., 2010), we see that it
is dynamically targeted by the local communicative context.
Overall, observing different error correction strategies in Siri-
and human-DS — even if only at the lower error rate — sup-
ports a hybrid account, combining listener-intelligibility
(Branigan et al., 2011; Clark & Murphy, 1982; Oviatt,
MacEachern, et al., 1998) and targeted adaptation accounts
(Buz et al., 2016; Lindblom, 1990).

That we did not see parallel adjustments in vowel expansion
in the higher error rate study (60.7%) is consistent with other
studies that had relatively higher error rates. For example,
Cohn & Zellou (2021) found that speakers produce similar
vowel adjustments in both Alexa- and human-DS when the
interlocutors made staged misrecognitions in 50% of trials.
Similarly, Burnham et al. (2010) found no differences in error
correction for human- and computer avatar-DS when the rate
of errors was 33%. Together, these findings suggest that at a
higher error rate, vowel hyperarticulation strategies are more
similar across computer-/voice-AI- and human-DS registers.

While we observed the difference in vowel space expansion,
we did not observe differences in vowel duration or nasal coar-
ticulation in Siri- and human-DS in response to errors. In partic-
ular, we predicted that vowel errors might trigger more vowel
duration and hyperarticulation, while coda nasality errors might
trigger more nasal coarticulation, and that these would be differ-
entially tuned in Siri- and human-DS. As mentioned, we only
observed increased vowel space expansion in Siri-DS for coda
repairs. Here, one explanation is that speakers had other strate-
gies for repairing vowels, namely increasing vowel duration.
Indeed, vowel repairs had longer vowel duration in both experi-
ments, though there were no differences across Siri- and
human-DS. This contrasts from other work finding differential
targeting of nasal coarticulation in adult- and infant-DS based
on the lexical properties of words (Scarborough, 2013; Zellou
& Scarborough, 2015). One possibility is that speakers do not
target nasal coarticulation differently for computer/voice-AI
interlocutors. Future work examining other acoustic features
(e.g., voice onset time, /t/ release) and lexical properties can fur-
ther shed light on segmental error correction strategies in voice-
AI- and human-DS, if present.
5.3. Differences in “original” and “correct repeat” productions in Siri-DS

In the present study, each trial consisted of an original, “first
mention” production of the target sentence, followed by a rep-
etition in response to either the correctly identified target word,
or an incorrect vowel/coda option. In addition to the difference
observed in response to errors (discussed in Section 5.2.),
speakers also produced distinct patterns in “original” and “cor-
rect repeat” productions in Siri-DS.

First, speakers produced louder original productions to Siri
in the lower error rate. This adjustment could be a strategy to
improve intelligibility in first mention for an interlocutor the
speaker presumes might misunderstand them. Second,
speakers show lower intensity in correct repeat productions
in Siri-DS reflecting less effortful speech. Indeed, this decrease
in intensity parallels more general adaptation strategies in cor-
rect repetitions to both interlocutors. Here, correct repeat pro-
ductions showed patterns of “hypospeech” consistent with
the idea that when communication is successful, speakers
expend less effort (e.g., Lindblom, 1990). In the present study,
that reduced effort is realized as quieter utterances, shorter
vowel durations, lower f0, less vowel hyperarticulation, and
greater nasal coarticulation as rapid connected speech can
result in reduction and greater articulatory overlap (cf.
Farnetani & Recasens, 2010).

Together, these differences in “original” and “correct repeat”
productions for Siri-DS support a hybrid targeted adaptation
(Buz et al., 2016; Lindblom, 1990) and listener-intelligibility
account (Branigan et al., 2011; Clark & Murphy, 1982; Oviatt,
MacEachern, et al., 1998). These differences can be inter-
preted along with prior findings that clear speech involves
the targeted restructuring of phonetic patterns (Bradlow,
2002; Scarborough & Zellou, 2013). Specifically, while partici-
pants produced louder first mention utterances in Siri-DS, this
did not occur with concomitant acoustic–phonetic differences
(e.g. in F1/F2 hyperarticulation). Compared with other work
where increasing vocal intensity observed in elicited clear
speech co-occurs with vowel space expansion and longer
durations (Lam et al., 2012), the current finding suggests that
the similarities observed across Siri- and human-DS in these
first mention utterances reflect active maintenance of acous-
tic–phonetic features in speech directed toward both interlocu-
tor types. Thus, while loudness is a feature speakers increase
in first mention productions to Siri, there appears to be active
compensation for articulatory changes that might co-occur with
increasing intensity to maintain acoustic–phonetic output of
other features in this condition (e.g., F1/F2, duration, etc.).
5.4. Implications for voice technology

In addition to serving as a direct comparison between a
human and voice-AI interlocutor, this study sheds light on some
of the cognitive factors at play in human–computer interaction,
which have real-world applications for voice technology. The
adjustments we find in Siri-DS (e.g., increased intensity) reflect,
in general, more effortful speech. Yet, many ASR systems have
been trained on naturalistic, casual speech (e.g., Wade et al.,
1992). Hyperarticulation in computer-DS can lead to a “cycle
of misunderstanding” (Oviatt, MacEachern, et al., 1998; Stent
et al., 2008): when speakers experience an ASR error, they pro-
duce more hyperarticulated speech, which in turn can lead to
additional ASR errors. There is evidence in the current study
for more vowel hyperarticulation following errors, suggesting
that an “ASR error cycle” could be at play with modern voice-
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AI. Yet, at the higher error rate, adjustments were largely parallel
in human- and Siri-DS. Sincewe find only one difference in error
correction strategies (seeSection 5.2), this suggests that includ-
ing training data from human-human interaction in how people
correct errors might improve ASR models.

Furthermore, the current study provided participants with
information indicating the source of an error in comprehension,
using visual feedback of the interlocutor’s “guess” of the word.
While more common in screen-based voice-AI systems (e.g.,
Echo Show, Siri interface on the iPhone), confirming correct
recognition or confusion about a target word could be elicited
vocally in speech interactions. For example, Cohn & Zellou
(2021) found targeted vowel formant adjustments (specifically
F2) when the Alexa or human interlocutor made a vowel back-
ing mistake (“I think I missed that. I think I heard boat or bet.”).
In the current study, we find that vowel duration is specifically
targeted in vowel repair trials — after the participant has seen
visual feedback that the interlocutor made a vowel mistake (but
heard all other segments correctly). The extent to which speak-
ers’ adaptation strategies vary according to their interlocutors’
feedback — for example, signaling more general intelligibility
difficulties (e.g., “I missed that.”) versus more targeted
approaches (e.g., “I might have misunderstood. I heard bat.”)
— are avenues for future research.
5.5. Limitations and directions for future work

One limitation of the present study is that the participants
engaged with the interlocutors via pre-recorded, disembodied
voices. Prior work has shown differences in articulations for real
and imagined speakers (e.g., Scarborough & Zellou, 2013). In
some ways, the paradigm in the current study reflects a context
that may be more ecologically valid for communicating with
voice-AI (i.e., via a computer) than for speaking with a human.
Future work using interactions with real humans and devices
could address this limitation with more authentic interactions.
Additionally, there is a growing body of work examining the role
of embodiment in interactions with technology (Appel et al.,
2012; Lee et al., 2006). Physical form, varying in terms of
human-likeness, has been shown to more gradiently shape
vocal alignment patterns (Cohn, Jonell, et al., 2020), suggesting
that embodiment might also play a role in speech adaptation
strategies as well. While prior work has compared human- and
computer avatar-DS (Burnham et al., 2010) or between
human- and computer-DS without a visual component (e.g.,
Oviatt et al., 1998), future work manipulating the presence of
physical form (e.g., using virtual reality and/or physical embodi-
ment differences, comparing to voice-only conditions) can shed
further light on the source of register differences.

Furthermore, while the present study used only one human
and device voice, future work should compare register adapta-
tion for multiple types of interlocutors, such as voice-AI-DS with
non-native speaker-DS and child-DS (cf. Cooke et al., 2014).
At the same time, our findings suggest that learned associa-
tions with a given TTS voice might also shape the interaction.
In the current study, the Siri voice is rated both as less human-
like and less communicatively competent. One explanation is
that prior experience — or cultural knowledge— of a voice-AI
system having ASR difficulty might lead to more distinct regis-
ter adaptation strategies from human-DS. Using novel TTS
voices (to the participants) might be an avenue to circumvent
these expectations and subsequent adaptations, but more
research is needed in this area.

In addition to varying the voices, comparing interactions
across voice-AI systems (e.g., Apple’s Siri, Google Assistant,
etc.) can speak to properties shared across all voice-AI-DS.
While the nature of these interactions across voice-AI assis-
tants is similar, with users asking for information and giving
commands, there may be fundamental differences in the
ASR, natural language understanding (NLU), natural language
generation (NLG), and TTS voices which might shape how the
participant views the system’s competence and subsequently
the way they talk to the system. Indeed, prior work has shown
variation across ASR systems underlying common voice-AI
assistants (Koenecke et al., 2020; Palanica et al., 2019).

Future work could also explore other types of situations
which present obstacles to communication (e.g., speaking in
noise or in multi-talker babble, cf., Hazan & Baker, 2011) to
explore how that might influence talkers’ interlocutor-based
clear speech strategies across different communicatively chal-
lenging conditions. Furthermore, this study examined
responses in a higher and lower error rate (errors on 60.7%
and 14.3% trials, respectively), relative to each other. While
similar to Stent et al. (2008) who had 50% and 8.3% errors
for higher and lower error rates, it is possible that a larger mag-
nitude of difference might lead to other changes over time. For
instance, this could be the case if the conversation is more
successful, or if the interlocutor gets it “wrong” in an even
greater proportion of trials.

Furthermore, the extent to which individual variation by
humans’ social and cognitive characteristics shapes speech
adaptation to voice-AI is a promising area for future research.
Prior work has shown variation in how people perceive and
personify technological agents, such as robots (Hinz et al.,
2019) and voice-AI (Cohn, Raveh, et al., 2020; Etzrodt &
Engesser, 2021). Recently, some work has revealed differ-
ences in speech alignment toward voice-AI by speaker age
(e.g., older vs. college-age adults in Zellou, Cohn, & Ferenc
Segedin, 2021) and cognitive processing style (e.g., autistic-
like traits in Snyder et al., 2019), suggesting these differences
could shape voice-AI speech adaptation as well.

Finally, this study used acoustic–phonetic measures to
characterize differences in Siri- and human-DS. In some
cases, the differences between Siri- and human-DS were
small (e.g., an increase in intensity of 0.64 dB over time in
Siri-DS). The actual impact of these adjustments on intelligibil-
ity is an open question. A future direction for this line of work is
to investigate how speech directed toward human and voice-AI
interlocutors influences recognition by real listeners and ASR
systems, respectively.
6. Conclusion

Overall, this study serves as a comprehensive and con-
trolled examination of the acoustic–phonetic properties of
Siri- and human-DS in a laboratory setting. Across two error
rate experiments, we find differences in the registers in their
phonetic changes over time, suggesting that speakers shape
their productions based on both “presumed” and “actual” com-
municative barriers faced by different types of interlocutors.
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Examining the dynamic register responses can serve as ave-
nues for future investigations of additional interlocutor types
and communicative contexts.
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Appendix A. Productions generated by the human and Siri voices.

Introduction
� Hi! [I'm Siri. I’m a digital assistant on Apple products. | Hi! I'm
Melissa. I work here in the Phonetics Lab.] I will show sen-
tences on the screen. Please read them aloud to me. They will
always be in black and in quotations. I will give you feedback
as we go along. Now, I will show you an example.

Voice-over instructions (4)
� Here's how this is going to work. First you read this sentence
aloud. Then I will show you in red what I think it is.

� If my response is right, press “Yes” on the button box. If it is
wrong, press “No”.

� After that, another screen will come up. Read the whole sen-
tence aloud to confirm or correct what I wrote.

� Let’s begin.
Immediate feedback (4)
� Did you say this word?
� Is this correct?
� Is this right?
� Is this the word?

Closing (5)
� Good.
� Great.
� Got it.
� Okay, got it.
� I think I get it now.
Appendix B. Target word lists.
Target CiC � Incorrect Coda
 Target CaC � Incorrect Coda
1. deed � deet
 2. Dodd � dot

3. teed � teet
 4. Todd � tot

5. bead � beat
 6. bod � bot

7. beep � beam
 8. bop � bomb

9. beet � bead
 10. bot � bod

11. peep � peeb
 12. pop � pob
Target CVN � Incorrect
Coda � Incorrect Vowel
Target CVC � Incorrect
Coda � Incorrect Vowel
1. bone � bode � bane
 1. bode � bone � bade

2. calm � cob � cam
 2. cob � calm � cab

3. con � cod � can
 3. cod � con � cad

4. come � cub � chem
 4. cub � come � cab

5. dawn � Dodd � dan
 5. Dodd � dawn � dad

6. dumb � dub � dem
 6. dub � dumb � deb

7. game � Gabe � gum
 7. Gabe � game � gob

8. gone � god � gain
 8. god � gone � gad

9. lane � laid � loan
 9. laid � lane � loud

10. lawn � laud � lan
 10. laud � lawn � lad

11. line � lied � loon
 11. lied � line � lewd

12. loan � load � lane
 12. load � loan � laid

13. pain � paid � pine
 13. paid � paid � pod

14. pen � ped � pun
 14. ped � pen � pod

15. rain � raid � ron
 15. raid � rain � road

16. rum � rub � ram
 16. rub � run � rib

17. shine � shied � shane
 17. shied � shine � shooed

18. sign � side � sane
 18. side � sign � sued

19. son � sud � sin
 19. sud � son � said

20. ten � ted � ton
 20. ted � ten � Todd

21. tone � toad � ten
 21. toad � tone � tide

22. wine � wide � won
 22. wide � wine � wooed
Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.wocn.2021.101123.
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