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ABSTRACT

Climate change affects the growth of vegetation and its physiological states such as leaf area index (LAI), which
in turn can affect groundwater recharge because of changes in evapotranspiration (ET). Presently, most recharge
modeling studies over-simplify transient vegetation conditions and the potential corresponding impact on
recharge by using climatological values of vegetation parameters such as LAIL Our study uses the Community
Land Model (CLMv4.5) to investigate the sensitivity of recharge to interannual varying vegetation in Minnesota
(USA) across different climate, hydrogeology, and ecoregions at a 25 km spatial resolution and for the period of
2000-2015. The Ensemble Kalman Filter (EnKF) was used to calibrate soil and runoff parameters to statewide
water table depth observations. Results of the study indicate that although year-to-year varying vegetation does
not affect long-term climatological recharge estimates, it can drive disproportionately large variability in annual
and seasonal recharge. Comparing simulations with dynamic and climatological vegetation inputs, the average
magnitude difference (root mean square difference, RMSD) for recharge was 21.1% in response to only a 4%
difference in LAI inputs. Regression analysis revealed that the combination of local hydrogeology and vegetation-
type affects the magnitude of recharge response to LAI and ET changes. We also found cross-ecoregion domi-
nance of temperature rather than precipitation controlling LAT anomalies and resulting recharge variability, with
springtime temperature being the primary factor because of its impact on leaf-out conditions. Drier western
Minnesota showed higher relative LAI differences as well as higher spring time and relative annual recharge
compared to the wetter eastern part of the state, indicating higher vulnerability of the water-limited region to
changing vegetation and climatic conditions. Our study shows that models can underestimate or overestimate
annual and seasonal recharge if vegetation dynamics are neglected, demonstrating the need to incorporate
transient vegetation conditions when assessing the impact of future climate change on recharge.

1. Introduction

amount of water being intercepted and/or transpired (Le Maitre et al.,
1999). Thus, any changes in these plant physiological properties have

Vegetation interacts with the water cycle in multiple ways (Rodri-
guez-Iturbe, 2000). Leaves intercept precipitation before it either
evaporates from the canopy surface or moves to the ground and in-
filtrates. Plant litter also alters the water retention and infiltration
properties of the soil. However, the most important link in terms of
water balance is usually the effect of vegetation on soil moisture through
transpiration (Arora, 2002). Through these processes, vegetation
directly influences the amount of water that percolates past the root
zone and recharges the water table. In particular, plant physiological
properties such as amount of leaves and root distribution control the
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the potential to induce changes in hydrological processes, including
groundwater recharge.

In hydrological or land-surface models, vegetation parameters usu-
ally include leaf area index (LAI), which is the ratio of the one-sided leaf
area to the underlying ground area. LAI serves as a key functional plant
trait because it controls the magnitude of important ecohydrological
fluxes such as transpiration, canopy evaporation, and photosynthesis
(Asner et al., 2003; Zheng and Moskal, 2009; Bondeau et al., 1999). As
such, most models calculate these fluxes on the gridcell scale through
scaling by LAI values. LAI is commonly specified in the model using
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repeated climatological monthly values. This representation of LAI ne-
glects the response of vegetation to interannual variability in climatic
factors (Arora, 2002; Fatichi et al., 2015). In reality, changes in envi-
ronmental conditions such as shifts in temperature and precipitation
may influence the growth of vegetation (Jeong et al., 2011; Gunderson
etal., 2012). For example, an earlier or a warmer spring might lead to an
early bud burst in plants, while an extended period of moisture stress
may hinder growth.

Seasonal and annual changes in vegetation in turn have the potential
to affect hydrologic processes at various temporal or spatial scales.
There have been previous studies that have investigated the impact of
dynamic vegetation on different components of the water cycle apart
from recharge using physically based hydrologic or land-surface models.
With a focus on runoff, Zhang et al. (2009) and Tesemma (2015)
included transient LAI in their model simulations and found significant
improvement in the runoff estimate when compared to model simula-
tions with climatological vegetation. Looking at the impact on evapo-
transpiration (ET) and soil moisture, Tang et al. (2012) and Vivoni
(2012) found that substantial year-to-year variability in vegetation
greening onset and dormancy dates generate significant differences in
ET simulations compared to results using climatological LAI. Ford and
Quiring (2013) showed that adding dynamic LAI improved simulated
soil moisture and predictions of the intensity and duration of drought
conditions. Hwang et al. (2018) analyzed precipitation-runoff deficits (i.
e., the difference between precipitation and runoff) and concluded that
the long-term non-stationary hydrologic behavior could not be simu-
lated unless full vegetation dynamics, including vegetation phenology
and long-term growth, were incorporated into the model. These studies
provide strong evidence of the influence of dynamic vegetation on
important hydrologic components (ET, runoff, soil moisture) and
prompts questions whether similar interactions between vegetation and
recharge occur.

Very few studies have specifically addressed the influence of dy-
namic LAI on groundwater recharge (Wegehenkel, 2009), despite the
importance of recharge in determining groundwater resource avail-
ability. However, previous work has established the general sensitivity
of groundwater to vegetation. Although early seminal work in ecohy-
drology (Eagleson, 1978; Rodriguez-Iturbe et al., 1999; Porporato et al.,
2001; Fernandez-Illescas et al., 2001) did not explicitly consider this
connection in their focus on dryland regions, where deep water tables
are largely disconnected from root zone soil moisture, tight coupling has
long been recognized in humid lands and wetlands in field-based ob-
servations (Peck and Williamson, 1987; Chang, 2012), and more
recently in model-based studies (Laio et al., 2009; Loheide and Gorelick,
2007). The influence of vegetation on recharge has been more widely
demonstrated across diverse environments across the globe through
studies investigating land use/land cover effects (LU/LC) on recharge,
including both spatial variability and temporal shifts in LU/LC (Scanlon
et al., 2006; Petheram et al., 2002; Kim and Jackson, 2012). These LU/
LC studies, however, focused on changes in vegetation type and did not
consider the dynamic growth variations within a vegetation type.

The impact of more subtle vegetation growth variations on ground-
water recharge, without vegetation type change, has received less
attention. This serves a critical knowledge gap, because climate change
is predicted to alter plant phenology and leaf carbon stocks (Xu et al.,
2013; Loheide and Gorelick, 2013; Zhu et al., 2016; Wu et al., 2015), and
these changes directly impact ET and subsequently influence the amount
of water that is available to recharge the water table. Most work on the
impact of climate change on recharge included yearly repeated (clima-
tological) inputs for vegetation parameters (e.g. Jyrkama and Sykes,
2007; Doll, 2009; Ng et al., 2010; Hanson and Dettinger, 2005; Bouraoui
et al.,, 1999; Herrera-Pantoja and Hiscock, 2007; Chen et al., 2002;
Croley and Luukkonen, 2003; Kirshen, 2002) and thus fail to account for
vegetation responses that can drive feedbacks among climate, vegeta-
tion, and water (Taylor et al., 2012; Mao et al., 2016). A smaller number
of climate change studies (Eckhardt and Ulbrich, 2003; Green et al.,
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2007; Crosbie et al., 2010; Wegehenkel, 2009) have included dynamic
representations of vegetation, including transient LAI, in their pre-
dictions of recharge. Although these recent studies reflect growing
recognition of vegetation dynamics, none, with the exception of Wege-
henkel (2009) conducted an assessment of the impact of dynamic
vegetation on recharge predictions. In their analysis of a catchment in
northeastern Germany over 1950-2100, Wegehenkel (2009) first
executed two reference simulations using climatological and dynamic
vegetation for 1950-1966 and then compared those with future pro-
jections over 2078-2094, again with the two vegetation scenarios. They
found that cumulative groundwater recharge showed a decrease of 9%
from the reference to the future period when using dynamic vegetation,
compared to a decrease of 22% when using climatological vegetation.
They attributed this difference to feedbacks among transpiration, soil
water availability, and crop growth in the case with dynamic vegetation.
Findings from this case study motivates further work to quantify the
effect of climatically driven vegetation dynamics on recharge across
climates and plant types. A fuller understanding of the interactions
among climate, vegetation, and groundwater can help to determine the
complexity needed for representing vegetation in future climate change
assessments of groundwater resources.

Obstacles to understanding the influence of dynamic vegetation on
recharge include uncertainties in constraining their interactions outside
of regions where roots are directly in contact with groundwater (e.g.,
outside of wetlands and riparian zones). Although recent advances have
led to more mechanistic representation of processes spanning the can-
opy to the deeper subsurface (Clark et al., 2015), challenges remain in
calibrating such models to reliably simulate processes across the entire
soil column, where soil properties are typically uncertain. Our study
tackles this obstacle by implementing an efficient data assimilation
method to calibrate regional land-surface model simulations of
recharge, which enables us to address knowledge gaps about the influ-
ence of dynamic LAI on groundwater recharge. This modeling work is
carried out using dynamic remotely sensed LAI observations across the
state of Minnesota (USA). The state’s precipitation and temperature
gradients, and its varied ecoregions that include prairie, cropland, de-
ciduous forest, evergreen forest, and mixed forest provide an apt testbed
to evaluate the impact of spatiotemporal variability in vegetation on
groundwater recharge across a range of conditions. Specifically, we
address the following questions, using Minnesota as a test case: (i) How
has groundwater recharge, over seasonal to multi-year time scales,
responded to interannual changes in LAI in different ecoregions? (ii)
What has been the relative importance of different climatic factors in
driving interannual vegetation dynamics that influence groundwater
recharge? Answers to these questions can help guide future predictions
about climate change impacts on groundwater recharge across diverse
continental ecoregions.

2. Methods
2.1. Study area

Minnesota experiences a continental climate with hot summers and
cold winters. It has a distinct precipitation gradient with an average
annual precipitation of about 89 cm in the southeast that gradually re-
duces to about 50 cm in the northwest (Fig. 1a). About two-thirds of the
precipitation in the state occurs during May to September. The US
Environmental Pollution Agency (EPA) divides Minnesota into five
major ecological provinces, or ecoregions (Fig. 1b) (White, 2020). We
will refer to the first of these ecoregions as Great Plains (GP) in the west
and southwestern part of the state. These were once covered with tall-
grass prairie, but now over 75% of the area is cropland. We further
subdivided GP into Northern Great Plains (NGP) and Southern Great
Plains (SGP) on the basis of soil texture. Both NGP and SGP are
composed of glacial till, but glacial Lake Agassiz in the last glacial period
deposited thick beds of lake sediment on top of glacial till in the north.
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Northern Lakes and Forest
(NF)

Central Hardwood
Forest (CHF)

Southern
Great Plains
(SGP)

Fig. 1. (a) 16-year average (2000-2015) precipitation and temperature in Minnesota (from Thornton et al., 2014) (b) Major ecoregions in Minnesota. Our analysis
focuses on the Northern and Southern Great Plains, Central Hardwood Forest, and Northern Forest (see Table 1), due to large uncertainties in simulating hydrologic

conditions in the Wetlands and karst-dominated Driftless Area.

NGP is also distinct with its lower crop cover and smaller-statured boreal
forests. The Central Hardwood Forests (CHF) ecoregion, extending from
the southeastern to northwestern part of Minnesota, consists of
temperate deciduous forests along with extensive cropland, pasture, and
dairy operations. The Northern Forests (NF) ecoregion, occupying the
northern and northeastern part of the state, is a region of mixed conif-
erous and deciduous temperate forests, conifer bogs, and broad lacus-
trine basins. The Northern Wetlands province consist of vast stretches of
peat soil on former lake beds with some forest and several eroded river
channels. The Driftless Area province in the southeast is a karst-
dominated region characterized by forested ridges and carved river
valleys. Because of the limitations of common hydrological and land-
surface models in reliably simulating groundwater recharge in the
complex systems of wetlands and karst regions (Ringeval et al., 2012;
Hartmann et al., 2017), we focus our ecoregion-specific analyses on the
four regions of NGP, SGP, CHF, and NF (key characteristics summarized
in Table 1; list of abbreviations in Table 4).

2.2. Model description

We used the Community Land Model (CLM) v4.5 (Oleson et al.,
2013) for our assessment of dynamic vegetation controls on ground-
water recharge. CLM is a spatially distributed, mechanistic land-surface
model that serves as the terrestrial component of the National Center for
Atmospheric Research’s (NCAR) larger Community Earth System Model

Table 1
Key characteristics of different ecoregions.

(CESM) (Hurrell et al., 2013). CLMv4.5 has process-based representa-
tions of land-surface biogeophysics, biogeochemistry, hydrology, and
vegetation (Oleson et al., 2013). Because its domain spans the land
surface to unconfined aquifers, CLM is suitable for evaluating climate
and vegetation controls on recharge to surficial aquifers. CLM lacks
representation of deeper subsurface units and applies an approximate
solution for lateral subsurface flow (described below). We consider the
omission of a more detailed lateral subsurface flow scheme to be an
acceptable approximation considering our target modeling resolution of
25 km for this regional scale application. Accurate simulation of lateral
groundwater flow requires a higher spatial resolution due to its depen-
dence on gravity and local topographic factors (Zeng et al., 2018).
Moreover, Minnesota has a relatively low-relief topography (minimum
of 183 m.a.s.l. and maximum of 701 m.a.s.l. over 225,181 kmz) that
likely reduces the consequences of simplifying lateral groundwater
movement.

The default representation of vegetation in CLM uses satellite-based
monthly climatological LAI obtained from gridded datasets. We refer to
this climatological satellite vegetation configuration as CLMcs. Over the
last decade, several land-surface models including CLM have added
process-based modules to simulate plant carbon and nitrogen stocks, as
well as LAI, as prognostic variables. There has also been progress in
developing Dynamic Global Vegetation Models (DGVM) within land-
surface models that can predict shifts in vegetation types over space
and time (i.e. transient PFTs) (e.g. Druel et al., 2017; Clark et al., 2011;

Ecoregions

Terrain Characteristics

Major Vegetation (% land cover of the ecoregion)

Northern Great Plains (NGP)

Southern Great Plains (SGP) Homogeneous

Thick lacustrine sediment
underlain by glacial till

Crop (49%)

Grassland (34%)

Broadleaf Deciduous Boreal Forest (6%)
Crop (71%)

Central Hardwood Forest (CHF)

Northern Forests (NF)

topography of level to
gently rolling glacial till
plains with areas of
morainal hills and loess
deposits
Nearly level to rolling till
plains, lacustrine basins,
outwash plains, and
moraines. Contains
Minneapolis and St. Paul
metropolis.
Nutrient-poor glacial
soils, undulating till
plains and broad
lacustrine basins

Grassland (24%)
Broadleaf Deciduous Temperate Forest (3%)

Crop (45%)
Grassland (36%)
Broadleaf Deciduous Temperate Forest (8%)

Broadleaf Deciduous Temperate Forest (25%)
Needleleaf Evergreen Temperate Forest (24%)
Crop (16%)

Grassland (16%)
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Levis et al., 2004; Fisher et al., 2017). Although CLM incorporates
optional modes for both these capabilities (CLM-Biogeochemical[CLM-
BGC] and CLM-DGVM), we instead modified the general CLM code to
directly take as inputs spatiotemporally dynamic LAI from satellite ob-
servations. This strategy has the advantage over the BGC mode of
avoiding uncertainties in prognostic plant variable simulations, which
depend on a large number of vegetation parameters that substantially
add to the computational load for model calibration.

Because the model integrates over multiple plant-functional-types
(PFTs) within a grid cell to simulate total transpiration (and other
vegetation fluxes), we developed a scheme to convert satellite-observed
total LAI into PFT-level LAI based on the disaggregation in the default
climatological CLM dataset:

LAI[,SAT — LAIi.CLM_DEF (l)
TLA[SAT TLA]CLMJ)EF7

where LAI; and TLAI are PFT-level LAI (for the ith PFT out of a total of 15
PFTs represented in CLM) and total LAI respectively, SAT denotes LAI
observed from satellite, and CLM_DEF indicates the default CLM dataset
that is provided with the model. Our scheme assumes that the default
CLM spatial distributions of PFT cover applies for our disaggregation
calculation; ecoregion averages of percent cover of each PFT are
included in Table 1 (full spatial distribution shown in Fig. S9 in Sup-
plementary Information). CLM’s default climatological LAI
(TLAI¢im_per) and PFT cover dataset is a spatially distributed product at
a base resolution of 0.05° and is derived from MODIS satellite data over
the years 2001-2003 (Lawrence and Chase, 2007). This time period for
the default CLM dataset overlaps with the early part of our simulation
period (2000-2015), and we consider the default CLM PFT distribution
to reasonably apply over later years as well, given that more recent land
cover datasets have not shown substantial changes in Minnesota (see
Supplementary Information, section S1.1). We refer to our modified
implementation with dynamic satellite vegetation as CLMpg.

The hydrological component of the model includes an upper soil
column that is discretized into 10 computational layers, extending from
the ground surface to about 3.8 m depth, with the thicknesses of each
layer increasing exponentially with depth. Boundary conditions for the
upper soil column include simulations of surface runoff, canopy and
ground evaporation, infiltration, flux to and from a deeper unconfined
aquifer layer when the water table is positioned below the upper soil
column, and subsurface drainage when the water table is positioned
within the upper soil column.

For calculating the dynamic soil water content of each computational
layer within the upper soil column, CLM uses a modified form of the 1D
vertical Richards equation (Zeng and Decker, 2009):

00 _ 9T (ow—we)\]
E‘azH 0z ” Q. 2

where 0 is the volumetric soil water content, y is the soil matric po-
tential, y is the equilibrium (hydrostatic) soil matric potential, Q is the
soil moisture sink term (includes root uptake of water for transpiration),
and k is the unsaturated hydraulic conductivity. The hydraulic param-
eters (moisture retention curve exponent B, saturated hydraulic con-
ductivity ks, saturated volumetric soil moisture content O, and

-B
saturated matric potential ) used for calculating y =y, (%) and

2B+3
k = kgar <é) are determined by CLM based on soil texture (percent

sand and clay) and organic matter content in each soil layer (Clapp and
Hornberger, 1978; Cosby et al., 1984; Lawrence and Slater, 2007). De-
tails about the pedotransfer function used in the model can be found in
Oleson et al. (2013).

Determination of the water table depth and recharge is based on Niu
et al. (2007). If the water table is within the upper soil column (within
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3.8 m depth), recharge to the water table is calculated by applying
Darcy’s law across the water table:

Grchare = — kg2, ®)

v — Zjwe

where yy = 0 is the matric potential at the water table at depth zy,
subscript jwt denotes the index of the layer directly above the water
table, and k4 is the hydraulic conductivity of the layer containing the
water table (jwt + 1).

For the case when the water table is below the upper soil column
(below 3.8 m), recharge is set to the potential recharge, defined as the
net flux of water across the lower boundary of the deepest explicit soil
layer at 3.8 m depth. Because most of the major water table aquifers in
Minnesota are close to the surface (within 3 m; Adams, 2016), the
approximation of potential recharge as actual recharge is needed for
only certain parts of the state. CLM computes potential recharge by
calculating the change in water content of an additional soil layer below
the upper soil column:

Abjign 18711

recharge = Tv (4)

where Aljign.1 = 04 —04.; is the change in liquid water content in an
additional lower layer (layer N + 1, from the bottom of the upper soil
column to the water table) over a model time step (¢t to t + 1), and
Azy.1 = zv —2y is the difference between the water table depth z and
the bottom of the upper soil column zy = 3.8m. Liquid water content of
the lowest N 41" layer is calculated using the modified form of Richards
equation as noted above in Eq. 2, assuming no vertical flux across the
bottom of the layer.

The change in water table depth is calculated based on recharge and
drainage:

AZV _ qrecharge — Ydrai At

O ©

where At is the model time step, S, is specific yield calculated as Sy, =

~1/B
Osar {1 - (1 + ﬁ) }, and qgrq; is the subsurface drainage defined as

the flux of water out of the vertical soil column via lateral flux at the
water table. Subsurface drainage is represented through a parameteri-
zation based on topographic statistics:

Ydrai = qdru[,maxexp( 7.f;lmizv)> (6)

where fgq =2.5m! is a decay factor parameter, and qgraimax =
10sin(B) kg m~2s~! is the maximum drainage when the water table is at
the ground surface, with $ as the mean grid cell topographic slope (in
radians). As noted previously, we consider simulations in southeast
Minnesota to have higher uncertainty, largely because this parameteri-
zation is likely insufficient for representing complex flows in karst
regions.

The model was run for two scenarios at a spatial resolution of 25 km
(chosen for computational purposes) using a 30-min time-step over the
16-year period of 2000 to 2015 with a monthly model output frequency.
In the first scenario, CLMcg, the default climatological monthly LAI in-
puts were used. In the second scenario, CLMpg, we replaced the default
climatological LAI with annually dynamic LAI from the Global Land
Surface Satellite (GLASS) (Xiao et al., 2014). GLASS was derived by
combining MODIS and AVHRR satellite data on vegetation. It has a
temporal resolution of 8-days and is available globally starting from
1982 at 1 km spatial resolution. This dataset has been validated in
multiple studies and found to be in good agreement with observations
(Fang et al., 2019). The LAI data was inputted to the model at its original
temporal resolution of 8-day. For meteorological data inputs, we used
Daymet (Thornton et al., 2014) for precipitation, temperature, and hu-
midity, as well as NCEP NARR (Meixner et al., 2006) for wind speed and
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atmospheric pressure. Soil texture inputs were obtained from POLARIS
(Chaney et al., 2016). Compared to the default CLM global soil dataset,
POLARIS is a much newer product that was derived from a probabilistic
remapping of SSURGO (Soil Survey Staff, 2020), an observational
database that specifically focuses on North America. All input datasets
were regridded to the 25x25 km computational grid (details in Sup-
plementary Information, Section S1.2). Soil hydraulic parameters
derived by CLM pedotransfer functions from the soil texture inputs were
further calibrated using water table depth observations from the Min-
nesota Department of Natural Resources’s (MNDNR) Cooperative
Groundwater Management (CGM) database (www.dnr.state.mn.us/
waters/cgm), as described in the following section.

2.3. Model calibration with ensemble Kalman filter

As previously mentioned, simulations of vegetation-recharge
coupling in CLM can be highly uncertain due to poor constraints on
soil properties over the entire unsaturated zone. Because CLM is a
complex nonlinear, spatially distributed model that uses a large number
of parameters to simulate ecohydrological processes, model calibration
is critical but also challenging. To address this, we used the Ensemble
Kalman Filter (EnKF) (Evensen, 1994) to calibrate soil parameters by
assimilating observations of dynamic water table depths to reduce un-
certainty in recharge simulations. We focused on subsurface parameter
estimation because surface model inputs of climate and vegetation
variables were considered to be relatively well-known based on direct
observations. EnKF was chosen for its flexible application with any
model and observation type, as well as its efficient handling of high-
dimensional models like CLM. Water table depth time series were
selected as the calibration data because changes in water table depth
capture water movement over the entire overlying soil column. EnKF
combines spatiotemporally resolved details from CLM with depth-
integrated information from water table depth measurements in order
to generate soil property estimates throughout the soil column.

We used water table data from 320 surficial wells within the CGM
database (locations shown in Fig. 2b, water level depths shown in Fig. S1
in Supplementary Information) that had repeat measurements ranging
from monthly to annual frequency over the 2000-2015 simulation
period. The CGM database processing procedure includes periodic
checks of automated water level measurements against manual mea-
surements for accuracy (Pearson et al., 2012). We further removed data
points that showed unusually large one-time jumps in water level (more
than 3.5 m within a month). Although water levels could be influenced
by groundwater extractions, we did not attempt to filter for affected

(a)
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wells. Global studies (e.g., Gleeson et al., 2012) do not show Minnesota
aquifers to be experiencing any major regional groundwater overdraws,
and collecting local pumping information on a statewide scale was
beyond the scope of this study.

2.3.1. Ensemble Kalman filter

EnKF is a data assimilation method that merges information from
imperfect models and uncertain observations in an optimal way to
reduce and quantify uncertainty (Liu and Gupta, 2007). The Kalman
filter and its variants are widely used in the Earth Sciences (Carrassi
et al., 2018; Liu and Gupta, 2007; Reichle, 2008; Sun et al., 2016).

A sequence of “assimilation cycles” are carried out in EnKF, each of
which consists of two steps: forecast and update. In the forecast step, an
N-member ensemble of state variables are evolved forward in time
through the model (i.e., Monte Carlo runs), with each member using a
different perturbed parameter set and/or including added state variable
noise to represent model structural uncertainty. The forecast step at
timestep t can be represented as:

xﬁ :g(xrufnpu:—lvbt) =+ oy, (2]

where x € R™V is the ensemble of n-dimensional state variables, su-
perscripts f and u respectively denote the forecast and updated variables,
g(.) is the non-linear model applied to each ensemble member, p € RPN
is the ensemble of p-dimensional parameter values, b is the forcing at the
boundaries, and @ includes any additional model error terms.

In the update step, when parameter estimates are desired, an
augmented state matrix & € R™P)*N is created in which p%,_; is
appended to x;. The ensemble members are adjusted based on obser-
vations using the following equation:

& =&l +K(y —HE]), ®

where the matrix Y € R™¥ contains a different perturbed vector of
observations y € R™ in each column (withy; =y +v;,j =1,...,N, andy;
representing a random draw for a 0-mean observation error), K is the
Kalman gain, and H is the measurement operator that relates the model
state to the observations. The Kalman gain is computed as follows:

K=PH (HPH +R,), ©)

T
where the model error covariance is calculated as Pf = (%\ffg) with E{ €
RM™P)XN containing replicates of the ensemble mean vector in each

column, and the observation error covariance matrix is calculated as

Recharge (cm/year)
P75-P25
0

5

10
H15
20

x Groundwater Well

Fig. 2. (a) Estimated (ensemble median of CLMpg) 16-year average (2000-2015) groundwater recharge in Minnesota. (b) Difference between 75th and 25th
percentile of the ensemble recharge estimate. Darker areas indicate more uncertainty in the model outputs. x indicate locations of water table depth observations

(from 320 shallow groundwater wells) used for model calibration with EnKF.
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Table 2
State variables and parameters.
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Variables Description (Units) Prior[min, max]
Soil parameters % Sand Fraction of sand POLARIS =+ 40%
% Clay Fraction of clay POLARIS + 40%
B Slope of soil water retention curve (unitless) [2.8, 15]
ksar Saturated hydraulic conductivity (mm sec ™)) [5x 1074 3% 1071]
Viar Saturated soil matric potential (mm) [10, 760]
Osar Saturated soil water content (porosity) (mm®/mm?®) [0.3, 0.93]
Subsurface drainage parameters Sarai Decay factor for the subsurface drainage calculation (Eq. 6) mhH [0.1, 15]
qdrai,max Maximum subsurface drainage (kg m? sec™?) [107%,1071
Surface runoff parameters Sover Decay factor for the surface runoff calculation* (m™1) [0.1, 5]
fimax Maximum value of saturated area of gridcell* [0.1,0.7]
State variable ZWT Water Table Depth (m) NA

*Surface Runoff = fmaxexp( —0.5foverzv )qiig Where finay is the potential or maximum value of fractional saturated area, which is determined by the topographic char-
acteristics and soil moisture state of a gridcell, fo,.- is a decay factor (m’l), zy is the water table depth (m), and gy, is the sum of liquid precipitation reaching the ground

and meltwater from snow (kg m2sec D).

R, = % with g = (v, 79, ..., vy) € R™N. The updated model error

u_z! u_ﬂl T .. . . .
covariance P = % quantifies the uncertainty in the estimate at

the end of the update step. The updated states and parameters at time t
are then used for the forecast step in the subsequent assimilation cycle
for time t + 1.

2.3.2. Implementation of EnKF with CLM

Sensitivity tests were carried out to identify the parameters most
strongly controlling simulations of water table depth and groundwater
recharge. Table 2 lists these parameters as well as the state variables that
were estimated with EnKF using water table depth observations. EnKF
was initialized at the beginning of the simulation period using random
parameter draws from prior uniform probability distributions with un-
certainty ranges shown in Table 2. The range for subsurface drainage
and surface runoff parameters were specified based on past studies (Ray
et al.,, 2015; Huang et al., 2016) and test simulations. Uncertainty in
POLARIS dataset was accounted for by applying depth correlated soil
texture perturbations similar to Ng et al. (2009) for each soil layer. The
prior soil parameter range was then derived using the pedotransfer
function of CLM (value range listed in Table 2) based on the perturbed
soil texture inputs. Perturbation range of + 40% for soil texture (Table 2)
was chosen based on preliminary tests that showed it to be appropriate
for generating ensemble simulations that cover observed water table
depths.

For our implementation with CLM, we applied several modifications
to the standard EnKF algorithm to improve its performance for simul-
taneous state and parameter estimation, which can be prone to issues
due to non-linearities (Ng et al., 2014). As detailed fully in Supple-
mentary Information (Section S1.3), these include parameter perturba-
tions (Moradkhani, 2005), variance inflation (Anderson and Anderson,
1999), and update iterations (Liu and Ng, 2019).

We set the observation error for water table depth to 0.45 m to
represent not only measurement errors but also scale representation
errors between a single well and the model gridcell. Preliminary tests
showed that an ensemble size of 100 provided an appropriate balance
between performance and computation cost. The final set of ensemble
parameter estimates from EnKF were used to execute two separate sets
of model runs: CLMcs using the climatological vegetation inputs, and
CLMps using satellite-based dynamic vegetation as the input. The
ensemble-median of CLMpg simulations are taken as the final calibrated
estimate, with the full ensemble representing estimation uncertainty,
while CLM¢gs simulations are used for comparison to evaluate the effect
of dynamic vegetation.

3. Results and discussion
3.1. Model Performance Evaluation

To evaluate the performance of the model calibration to water table
depths, we compared the simulated ensemble median water table depth
and observed water table depth using the root mean square residual
(RMSR) over the different observation times for 2000-2015. The
spatially averaged mean RMSR improved by 51% to 1.27 m in the
posterior run (after calibration with EnKF) compared to the prior (before
calibration with EnKF), indicating a statewide improvement of CLM
outputs (Fig. S3 in the Supplementary Information). In a 5-year model
validation run over 2016-2020 using the calibrated parameters, the
RMSR for water table depth remained low at 1.36 m (Fig. S4 in Sup-
plementary Information), providing further confidence in our calibra-
tion results.

Using the calibrated model over the study period of 2000-2015,
simulations of recharge show a notable difference compared to the
recharge results before calibration (Fig. S5 in Supplementary Informa-
tion), demonstrating the effect of the constraint on water table obser-
vations. The calibrated ensemble median recharge estimates (with
dynamic vegetation) across Minnesota at 25 km resolution averaged
over the 2000-2015 simulation period ranged from less than 0.1 cm
year~! in the western part of the state to 26.4 cm year ! in the east, with
a statewide average of 7.4 cm year ! (Fig. 2a). This increasing west to
east spatial trend agrees with past regional recharge studies (Delin et al.,
2007; Smith and Westenbroek, 2015) and largely reflects the underlying
precipitation pattern (Fig. 1a). The highest simulated recharge occurred
in the central part of the state, which is known to contain highly
conductive, glacially deposited sand plains in addition to moderately
high precipitation (Smith and Westenbroek, 2015; Mesinger et al.,
1993). We also found that recharge varies seasonally (Fig.S2 in Sup-
plementary Information), with 82% of the annual statewide recharge
occurring during spring (April - June), and a smaller second period of
recharge occurring during fall (October and November).

Recharge estimate uncertainty was quantified using the difference
between the 75th and 25th percentile of the ensemble recharge simu-
lations in Fig. 2b. The 320 groundwater wells used for calibration data
were unevenly distributed throughout the state with almost all in cen-
tral, northwestern, and southwestern Minnesota, allowing for lower
uncertainty in many of those areas (Fig. 2b). Higher uncertainty in the
recharge estimate in northeastern Minnesota corresponds with where
there is almost no water table depth data. The high uncertainty in cen-
tral Minnesota is around the Minneapolis-St.Paul Twin Cities Metro-
politan Area. It is likely that uncertainties persist there despite the
availability of water table depth observations, because CLM inade-
quately captures the effects of urbanization and management on
groundwater, which is the source of more than 70% of the municipal
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water used in the Twin Cities metro area (Twin Cities Metropolitan
Council, 2007).

Our simulated statewide recharge estimates (the ensemble median)
were generally lower (~ 35% statewide) than previous water balance-
based recharge estimates in Minnesota (Smith and Westenbroek,
2015). Because direct observations of recharge are lacking for valida-
tion, we compared our estimates to available observation-based data for
other major hydrological fluxes, specifically ET and runoff. Evaluating
ET is particularly important for our study given the focus on vegetation.
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Our statewide-average simulated ET closely matched (within 5%) the ET
product from MODIS (MOD16 (Mu et al., 2007; Mu et al., 2011)) and fell
between two other ET products that use satellite and flux tower mea-
surements (SSEBop (Senay et al., 2013) and GFET (Jung et al., 2009))
(Fig. S6 in Supplementary Information). Generally, locations with
moderate to high ET simulations better match the observation-based ET
products compared to locations with low ET simulations (Fig. S7 in
Supplementary Information). We also compared ensemble median
streamflow (calculated as subsurface drainage plus surface runoff in

Fig. 3. (a) The number of years (out of 16) when
the absolute value of the recharge difference be-
tween CLMpg and CLMcg was greater than 10%. (b)
Average difference between CLMcs and CLMpg for
recharge (Dg, Eq. 10) (cm/yr) (c) normalized Dg (%)
(d) Root mean squared deviation between CLMcs
and CLMpg for LAI inputs (RMSDy, Eq. 12) (e)
normalized RMSD;, (%) (f) recharge (RMSDg, Eq.
11) (em/yr) (g) normalized RMSDg (%). The color-
bar label includes the minimum and. maximum
values.

(c) Normalized Dg



H. Anurag et al.

CLM) simulations with measurements from 13 long-term USGS stream
gauges and found that the model captured overall observed spatial
trends without any statewide bias (Fig. S8 in Supplementary Informa-
tion). Reasonable estimation of these major components of the water
balance as well as water table depth gives confidence in the model’s
ability to satisfactorily simulate groundwater recharge and its links with
vegetation dynamics. Although errors could persist in absolute
groundwater recharge estimates from CLM, these likely become less
important when we examine differences in recharge for dynamic versus
climatological vegetation inputs.

3.2. Impacts of dynamic vegetation on recharge

3.2.1. Statewide results

Below, we used the ensemble medians of CLMps and CLMcs simu-
lations to evaluate the impacts of dynamic vegetation on recharge, as
well as the influence of climatic drivers. The statewide recharge simu-
lated with dynamic satellite vegetation (CLMpg) was very similar to the
result with climatological satellite vegetation (CLMcg) (7.4 versus 7.1
cm/yr). This similarity indicates that across the state over the 16-year
period, times and locations with higher than average recharge with
dynamic vegetation were mostly offset by other times and locations with
lower than average recharge. As such, dynamic vegetation seems not to
be important to consider for climatological studies of recharge.

However, as reflected in the overall spatiotemporal correlation of
—0.4 (p-value < 0.05) between LAI differences and simulated annual
recharge differences for CLMpg versus CLMcg, higher (lower) than time-
averaged LAI conditions can cause a decrease (increase) in recharge in
certain years and locations. Correspondingly, Fig. 3a shows the occur-
rence of appreciable differences between recharge results with and
without dynamic vegetation over the 16-year period. Here, appreciable
differences are defined as those years when the difference in recharge is
at least 10% (calculated relative to CLM¢g) and the average annual
recharge is at least 10 mm/yr. These criteria were set to detect cases in
which recharge differences may be sufficiently large as to have water
resource and ecological implications. Across different grid cells, an
average of 2 years out of the 16-year simulation period experienced
appreciable differences in annual recharge simulations. The drier
northwest showed the greatest recharge sensitivity to dynamic vegeta-
tion, with an average 12 out of 16 years showing appreciable
differences.

To evaluate the size of recharge differences over the 16 years, and to
compare them to the underlying dynamic vegetation conditions, we first
calculated the time-averaged recharge difference (Dg) for each grid cell
over the simulation period:

5 (R - RO,

Dp=-" (10

n
where t is the time index for simulation year, n = 16 is the number of
years simulated, and R(t) is the simulated annual recharge at time t for
the CLMpg or CLMcg scenario. Even though average LAI differences over
the 16 years between the scenarios is zero (because climatological
vegetation is defined as the mean of the 16-year dynamic vegetation),
we found that a number of grid cells exhibit a sign bias in Dy (Fig. 3b),
ranging from 0.5 cm/yr to —0.5 cm/yr. The notable non-zero Dy results
in some grid cells indicate that cumulatively over the 16-year simulation
period, there can be an asymmetric impact on recharge by either higher
or lower than average LAI conditions, resulting in respectively lower or
higher overall recharge than expected with climatological vegetation
conditions. For example, in Fig. 3b, recharge in parts of northwestern
and southern Minnesota on average experienced higher recharge over
the 16 years (positive Dg), indicating greater influence by lower-than-
average LAL In contrast, a number of locations in central and eastern
Minnesota with lower than expected recharge over the 16 years

Journal of Hydrology 601 (2021) 126584

(negative Dg) show greater sensitivity to above-normal LAL. While Dg
magnitudes appeared heterogeneously distributed across the state in
Fig. 3b, recharge differences normalized by time-averaged local
recharge in Fig. 3c were highest in the western part of the state, where
recharge values are lowest (Fig. 2a). These differences ranged from a
minimum of —68% to a maximum of +235% of average recharge for
different grid cells, indicating that dynamic vegetation can have a sub-
stantial relative impact on recharge over a 16-year period.

While Fig. 3b shows whether there is a tendency for higher or lower
recharge to accumulate over the 16 years due to dynamic vegetation,
within a grid cell, annual recharge in CLMpg likely falls both above and
below what is expected with climatological vegetation over the 16 years.
To examine the magnitude of recharge and LAI differences between the
CLMps and CLMcs scenarios regardless of the sign, we calculated the
root mean square difference (RMSD) over the 16-year period, i.e.

D (R()ps — R(t)cs)z

RMSDp = \| -—«—— 11)

RMSD, = \| *-—— 12)

where L(t) is the input LAI at ¢ for the CLMpg or CLMcg scenario, and we
show non-normalized and normalized results in Figs. 3d-g. By
comparing Fig. 3b, d, and f, it can be seen that locations with higher
RMSDg and RMSDy, often correspond to areas with greater (positive or
negative) Dg, such as north-western Minnesota. However, it can also be
seen that as expected (because of both higher and lower recharge over
the 16 years), average recharge difference magnitudes (RMSDg) are
generally much greater than average difference values (Dg) over the 16-
year simulation period (compare values in Figs. 3.b and f). Spatially
averaged over the state, RMSDg and RMSD;, normalized respectively by
mean recharge and LAI were 21.1% and 4%, and for some parts of the
state, they respectively reached as high as 597% and 17% (Fig. 3e and
g). The higher RMSD for recharge compared to LAI demonstrates that
year-to-year variability in vegetation growth may drive disproportion-
ately high relative variability in recharge.

3.2.2. Ecoregion-specific analysis

The different major ecoregions of Minnesota (Fig. 1b) may be ex-
pected to exhibit varying sensitivity of recharge to interannual changes
in vegetation growth, because of their differences in climate and plant
type. Although recharge differences over the 16 years show substantial
spatial variability between grid cells in Fig. 3b (spatial coefficient-of-
variations of 16), some alignment with ecoregions can be discerned.
For example, it was previously noted that northwest Minnesota, corre-
sponding to the NGP ecoregion, shows greater frequency and magni-
tudes of recharge differences for CLMpg compared to CLMcg (Fig. 3a, b,
f) as well as greater normalized LAI differences (Fig. 3e). Ecoregion-
based trends become clearer when evaluating transient annual LAI
and recharge values in Figs. 4 and 5, rather than aggregating over the
16-year simulation period (as was done for average differences and
RMSD).

Here, we use DQ and DAL to denote annual level differences in
recharge and LAI, respectively, between CLMps and CLMcg; these are
defined analogously to Dy in Eq. 10 except that they are not averaged
over time. Note that because LAI inputs in CLMcg are the long-term
average of LAI inputs in CLMpg, DAL represents LAI anomalies in each
year (differences from the temporal average). In Fig. 4, we show D[

. ~A N
normalized by the 16-year mean LAI (D;, where the tilde indicates
normalization) in the respective grid cell, because normalized DAL ex-
hibits a stronger spatiotemporal correlation with D4 across the state

compared to non-normalized DQ (—0.47 versus —0.4). The stronger
correlation likely occurs because the normalization accounts for the
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Fig. 4. Normalized difference between CLMcs and CLMpg for LAI inputs (5'2) (%). Red asterisk (*) denotes years when ecoregion was a statistically significant

predictor of 5? (R? >=0.3; p-value < 0.05).

underlying diversity in LAI due to plant type (see Fig. S9 in Supple-
mentary Information for PFT information). Clearest ecoregion trends

LomA L . P I S
can be seen in D; in Fig. 4, for which ecoregion is a statistically signif-
icant predictor in nearly half the years using a simple regression test (p-
value < 0.05). For example, Fig. 4 shows significant regional greening

(positive ]5?) occurred in CHF in 2002, and moderate regional greening
occurred in NF in 2008. These results suggest that even though some

years experienced similar f)f across the state, such as 2013 and 2014,
LAI variability is often influenced by ecoregion-based conditions.

The corresponding recharge differences between CLMpg and CLMcg
in Fig. 5 show considerably more spatial heterogeneity than LAI
anomalies, as seen in the variable results among neighboring grid cells
with similar LAI anomalies. A regression test revealed that ecoregion

was not a significant predictor for recharge differences for any of the 16
years (p-value > 0.05). However, a negative response of recharge to the
LAI differences can still be gleaned through strong, statistically signifi-

cant temporal correlations between 5? and D} of —0.68 to —0.85 for the
different ecoregions (Fig. 6a). This relationship can be seen, for example,
in the uniformly low LAI years of 2013 or 2014, when recharge was
generally higher than expected with climatological vegetation in all four
ecoregions, as well as in 2002 and 2008, when regional greening cor-
responded with mostly reduced recharge (Fig. 5). As a result, some
correspondence between ecoregion and recharge differences does
appear based on underlying ecoregion controls on LAI anomalies.

In Fig. 7a-b, boxplots of ﬁi and DS summarize how much LAI and
corresponding recharge differences vary across the 16 years for each
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Fig. 5. Difference between CLM¢s and CLMpg for recharge (DQ) (cm year’l). Positive values indicate a higher value in CLMps.

ecoregion (superscript S here denotes seasonal average). By further
breaking these results down by season, we note that LAI anomalies not
only differ by ecoregion, but they also vary within a year (Fig. 7a).
Winter (December-March) is omitted from our discussion, because LAI
anomalies and corresponding recharge differences between CLMpg and
CLMcs are very small during that season. It can be seen that the greatest
normalized differences (positive and negative) between dynamic and
climatological LAI occur in the spring (April-June) for all ecoregions
except NF. The large spring-time variability in NGP, SGP, and CHF re-
flects the year-to-year differences in leaf-out or crop dates. In NF, where
there are substantial evergreen forests (Table 1), spring-time LAI
anomalies are smaller and more similar to other times of the year. Fall
(October and November) shows the second largest LAI differences be-
tween CLMpg and CLMcs, due to year-to-year differences in senescence

10

timing, especially in NGP, SGP, and CHF. The spring-dominated sea-
sonal pattern in normalized LAI differences is translated to spring-
dominated recharge differences in NGP, SGP, and CHF (Fig. 7b). This

. . . ~s
is also reflected in the correlations between D; and DSR parsed out by
season, which show that recharge is most consistently sensitive to LAI
anomalies in the spring (correlations of —0.80 to —0.92 across ecor-

egions, Fig. 6b). In springtime, both D5 and f)i are greatest in the two
Great Plains ecoregions, NGP and SGP, followed by CHF (Fig. 3b). This
could reflect crop management decisions in the Great Plains (Table 1),
which can differ more dramatically year-to-year than natural shifts in
leaf-out, with major implications for recharge. Even though CHF and

NGP have similar crop and grassland land cover, lower ﬁf in CHF might
be because of the higher average LAI of temperate forests in CHF
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Fig. 7. Seasonal differences between CLMpg and CLMcs (CLMps-CLMcs) in each ecoregion for (a) 5; and (b) recharge (DSR). Seasonal (mean over 16 years) anomalies
for (c) air temperature (T') and (d) precipitation (P’). Boxplots show the temporal spread over 16 years within each ecoregion. Spring: April-June, summer: July-
September, fall: October-November. Winter is omitted because LAI and recharge differences then are inconsequential.

compared to boreal forests in NGP, which can lower the normalized LAI 3.3. Controls on vegetation dynamics and recharge response

difference. Interestingly, moderately high l~)f in the fall in NGP, SGP, and
CHF is not reflected in higher recharge differences (Fig. 7a-b); this is
further discussed in Section 3.3.3.

3.3.1. Impact of ecohydrological partioning

To evaluate the ecohydrological processes driving the recharge re-
sponses to LAI anomalies, we further examined model simulations of ET
and surface runoff. Note that interception was not included in our

11
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Fig. 8. Scatter plot of ecoregion-averaged AR (recharge) and ARunoff (surface runoff) versus AET for each year. A values are calculated as CLMpg - CLMcs. Note that
AET is not exactly equal to AR + ARunoff because the median of the 100-member ensemble simulations is taken for each variable. Individual ensemble model

simulations do satisfy water balance.

analysis because its simulated magnitude was negligible compared to ET
and surface runoff. ET typically increases with higher LAl and can result
in a lesser amount of water reaching the water table as recharge (Ker-
goat, 1998; Vivoni, 2012). We found very strong temporal correlations
between annual simulations of ecoregion-averaged LAI anomalies and
corresponding differences in ET (calculated analogously as D3) that
ranged from 0.85 to 0.91 (p-value < 0.05). As reflected in the negative

temporal correlations of —0.68 to —0.85 noted above between 5? and
Dﬁ, anincrease in ET due to greater LAI can cause a decrease in recharge,
because there is less water that can pass below the root zone. However,
how much a difference in annual ET (for CLMpg versus CLMcs) ulti-
mately affects recharge depends on how the ET difference first in-
fluences surface runoff in the upper part of the soil column. In fact, the
partitioning of ET differences to surface runoff in addition to recharge
explains the weaker temporal correlation for LAI differences with
recharge differences than with ET differences. Differences in net water
storage change can also affect the recharge response to ET change, but
storage changes were found to be small on an annual timescale.

How ET differences affect surface runoff can be complex. Lower soil
moisture with greater ET can reduce saturation-excess surface runoff
when conditions are generally wet, but it may increase infiltration-
excess surface runoff when conditions are generally drier. We deter-
mined the average partitioning of ET differences between recharge and
surface runoff differences by fitting lines through annual simulated
values over the 16 years in each ecoregion (Fig. 8). We found that much
of the ET differences are partitioned to recharge (63-100%, see slopes
reported in figure legends), but how much differs by ecoregion (Fig. 8).
While nearly all of ET differences are reflected in recharge differences in
CHF and NF, the lowest fraction occurs for SGP, which has the highest
partitioning of ET differences to surface runoff. The stronger influence
on surface runoff in SGP, compared to other ecoregions, results from the
high surface runoff to total runoff ratios values in that region (Fig. S11 in
Supplementary Information), driven by higher surface runoff soil pa-
rameters (fynax in Fig. S13 in Supplementary Information) and less pre-
cipitation. Hydrogeologic and climatic factors are further considered in
the next sections. Our findings on ET partitioning show that even though
statistically, ecoregion does not appear to be a very strong predictor for
recharge differences with vegetation dynamics (noted above in Fig. 5),
distinct hydrological processes based on ecoregion do in fact affect the
response of recharge to LAI and ET changes.
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Fig. 9. Slope of regression over time (mg;) to predict the recharge difference

~A
between CLMcs and CLMps (DR) based on the D; . Negative values indicate that
higher than normal LAI corresponds with a recharge estimate that is lower than
that predicted with climatological LAI inputs.

3.3.2. Impact of hydrogeologic factors

. . ~A
Compared to temporal correlations between ecoregion-averaged D,
and DQ (-0.68 to -0.85), spatial correlations within each ecoregion be-

tween f)f and Dﬁ are much weaker (-0.31 to —0.48) (Fig. 6a). This can
also be seen in the high grid cell-to-grid cell variability in D4 compared

to IN)? (Figs. 4 and 5). The stronger spatial variability in D} suggests that
although LAI anomalies overall drive recharge differences between
CLMps and CLMcs through changes in ET, the specific response is
influenced by local heterogeneities such as in hydrogeologic properties,
as we already started to see in the previous section. To analyze spatial
variability in how recharge responds to dynamic vegetation, we con-

ducted a regression over time to predict D} based on ﬁi for each gridcell
and then evaluated the slope of the regression line (denoted as mg1).
The value of the slope provides a measure of recharge sensitivity to
vegetation dynamics by quantifying the change in D for a unit change
in normalized Dy, (negative slope indicates an inverse relationship).
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Table 3

Regression analysis results for predicting mg, using normalized predictor var-
iables. Predictor variables are explained above in Table 2 and Section 2.2.
Greater coefficient value (positive or negative) indicates a stronger predictor.
Higher t-value (positive or negative) indicates greater confidence in the variable
as the predictor.

R? Predictor (statistically Coefficient (for t-
significant; p-value < standardized predictor statistic
0.05) variables)
NGP 0.5 B —0.45 -2.5
Ksae -0.61 -2.2
Sover -0.42 -2.6
SGP 0.4 Sinax 0.5 3.6
farai —0.4 -3
CHF 0.4 Ksat —0.42 -3.7
Fnax 0.39 0.3
farai -0.2 -2
NF 0.1 None
Table 4
List of abbreviations and terms.
Abbreviations & terms Explanation

CGM Cooperative Groundwater Management
CHF Central Hardwood Forests
CLM Community Land Model
CLMcs CLM Climatology Satellite Vegetation
CLMps CLM Dynamic Vegetation
DAL Annual LAI difference
5? Normalized DA,
Dp Annual Recharge difference
Dr Time averaged recharge difference
DS, Seasonal LAI difference
f);‘:' Normalized D,
DSy Seasonal recharge difference
EnKF Ensemble Kalman Filter
ET Evapotranspiration
LAIL Leaf Area Index
LU/LC Land use/Land cover
MNDNR Minnesota Department of Natural Resources
MR,L Slope of regression line for D} and lN)f
NF Northern Forests
NGP Northern Great Plains

P’ Precipitation anomalies from 16-year mean

PFT Plant functional types
RMSD Root mean square difference
SGP Southern Great Plains
T Temperature anomalies from 16-year mean

By examining the spatial distribution of mg 1, in Fig. 9, some regional
patterns emerge. For example, the northwestern corner of NGP shows a
cluster of high sensitivity (strongly negative mg ;) where normalized LAI
anomalies are also generally greatest (Fig. 3e), while SHP includes areas
of the lowest sensitivity where absolute recharge amounts are also very
low (Fig. 2a). However, as can be expected from lower spatial correla-

tions between f)f and D4 compared to temporal, the regression slope
exhibits considerable grid cell-to-grid cell variability through all
ecoregions.

To assess the spatial influence of hydrogeologic parameters on the
sensitivity of recharge to changing vegetation, we carried out a multiple
linear regression analysis on the regression slope (mg 1). Specifically, we
used the calibrated soil hydraulic parameters, subsurface drainage pa-
rameters, and surface runoff parameters listed in Table 2 (and shown in
Fig. S13 in Supplementary Information) as predictors of mg, for each
ecoregion. ks and Os, were the only highly correlated pair of parame-
ters (correlation > 0.8; p-value < 0.05), and so we dropped ;4 from our
regression model to remove effects of multicollinearity but retained all
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other parameters. To allow direct comparison of regression coefficients
in Table 3, we also standardized the predictor variables (subtracted the
mean and divided by the standard deviation) before conducting the
regression. In Table 3, we see a good overall multiple linear regression
model fit with R? values ranging from 0.4 to 0.5 for NGP, SGP and CHF,
indicating that the hydrogeologic parameters are able to explain sig-
nificant variability in mg, for these ecoregions.

Interestingly, the statistically significant predictors of mg; were
found to differ in the various ecoregions, indicating that distinct
hydrogeologic processes affect the sensitivity of recharge to LAI anom-
alies based on ecoregion. NGP and CHF had ks, as the most important
predictor for the regression slope, while it was the surface runoff
parameter fy,,x for SGP (based on coefficient magnitudes in Table 3).
This result is consistent with the above finding that SGP has the greatest
fraction of ET changes partitioned to surface runoff, which subsequently
affects how much recharge is impacted. fy,x, which positively controls
surface runoff, shows the highest calibrated values in SGP (Fig. S13 in
Supplementary Information). Importantly, these calibrated f,x values
are much higher than the pre-calibration, topographically determined
fmax values. This suggests that the calibrated values are likely reflecting
the effect of the extensive tile drainage system present throughout
southwestern Minnesota, which were installed to manage soil moisture
by moving water from the shallow soil column to surface water features
(Smith et al., 2018). Although the use of tile drains is also common in the
northern Great Plains, their impact may be more subtle there because of
lower precipitation and already high runoff due to clayey soils. In
ecoregions where more of the ET differences are partitioned to recharge,
such as CHF and NGP, k, is important for predicting mg, because it
directly controls flux through the soil column. CHF also includes rela-
tively high values of calibrated fpax (Fig. S13 in Supplementary Infor-
mation), which appears as another major predictor of mgy in that
ecoregion (Table 3). Note that for all ecoregions with good R? values in
Table 3, there was more than one statistically significant soil parameter
predictor, which explains greater spatial variability in mgj, and
consequently Df, than in any single soil parameter.

The poor predictive model for mg, in NF could be due to variable
conditions in this large ecoregion. For example, compared to other
ecoregions, NF exhibits much greater variety in primary and secondary
PFT assignments (Fig. S9 in Supplementary Information). PFT variables
were not included in the multiple linear regression analysis but could
drive some of the spatial variability in recharge responses to LAI
anomalies in NF, especially given differences in phenology and rooting
depths among vegetation types.

With 5? corresponding strongly with ecoregions (Fig. 4), it is likely
that any correspondence between ecoregion and simulated recharge
response to dynamic vegetation is mostly driven by underlying patterns
in LAI anomalies. However, as the above multiple regression analysis
shows, the recharge response is also influenced by spatially variable
hydrogeologic parameters, and the importance of these parameters
varies depending on the ecoregion.

3.3.3. Impact of climatic factors

To assess the drivers of the year-to-year vegetation variations that
impact recharge, we examined their relationships with the major cli-
matic factors of air temperature and precipitation. Across the four
ecoregions, temperature anomalies from the 16-year mean (T') are
greatest in the fall and spring (Fig. 7c), while precipitation anomalies
from the 16-year mean (P’) show more similarity across seasons and
ecoregions (Fig. 7d). High spring-time temporal correlations between
temperature and LAI in Fig. 6¢ suggest that in spring, notable temper-
ature anomalies strongly drive LAI anomalies across all ecoregions,
showing the well-known effect of warm spring temperatures triggering
leaf-out and influencing cropping schedules (Jeong et al., 2011; Wang
et al., 2011; Los, 2012). This interaction results in the large spring-time
normalized LAl anomalies found in NGP, SGP, and CHF, though its effect
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is tempered in NF (Fig. 7a), where the magnitude of LAI anomalies are
likely muted by the evergreen forest fraction, as previously noted.
Although spring-time T’ ranges are similar across ecoregions, corre-

sponding spring-time IN)f are greater in NGP and SGP, in part because of
the effect of smaller nominal LAI values there (Fig. S12 in Supplemen-
tary Information) on the normalized anomalies. Interestingly, fall-time

. ~S . s
correlations between D; and T’ are very weak (Fig. 6¢), indicating that
although cold temperatures in addition to photoperiod induce leaf-fall,
the sizable temperature anomalies in fall are not the main control on

fall LAI anomalies. Weak summer-time correlations between f)f and T'
can be expected, given that between leaf-out and leaf-fall/harvest, LAl is
relatively constant between years for mature forests/grasslands and
established croplands.

Fig. 6d shows that in contrast to temperature, precipitation anoma-
lies have correlations with LAI anomalies that are not statistically sig-
nificant across all ecoregions. This was not surprising in the wetter NF
region, where near-zero correlations in all seasons reflect consistently
well-watered conditions in the eastern part of the state (Fig. 1). In the
more arid NGP and SGP regions, modest negative spring-time correla-
tions between precipitation and LAI anomalies could indicate less plant
water stress during cooler times. However, lack of statistical significance
in these correlations as well as very small positive correlations between
summer precipitation anomalies and LAI anomalies makes this difficult

to conclude. Statistical significance for P’ and Bf correlations was found
for SGP and CHF spring, when the correlation with temperature was still
stronger, and for CHF fall, when the effect of dynamic vegetation on
recharge is small (Fig. 7b). The cross-ecoregion dominance of temper-
ature rather than precipitation correlation with LAI anomalies shows
that despite the precipitation gradient across the state, the cold conti-
nental climate makes spring temperature the primary factor controlling
year-to-year LAI variability. Our finding of temperature being the pri-
mary driving factor of vegetation changes is consistent with several
studies that have investigated the response of vegetation to changing
climatic factors (Wu et al., 2015; Quetin and Swann, 2018; Braswell,
1997; Piao et al., 2006). For example, Wu et al. (2015) found vegetation
growth in the middle to high latitudes (30°N-90°N) was most strongly
correlated with temperature changes among climatic variables that
included precipitation and solar radiation. Similarly, Jeong et al. (2011)
showed that climate warming resulted in an extended vegetation
growing season in temperate forests in the Northern Hemisphere, and an
increase in vegetation greenness during the growing season.

o =S . . .
Like D,, DSy shows the strongest relationship with temperature
anomalies in the spring, compared to precipitation and other seasons
(Fig. 6e-f), which is consistent with large (negative) correlations be-

tween ﬁi and D%, especially in the spring (Fig. 6b). This can be
explained by warm spring temperatures supporting higher LAI anoma-
lies, which in turn decreases recharge through increased ET (Vivoni,
2012). Temperature anomalies outside of spring, as well as precipitation
anomalies in all seasons, often also show similar relationships with D5y

~s . . .

as with D; (compare Figs. 6¢c and d with e and f, respectively). Notably,
the relationships are always considerably weaker than the spring-time
relationship with temperature. However, there are occasionally dis-

. . . . . . =S .
tinctions in the climate anomaly correlations with D5 versus D, during
summer and fall in NGP, SGP, and CHEF, as reflected in the weaker DSR

~s . . .
and D, correlations for these instances (Fig. 6b). These weaker summer

and fall correlations between D%y and ﬁi could be appearing because of
water stress in these seasons, outside of the humid NF ecoregion. Water
stress can dampen the influence of LAI on ET (and consequently on
recharge), such that greater LAl may not support proportionately higher
ET due to weather limitations. Water stress in the summer and fall
outside of NF can be seen in the low (sometimes negligible or negative)
recharge values in these ecoregions (see Fig. S2 in Supplementary
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Information). For this study, summer and fall processes are of less
concern for vegetation-driven recharge variability, given that the mag-

nitudes of Ei and Dy are generally smaller in those seasons (Fig. 7a).
Overall, although non-spring seasons can exhibit appreciable D% values
(Fig. 7), apart from in NF, DSR magnitudes are greatest in the spring,
when temperature is the clear driving factor through its control on LAI
anomalies (Fig. 6c¢).

Our finding about the importance of temperature, compared to
precipitation, for recharge variability may be surprising, because pre-
cipitation is of course the primary driver of absolute recharge amounts.
For example, the spatial distribution of 16-year average recharge across
the state is strongly correlated with mean annual precipitation (0.86, p-
value < 0.05), while it shows little correspondence with mean temper-
ature (0.07; p-value > 0.05). It is important to note that climate inputs
were identical in our two model scenarios, which only differed in their
LAI inputs. Our modeling study thus does not attempt to demonstrate
direct effects of climate variability on recharge. Instead, it brings to light
the role of vegetation in mediating the influence of climate anomalies on
recharge variability. While precipitation serves as the first-order driver
of recharge amounts, we showed that year-to-year changes in vegetation
variables such as LAI, which in Minnesota are largely driven by spring
temperatures, further impact recharge. This impact on recharge occurs
on the magnitude of about 0.4 cm/yr or up to 40% in certain ecoregions
over the 16-year study period (Fig. S10 in Supplementary Information).

4. Summary and conclusion

Our study investigated the impact of dynamic vegetation on
groundwater recharge by comparing CLM model simulations for two
different vegetation scenarios: CLMpg, in which satellite-based, year-to-
year varying LAI conditions were implemented as model inputs, and
CLMcg (the standard approach) in which climatological (16-year
average) monthly LAI conditions were implemented. The study was
carried out for 2000-2015 at a resolution of 25 km for the state of
Minnesota. Focusing on the surface and subsurface hydrological prop-
erties, we used EnKF to calibrate runoff, subsurface drainage, and soil
hydraulic parameters by assimilating statewide observations of dynamic
water table depth in order to reduce uncertainty in the recharge
simulations.

We found that 16-year statewide average recharge was similar when
considering dynamic versus climatological vegetation, indicating that
year-to-year varying vegetation was not important for climatological
estimates of recharge. However, we did find notable responses in
recharge to dynamic vegetation on an annual scale. Statewide, the
average magnitude of annual recharge differences with and without
dynamic vegetation (RMSDg) was 21.1%. This recharge difference cor-
responded to only an average 4% average magnitude difference between
climatological and dynamic LAI (RMSDy), indicating a disproportion-
ately high impact on recharge by year-to-year variability in vegetation.

Asreflected in a strong negative temporal correlation across the state
between normalized LAI anomalies and simulated recharge differences
for the two model scenarios, higher-than-normal LAI reduces ground-
water recharge due to higher ET. How much recharge is affected by LAI
anomalies through ET depends on both larger scale ecoregion conditions
and local scale hydrogeological conditions. In many of the years, LAI
anomalies align with the major ecoregions of Minnesota, and ecoregions
with the greatest normalized springtime LAI anomalies also exhibit the
greatest differences in springtime recharge, which constitutes the bulk of
annual recharge. The drier ecoregions in western Minnesota (NGP, SGP)
undergo the greatest normalized LAI anomalies and total recharge dif-
ferences with dynamic vegetation, while the wet eastern part of the state
(NF) shows much stabler interannual LAI and corresponding recharge
differences. Ecoregion also appears to determine how much LAI-driven
ET differences are partitioned to recharge versus runoff in the water
balance. In most ecoregions, nearly all of ET differences is reflected in
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recharge differences, but in southwestern Minnesota (SGP), a substantial
amount of excess water that results from reduced ET is likely removed by
tile drains before reaching the water table.

High within-ecoregion spatial variability in recharge differences (for
the two scenarios) reveal that local hydrogeological conditions also
control the response of recharge to LAI anomalies. Using multivariable
linear regression tests, we found that hydrogeologic parameters were
able to explain significant variability (40% to 50%) of the sensitivity of
recharge to dynamic vegetation within three out of four ecoregions. NF
had more varied vegetation types (PFTs) than other ecoregions, likely
contributing to the poor predictability there of the response of recharge.
Interestingly, significant hydrogeologic predictors varied according to
the ecoregion, with hydraulic conductivity playing an important role in
ecoregions where LAI-driven ET differences are mostly partitioned to
recharge, and calibrated runoff parameters playing an important role
where there are major tile drain effects.

To assess drivers of the vegetation dynamics that affect recharge, we
examined inter-annual climatic factors and found that large springtime
temperature anomalies are responsible for the large springtime
normalized LAI anomalies and recharge differences. This reflects the
well-known relationship between temperature and leaf-emergence and
cropping schedules in higher latitudes. Temperature anomalies do not
seem to have a similar control on fall-time leaf senescence and harvest
schedules, and precipitation appears to have a minor influence on LAI
anomalies and recharge responses to vegetation dynamics, even in drier
regions and seasons.

Our assessment of recharge responses to vegetation dynamics have
important implications for recharge predictions under climate change,
because it reveals that vegetation responses to climate should be
accounted for. We showed that across a precipitation gradient, vegeta-
tion leaf-out (including crop schedules) across Minnesota is highly
sensitive to springtime temperature anomalies, and this phenological
response can trigger notable changes in ET and subsequently recharge.
Although the high sensitivity of vegetation and recharge to temperature
suggests that precipitation may be a less important factor at higher mid-
latitudes, the response of recharge differed along the state’s precipita-
tion gradient. In the drier Great Plains to the west, springtime normal-
ized LAI anomalies and corresponding recharge differences were greater
than in the wetter eastern part of the state, despite having similar
magnitude temperature anomalies, suggesting greater ecohydrological
vulnerability to temperature anomalies with lower precipitation. Over-
all, our findings indicate that regardless of uncertain future projections
of precipitation, projected temperature increases will extend growing
seasons across Minnesota, which will exert a decreasing effect on
springtime recharge that will be stronger in drier regions of the state, as
well as where hydraulic conductivity is higher and the effects of tile
drains are more minor (see Table 3).
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